<table>
<thead>
<tr>
<th>File Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2TIL122.TXT</td>
<td>Apple II: Using a Switchbox With ImageWriter II</td>
</tr>
<tr>
<td>A2TIL123.TXT</td>
<td>Apple II: Wrong Version of Setup Causes Aristotle Problems</td>
</tr>
<tr>
<td>A2TIL124.TXT</td>
<td>Apple II-to-IBM Host File Transfer</td>
</tr>
<tr>
<td>A2TIL125.TXT</td>
<td>Apple II/II+/IIe: Cable Compatibility (9/94)</td>
</tr>
<tr>
<td>A2TIL126.TXT</td>
<td>Apple IIc Plus: Cable Compatibility (9/94)</td>
</tr>
<tr>
<td>A2TIL127.TXT</td>
<td>Apple IIc Plus: Specifications (Discontinued 11/90)</td>
</tr>
<tr>
<td>A2TIL128.TXT</td>
<td>Apple IIc: 80/40 switch</td>
</tr>
<tr>
<td>A2TIL129.TXT</td>
<td>Apple IIc: Cable Compatibility (10/95)</td>
</tr>
<tr>
<td>A2TIL130.TXT</td>
<td>Apple IIc: Description (Discontinued)</td>
</tr>
<tr>
<td>A2TIL131.TXT</td>
<td>Apple IIe and IIGS: Optical Character Recognition Software</td>
</tr>
<tr>
<td>A2TIL132.TXT</td>
<td>Apple IIe Card: Can't Use Apple II Memory Expansion Cards</td>
</tr>
<tr>
<td>A2TIL133.TXT</td>
<td>Apple IIe Card: Hardware Specifications (7/93)</td>
</tr>
<tr>
<td>A2TIL134.TXT</td>
<td>Apple IIe Card: How to Save Information to a Hard Drive</td>
</tr>
<tr>
<td>A2TIL135.TXT</td>
<td>Apple IIe Card: ProDOS 1.9. Corrects AppleWorks Date Errors</td>
</tr>
<tr>
<td>A2TIL136.TXT</td>
<td>Apple IIe Emulation on an Apple III</td>
</tr>
<tr>
<td>A2TIL137.TXT</td>
<td>Apple IIe Enhancement Kit: Technical Benefits (10/94)</td>
</tr>
<tr>
<td>A2TIL138.TXT</td>
<td>Apple IIe to Epson LX-86: Cable Recommendations</td>
</tr>
<tr>
<td>A2TIL139.TXT</td>
<td>Apple IIe: Component diagnostics (1 of 2)</td>
</tr>
<tr>
<td>A2TIL140.TXT</td>
<td>Apple IIe: Description (Discontinued)</td>
</tr>
<tr>
<td>A2TIL141.TXT</td>
<td>Apple IIe: Printing to Networked Printers</td>
</tr>
<tr>
<td>A2TIL142.TXT</td>
<td>Apple IIe: Two Ways to Make it into AppleTalk Workstations</td>
</tr>
<tr>
<td>A2TIL143.TXT</td>
<td>Apple IIe: Video Signal "NTSC-Compatible", Not "NTSC-Compliant"</td>
</tr>
<tr>
<td>A2TIL144.TXT</td>
<td>Apple IIGS (1MB, ROM 03): Specifications (Discontinued 12/92)</td>
</tr>
<tr>
<td>A2TIL145.TXT</td>
<td>Apple IIGS Adapter Cable: Pinouts</td>
</tr>
<tr>
<td>A2TIL146.TXT</td>
<td>Apple IIGS and Integer BASIC</td>
</tr>
<tr>
<td>A2TIL147.TXT</td>
<td>Apple IIGS Finder</td>
</tr>
<tr>
<td>A2TIL148.TXT</td>
<td>Apple IIGS OS v 6.0: Aristotle Installation (2/95)</td>
</tr>
<tr>
<td>A2TIL149.TXT</td>
<td>Apple IIGS Super-High-Res Graphics: Access from BASIC</td>
</tr>
<tr>
<td>A2TIL150.TXT</td>
<td>Apple IIGS System 5.0: Setting Up an AppleShare Network (7/91)</td>
</tr>
<tr>
<td>A2TIL151.TXT</td>
<td>Apple IIGS System Disk 5.0: Overview</td>
</tr>
<tr>
<td>A2TIL152.TXT</td>
<td>Apple IIGS System Disk 5.0: Toolbox Changes</td>
</tr>
<tr>
<td>A2TIL153.TXT</td>
<td>Apple IIGS Workstation Software: New Product Information</td>
</tr>
<tr>
<td>A2TIL154.TXT</td>
<td>Apple IIGS: 5.25" System Utilities</td>
</tr>
<tr>
<td>A2TIL155.TXT</td>
<td>Apple IIGS: Cable Compatibility (10/94)</td>
</tr>
<tr>
<td>A2TIL156.TXT</td>
<td>Apple IIGS: Cabling Configurations</td>
</tr>
<tr>
<td>A2TIL157.TXT</td>
<td>Apple IIGS: Connecting Disk Drives</td>
</tr>
<tr>
<td>A2TIL158.TXT</td>
<td>Apple IIGS: Contiguous RAM Depends on Memory Board</td>
</tr>
<tr>
<td>A2TIL159.TXT</td>
<td>Apple IIGS: Description (Discontinued)</td>
</tr>
<tr>
<td>A2TIL160.TXT</td>
<td>Apple IIGS: Differences with other Apple II models</td>
</tr>
<tr>
<td>A2TIL161.TXT</td>
<td>Apple IIGS: Disabling the Control Panel</td>
</tr>
<tr>
<td>A2TIL162.TXT</td>
<td>Apple IIGS: Displaying in Monochrome Mode</td>
</tr>
<tr>
<td>A2TIL163.TXT</td>
<td>Apple IIGS: DOS 3.3 and Hard Drives</td>
</tr>
<tr>
<td>A2TIL164.TXT</td>
<td>Apple IIGS: Dropping Off The AppleShare Network (11/94)</td>
</tr>
<tr>
<td>A2TIL165.TXT</td>
<td>Apple IIGS: Duplicate BASIC.SYSTEM Files</td>
</tr>
<tr>
<td>A2TIL166.TXT</td>
<td>Apple IIGS: Error in Show Text File Desktop Accessory</td>
</tr>
<tr>
<td>A2TIL167.TXT</td>
<td>Apple IIGS: Graphics Modes (10/94)</td>
</tr>
<tr>
<td>A2TIL168.TXT</td>
<td>Apple IIGS: High-Speed SCSI Card Memory Requirement (11/94)</td>
</tr>
<tr>
<td>A2TIL169.TXT</td>
<td>Apple IIGS: How to Access the Clock</td>
</tr>
<tr>
<td>A2TIL170.TXT</td>
<td>Apple IIGS: How To Print Low-Res/High-Res Graphics Files</td>
</tr>
<tr>
<td>A2TIL171.TXT</td>
<td>Apple IIGS: How To Print to Local & Network Printers</td>
</tr>
<tr>
<td>A2TIL172.TXT</td>
<td>Apple IIGS: Printing to Legal-Size Paper From AppleWorks</td>
</tr>
<tr>
<td>A2TIL173.TXT</td>
<td>Apple IIGS: ProDOS/16 Version 2</td>
</tr>
<tr>
<td>A2TIL174.TXT</td>
<td>Apple IIGS: ProDOS/8</td>
</tr>
<tr>
<td>A2TIL175.TXT</td>
<td>Apple IIGS: Recovering a corrupted ProFile</td>
</tr>
<tr>
<td>A2TIL176.TXT</td>
<td>Apple IIGS: System 6.0 Software and HyperCard IIGS 1.1</td>
</tr>
<tr>
<td>A2TIL177.TXT</td>
<td>Apple IIGS: System Diagnostic Errors</td>
</tr>
<tr>
<td>A2TIL178.TXT</td>
<td>Apple IIGS: Tabbing In Applesoft BASIC</td>
</tr>
<tr>
<td>A2TIL179.TXT</td>
<td>Apple IIGS: Using on AppleTalk Phase II Network</td>
</tr>
<tr>
<td>A2TIL180.TXT</td>
<td>Apple IIGS: Using with a MicroNet Hard Drive</td>
</tr>
<tr>
<td>A2TIL181.TXT</td>
<td>Apple IIGS: Video Generation Chip (VGC)</td>
</tr>
<tr>
<td>A2TIL182.TXT</td>
<td>Apple III : Won't Boot All Disk Calibrate in All Emulation</td>
</tr>
<tr>
<td>A2TIL183.TXT</td>
<td>Apple III QuickFile: Converting Data to Macintosh</td>
</tr>
<tr>
<td>A2TIL184.TXT</td>
<td>Apple III Universal Parallel Interface Card (UPIC)</td>
</tr>
<tr>
<td>A2TIL185.TXT</td>
<td>Apple III: Apple Disk Drives and Emulation Mode</td>
</tr>
<tr>
<td>A2TIL186.TXT</td>
<td>Apple III: Apple II Emulation mode and RGB Video</td>
</tr>
<tr>
<td>A2TIL187.TXT</td>
<td>Apple III: Cables for Various Printers (1 of 4)</td>
</tr>
</tbody>
</table>
AppleWorks 2.0: Problems Printing to Networked ImageWriter
AppleWorks on 5.25-Inch Disks: Printing to LaserWriter
AppleWorks to LocalTalk ImageWriter: Printing Problems
AppleWorks: Creating database documents from text with tabs
AppleWorks: Desktop size on the Apple IIGS
AppleWorks: Installing it on a ProFile or UniDisk 3.5
AppleWorks: Problems Printing to LocalTalk ImageWriter
AppleWorks: RamWorks Card Needs Larger Memory Capacity (9/95)
AppleWorks: Standard and Custom Printer Interfaces (1 of 2)
AppleWorks: Using it on the Apple II UniDisk 3.5
AppleWorks: Using it on the Apple II and Apple II Plus
Applied Engineering (6/95)
Beagle Brothers Inc.
Blyth Software
Business Technology Manufacturing, Inc.
Changes in Word Juggler for the Apple II (vers. 2.7 or greater)
Color Plotter Model 410: Specifications (Discontinued)
ColorMonitor IIc, ColorMonitor IIe: Specs (Discontinued)
COMMAND.COM: A General Description
Communications Interface: Directly controlling the 6850 ACIA
DAP (Drive Acceptance Program) Documentation
Version Change History (12/94)
DART: Utility for Duplicating Floppy Disks (10/93)
Disk II: Specifications (Discontinued)
DOS 3.3 6502 editor assembler: PR slot command
DOS 3.3: INTBASIC and FPBASIC on the master diskette
Dot Matrix Printer (DMP): Printer codes
Double-Density Versus High-Density Disks
Dow Jones News & Quotes Reporter: Specifications
DuoDisk Problem/Cure: Copy Protected Disk Damaged During Boot
Educational Resources (5/93)
Electrical Specifications: Apple Peripherals (2 of 2) (9/96)
Electrical Specifications: Apple Computers (1 of 2) (2/97)
Electronic Learning Systems, Inc.
European Apple II: No Color With U.S. Monitor (2/97)
Extended 80-Column RGB Card: Color Monitor 100 Pinouts (11/96)
FORTAN Language Reference Manual: Errata
FORTAN: FOR2 Copy protection
FORTAN: Using FORTRAN 1.0 with Pascal 1.2
ForTRAN: Using FORTRAN
GS BASIC: Features and Editing Commands
GS/OS 5.0: "No Finder" Printing Fix
GS/OS 5.0.2: "File Not Found" Error
GS/OS 5.0.2: Solves "No Finder" Printing Problem
GS/OS 6.0.1: How It Differs from 6.0 (6/93)
GS/OS: How To See OS Info at Startup
GS/OS: How To Use It With A ProFile
GS/OS: Needs Latest ROM Revision To Work With ProFile
GS/OS: SCSI and ProFile Card Compatibility
Hard Disk 20SC: How to Connect to an Apple IIe/IIGS
HD-20SC: What You'll Need to Format It With an Apple II
Hearlihy and Co. (USA)
High Speed Serial Interface Card: Settings (11/96)
High-Density Diskettes: Which Drives Support Them (10/94)
IEEE-488 Interface Card: Product Description (11/96)
IIGS Memory Expansion Card: Description (11/96)
ImageWriter Carriage Assembly stops or vibrates
ImageWriter I: Settings for All Apples (4/94)
ImageWriter II: Connector cables for all Apples
ImageWriter II: Description
ImageWriter II: IBM 3287 printer emulation
ImageWriter LQ: Connector Cables for Apple Computers (3/95)
ImageWriter: Guide to Apple II Errata
Innovative Systems
Instant Pascal is Compatible with Apple IIe Card

Apple II Computer Family Articles -- Apple Technical Info Library (TIL)
March 1997 -- Page 6 of 649
<table>
<thead>
<tr>
<th>Article Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2TIL320.TXT Instant Pascal: Transferring files to and from Apple II Pascal</td>
<td>Instant Pascal: Transferring files to and from Apple II Pascal</td>
</tr>
<tr>
<td>A2TIL321.TXT Instant Pascal: Using the Apple DMP</td>
<td>Instant Pascal: Using the Apple DMP</td>
</tr>
<tr>
<td>A2TIL322.TXT Integer BASIC Firmware Card: Switch Options (2/97)</td>
<td>Integer BASIC Firmware Card: Switch Options (2/97)</td>
</tr>
<tr>
<td>A2TIL323.TXT Inte%Poll: How to Identify Active Apple II Systems</td>
<td>Inte%Poll: How to Identify Active Apple II Systems</td>
</tr>
<tr>
<td>A2TIL324.TXT Joystick: You'll Need an Adapter for Use with the Apple II</td>
<td>Joystick: You'll Need an Adapter for Use with the Apple II</td>
</tr>
<tr>
<td>A2TIL325.TXT Language Card: Loading Integer BASIC (2/97)</td>
<td>Language Card: Loading Integer BASIC (2/97)</td>
</tr>
<tr>
<td>A2TIL326.TXT LaserWriter: Connecting to Apple II or Apple III</td>
<td>LaserWriter: Connecting to Apple II or Apple III</td>
</tr>
<tr>
<td>A2TIL327.TXT LaserWriter: Shared by Macintosh, Apple IIe, and IBM PC</td>
<td>LaserWriter: Shared by Macintosh, Apple IIe, and IBM PC</td>
</tr>
<tr>
<td>A2TIL328.TXT Logo II: How to print procedures</td>
<td>Logo II: How to print procedures</td>
</tr>
<tr>
<td>A2TIL329.TXT Macintosh 512K/512Ke: Cable Compatibility (7/95)</td>
<td>Macintosh 512K/512Ke: Cable Compatibility (7/95)</td>
</tr>
<tr>
<td>A2TIL330.TXT Macintosh PC Exchange: Troubleshooting Overview (7/96)</td>
<td>Macintosh PC Exchange: Troubleshooting Overview (7/96)</td>
</tr>
<tr>
<td>A2TIL332.TXT MacPeak SCSI Drive: How to Use with an Apple IIGS</td>
<td>MacPeak SCSI Drive: How to Use with an Apple IIGS</td>
</tr>
<tr>
<td>A2TIL333.TXT Manx Software Systems</td>
<td>Manx Software Systems</td>
</tr>
<tr>
<td>A2TIL334.TXT Monitor III: Repair Tips</td>
<td>Monitor III: Repair Tips</td>
</tr>
<tr>
<td>A2TIL335.TXT Motorola CDX268: Terminal Emulation for Macintosh or Apple II</td>
<td>Motorola CDX268: Terminal Emulation for Macintosh or Apple II</td>
</tr>
<tr>
<td>A2TIL336.TXT Mouse Compatibility: Macintosh Plus and Apple II Computers</td>
<td>Mouse Compatibility: Macintosh Plus and Apple II Computers</td>
</tr>
<tr>
<td>A2TIL337.TXT MousePaint: Printing</td>
<td>MousePaint: Printing</td>
</tr>
<tr>
<td>A2TIL338.TXT MouseText: Display for Characters "F" and "G"</td>
<td>MouseText: Display for Characters "F" and "G"</td>
</tr>
<tr>
<td>A2TIL339.TXT Moving Apple II DOS 3.3 Data to Macintosh</td>
<td>Moving Apple II DOS 3.3 Data to Macintosh</td>
</tr>
<tr>
<td>A2TIL340.TXT Nite Owl Productions (5/93)</td>
<td>Nite Owl Productions (5/93)</td>
</tr>
<tr>
<td>A2TIL342.TXT Parallel Interface Card: Product Description (11/96)</td>
<td>Parallel Interface Card: Product Description (11/96)</td>
</tr>
<tr>
<td>A2TIL344.TXT Pascal 1.3: Compatible With IIGS RAM Disk, 3.5" Disk</td>
<td>Pascal 1.3: Compatible With IIGS RAM Disk, 3.5" Disk</td>
</tr>
<tr>
<td>A2TIL345.TXT Pascal 1.3: Using it on a Hard Disk 20SC</td>
<td>Pascal 1.3: Using it on a Hard Disk 20SC</td>
</tr>
<tr>
<td>A2TIL346.TXT Pascal 1.3: Using UNITSTATUS</td>
<td>Pascal 1.3: Using UNITSTATUS</td>
</tr>
<tr>
<td>A2TIL347.TXT Pascal II: Using Library Name Files</td>
<td>Pascal II: Using Library Name Files</td>
</tr>
<tr>
<td>A2TIL348.TXT PC Transporter: IIGS Driver Not Available For AppleShare</td>
<td>PC Transporter: IIGS Driver Not Available For AppleShare</td>
</tr>
<tr>
<td>A2TIL351.TXT Preowned Electronics</td>
<td>Preowned Electronics</td>
</tr>
<tr>
<td>A2TIL352.TXT Problem using Apple II parallel cable with UPIC</td>
<td>Problem using Apple II parallel cable with UPIC</td>
</tr>
<tr>
<td>A2TIL353.TXT ProDOS 8: Finding Volume Size using Assembly Language</td>
<td>ProDOS 8: Finding Volume Size using Assembly Language</td>
</tr>
<tr>
<td>A2TIL354.TXT ProDOS 8: How To Find Disk, Controller, and Block Information</td>
<td>ProDOS 8: How To Find Disk, Controller, and Block Information</td>
</tr>
<tr>
<td>A2TIL355.TXT ProDOS Applications Need "Chooser II" To Select A Printer</td>
<td>ProDOS Applications Need "Chooser II" To Select A Printer</td>
</tr>
<tr>
<td>A2TIL356.TXT ProDOS Assembler Tools: Startup Sequence</td>
<td>ProDOS Assembler Tools: Startup Sequence</td>
</tr>
<tr>
<td>A2TIL357.TXT ProDOS Assembler Tools: Technical product description</td>
<td>ProDOS Assembler Tools: Technical product description</td>
</tr>
<tr>
<td>A2TIL358.TXT ProDOS Can’t Handle Disk Volumes Larger Than 32MB</td>
<td>ProDOS Can’t Handle Disk Volumes Larger Than 32MB</td>
</tr>
<tr>
<td>A2TIL359.TXT ProDos GS/OS, and Instant Pascal: Launching and Quitting</td>
<td>ProDos GS/OS, and Instant Pascal: Launching and Quitting</td>
</tr>
<tr>
<td>A2TIL360.TXT ProDOS: Converting Files from 5.25-inch Disks to Macintosh</td>
<td>ProDOS: Converting Files from 5.25-inch Disks to Macintosh</td>
</tr>
<tr>
<td>A2TIL361.TXT ProDOS: Limited to 32 megabyte access on HD40SC and HD80SC</td>
<td>ProDOS: Limited to 32 megabyte access on HD40SC and HD80SC</td>
</tr>
<tr>
<td>A2TIL362.TXT ProDOS: Product Overview</td>
<td>ProDOS: Product Overview</td>
</tr>
<tr>
<td>A2TIL364.TXT ProFile Formatting Error #21</td>
<td>ProFile Formatting Error #21</td>
</tr>
<tr>
<td>A2TIL365.TXT ProFile Hard Drive: Specifications (Discontinued)</td>
<td>ProFile Hard Drive: Specifications (Discontinued)</td>
</tr>
<tr>
<td>A2TIL366.TXT ProFile: Formatting Compatibility (10/94)</td>
<td>ProFile: Formatting Compatibility (10/94)</td>
</tr>
<tr>
<td>A2TIL367.TXT Quality Computers (11/94)</td>
<td>Quality Computers (11/94)</td>
</tr>
<tr>
<td>A2TIL368.TXT Quark QC Hard Disk: Specifications (Discontinued)</td>
<td>Quark QC Hard Disk: Specifications (Discontinued)</td>
</tr>
<tr>
<td>A2TIL369.TXT Queue, Inc.</td>
<td>Queue, Inc.</td>
</tr>
<tr>
<td>A2TIL370.TXT QuickFile IIe and QuickFile III File Sharing</td>
<td>QuickFile IIe and QuickFile III File Sharing</td>
</tr>
<tr>
<td>A2TIL371.TXT Reading ProDOS Diskettes on a Power Macintosh (9/94)</td>
<td>Reading ProDOS Diskettes on a Power Macintosh (9/94)</td>
</tr>
<tr>
<td>A2TIL372.TXT Redmond Cable Corporation (5/93)</td>
<td>Redmond Cable Corporation (5/93)</td>
</tr>
<tr>
<td>A2TIL373.TXT Resource Central (5/93)</td>
<td>Resource Central (5/93)</td>
</tr>
<tr>
<td>A2TIL375.TXT School Office Software Systems</td>
<td>School Office Software Systems</td>
</tr>
<tr>
<td>A2TIL376.TXT Scribe Printer: Specifications (Discontinued)</td>
<td>Scribe Printer: Specifications (Discontinued)</td>
</tr>
<tr>
<td>A2TIL379.TXT So What Software</td>
<td>So What Software</td>
</tr>
<tr>
<td>A2TIL380.TXT SoftCard III (CP/M): Moving Files from Apple II CP/M</td>
<td>SoftCard III (CP/M): Moving Files from Apple II CP/M</td>
</tr>
<tr>
<td>A2TIL381.TXT Softcard III: Diskette compatibility with Apple II CP/M</td>
<td>Softcard III: Diskette compatibility with Apple II CP/M</td>
</tr>
<tr>
<td>A2TIL382.TXT SoftSpoken, Inc.</td>
<td>SoftSpoken, Inc.</td>
</tr>
<tr>
<td>A2TIL383.TXT Southern California Research Group</td>
<td>Southern California Research Group</td>
</tr>
<tr>
<td>A2TIL384.TXT Sun Remarketing, Inc. (11/96)</td>
<td>Sun Remarketing, Inc. (11/96)</td>
</tr>
</tbody>
</table>
The following discussion gives an overview of the use of the Technical Information Library, keywords, constructing searches, and relevance ranking.

For a description of how to submit an article for publication, refer to the article titled "Tech Info Library: Submitting Articles for Publication".

THE TECHNICAL INFORMATION LIBRARY

What Is The Technical Information Library?

The Apple Technical Information Library (TIL) is Apple's official technical support database. The TIL is a textual database of several thousand articles about Apple and third-party product technical issues. The TIL is accessible by thousands of users world-wide on online services such as AppleLink, eWorld, CompuServe, and the Internet (both World Wide Web and WAIS). The TIL is updated daily or weekly (depending on the online service you are using) with new information and is the same database that Apple employees use to answer customer questions.

Where You Can Find the TIL

A subset of the TIL is available to anyone through these online services:

CompuServe

Located in the Apple Tech Info area (go spltil).

The Internet

Maintained in two locations:

info.hed.apple.com (Home Gopher Server)
 Path: Home Gopher Server -> Computer Information -> Apple Tech Info Library

info.apple.com

World Wide Web

Located at this URL: http://www.info.apple.com

eWorld
APPLE II COMPUTER TECHNICAL INFORMATION

Located in the Quick Answers Area (shortcut: tech info) in the Apple Customer Center of the Computer Center building.

AppleLink

Located in the Support Area.

SEARCHING THE TIL
==================

There are four ways to search the TIL:

* By keyword (not available on CompuServe)
* By full text search
* By publication date (on AppleLink, CompuServe, and eWorld -- See NOTE)
* By browsing folders (on eWorld and AppleLink)

NOTE: This search varies slightly between platforms. See the specific platform section below for information on searching by date.

Searching with Keywords
==========================

Use keywords to quickly and easily find the information you are looking for in the TIL. For best results, use a keyword and a product name. Here is an example of using a keyword and product name in a search string:

"SPECSHT and Quadra 840AV"

This search string finds the "Quadra 840AV: Specifications" article.

Using a keyword in a search string may not find all relevant articles; some articles were in the TIL prior to the implementation of keywords. In addition, some related articles do not include the keyword for the article to which it relates.

Keywords are available in the TIL on all online services except CompuServe. See the section "The TIL on CompuServe" later in this article for information on searching the TIL on CompuServe.

The keywords in the following list can help you easily narrow a search. This list is current as of February 20, 1995:

<table>
<thead>
<tr>
<th>Description</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available in rich text via FAX</td>
<td>KFAX</td>
</tr>
<tr>
<td>Cable Information</td>
<td>CABINFO</td>
</tr>
<tr>
<td>Compatibility</td>
<td>KCOMPAT</td>
</tr>
<tr>
<td>Document Manual Errors</td>
<td>KMANERR</td>
</tr>
<tr>
<td>Emerging Issues</td>
<td>KISSUE</td>
</tr>
<tr>
<td>Information Alley</td>
<td>KALLEY</td>
</tr>
<tr>
<td>Internet Related Information</td>
<td>KINTER</td>
</tr>
<tr>
<td>Matrix/ Table</td>
<td>KTABLE</td>
</tr>
<tr>
<td>Newton Message Pad</td>
<td>KNMP</td>
</tr>
<tr>
<td>Online Information</td>
<td>KOL</td>
</tr>
<tr>
<td>PowerBook</td>
<td>KPBOOK</td>
</tr>
<tr>
<td>PowerPC, Power Macintosh</td>
<td>KPPC</td>
</tr>
<tr>
<td>Read Me files</td>
<td>KREADME (see NOTE)</td>
</tr>
<tr>
<td>Specification Sheets</td>
<td>SPECSHT</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Support Issues</td>
<td>SUPT</td>
</tr>
<tr>
<td>System 7.0 Articles</td>
<td>SYS7</td>
</tr>
<tr>
<td>System 7.5 Articles</td>
<td>SYS75</td>
</tr>
<tr>
<td>Technical Information Library</td>
<td>KHELP</td>
</tr>
<tr>
<td>Third Party Compatibility Lists</td>
<td>PCOMPAT</td>
</tr>
<tr>
<td>Third Party Info</td>
<td>3PTY</td>
</tr>
<tr>
<td>Troubleshooting: Hardware</td>
<td>HTS</td>
</tr>
<tr>
<td>Troubleshooting: Network</td>
<td>KNTS</td>
</tr>
<tr>
<td>Troubleshooting: Software</td>
<td>KSTS</td>
</tr>
<tr>
<td>Windows/MS-DOS</td>
<td>KWINDOW</td>
</tr>
</tbody>
</table>

NOTE: Currently being added. Articles will become active with this keyword over the next several weeks.

Entering Text Queries

You can search the TIL by simply typing in a word or phrase and then clicking the Search button. A list of all articles that contain the word or phrase you entered displays in a scrolling field. You can then double-click on an individual title to view the article.

Spell Correctly

To ensure a complete search, it is important to spell correctly. Products are indexed into the TIL by their full name. Capitalization and trademark symbols are not necessary.

Use Full Product Names

When making searches, it is important to use the full product name. For a complete listing of all Apple product names, see the Apple Computer, Inc. Trademark List. This can be located by searching the TIL using "trademark list" as the search information.

Use Full Search Phrases When Appropriate

It is possible to use a full search phrase when searching the TIL. For example: searching for "color stylewriter pro" finds all articles that contain the exact phrase "Color StyleWriter Pro".

Searching Tips

When you do not know an exact phrase, use operators such as AND, OR, or NOT between words to expand or limit your search. For example, typing in "PowerBook and Printer" gives you a listing of all articles that contain the words PowerBook and Printer anywhere in the document. If you’re looking for information on toner cartridges for a LaserWriter, typing the search string "laserwriter and (toner or cartridge)" finds every document that includes the words LaserWriter and toner or the words LaserWriter and cartridge.

Relevance Ranking of Articles

The theory of relevance ranking is that it matches your search words against...
the textual content of selected information sources to find articles that
match the search request. A statistical algorithm then ranks the articles
according to relevancy and displays the most relevant article(s) at the
top of the hit list. As a result, you can see at a glance which articles
are most relevant. Relevance ranking helps you find more pertinent information
with less effort.

THE TIL ON COMPUSERVE

This section describes the differences in searching the TIL on CompuServe.
You can search the TIL on CompuServe in three ways:

* By product category
* By Publication date
* By full text search

You can perform a search using one or a combination of these methods.

We recommend using "Full Text Search" in your search (alone or in combination
with one or both of the other methods). Although searching requires more time,
in many cases you get more matches based on your search criteria.

Searching on CompuServe

The following instructions assume that you are using CIM (CompuServe
Information manager) software. (If you are using the text mode, please
type the number next to the appropriate line item.)

Step 1: Type "Go APLTIL" to access the main search screen for the TIL.

Step 2: Select "Search the Apple Technical Information Library"

Step 3: Complete Step 3 as described below for the type of search you want.

Step 4: Complete Step 4 as described below for the type of search you want.

The remaining search steps follow the separate Step 3 and Step 4 procedures.
To perform a combination search, complete Step 3 and Step 4 for each desired
type of search before continuing with Step 5.

Searching by Product Category

Step 3: Select "Product Category."

Step 4: Select the product category you want to search:
 - Any Product Category
 - AppleTalk
 - A/UX
 - HyperCard
 - LaserWriter
 - Newton
 - Performa
 - PowerBook
 - Power Macintosh
SEARCHING BY PUBLICATION DATE

Step 3: Select "Publication Date."

Step 4: Select the date specification and enter the search date in MM/DD/YY format.
The date specifications are:
- Any Date
- On or After a Specific Date
- On or Before a Specific Date

SEARCHING WITH FULL TEXT

Step 3: Select "Full Text Search"

Step 4: Enter the word or words you want to search for. You can enter all words in the first of the three available rows, which results in a search for the exact string. You can enter words in different rows, which results in a search for the specified words in any order (in other words, the multiple rows provide an "and" function). For example: Entering "Power Macintosh printing" on the first row searches for this exact string; entering "Power Macintosh" on the first row and "printing" on the second row searches for an article that includes the two strings "Power Macintosh" and "printing" somewhere in the article. (CompuServe does not support boolean "or" or "not" type searches.)

Step 5: The Apple Tech Info Library performs the search and reports the results labeled "Records selected: nnn".

Step 6: Select "Display Selected Records" to view all article titles of articles found in the search.

Step 7: Select individual article title(s) to view the article(s).

THE TIL ON APPLÉLINK

This section describes how to browse folders and search by date in the TIL on AppleLink.

BROWSING FOLDERS

You can browse folders on AppleLink and eWorld by clicking on the Index button in the main TIL window. When you click on this button, a List of Library Subjects window displays. This window lists all the folders in which TIL articles are stored. Double click on a folder, opening any subsequent folders, until you find the article title you are looking for.

SEARCHING BY DATE

You can search by date on AppleLink by entering a date string (format MMM DD, YYYY, as in Oct 23, 1994) in either the Newer Than or Older Than fields. Then click on Search Library.
This section describes how to browse folders on eWorld.

Browsing Folders

The default view for the TIL on eWorld is by folder. Simply double click on the desired folder, and open any subsequent folders, until you find the article title you are looking for.

Searching With a Text String

To search the TIL on eWorld with a text string, click the Find button. A text search window displays. Enter the desired string and click the Find button.
Description: 16K RAM / Language Cards: Alternate Suppliers

Header: 16K RAM / Language Cards: Alternate Suppliers

1. Saturn RAM Expansion Card
 -- Expands memory by 32K or 64K and functions as a language card.
 -- Includes software:
 1. RAMEXPAND and MOVEDOS memory enhancers
 2. PSEUDODISK disk emulation for:
 a. DOS
 b. Pascal
 c. CP/M (64K only).
 -- Minimum Configuration Requirements: Apple II; Apple II+; Apple IIe
 -- Source:
 Titan Technologies Inc.
 310 W. Ann Street
 Ann Arbor, MI 48104
 (313) 662-8542

2. Micro-Design 16K RAM Card
 -- Minimum Configuration Requirements: Apple II; Apple II+; Apple IIe
 -- Source:
 Micro-Design
 6301-B Manchaca Road
 Austin, TX 78745
 (512) 441-7890
 (800) 531-5002

3. Supercom 16K RAM Card
 -- Increases memory to 64K and allows a user to run CP/M-80 software
 requiring 44K-56K.
 -- Permits a user to write programs in FORTRAN, Pascal, LISP and BASIC
 under the UCSD p-System.
 -- Minimum Configuration Requirements: Apple II; Apple IIe
 -- Source:
 ADT Enterprises
 P.O. Box 1500 #315
 Corona Del Mar, Ca. 92625
 (714) 760-7065

4. Apricorn 16K RAM / Language Card
 -- Source:
 Apricorn
 7050 Convoy Court
 San Diego, CA 92111
5. Microtek 16K RAM / Language Card

 -- Source:
 Personal Computer Products
 11590 West Bernardo Court
 San Diego, CA 92127
 (619) 485-8411

6. Legend Industries RAM card products

 -- 3 RAM card products

 -- Source:
 Legend Industries, Ltd.
 2220 Scott Lake Road
 Pontiac, MI 48054
 (313) 674-0953

7. Prometheus Products 16K & 128K RAM cards

 -- Source:
 Prometheus Products, Inc.
 45277 Fremont Blvd.
 Fremont, CA 94538
 (415) 490-2370

8. R.H. Electronics 16K RAM card

 -- Source:
 R.H. Electronics, Inc.
 (805) 688-2047 ext. 4709
 Apple Technical Communications

Keywords:

END OF FILE A2TIL002.TXT
When you write BASIC programs while the 80-Column Text Card is active, there are a number of functions you can use by pressing the CTRL key in conjunction with another key. Functions activated by pressing these two-key combinations are called control character functions. Some control character functions work when you type them in from the keyboard as well as when used within PRINT statements in BASIC programs.

DISCUSSION

Table of Control Character Codes:

Key to Notes codes:
1 - Only available when 80-Column Text Card is active
2 - Only works from the keyboard, not in a program
3 - Only works in a program, doesn't work from the keyboard
4 - Not supported under BASIC

<table>
<thead>
<tr>
<th>Apple Control</th>
<th>Apple ASCII Name</th>
<th>Apple ASCII Ile</th>
<th>ASCII Decimal Code</th>
<th>Note</th>
<th>What is Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL-G</td>
<td>BEL</td>
<td>bell</td>
<td>7</td>
<td></td>
<td>Produces a 1000 Hz tone for 0.1 second</td>
</tr>
<tr>
<td>CTRL-H</td>
<td>BS</td>
<td>backspace</td>
<td>8</td>
<td></td>
<td>Moves cursor position one space to the left; from left edge of window, moves to right end of line above.</td>
</tr>
<tr>
<td>CTRL-J</td>
<td>LF</td>
<td>line feed</td>
<td>10</td>
<td></td>
<td>Moves cursor position down to next line in window; scrolls if needed.</td>
</tr>
<tr>
<td>CTRL-K</td>
<td>VT</td>
<td>clear EOS</td>
<td>11</td>
<td>1</td>
<td>Clears from cursor position to the end of the window.</td>
</tr>
<tr>
<td>CTRL-L</td>
<td>FF</td>
<td>clear</td>
<td>12</td>
<td>1</td>
<td>Moves cursor position to upper-left corner of window and clears window.</td>
</tr>
<tr>
<td>CTRL-M</td>
<td>CR</td>
<td>return</td>
<td>13</td>
<td></td>
<td>Moves cursor position to left end of next line in window; scrolls if needed.</td>
</tr>
<tr>
<td>CTRL-N</td>
<td>SO</td>
<td>normal</td>
<td>14</td>
<td>1,3</td>
<td>Sets display format normal.</td>
</tr>
<tr>
<td>CTRL-O</td>
<td>SI</td>
<td>inverse</td>
<td>15</td>
<td>1,3</td>
<td>Sets display format inverse.</td>
</tr>
<tr>
<td>CTRL-Q</td>
<td>DC1</td>
<td>40-column</td>
<td>17</td>
<td>1,3</td>
<td>Sets display to 40 columns.</td>
</tr>
<tr>
<td>CTRL-R</td>
<td>DC2</td>
<td>80-column</td>
<td>18</td>
<td>1,3</td>
<td>Sets display to 80 columns.</td>
</tr>
<tr>
<td>CTRL-S</td>
<td>DC3</td>
<td>stop list</td>
<td>19</td>
<td>1,2</td>
<td>Stops sending characters to the display until a key is pressed.</td>
</tr>
<tr>
<td>CTRL-U</td>
<td>NAK</td>
<td>quit</td>
<td>21</td>
<td>1,3</td>
<td>Deactivates 80-column Text Card, homes cursor, and clears screen.</td>
</tr>
<tr>
<td>CTRL-V</td>
<td>SYN</td>
<td>scroll</td>
<td>22</td>
<td>1</td>
<td>Scrolls the display down one line, leaving the cursor in the current position.</td>
</tr>
<tr>
<td>CTRL-W</td>
<td>ETB</td>
<td>scroll up</td>
<td>23</td>
<td>1</td>
<td>Scrolls the display up one line,</td>
</tr>
</tbody>
</table>
leaving the cursor in the current position.

CTRL-Y EM home 25 1 Moves cursor position to upper-left corner of window (but doesn't clear).

CTRL-Z SUB clear line 26 1 Clears the line the cursor position is on.

CTRL-\ FS forward 28 1 Moves cursor position one space to the right; from right edge window, moves it to left end of line below.

CTRL-] GS clear EOL 29 1 Clear line from cursor position to the right edge of the window.

CTRL-^ RS gotoXY 30 1,4 Using the next two characters, minus 32, as one-byte X and Y values, moves the cursor position to CH=X, CV=Y.

The Apple 80-Column Card in an Enhanced IIe has some additional features documented in the Programmer's Guide to the Enhanced IIe.

Important Information About CTRL-U
====================================

A "CHR$(21)" response (Control-U) to a "GET A$" input statement in a BASIC program may disable the 80-column card on an Apple IIIGS, Apple IIe, Apple IIc, and Laser 128 (but not an Apple II Plus with Applied Engineering's Viewmaster 80).

To halt the CONTROL-U function, the CONTROL-U keystroke needs to be trapped on input. Using the "GET A$" method:

```
10 GET A$
20 IF A$ = CHR$(21) THEN A$ = "" :REM traps the CONTROL-U, sets it to blank
30 PRINT A$;
40 GOTO 10
```

Article Change History:
14 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1986-96, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL003.TXT
Does the Extended 80-column card work in the Apple II or Apple II Plus? If not, is there any way to upgrade an Apple II or Apple II Plus to 80-Column?

The 80-Column Card and Extended 80-Column Card work only in the Apple IIe; they cannot be used in any other computer.

Our databases do not show an 80-column interface for the Apple II or Apple II Plus. There were once several on the market, but the demand for this type of card has almost disappeared. You might still be able to find these 80-column cards through some of the computer remarketing companies, or where use computer equipment is sold.

An alternative is to purchase an Apple IIe or Apple IIGS computer. You need to contact computer remarketing companies, or look where use computer equipment is sold.

Article Change History:
14 Nov 1996 - Reviewed for technical accuracy, revised formatting.

Copyright 1991-96, Apple Computer, Inc.

Keywords:
I am using an Apple IIc Plus and Apple Access II. The Volume Slide Control on the keyboard for the Apple IIc Plus replaces the 40- or 80-column mode switch found on the original Apple IIc.

Typing PR#3 for 80-column mode and PR#0 for 40-column mode works when in ProDOS, but when using Apple Access how can I switch between 40- and 80-column mode?

Aren't both 40- and 80-column modes supported in Apple Access II?

Apple Access II does not support 40-column mode on the Apple IIc Plus. The software detects that the 80-column mode is available and wants to switch the system into that mode. There is no workaround.

Copyright 1991, Apple Computer, Inc.

Keywords:
Description: Access II: Does Not Support VT100 Line Graphics
Header: Access II: Does Not Support VT100 Line Graphics

This article last reviewed: 21 September 1988

Apple's Access II does NOT support the VT100 line graphics character set. If you
need this character set, there may be third-party terminal emulators for
the Apple II family that provide VT100 character graphics.

Apple is not currently aware of manufacturers of such emulators. If you have
information on third party suppliers, please contact the Apple Technical
Information Library (at AppleLink address TECH.DB).

Copyright 1988 Apple Computer, Inc.

Keywords:
This article describes Apple Access II communication software.

Overview

Apple Access II provides intelligent and easy-to-use terminal software to Apple II users. It uses the power of the computer for automatic communications and full disk support, including file transfer. Apple Access II incorporates the AppleWorks user interface, making its operation clear and easy to understand.

Apple Access II allows the user to send and receive any type of ProDOS file via modem. Apple Access II supports all features of Apple Modems, including automatic dialing of telephone numbers. In addition, it allows users to automatically log on to remote computers. Procedures for automatic log-on to Dow Jones, CompuServe, and the Source are included on the disk.

Apple Access II can be used with any modem that operates through an RS-232 port, or by direct connection to another computer. The software supports speeds up to 9600 baud. (It does not support split speeds, modems that send at one rate and receive at another.) Apple Access II provides complete TTY, ANSI (VT100), and VT52 terminal emulation for advanced users (less graphics).

A training disk, included with the software, allows users of all levels of proficiency to see results quickly. The Reference Manual explains introductory as well as advanced concepts of telecommunications.

Equipment Requirements

Apple Access II requires:
* either an Apple IIc, or an Apple IIe with 64K RAM and a Super Serial Card in Slot 2
* either a disk drive, or RS-232 (Serial) connection to either a modem or to another computer or terminal

Apple Access II does not work with the following equipment:
* Apple II or Apple II Plus
* Apple III in Apple II emulation mode
* Any modem for the Apple IIe that comes with its own interface card.

Copyright 1991 Apple Computer, Inc.
Keywords: SPECSHT

END OF FILE A2TIL007.TXT
This article describes the Apple 3.5 Drive.

Features

* Over 5 times the storage capacity of 5.25-inch drives.
* Daisy-chaining capability (for Apple IIGS only). An additional port on the back of the unit allows you to connect another Apple 3.5 Drive or Apple 5.25 Drive directly. Up to three extra drives can be daisy-chained for a total of 3.2MB of external storage. (3.5 drives must come first in the chain.)
* In-use light that indicates when the drive is running.
* Direct connection to the Apple IIGS without an interface card.
* Platinum finish that matches the Apple IIGS, Macintosh Plus and Macintosh SE.

Benefits

* Multiple programs and increased data can be stored on a single disk; disk swapping is reduced.
* All ProDOS- or Pascal-based Apple II software can be run on 3.5-inch media.
* Users can load programs and retrieve data faster.
* For the Apple IIGS only, the Apple 3.5 Drive provides flexibility by allowing connection of up to three extra drives (3.5-inch or 5.25-inch) to the first drive; users can mix a 3.5-inch and 5.25-inch drive in the same system. (3.5 drives must come first in the chain.)

Order Number

* Apple 3.5 Drive A9M0106

Copyright 1992, Apple Computer, Inc.

Keywords: specsht
The Apple 5.25 Drive is ideal for users who need compatibility with thousands of Apple II software programs.

The unit adds 143K of on-line storage to an Apple II system. You can further increase storage capacity by connecting an additional drive directly to it. Depending on which computer system you have, you may be able to "daisy chain" several drives (including 3.5-inch drives) in this manner.

System Requirements

The Apple 5.25 Drive can be used with any Apple II personal computer:
* Apple IIGS
* Apple IIe*
* Apple IIc Plus
* Apple IIc
* Apple II Plus*
* original Apple II*

* the Apple IIe, Apple II Plus, and Apple II require the Apple 5.25 Controller Card

Technical Specifications

* Recording medium
recording surfaces: 1
tracks per surface: 35

* Capacity
Formatted data capacity: 143K, 16 sectors
Available data capacity:
- ProDOS or Pascal: 137K
- DOS 3.3 (16 sectors): 124K

* Drive Characteristics
Seek/settle time (track to track): 30 milliseconds maximum
Drive-motor startup time: 500 milliseconds maximum
Data transfer rate: 250 KBytes/second
Disk rotational speed: 299 RPM
Seek/settle time (track to track): 30 milliseconds max.
Drive motor start time: 500 milliseconds max.
Number of read/write heads: 1
Head positioning:
-- Adjusted to a tolerance of 0.002 inches maximum deviation from ideal on track
Tracks per surface: 35
Tracks per inch: 48
Data surfaces: 1
* Power consumption
 +12 (0.6) volts DC
 typical: 800 milliamps
 maximum: 1.6 amps
 -12(0.6) volts DC
 typical: 10 milliamps
 maximum: 20 milliamps
 +5 (0.25) volts DC
 typical: 200 milliamps
 maximum: 400 milliamps

* Head Positioning
 Adjusted to 0.002 inches maximum deviation from ideal on track

* Interfaces
 one built-in cable with 19-pin D-style plug
 - Plugs directly into the disk drive port of an Apple IIGS, Apple IIc Plus, or Apple IIc.
 - Plugs into the Apple 5.25 Controller Card installed in an Apple IIe, Apple II Plus, or Apple II.
 - one 19-pin D-style jack for connection of additional drive

* System Configuration
 - Replaces UniDisk as standard floppy disk drive
 - Can be "daisy chained" or connected to the back of another drive
 - using the disk drive port of the Apple IIGS, the disk drive port of the Apple IIc, or using UniDisk controller card in the Apple II series computers Apple II, Apple II Plus, Apple IIe, or Apple IIGS.

* Environmental requirements
 operating temperature: 50 to 105 degrees F (10 to 46 degrees C)
 operating humidity: 20% to 80% (noncondensing)
 maximum wet bulb temperature: 85 degrees F (29.4 degrees C)

* Dimensions and Weight
 height: 3.13 in. (7.96 cm)
 width: 6.37 in (16.2 cm)
 depth: 8.50 in. (21.6 cm)
 weight: 4.62 lb. (2.1 kg)

Article Change History:
11 Jul 1994 - Added more information from another Tech Info Library article.

Support Information Services
Keywords: SPECSHT

END OF FILE A2TIL009.TXT
I need a product description for Access II v1.3.1, which differs from version 1.2.

Here are the specs for Apple Access II, Version 1.3.1 (A2D2013).

Description

Apple Access II turns an Apple IIc, IIc Plus, IIe, or Apple IIGS personal computer into an intelligent terminal that can communicate with a variety of computers and on-line information services.

You can use Apple Access II with any modem that operates through an RS-232 port or by direct connection to another computer with an asynchronous port.

Features

The software supports transmission speeds of up to 9600 baud. Other features of Apple Access II include:

* All features of the Apple Modems including automatic dialing

* Automatic logon to remote computers

* Emulation of TTY, ANSI VT100(TM), and VT-52(TM) terminals

* Support for special keyboard features of VT100 and VT-52 terminals including the four PF (programmable function) keys

* The ability to upload and download ASCII files to and from other computers

* Support for 40- and 80-column video displays

* Processing of downloaded data from remote systems and working with it off-line, significantly reducing timesharing costs

* Sending or receiving any type of ProDOS file

* Support for XMODEM and Binary II file transfer protocols

* The AppleWorks user interface

* Automatic communications and full disk support, including file transfer

* A command-file, programming language for development of logon scripts

* Preconfigured scripts for the following online information services:
 - Dow Jones
 - CompuServe
 - The Source
 - Delphi
- Genie
- Dialog Information Services

* For the IIGS, the ability to capture text directly to the printer and 64K serial buffer

Requirements

To use Apple Access II, you need the following components:

* An Apple IIc, IIc Plus, IIe, or IIGS personal computer with at least 64K of RAM (128K recommended)

* For the Apple IIe, an Apple Super Serial Card in Slot 2

* An Apple Modem or another modem with RS-232 interface

* An RS-232 cable

* A compatible video display device

* An external disk drive or hard disk (optional)

* An 80-column card for the IIe (optional)

* A compatible printer (optional).

Apple Access II Kit

The Apple Access II kit includes:

* Access II program disks in both 5.25-inch and 3.5-inch formats

* An interactive tutorial disk

* A user's guide.

Incompatibilities

Apple Access II does NOT work with the following equipment:

* Apple II or II Plus

* Apple III in Apple II emulation mode

* A modem for the Apple IIe that has its own interface card.

Note: Apple Access II does NOT support split-speed transmissions (sending at one rate and receiving at another).

Copyright 1991–94, Apple Computer, Inc.

Keywords: specsht

END OF FILE A2TIL010.TXT
Apple II Computer Technical Information

Description: Apple Access II version 1.2: Specifications (Discontinued)

Header: Apple Access II version 1.2: Specifications (Discontinued)

Order #: A2D4503

--Technical Specifications

Connections:
1. RS-232 port with modem
2. direct connection with another computer

Baud rates: up to 9600

Terminal Emulations:
1. TTY
2. ANSI (VT100)
3. VT52

Protocols: Christensen

--System Configuration

1. Apple IIc, Apple IIGS or Apple IIe with Super Serial Card in Slot 2 and one disk drive
2. Modem
3. Another computer or terminal
4. Options: 80-column Text Card, Extended Memory, Printer, ProFile

NOTE: Apple Access II will NOT work with the following equipment:
1. Apple II or II Plus
2. Apple III in Apple II emulation mode.
3. A modem for the Apple IIe which has its own interface card.

--Features

--Sends or receives any type of ProDOS file
--Incorporates AppleWorks user interface
--Automatic communications and full disk support, including file transfer
--Supports all features of the Apple Modems including automatic dialing
--Supports automatic log on for remote computers and services including:
 1. Dow Jones
 2. CompuServe
 3. The Source
--Does NOT support split speed transmissions (sending at one rate and receiving at another)

Apple Technical Communications

Keywords: SPECSHT

END OF FILE A2TIL011.TXT
Description: Apple Access II: 'Character Delay' and 'Line Delay'
Header: Apple Access II: 'Character Delay' and 'Line Delay'

Access II version 1.1 has fixed the problem of 'Line Delay' working erratically. In versions previous to 1.1, a line delay of 100 resulted in a considerable delay, but changing the line delay to 9999 resulted in less delay.
Apple Technical Communications

Keywords:

END OF FILE A2TIL012.TXT
The new version of Access II (1.1) solves many of the bugs that were associated with Access 1.0. Here are the main changes:

--Text file send delay (The 1.0 version would only accept 99 as a value when the maximum input should have been 9999)

--XMODEM file transfer (Access 1.0 would 'lock-up' during XMODEM transfers and the file would be lost)

--Formatting routines (The formatting routines now operate)

The Access II 1.1 upgrade may be obtained by the user through the Apple media exchange program.

Apple Technical Communications

Keywords:
Description: Apple ADB Keyboard: Specifications (Discontinued)
Header: Apple ADB Keyboard: Specifications (Discontinued)

Article Created: 4 December 1989
Article Reviewed/Updated: 25 June 1992

TOPIC ---

This article provides specifications for the Apple ADB Keyboard.

DISCUSSION ---

System Requirements:

Any Apple personal computer with an Apple Desktop bus interface

Technical Specifications:

81 keys
10-key numeric pad
4 cursor-control keys

Size and Weight:

Height: 1.75 in. (44.5 mm)
Width: 16.5 in. (418 mm)
Depth: 5.6 in. (142 mm)
Weight: 2.25 lbs (1 kg)

The Apple ADB Keyboard has an 8-event buffer, and the Apple Extended
Keyboard has a 16-event buffer. Events include key-down and key-up events.

NOTE: The Apple ADB Keyboard has been replaced by the Apple Keyboard II.
Copyright 1989 Apple Computer, Inc.
Keywords: SPECSHT

END OF FILE A2TIL014.TXT
The Apple Color Plotter will work with the Apple II family (through a
Super Serial Card, not supplied with plotter) and the Apple III (through the
RS-232 port). It uses a standard RS-232 interface so anyone who can send out
ASCII and meet the handshake specifications will be able to use this plotter.
The plotter offers a 255 byte buffer and is provided with switches to allow it
to be matched to many computers. Options available with the switches are:

Baud Rate: 75 to 9600
Stop Bit: 1 Bit
 1/2 Bit
 2 Bit
Parity: Odd
 Even
 None
Data Length: 7 Bit
 8 Bit

The Apple Color Plotter accepts several different sizes and thicknesses of
paper and can draw on transparency materials as well as paper. There are 8
different colors of pins and two thicknesses (.3mm or .7mm). The colors come
in both water base and oil base (quick drying) inks.

A company called Sun Remarketing specializes in obsolete Apple products. For
more information, search on "Sun Remarketing".

Copyright 1988 Apple Computer, Inc.
Keywords: specsht

END OF FILE A2TIL015.TXT
This article describes how to identify the DMP card, how to find the Apple part number and its use.

The Module Identification manual can be used to match the card with its photograph. The Module Identification manual will also have the part's service part number: 661-XXXX.

The card was used for connecting the Apple DMP (parallel printer) to an Apple II family computer.

Article Change History:
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-97, Apple Computer, Inc.
Keywords:
Description: Apple FORTRAN: Specifications (Discontinued)

Header: Apple FORTRAN: Specifications (Discontinued)

--Order #: A2D0032

--Technical Specifications:

1. Format: 16-sector disks
2. Language:
 a. Pascal
 b. Produces P-code, which runs in the Apple Pascal Operating System
3. Intrinsic Functions:
 ABS, ACOS, AINT, ALOG, ALOG10, AMAX0, AMAX1, AMIN0, AMIN1, AMOD,
 ANINT, ASIN, ATAN, ATAN2, CHAR, COS, COSH, DIM, EOF, EXP, FLOAT,
 IABS, ICHAR, IDIM, IFIX, INT, ISIGN, LGE, LGT, LLE, LLT, MAX0, MAX1,
 MIN0, MIN1, MOD, NINT, REAL, SIGN, SIN, SINH, SQRT, TAN, TANH

--Package:

1. Disk: Apple FORTRAN System
2. Disk: Apple FORTRAN System

--System Configuration:

1. Computer:
 a. Apple II
 b. Apple II Plus with Language Card
 c. Apple IIe
 d. Apple IIc
2. disk drive: Apple Disk II

NOTE: While a single drive system is adequate for very small programs, two
 drives are strongly recommended for ease of operation and more serious
 program development

3. video display: Monitor II
4. Apple Pascal package

--Features:

1. Industry standard, ANSI X3.9-1978
2. ANSI Standard Subset of the FORTRAN 77 standard

 --Supports enhancements and facilities from the full FORTRAN 77
 language

 --Contains enhancements beyond the full FORTRAN 77 specifications:
 1. Compiler directives in the source code permit many files in
 one
 compilation.
 2. An additional parameter to the OPEN statement allows you to
 specify that the file is blocked or unblocked.

 --Minor differences between the ANSI Standard Subset FORTRAN 77 and
 Apple FORTRAN:
 1. Subprogram names cannot be passed as parameters.
 2. INTEGER and REAL data types have different storage
 requirements:
 a. 2 bytes for INTEGER
b. 4 bytes for REAL

NOTE: Apple FORTRAN does not support double-precision arithmetic.

3. Apple Pascal Operating System Linker links:
 --FORTRAN P-Code files
 --Compiled P-code
 --Assembled machine code

4. Interfaces to routines in Pascal system library
 --High-res graphics
 --Sound generation
 --Hand control routines

5. Subscript expressions may include array elements and function calls

6. DO statement limits may be defined by expressions, rather than just single variables

7. Input/output (I/O) units may be specified by expressions, rather than just constants or simple variables

8. The I/O list of a WRITE statement may include expressions

9. All combinations of FORMATTED/UNFORMATTED and SEQUENTIAL/DIRECT files are allowed, with the following restrictions:
 --BACKSPACE is supported only for files connected to the blocked devices -- it is not supported for UNFORMATTED SEQUENTIAL files;
 --DIRECT files must be connected to block devices

Keywords: SPECSHT

END OF FILE A2TIL017.TXT
What are ftp Sites?

An ftp site is a server which has an Internet connection and uses the File Transfer Protocol (an agreed upon standard for transferring files using the TCP/IP protocol) to let you log on and download files.

Servers can be Macintosh computers, MS-DOS machines, or UNIX based PCs or workstations. Limits, such as the number of users logged on, can be placed on an ftp site. Obviously, the more memory and processor speed a machine running as an ftp site has, the better able it is to handle more users, more file transfers, and so on.

Apple's ftp Sites

There are currently a number of ftp sites maintained at Apple, most of which are located in Austin, TX or Cupertino, CA. We are constantly adding additional ftp servers:

- ftp.info.apple.com (Austin, TX)
- ftp.apple.com (Cupertino, CA)
- ftp.info.euro.apple.com (Zeist, the Netherlands)

- The following web page (http://support.info.apple.com/ftp/mirrors.html) lists *all ftp sites* Apple has around the world. The ftp.info.apple.com site(s) has a current capacity of over 2,000 concurrent ftp sessions, with several thousand more coming this winter and spring - all served by 3 T-1s and a T-3 connection. (ftp.apple.com has capacity for approx. 1,000)

Apple Computer Gopher Server

Contains both the complete collection of Apple Software Updates and the Apple Tech Info Library.

How the Software is Posted

All files are compressed using Stuffit Deluxe into self extracting archive files (usually identified by the .sea suffix appended to the end of the file name). They are then converted to the BINHEX format uploaded using Fetch (see the next section for an explanation of software). We then download and check each file we upload.

Many files start out as Disk Images. Customers downloading disk image files
need to download and use Apple’s Disk Copy application to create floppy disk
copies of each disk image. There is a Quick Reference Guide (QRG) on how to
use Disk Copy available from the Apple Fax Info system, as well as document
"Dealing with Disk Images" posted on info.hed.apple.com in the Apple Support
Area.

The Software That is Available
==================================

The Apple software updates collection is very large and is broken into two
major categories: US and Worldwide. Inside the worldwide directory, is a
large of localized software – that is, software that has been translated into
other languages for use with localized MacOS systems.

Inside both the US and Worldwide folders is the following directories, many
of which contain subdirectories:

Apple II
DOS-Windows
Macintosh
Newton
UNIX (on some servers)

What software You Should Use
==================================

In general, Apple recommends that you obtain the latest version of an
application that uses the ftp protocol to transfer files.

The following are the most common applications, many of which are included in
the Apple Internet Connection Kit, now available in the USA.

Fetch 2.1.2 or 3.0

An application developed at Dartmouth College; the most popular ftp client
for Macintosh users. It automatically downloads and converts the binhexed
files to the .sea file format.

Anarchie 140

Anarchie is an ftp and Archie client. It lets you browse ftp sites, download
files, or find them using an Archie server. It requires System 7 and MacTCP
1.1 or later. Anarchie lets you view any directory as a folder, making it a
very Macintosh-like application.

Turbogopher 1.0.8b4

An Internet surfing application developed by the University of Minnesota,
capable of downloading and converting binhexed files to the .sea file format.

Netscape Navigator

A web client from the Netscape Communications Corp.

Microsoft Internet Explorer

A web client from Microsoft Corp.

Common Problems
=================

The following common problems may be encountered by customers on Apple’s ftp
servers.
ftp server: cannot log on

You cannot log on due to the maximum concurrent user limit. You should try again later or another Apple ftp server.

Apple Computer gopher server: cannot download files successfully, ftp client reports "end of file error" or "EOF error"

We do verify each file we upload, but occasionally files do get corrupted and we replace them.

However, most of the time, you cannot download a file due to one of following problems:

* Not using most current version of ftp client, such as Fetch 2.1.2 or Fetch 3.0.

* The server connection "times out" or disconnects. Try logging on again, either early in the morning or late at night.

* You cannot establish a consistent connection with any ftp site. Make sure TCP/IP software is the most current version.

Other Commercial Online Services Apple Supports
==
Currently Apple publishes to America Online and CompuServe in addition to the Internet.

Article Change History:
06 Feb 1996 - Updated urls.
09 Jan 1996 - Updated article, removing AppleLink, updating Internet references.
21 May 1996 - Removed reference to eWorld

Support Information Services
Copyright 1994-97, Apple Computer, Inc.
Keywords: kol,kinter,kalley,kfaq

END OF FILE A2TIL018.TXT
This article gives technical specifications for the Apple II 3.5 Disk Controller Card. This card has been discontinued by Apple.

Overview

The Apple II 3.5 Disk Controller Card allows you to use the 3.5-inch floppy disk drives, including the Apple SuperDrive and Apple 3.5 Drive, with an Apple IIGS or Apple IIe computer. The card also supports the operation of older model Apple II UniDisk 3.5 drives with the Apple IIe computer. This card replaces the UniDisk 3.5-inch Controller Card.

Drives Supported

Apple SuperDrive
Apple 3.5 Drive
Apple UniDisk 3.5 Drive (Apple IIe only)

Specifications

Microprocessor: 65C02
Disk controller: SWIM
Memory: 32K SRAM 32K ROM
Connector: DB-19
Power: Less than 4 watts

Environmental Requirements

Operating temperature: 50 to 104 degrees F (10 to 40 degrees C)
Storage temperature: 50 to 140 degrees F (10 to 60 degrees C)
Relative humidity: 20% to 80% noncondensing

Article Change History:
12 Feb 1997 – Reviewed for technical accuracy, revised formatting.
Copyright 1991-97, Apple Computer, Inc.
Keywords: SPECSHT
New Apple II 5.25 drives can be connected to controller cards other than the ones specifically designed for those drives.

- an Apple 5.25 drive can be daisy-chained to a UniDisk, either 5.25 or 3.5.
- an Apple 5.25 drive can be connected to a DuoDisk controller card.
- an Apple 5.25 drive can be connected to a Disk II controller card, if you first use Quark’s adaptor to make the Apple 5.25 drive’s cable fit the Disk II controller card.
Description: Apple II and Apple II Plus: Hardware Specs (Discontinued 6/83)

Header: Apple II and Apple II Plus: Hardware Specs (Discontinued 6/83)

Electrical

AC power: 107-132 VAC 60Hz
DC power at I/O ports
(48K RAM)
+ 5v @ 1.0 amp
- 5v @ 0.25 amps
+12v @ 1.1 amps (Can supply 2.1 amps for 20 minutes with rest of 10 minutes
-12v @ 0.23 amps
Power Dissipation: 60 Watts

Environmental

Temperature Range
Operating 0C to 45C (disk media is limited to 35C)
Storage -35C to 140C
Relative Humidity
20% to 90% non-condensing
Altitude
Operating - 1,000 to 15,000 ft
Non-operating 50,000 ft
(derate maximum ambient temp. by 1 degree C per 1000 feet over 5,000 ft)

Physical Characteristics

Height 4.5 in
Width 15.1 in
Length 18.0 in
Weight 12.0 lbs

Safety and RFI Qualifications

The Apple II meets the following agency regulations.
FCC Part 15, Class B Personal Computers
CSA 22.2, No. 154-1979
UL 114 - Office Machines
VDE 0871/6.28"A" Limit
Apple Tech Notes

Keywords: SPECSHT
Hardware generates the blinking cursor on the Apple's screen. You can stop the blinking using this Applesoft program:

```
10 FOR A = 935 TO 941
20 READ B
30 POKE A,B
40 NEXT A
50 POKE 56,167
60 POKE 57,3
70 CALL 1002
80 END
100 DATA 72,41,63,145,40,104,76,27,253
```

This program assumes that you have DOS booted. If you don't have DOS, delete line 70.

After you run the program, the cursor will be a solid block until the RESET key is pressed, until there is an IN#0 command, or until the Apple is turned off.

The cursor can be completely eliminated by changing the 63 in line 100 to a 191.

Copyright 1988 Apple Computer, Inc.

Keywords:
This article last reviewed: 26 September 1984

Probably all Apple II owners have heard of a mysterious "Shift-Key Mod". To many it has remained nothing more than a rumor, possibly because most modifications are thought to be costly additions. Not so the "Shift-Key Mod", the most simple and least expensive addition anyone could do for their Apple II. Of software recognizing this modification, there is a wide variety: Apple Writer, most other word processing software packages, and the firmware of most 80-column cards.

Software must recognize this alphabetic modification; the Apple alone does not do it automatically. After modification, the shift key allows you to enter uppercase characters as you do on a typewriter, without the need to precede them with a press of the Escape key or some other control character. You can still use the shift key to type the regular "shift" non-alphabetic characters, such as !,@,#,$,%,^,&,*,(,), and so on.

With the "Shift-Key Mod", you use the shift key to signal the software from an unused part of the Apple II Game port. The Port can address four separate hand controls and three hand-control pushbuttons of which only two of each are used by the standard game paddles and joysticks. This leaves unused two hand control inputs and a hand-control pushbutton input. The "Shift-Key Mod" exploits the address of this remaining pushbutton input. In practice, software supporting the modification first reads the character value at the address of the keyboard. Then, since joysticks use pushbuttons #0 and #1, the software reads the state of the address of pushbutton #2 (PB2). If the PB2 address is operated then the software simply makes the keyboard value represent uppercase.

To keep things in perspective, please note that this does not modify the Apple II to display lowercase nor enter lowercase characters into your programs when the II is in its native 40-column mode. To read the shift key's new address, the Apple II must have special software; without it, the II stays in 40-column mode. Most 80-column cards have firmware to read the address and display lowercase when in 80-column mode. When coding, you can easily enter lowercase characters into your own program's output strings with 80-column cards supporting the modification. However, when the program runs in 40-column mode, lowercase characters will appear as "garbage" characters. Adding the reasonably-priced "Lowercase Character Generator" on the motherboard allows proper display of lowercase characters in 40-column mode. Apple Writer also supports lowercase character generators.

Now to make the modification. Connect two micro test clips together with 8 inches of 28 AWG wire and solder the connections. Use micro test clips to match the size of Radio Shack #270-370 clips. 28 AWG wire-wrap will do. Clip size is most important; wire size and brands are less important. Once the jumper cools, install it this way:

1. Clip one end to pin 1 of the IC located at motherboard location H14, a 74LS251.
2. Clip the other end to pin 24 of the molex connector that connects the keyboard electronics to the keyboard. Pin 25 of this connector is at the end away from the Apple's power supply. Pin 24 is to the left of pin 25.

Copyright 1988 Apple Computer, Inc.

Keywords:
After startup, Applesoft's FRE(0) statement reports the same amount, 48K, of free memory in the II Plus, the Apple IIe with 64K, and the Apple IIe or IIc with 128K. No matter how much the maximum memory of the CPU is, you will never have more than 48K of memory available to you, since the microprocessor lets BASIC have DIRECT access to only 48K in Apple II family computers with memory configurations equal to or greater than 48K.

This discrepancy stems both from the microprocessor's memory limit and from the demand placed on the system by the software. The Apple's 6502 microprocessor can directly access only 64K of memory (address 65536 ($FFFF)). Some of the 64K has to be loaded with system software: the monitor, Applesoft, I/O, stacks, keyboard, vectors, and text display. The Apple's system monitor and Applesoft language routines reside in upper memory from $D000 to $FFFF. I/O ROM locations span from $C000 to $CFFF. Finally, the system uses $0000 to $07FF for its stack, keyboard input, system vectors and text display. This amount of software leaves you with 47103 bytes (the memory space between $0800 and $BFFF) that you can directly access through BASIC.

The user can then decide to give more of this memory to an operating system and high resolution graphics. For example, if you use DOS 3.3, you relinquish approximately 10.5K, the memory space from $9600 to $BFFF. Similarly, high resolution graphics page 1 or 2 takes another 8K for each page.

Adding more memory for the user

Adding memory allows you to load operating systems not dependent on BASIC; it also lets you take advantage of the full 64K from assembly language programs.

Apple II and II+ users can add 16K to a 48K configuration if they install a RAM card in slot #0.

In the IIe, this 16K "RAM card" is built onto the motherboard and is addressed in the same way as the card in the II and II+; that's why there's no slot #0 on the Apple IIe. This additional 16K actually overlays the upper 16K of memory only by bank-switching between the ROM and RAM.

Apple Technical Communications

Keywords:

END OF FILE A2TIL024.TXT
Description: Apple II and II+: Problems with keypresses on the keypad

A keypress on the numeric keypad is only retained as long as the key is held down. When the key is let up, the keyboard returns to its previous state (with the key that was last pressed on the keyboard at location $C000). This causes many strange problems, like having to hit the key longer to have it recognized. There is no way to correct this on the current keypad because of the limitations of the keyboard encoder chip.

Apple Technical Communications

Keywords:
Description: Apple II and IIe: Controlling the Reset key
Header: Apple II and IIe: Controlling the Reset key

On an Apple II or Apple IIe computer, the programmer can control how a BASIC program will react when reset or control-reset is pressed. DOS uses three special locations which it consults whenever reset or control-reset is pressed. Based on the values contained in these memory locations, DOS may halt a program, rerun the program, reboot a disk, or take another action you specify.

Changing these values changes the results of typing reset or control-reset from the keyboard.

To discourage users from breaking into a Basic program, some programmers change the reset vector to restart a running program whenever reset is pressed. Put the following line at the beginning of your program to get this effect:

```
10 POKE 1010, 102 : POKE 1011, 213 : CALL -1169
```

A value is not POKEd into location 1012 because the CALL statement sets location 1012 to the correct value for the current situation. When you wish to return reset to its normal action, include this Basic line:

```
20 POKE 1010, 191 : POKE 1011, 157 : CALL -1169
```

You can also force a disk boot to occur whenever reset is pressed. Simply change the value of one of the three reset vector locations. An example is:

```
30 POKE 1012, 1
```

You may instruct the reset vector to call one of your own machine language routines by placing the address of this routine in locations 1010 and 1011, and CALLing the ROM routine at location -1169 to set location 1012. Your routine may process information, display a warning message, or do anything else you wish.

Apple Technical Communications

Keywords:

END OF FILE A2TIL026.TXT
This article describes how the I/O strobe signals on the Apple II peripheral connector are handled.

The I/O strobe signals on the Apple II peripheral connector are decoded from the appropriate address lines and combined with the phase one clock. This is to reduce the TTL circuitry required to build a simple I/O port.

A simple 8 bit output port would be a positive edge triggered latch with the clock tied to I/O select.

Assuming that this interface is plugged into slot 1, any write operation to $C090..$C09F will transfer the data to the output lines. This is a very simple interface, so any read to $C090..$C09F will transfer random data to the output latch and to the Apple.

Article Change History:
28 Feb 1997 – Reviewed for technical accuracy, revised formatting.
Copyright 1984-97, Apple Computer, Inc.
Keywords:
The Apple II and IIe power supply is a switching power supply. It is designed to accept 107 to 135 volts from DC to 60 Hz. It will also work at up to 400 Hz but this endangers a circuit which protects the supply from shorting to the point that the protecting circuit will not work.
I have three AppleShare networks. One has all new Apple IIGS computers, and the other two are mixed with Apple IIe systems, plus both old and new Apple IIGS computers. They all come up fine but, two or three hours later they freeze. When we restart the computers most (not always the same ones) freeze at the IIGS loading gauge. This happens only on the new IIGS models.

I have about thirty Apple networks installed. On some of them, new Apple IIGS computers froze from the beginning. Replacing their logic boards seems to fix the problem. However, on the last one, the problem just moved to another, previously "clean" computer.

DISCUSSION---

First, check for bad RAM, the most common cause of a system locking up during startup. This would explain why swapping logic boards cured the one case.

Second, check for bad software on server. In this case, this diagnosis is more likely, because the condition is appearing on more and more systems. Try re-installing the server, making sure you use the Network Products Installer disk. Re-install the following:

1) System 6.0.5
2) AppleShare 2.0.1
3) AppleShare Apple II Setup 2.1.1
4) GS/OS 5.02

Copyright 1991 Apple Computer, Inc.

Keywords:
Description: Apple II BASIC: How to Convert Into Macintosh QuickBasic
Header: Apple II BASIC: How to Convert Into Macintosh QuickBasic

Is there a way to convert Apple IIe/IIGS BASIC files into Microsoft QuickBasic files for the Macintosh?

DISCUSSION

Yes, follow these steps:

1) Save a listing of the program as an ASCII text file.

2) Transfer the file to the Macintosh using Apple File Exchange.

3) Import it directly into Microsoft QuickBasic. QuickBasic accepts ASCII Text Files.

4) Now, it's just a matter of modification (if needed). According to Microsoft, some programs work even without conversion.

Copyright 1991, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL030.TXT
Description: Apple II Business Graphics: Specifications (Discontinued)

I. Technical Specifications

A. Language:
 --Pascal
 --Assembly

B. Format:
 --16-sector diskette.

C. Imaging:
 --Graph Types: Scatter, solid-line, dash-line, bar (vertical or horizontal), pie (filled or outline), and multiple overlays
 --Color: Six available on color monitor—user-selectable or default values
 --Titling/Labeling:
 1. Alphanumeric labeling on x- and y-axis
 2. Auto-scale or user-defined label ranges
 3. Centered titles
 4. Floating titles:
 --any number
 --horizontal or vertical
 5. Tick marks and extended grid lines

D. Graphic Devices:
 --Console
 --Silentype
 --Apple Color Plotter
 --Qume Sprint 5 printers
 --Hewlett-Packard 7225A/B with 1750A, RS-232 Personality Module
 --Houston Instruments DMP-3, -4 high-quality pen plotters

E. Data Manipulation:
 --Curves that can be FITed to any data set:
 LINE LOGARITHMIC CONSTANT SINE PARABOLA
 --Coefficients can be manually set to produce known curves.
 --Statistical analyses that can be performed on any data set:
 MINIMUM MEAN MAXIMUM STANDARD DEVIATION SUM VARIANCE
 --Either moving average or exponential smoothing may be performed with a single command.
 --Additional data manipulation commands:
 ADD SHIFT DIFFERENCE SUBTRACT FROM DIVIDE BY INTO SUM MULTIPLY
 --TAKE Files:
 1. Store business Graphics commands in a single file that allows multiple, complex plots to be recreated with a single command.
 2. WAIT command allows users to insert a timed pause in a TAKE file.
 --Virtual files:
 1. System allows user to utilize large data files exceeding the size of computer memory.
 2. Default virtual file provides space for approximately 90-100 points.
 3. SET VIRTUAL FILE command allows user to define a virtual file on another diskette, greatly expanding the maximum number of points to be processed.
APPLE II COMPUTER TECHNICAL INFORMATION

--Interchange Facility:
Generates a Business Graphics data file from these common formats:
1. VisiCalc print files (13- and 16-sector)
2. ApplePlot (13- and 16-sector)
3. DIF format
4. BASIC text files (13- and 16-sector)
5. Apple Pascal

II. System Configuration:

A. Apple
 1. II Plus with 48K of memory
 2. IIe
 3. IIc
B. Two 5 1/4 inch disk drives
C. Apple Language Card
D. Video display device
E. Optional compatible printer and printer controller card
 1. With Silentype Interface Card: Silentype
 2. With High Speed Serial Interface Card with P8-02 PROM:
 Qume Sprint 5 printers
F. Optional compatible plotter and plotter controller card
 --With High Speed Serial Interface Card:
 1. Hewlett-Packard 7225A/B with 17603A, RS-232 Personality Module
 2. Houston Instruments DMP-3, -4 high-quality pen plotters

NOTE: Apple Business Graphics includes drivers supporting the printers and plotters mentioned here. Using a special kit, called a Printer/Plotter Installation Kit (PIK), Apple Business Graphics can support other plotters, letter quality printers, and dot matrix printers.

III. Features

 --Enlarges any area of a graph for close study
 --User may specify all graph parameters:
 1. axis labels
 2. floating labels
 3. plot colors,
 4. horizontal and vertical axis ranges
 --Macro commands can replace multiple command sequences

Apple Technical Communications

Keywords: SPECSHT

END OF FILE A2TIL031.TXT
This article contains frequently asked questions (FAQ) on the Apple II computer and the Chooser.

DISCUSSION

Question: When I choose a printer is the choice saved on disk so that I do not need to use Chooser again?

Answer: Yes, the Chooser selection is saved to disk as the user exits Chooser.

Question: When I choose a printer do I need to use Chooser each time?

Answer: You do not need to use the Chooser each time you print. The Chooser is used only when changing printers.

Question: If the choice is saved is it saved on the current startup disk or on the disk Chooser resides on?

Answer: The printer choice is saved to the disk with Chooser on it.

Question: If the choice is saved is it saved only if the disk Chooser resides on is the current startup disk?

Answer: The choice is saved to the Chooser disk no matter where Chooser resides.

Question: If an AppleShare user who starts up over the network does not have a default printer assigned from the server, will their most recent choice be saved after powering down?

Answer: The last choice is saved as the user exits Chooser.

Question: If an AppleShare user who starts up over the network does not have a default printer assigned from the server, where is it saved?

Answer: This choice is saved on the server from which Chooser is run.

Question: Is there any difference in these characteristics between the Apple IIe and the Apple IIGS?

Answer: There are no differences between an Apple IIe and an Apple IIGS in these matters. The Chooser program is the same on both computers.

NOTE: The user’s Chooser selection overrides the Server Admin default printer assignment.

ADDITIONAL NOTE: GS/OS 5.0 uses the Control Panel for network choices. If
GS/OS 5.0 is being used, the Chooser program is no longer needed.

Article Change History:
01 Dec 1995 – Changed title, added keyword, and updated format.

Support Information Services
Copyright 1989–95, Apple Computer, Inc.
Keywords: kfaq

END OF FILE A2TIL032.TXT
What are the cycle speeds for the Apple II family?

Apple IIgs: 2.6 MHz
Apple IIc Plus: 4 MHz
all other Apple II models: 1 MHz.

Copyright 1991, Apple Computer, Inc.
I want to connect my Apple IIe to the Personal LaserWriter SC. Are there printer drivers to do this?

There is no Apple support for connecting either the older LaserWriter IISC nor the new Personal LaserWriter SC to any Apple II computer. Apple has made low-level driver information available to developers to create such a driver, but we don't know of any available drivers as of April 1991.

Copyright 1991, Apple Computer, Inc.

Keywords:
Is it possible to use a Macintosh Hard Disk 20 with any Apple II computer?

No, there is no support for the serial Macintosh Hard Disk 20 on any of the Apple II computers. A controller card was never produced to provide this compatibility.

Copyright 1991, Apple Computer, Inc.

Keywords:
This article discusses the use of a square wave AC power source, as opposed to the normal sine wave, with the Apple II family of computers.

The Apple II power supply is of a switching type that rectifies the AC input voltage to a DC voltage for use internal to the supply. The AC input is first sent through a line filter and then to a diode bridge for rectification. The line filter consists of inductors and capacitors to smooth the waveform of the input voltage. This action would soften the square waves an inverter might supply and the whole combination makes it OK to use an Apple II on a square wave AC supply.

Article Change History:
17 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1988-97, Apple Computer, Inc.
Keywords:
This article discusses using a LaserWriter printer with the Apple II family of computers.

DISCUSSION --

A LaserWriter can be connected to any Apple II containing a Super Serial Card, or the serial ports (modem port and printer port) in an Apple IIc or Apple IIGS.

This is made possible by setting the serial interface to use XON/XOFF protocol using one of the following two methods.

1st Method

Send the following code exactly as shown. The Super Serial Card must be in communications mode (jumper block set to "modem"), because print mode (jumper block set to "terminal") doesn't support XON/XOFF.

- Apple IIc/IIGS printer port: Control-I X E
- Apple IIc/IIGS modem port: Control-A X E
- Super Serial Card: Control-I X

- Control-I (or Control-A) tells the firmware that you are sending a character to act on.
- The X tells the firmware to use XON/XOFF protocol.
- The E says 'Enable the function designated by the next printable character.'

2nd Method

Set up the LaserWriter for DTR handshake (requires version 2 or greater of the LaserWriter ROMs). This can be done by sending the following code segment to the LaserWriter with the switch set to 9600:

```
serverdict begin 0 exitserver
statusdict begin
25 9600 7 setsccbatch
end
```

This sets the 25-pin connector to 9600 baud, DTR flow control, no parity. Substituting 9 for 25 sets the 9-pin connector to the same parameters. This change is written into EEROM, and remains as what is called a persistent parameter until changed back. To change the printer back to XON/XOFF, send this code segment:

```
serverdict begin 0 exitserver
statusdict begin
25 9600 3 setsccbatch
end
```
Article Change History:
17 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1988-97, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL037.TXT
Description: Apple II FORTRAN: Double precision arithmetic
Header: Apple II FORTRAN: Double precision arithmetic

Usually, in FORTRAN IV & 77, the way to handle numbers up to 10 to 11 significant figures is to declare double precision variables or implicit double precision variables.

The new strategy here is to use the Pascal SANE unit linked to a FORTRAN program following the instructions in the Apple FORTRAN Language Reference Manual Chapters 15 and 16. Double precision poses more difficult problems. With the advent of the SANE package there are solutions possible. In short, such Pascal units are not available and must be written and created by the FORTRAN user.
Apple Technical Communications

Keywords:

END OF FILE A2TIL038.TXT
This article describes the 6522 Versatile Interface Adapter (6522 VIA).

The 6522 Versatile Interface Adapter (6522 VIA) is a popular integrated circuit for use with microcomputers because it operates in a variety of modes. The precursor to the 6522, the 6520, has been used in several interfaces with no difficulty. Unfortunately, although these two parts have identical timing specifications, their operation is different. The 6520 is very tolerant of operation outside of the parameter limits on its data sheet while the 6522 must have its timing specifications met exactly.

The most critical timing parameter for the 6522 is the address set-up time, the delay between the chip select and the rising edge of the 1MHz clock. The 6522 will not operate under the nearly identical Device Select and 1 MHz clock of the Apple II. The solution is to shorten the positive half-cycle of the 1 MHz waveform. This can be achieved by various methods, but, since the length of the positive half-cycle is critical, it is essential to have a well-controlled circuit to do this.

The circuit below is proposed for use with the Apple II. The 74LS74 circuit delays the positive edge of the clock by one cycle of the 7 MHz clock, generating the clock waveform that the 6522 needs. The negative edge of the clock is set by the falling edge of the 1 MHz clock; this also holds off the flip-flop until the next cycle. The shortened positive half-cycle of the clock waveform results in a leading edge delayed by 140 nanoseconds from the falling edge of Device Select.

The 6522A is required to meet the data sheet timing parameters. The 6522 will usually work but its operation cannot be guaranteed.
Article Change History:
28 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1984-97, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL039.TXT
The only difference between the Apple II and the Apple II+ is that the Apple II has Integer BASIC and the "old" monitor ROM, while the Apple II+ has Applesoft BASIC and the Autostart monitor ROM. Most of the game programs available today are written in Integer BASIC and most of the business, scientific, and industrial programs require Applesoft, so the selection depends upon what your application requires. Apple offers firmware cards that will supply Applesoft to Apple II owners and Integer Basic to Apple II+ owners.

Apple Tech Notes

Keywords:

END OF FILE A2TIL040.TXT
To allow you to write programs involving special characters or lower case characters, you can get a 2716 PROM to replace the character generator ROM in revision 7 and later Apples. This note describes how the characters are mapped in the ROM.

Characters storage uses a scheme of eight bytes per character, arranged in the ROM in the order shown in Table 7 on page 15 of the Apple II Reference Manual. The starting address for each character is the address from Table 7 multiplied by eight. Lower case characters, if desired, should be mapped in place of the numbers and punctuation in columns $E0 and $F0.

Each character is made up of eight bytes. Each byte represents one row of dots. The most significant bit of each byte is ignored by the hardware. The lowest-addressed byte of each character is the topmost row of dots of the displayed character. The first and last bits of each row of dots are usually set to zero to supply a two dot space between characters. The bottom row of dots is usually left set to zero to allow a one row space between lines. Some lower case character sets use the bottom row for descenders (the letter "g", for example). This causes overlap when the descender is directly above an upper case letter like "B". The following diagram shows how the characters are built. The three digit hexadecimal number is the hexadecimal ROM address for each byte and the two digit hexadecimal number is the pattern of on and off bits.

$208 $08 ...*... $708 $00 $730 $08 ...*...
$209 $14 ...*... $709 $00 $731 $14 ...*...
$20A $22 ...*... $70A $1C ...*... $732 $10 ...*...
$20B $22 ...*... $70B $02*... $733 $10*...
$20C $3E ...*... $70C $1E ...*... $734 $3E ...*...
$20D $22 ...*... $70D $22 ...*... $735 $10 ...*...
$20E $22 ...*... $70E $1E ...*... $736 $10 ...*...
$20F $00 $70F $00 $737 $00
$210 $3C ...*... $710 $20*... $738 $00
$211 $22 ...*... $711 $20*... $739 $00
$212 $22 ...*... $712 $3C ...*... $73A $1C ...*...
$213 $3C ...*... $713 $22*... $73B $22*...
$214 $22 ...*... $714 $22*... $73C $22*...
$215 $22 ...*... $715 $22*... $73D $1E ...*...
$216 $3C ...*... $716 $3C ...*... $73E $02*...
$217 $00 $717 $00 $73F $1C ...*...

Apple Tech Notes
This article describes DMA (Direct Memory Access) and how it can be used to control the Apple’s memory and I/O.

DISCUSSION

DMA (Direct Memory Access), is designed to allow the hardware on an interface card to completely take over the Apple’s memory and I/O. The DMA pin on the Apple II interface bus disconnects the Apple’s 6502 from the Apple’s address bus, data bus, R/-W signal, and clock. The DMA pin should be pulled low immediately after phase 0 goes low and should be released when phase 0 again goes low. The 6502 is a dynamic device that will lose its registers’ memory if DMA is held low for more that 40 microseconds. Here is an example where the DMA lasts for two microseconds.

```
Clock 0                       _________
                                |        |
                                |__________|
DMA                             |        |_____
                                |__________|_____
```

The 6502 normally sets up its addresses, control, and data while clock 0 is low. The memory or I/O device decodes and reads the data while clock 0 is high. The actual transfer occurs when clock 0 goes from high back to low. During cycles when DMA is low, the user must supply the address, control, and data information for that memory cycle in synchronization with the Apple’s clocks.

Enabling Unlimited DMA

* Point the reset vector to a restart routine, assuming the Apple has the Auto-Start ROM.

* Have the peripheral card generate a RESET when the 6502 is to have control of the bus. The Apple II Reference Manual explains the RESET vector starting on page 36.

Copyright 1984-97, Apple Computer, Inc.

Keywords:
Because of continuing cost reductions on 16K RAMs, current revisions of the Apple II accept only 16K RAMs.

Table 2, the backspace key are reversed.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$95</td>
<td>$95</td>
<td>$95</td>
<td>$95</td>
</tr>
<tr>
<td>$88</td>
<td>$88</td>
<td>$88</td>
<td>$88</td>
<td></td>
</tr>
</tbody>
</table>

2nd Paragraph, the pins carrying the video signals are referred to as being on the left side of the board. They are on the RIGHT.

The photograph refers to a Revision 6 Apple. Revision 7 and later Apples will look slightly different.

The Eurapple modification is not complete and we do not support or recommend modification of Apples for European television signals.

The photograph refers to a Revision 6 Apple. Revision 7 and later Apples will look slightly different.

The photograph refers to a Revision 6 Apple. Revision 7 and later Apples will look slightly different.

First paragraph, line 4; The address is actually $C040 instead of $C04F.

Paragraph 3, line 3, "the leftmost column" should read "the rightmost column"

Table 11 should read:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT EDGE</td>
<td>32</td>
<td>$20</td>
<td>0/ 0/39</td>
<td>$0/$ 0/$27</td>
</tr>
<tr>
<td>WIDTH</td>
<td>33</td>
<td>$21</td>
<td>0/39/39</td>
<td>$0/$27/$27</td>
</tr>
<tr>
<td>TOP EDGE</td>
<td>34</td>
<td>$22</td>
<td>0/ 0/23</td>
<td>$0/$ 0/$17</td>
</tr>
<tr>
<td>BOTTOM EDGE</td>
<td>35</td>
<td>$23</td>
<td>0/24/24</td>
<td>$0/$18/$18</td>
</tr>
</tbody>
</table>

ESC E "When COUT detects this" should read "When RDKEY detects this"

The Autostart ROM initializes the annunciators 0 and 1 to OFF and annunciators 2 and 3 to ON.

Paragraph 5 refers to to using call -1169 to set $3F4 to XOR of $3F3 in autostart reset vector. This may garbage the diskette in drive 1 if used on a non-autostart system.
The line of monitor command just under the first paragraph should read:

```
*O:FF FF AD 30 C0 88 D0 04 C6 01 F0 08
*:CA D0 F6 A6 00 4C 02 00 60
```

Page 70
Paragraph 2, the page 3 memory usage chart is actually on page 65 of the manual instead of page 62.

Page 70
RAM Configuration Blocks are not included on Revision 7 and later Apple boards.

Page 74
The Zero Page memory maps are incomplete. Applesoft also uses $D6 and Applesoft HIGH-RES uses $19 to $1D.

Page 79 Table 22
The line for $C060 should be:

```
0 1 2 3 4 5 6 7
$C060 cin pb0 pb1 pb2 gc0 gc1 gc2 gc3
```

Page 81
Paragraph 3 recommends IOSAVE and IORESTORE. These routines must be used with caution because if any other routine in the system uses them, they will overwrite your information. The 6502 stack is a better place to save the registers.

Page 84
Expansion ROM, paragraph 3, This flip-flop should be turned on by the I/O SELECT signal, not the DEV SEL signal.

Page 89
The photograph refers to a Revision 6 Apple. Revision 7 and later Apples will look slightly different.

Page 89
The pointer to the USER 1 jumper is wrong. See the photograph on page 99 for the correct location.

Page 90 Paragraph 5
RDY, RES, IRQ, NMI lines are held high by a 1000 ohm resistor, NOT 3300 ohm.

Page 91
Data from 6502 (read) and Data to 6502 (write) are reversed. They should be:

```
Data from 6502 (write)
Data to 6502 (read)
```

Page 96
Paragraph 4, line 5, the 74LS283 is at location E14.

Page 100
The Apple's new built-in keyboard is built around a AY-5-3600 keyboard encoder. The inputs to this ROM, pins 17 through 26 and 36 through 40, are connected to the matrix of keyswitches on the keyboard. The outputs of this ROM are buffered by a 74LS04 and are connected to the Apple keyboard connector.

The keyboard decoder rapidly scans through the array of keys on the keyboard, looking for one that has been pressed. This scanning action is controlled by
the free running oscillator made up of three sections of a 74LS00 at location
B3 on the separate encoder board. The speed of this oscillation is controlled
by C7, R7 and R8 on the encoder board.
Apple Tech Notes

Keywords:

END OF FILE A2TIL043.TXT
Page 104
The +12 and -5 volt levels are documented on page 92 as +11.8 and -5.2. The levels will vary from Apple to Apple.

Page 107
Pin 19, SYNC, is connected only on Apples manufactured for sales overseas.

Page 107
Pin 21, RDY, is pulled high with a 1000 ohm resistor to +5 volts.

Page 107
Pin 22, DMA, is held high by a 1000 ohm resistor to +5 volts. This signal will stop the 6502 clock. It should not be held low for more than two clock cycles or the 6502 internal registers may be lost.

Page 108
Pin 28, INT IN, is the second item on the page and is mislabeled 26.

Page 108
Pin 32, INH, is pulled high by a 1000 ohm resistor.

Page 108
Pin 35, COLOR REF, is connected only on Apples manufactured for sales overseas.

Page 119
Figure 3 should be labeled:

\[\text{ROTATE ONE BIT RIGHT (MEMORY OR ACCUMULATOR) M or A.} \]

Page 120
The Processor status word should be

\[
\begin{array}{cccccccc}
7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline
N & V & B & D & I & Z & C & \text{PROCESSOR STATUS WORD, "P"} \\
\hline
\end{array}
\]

\[\text{This bit is undefined.} \]

Page 121
Note 1 should read "Bits 6 and 7 are transferred to the Status Register. If the result of A AND M is zero, then Z=1; otherwise Z=0."

Page 127-128
The unimplemented opcodes are shown as NOPs, which is wrong. $EA is the only code defined as NOP. The others should not be used as they perform undefined operations.

Page 128
Op-code $AD is a LDA, Absolute

Page 137
The addresses starting at line 100 should be:

\[
\begin{array}{l}
\text{CLRAN0 EQU } \$C058 \\
\text{SETAN0 EQU } \$C059 \\
\text{CLRAN1 EQU } \$C05A \\
\end{array}
\]
SETAN1 EQU $C05B
CLRAN2 EQU $C05C
SETAN2 EQU $C05D
CLRAN3 EQU $C05E
SETAN3 EQU $C05F

Page 143
Starting at address $FA6F the comments should read:

FA6F LDA CLRAN0 ;AN0 = TTL LO
FA72 LDA CLRAN1 ;AN1 = TTL LO
FA75 LDA SETAN2 ;AN2 = TTL HI
FA78 LDA SETAN3 ;AN3 = TTL HI

Page 165
The comment after address $FCAC should read

1.0204 USEC * (13+27/2*A+5/2*A*A)

Pages 172-176
These tables were cut up to fit the pages so they are no longer in numeric or alphabetic order.

Apple Tech Notes

Keywords:

END OF FILE A2TIL044.TXT
The keyboard on the Apple II has an upper-case-only encoder. It can produce ASCII characters 0 through 95, excluding _, \, [, CTRL-_ , CTRL-[, and CTRL-\. The Apple III uses the very same encoder. However, the Apple III also has a second keyboard port; with this port, the Apple III can independently to sense the shift, control, and alpha lock keys, as well as a number of other functions.

You can modify an existing Apple II to allow it to sense whether or not the shift keys are depressed. This modification is supported by system software such as Pascal 1.1 and Pilot, as well as some word processing software. The core of the modification is a wire running from the shift keys to button input 2 of the game I/O port which button input the paddles don’t use. This modification is not recommended for in-warranty Apples and should be only performed by an authorized service technician.

Since the modified Apple can sense whether or not the shift key is being pressed, it can distinguish 51 new characters: CTRL-SHIFT-A thru Z excluding M, N, and P, SHIFT-A thru Z excluding M, N, and P, SHIFT-0, SHIFT-RETURN, SHIFT-ESC, SHIFT-LEFT ARROW, and SHIFT-RIGHT ARROW. This raises the total number of distinguishable characters to 141, which easily encompasses the 128 member ASCII character set.

To facilitate the most natural use of the keyboard, software sometimes rearranges the interpretation of these characters so that the keyboard resembles that of a typewriter. Apple has employed several types of keyboards on the Apple II since its introduction, so the modification has two appearances.

1. On the older style keyboard, a wire should be run between pin 2 of the 74LS00 and pin 4 of the keyboard connector on the keyboard.

2. On the newer style keyboard with the "piggy-back" electronic assembly, the wire should be run between pin 9 of the 74LS00 closest to the keyboard connector and pin 4 of the keyboard connector.

In either case, a second wire should connect the bottom of pin 4 at location A7 to pin 7 at location J14 on the motherboard. Check carefully that the wire isn’t connected to pin 7 of H14. The keyboard cable acts as a connection between these two wires.

Apple Tech Notes

Keywords:
Description: Apple II High Speed SCSI Card: CMS Hard Drive (11/96)
Header: Apple II High Speed SCSI Card: CMS Hard Drive (11/96)

Article Created: 15 May 1991
Article Reviewed/Updated: 14 November 1996

TOPIC --

My computer does not recognize a CMS hard drive when using the Apple II High Speed SCSI card. How can I correct this problem?

DISCUSSION---

Ensure DIP switch 8 on the CMS hard drive is in the closed position. DIP switch 8 controls the reset line at pin 40. All Apple SCSI cards use the reset line for handshaking. If this pin is disconnected or turned off, the computer will not recognize the hard drive.

If your computer still doesn't recognize the CMS hard drive, check the SCSI switch to make sure it is not set to 7.

Article Change History:
14 November 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-96, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL046.TXT
This article describes the Apple II High-Speed SCSI Card. This card has been discontinued and is no longer available from Apple.

Overview

The Apple II High-Speed SCSI Card lets you connect an Apple IIe or Apple IIGS computer to any device using the SCSI standard. Such devices include hard disk drives, CD-ROM drives, scanners, tape drives, and laser printers. Using DMA (direct memory access) data transfer, this card offers impressive data throughput. It functions more than 10 times faster than the earlier Apple II SCSI Card. The Apple II High-Speed SCSI Card comes with software utilities for use with hard disk drives and CD-ROM drives.

System Requirements

To use the Apple II High-Speed SCSI Card, you need an Apple IIGS or Apple IIe computer with a 65C02 microprocessor. This includes all Apple IIe systems manufactured in 1986 or later, as well as any earlier models that have been enhanced with the Apple IIe Enhancement Kit. If you have an early-model Apple IIe that has not been enhanced, contact your dealer about the enhancement kit.

A 3.5-inch disk drive (Apple IIGS or Apple IIe) or a 5.25-inch disk drive (Apple IIe)

A device with an SCSI port, appropriate SCSI cabling, and one SCSI terminator.

Technical Specifications

Interface: DB-25 SCSI port

Maximum data throughput
- 1MB per second (Apple IIGS)
- 511K per second (Apple IIe)

Environmental requirements
- Operating temperature: 50 to 104 degrees F (10 to 40 degrees C)
- Relative humidity: 20% to 95% (noncondensing)

Article Change History:
14 November 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-96, Apple Computer, Inc.
Keywords: specsht
Description: Apple II High-Speed SCSI Card: SCSI Reset Line (11/96)
Header: Apple II High-Speed SCSI Card: SCSI Reset Line (11/96)

Article Created: 19 March 1991
Article Reviewed/Updated: 15 November 1996

TOPIC

Does the new Apple II High-Speed SCSI Card use the SCSI Reset line as the older Rev C card? I have a series of hard drives that have the reset line is cut in the cable and need to know if they will function with the high-speed card, or will the cable have to be replaced.

DISCUSSION

The Apple II High-Speed SCSI Card pin assignments are identical to the older Apple II SCSI Interface card.

The newer card still uses the SCSI Reset Line. You may need to use a special cable or, in the case of some third-party hard drives, make the appropriate DIP switch selections.

Article Change History:
15 November 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-96, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL048.TXT
This article discusses how to change the Apple II High-Speed SCSI Card's PDMA (pseudo direct memory address) switch settings.

Switch 1 turns DMA on or off.

DMA is a feature that allows the SCSI card to read or write information directly to a storage device (such as a hard disk drive) without having to depend on the computer's microprocessor to manage the operation.

The Apple II High-Speed SCSI Card comes with the DMA switch already in the closed (on) position. However, if you have another card (such as an accelerator card) that uses its own DMA, you may need to turn off the SCSI card's DMA. Follow these instructions to turn DMA off:

1. Switch the computer off, but leave the power cord plugged in.
2. Locate Switch 1 on the SCSI card and carefully move Switch 1 to the open (off) position.
3. Refer to the information in the article entitled "Apple II High-Speed SCSI Card: Setting SCSI ID" if you want to set the rest of the switches.
4. Be sure to follow the installation instructions in the Apple II High-Speed SCSI Card Owners Guide to install the SCSI card.
This article discusses how to change the Apple II High-Speed SCSI Card's SCSI ID switch settings.

Switch 1 turns on and off DMA (Direct Memory Access). See the article "Apple II High-Speed SCSI Card: Setting DMA" for more information on this subject.

The computer's SCSI ID number is determined by the positions of switches 2, 3, and 4 on the SCSI card. Follow these steps to reset the computer's SCSI ID number:

1. Switch the computer off, but leave the power cord plugged in.
2. Choose an appropriate SCSI ID number for the computer. If you are using a LaserWriter IISC, Personal LaserWriter SC or Apple Scanner, use the settings for SCSI ID 2.
3. Refer to the information that follows for the correct position of switches 2, 3, and 4.

<table>
<thead>
<tr>
<th>Switch indication</th>
<th>0 = Open or off</th>
<th>x = Closed or on</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI ID 0</td>
<td>ID 1</td>
<td>ID 2</td>
</tr>
<tr>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>1234</td>
<td>1234</td>
<td>1234</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>000</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

4. Be sure to follow the installation instructions in the Apple II High-Speed SCSI Card Owners Guide to install the SCSI card.

Article Change History:
15 Nov 1996 – Reviewed for technical accuracy, revised formatting.
Copyright 1995–96, Apple Computer, Inc.
Keywords: hts
I have an Apple IIGS with a High-Speed SCSI Card but am unable to access my SCSI Hard Drive. I am using the drivers that came on the System Tools disk 5.0.2.

You need to install the drivers on System Tools disk 5.0.4, which should support the High Speed SCSI card. The SCSI card is also self-terminating and any external terminators should be removed.
This article describes the Apple II High Speed SCSI Card.

The new Apple II High-Speed SCSI Card provides faster data transfer primarily because of a new feature called "direct memory access" (DMA) data transfer. Data is transferred directly between the computer's memory and the SCSI peripheral, with minimal interaction from the computer's microprocessor. The result is improved, data-transfer performance. With the new high-speed card, data transfers at a rate of up to 1MB per second on the Apple IIGS computer, and up to .5MB per second on the Apple IIe computer. In addition to DMA, the SCSI manager and firmware have been improved and also contribute to the increased performance.

Compatible with all SCSI peripherals, the Apple II High-Speed SCSI Card requires only that device-specific applications and drivers be installed on the system. The card ships with drivers and applications for hard disk and CD-ROM drives, so that users can take advantage of these devices immediately. Device drivers for the tape backup drive and scanner will be made available to developers. Users will be able to take advantage of these devices as applications are developed. In addition, the new card enables users to connect as many as seven SCSI peripherals to their computer.

Another feature of the card is an on-board terminator, which simplifies setup when connecting SCSI peripherals to the computer. Previously, the Apple II SCSI Card required users to understand rules regarding placement and quantity of terminators between SCSI devices. With the new card, you place one terminator at the end of the chain of SCSI devices.

The Apple II High-Speed SCSI Card also includes improved, hard-disk utilities. These utilities make it easy to handle hard-disk management tasks, like data backup, disk partitioning and disk verification. The partition and verify utilities take advantage of the improved firmware commands for hard disk drives. The backup utility can now handle the resource forks that are part of the IIGS files. Because these are ProDOS utilities, they can be used by both Apple IIe and Apple IIGS users.

As far as system requirements, the Apple II High-Speed SCSI Card works on an Apple IIGS computer or an Apple IIe computer with a 65C02 microprocessor. The Apple IIGS requires a 3.5-inch disk drive, while the Apple IIe requires either a 5.25- or a 3.5-inch disk drive. Both require a device with a SCSI port, appropriate SCSI cabling and one SCSI terminator.
Effective immediately, Apple is substituting a different Apple II Language Card for the original one. The new card is smaller and no longer includes the connector that plugs into the RAM socket. It also does not contain the Autostart ROM. Now, when Apple II Language Cards are exchanged, Apple will include a 16K RAM chip with the replacement module.

- When you install a new Language Card into an Apple II or Apple II+ system, you need to install the 16K RAM chip into the vacant RAM socket on the main logic board.

- In the unlikely event that customers do not already have the Autostart ROM in their Apple II systems, they will need to purchase one for you to install in location F8 on the main logic board. The Autostart ROM (p/n 342-0020) can be ordered from the price pages.

- Refer to the Apple II Family Technical Procedures for instructions on installing Autostart ROMs and the 16K RAM.

The new Apple II Language Card is available from the price pages under the same part number as the old card. The new card is available as an Exchange Module only. When you return a language card to Apple for exchange, a new language card will be returned to you.

INSTALLATION

WARNING: Be sure the power is off before installing or removing any modules or components, or before connecting or disconnecting any peripheral devices. Failure to do so may result in damage to the computer, module, components, and/or peripheral.

Remember to follow basic ESD precautions when installing, removing, or troubleshooting modules.

1) Insert the Language Card into slot 0, component side facing away from power supply.

2) Insert a 16K RAM chip (p/n 334-0002) at location E3 on the motherboard. (Location E3 is in the left rear corner of the outlined memory area and was used for the cable header on the old Language Card.

Apple II Standard Computers without Autostart ROM on Motherboard:

1) Replace the Monitor ROM (p/n 342-0004) with an Autostart ROM (p/n 342-0020) at location F8-ROM on the motherboard.

TESTING

The new language card can be tested with your existing Apple II Product Diagnostics Disk.

1) Install the new Language Card in slot 0. Ensure that you've inserted a RAM at location E3 and that the motherboard F8 ROM is p/n 342-0020.

2) Start up the Apple II Product Diagnostics Disk.
3) Press the <ESC> key to move the cursor to the CARD TESTS line on the main menu, then press <RETURN>.

4) Press the <ESC> key to move the cursor to the LANGUAGE CARD line on the CARD test menu, then press <RETURN>.

If any RAM is highlighted in inverse video, replace the Language Card. If any of the status states are bad, then replace the Language Card. If the message "NO ERRORS ENCOUNTRED" appears, then the ROM at Location F8 is good. If the message "CAN NOT MATCH CODE" appears, then the ROM at F8 is bad and must be replaced.

Motherboard RAM Test

Perform the Motherboard RAM test to ensure that the RAM at location E3 is good.

5) Use the <ESC> key to move the cursor to the MOTHERBOARD RAM TEST line on the main test menu, then press <RETURN>.

6) Press <RETURN> to start the test.

7) The test will end and the display will show any bad RAM in inverse video. If the display shows that the LANG CARD RAM is bad then replace the RAM at E3.

Copyright 1989 Apple Computer, Inc.
Keywords: hts

END OF FILE A2TIL053.TXT
When writing a machine language routine to check the keyboard for a single character, make sure that the routine checks for the high bit at the keyboard, signifying valid data, before the routine attempts to read data there.

Here is an example of such a routine:

```plaintext
ORG $300
KBD   EQU $C000 ; location of keyboard data
KBDSTRB EQU $C010 ; location of keyboard strobe latch

ReadKey  BIT  KBD        ; test high bit of data reg.
         BPL  ReadKey    ; If not set retest till it is set
         LDA  KBD        ; Data at KBD is Valid (High Bit set)
         BIT  KBDSTRB    ; now clear the keyboard for the next char
         RTS             ; and we are done.

The act of striking a key will set the strobe bit automatically, so this routine clears it before returning.

If you are testing for a particular keystroke, put the test in a separate routine. Here is an example of how that would be done:

```plaintext
BIT KBDSTRB ; Clear out any data that is already at KBD
WaitForA JSR ReadKey ; get a key from the keyboard
CMP #$C1 ; is it an A????
BNE WaitForA ; Nope go get another
RTS
```

These methods apply to all Apple II's: II, II Plus, IIe, IIe enhanced, and IIc.

Apple Technical Communications

Keywords:
This article describes the Apple II Memory Expansion Card diagnostics. These procedures can be used for any RAM configuration.

Always verify the card size and the positioning of the ICs before running the internal diagnostics.

A card failure is indicated if the internal diagnostics will not run. In that case, remove the RAM, install them on an exchange module, and retest.

1. Install the Memory Expansion Card in any slot except 3 in a known good Apple IIe. No disk drive is necessary.

2. Power on the Apple IIe. The words Apple II will be displayed at the top of the screen. The prompt and cursor will be displayed on the screen in the upper left hand corner.

3. Enter CALL -151 and press RETURN. The monitor prompt, *, will appear.

4. Verify which slot the Memory Expansion Card is in by entering cXOAG, where X is the slot number, and press RETURN.

5. The following display will appear. Verify the card size (RAM configuration) which appears is the actual size for the card installed (in this case a 256K card is installed). The dots appear on the screen as the card is tested. The test will repeat until an error is encountered or the ESC key is pressed.

MEmory CARD TEST
ESC TO EXIT
TEST WILL TAKE 45 SECONDS  Seconds:  45  90  135  180
CARD SIZE = 256K  Card size:  256K  512K  768K  1024K

PASSES = 0001
....
....
....
....
....
CARD OK

Error Code Interpretation
-------------------------------
The Memory Expansion Error Code Chart in the December 1985 mailing was incorrect. This article and the January 1986 mailing contain a corrected chart.

If an error is found during the internal diagnostic it will be displayed in
one of the following formats: ADDRESS ERROR XXYYYY-ZZ or DATA ERROR XXYYYY-ZZ. There are, in fact, 4 error situations: address error, data error, non-existent RAM error, and card size error.

Address Error
-------------
An address error usually indicates a card failure. Remove all the customer's RAM, install them on an exchange module, and run the test again.

Data Error
----------
Data errors usually indicate a RAM failure. The ZZ in the error code specifies the section of the card where the error took place. The XX in the error code specifies the suspected faulty RAM within that section. Ignore the YYYY.

Memory Expansion Error Code Chart
---------------------------------
RAM locator	Section in specified section of card
XXYYYY-ZZ   | ignore

Range of RAM Locator in specified
---------------------------------
Card section | Chip section Chip section Card section
ZZ | XX | ZZ

<table>
<thead>
<tr>
<th>ZZ</th>
<th>Card section</th>
<th>Chip section</th>
<th>Card section</th>
<th>Chip section</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>C1</td>
<td>0C - 0F</td>
<td>A1</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>08 - 0B</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>04 - 07</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>00 - 03</td>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>C5</td>
<td>0C - 0F</td>
<td>A5</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>C6</td>
<td>08 - 0B</td>
<td>A6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>04 - 07</td>
<td>A7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C8</td>
<td>00 - 03</td>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>C9</td>
<td>0C - 0F</td>
<td>A9</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>08 - 0B</td>
<td>A10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C11</td>
<td>04 - 07</td>
<td>A11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C12</td>
<td>00 - 03</td>
<td>A12</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>C13</td>
<td>0C - 0F</td>
<td>A13</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>C14</td>
<td>08 - 0B</td>
<td>A14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C15</td>
<td>07 - 04</td>
<td>A15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C16</td>
<td>00 - 03</td>
<td>A16</td>
<td></td>
</tr>
</tbody>
</table>

To locate DATA ERROR 08000 - 40 using the chart,

The bad chip is in section 40.

<table>
<thead>
<tr>
<th>Card section</th>
<th>Chip number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td></td>
</tr>
</tbody>
</table>
The bad chip is located where the RAM locator falls into the range that includes 08.

Range of RAM Locator in specified
---------------------------------
Card section Chip number Card section section
ZZ XX
40 C10 08 - 0B

The position of the bad chip is C10. Replace the RAM chip on the card.

A x x x x x x x x x x x x x x x x x x x x x x
B x x x x x x x x x x x X x x x x x x x
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Re-run the diagnostic.

Non-Existent RAM Error
----------------------
Any other section ZZ codes, for example 0B, 0E, FC, and so on, usually indicate a card failure. Remove all RAM and install it on an exchange module.

Other error codes might point to a RAM chip which is not installed, for example, if a 256K Memory Expansion Board gave an error of 0C0000 - 40, change the RAM which is installed in that section. If the test still gives the same error message, change the RAM in the adjoining sections.

Card Size Error
---------------
If the actual card size does not correspond to the card size listed on the built-in diagnostic, you will need to exchange eight RAMs. For example, if the card size indicated on the internal diagnostic is 768K, and the actual RAM on the card is 1 megabyte, remove the RAM at locations A1, C1, A5, C5, A9, C9, A13, and C13. Reinstall known good RAM and run the diagnostics.

If the card size is now correct, there may be one or more bad ICs among the RAM removed. Replace the removed RAM one at a time, testing after each installation, until the bad RAM is located.

If the card size is still incorrect, this will indicate a card failure. Remove all the RAM and install it on an exchange module and retest.
This article describes Apple's three Apple II Memory Expansion Cards.

DISCUSSION

Overview

An Apple Memory Expansion Card adds up to one megabyte (1MB) RAM to any Apple II personal computer, allowing it to run more sophisticated applications and to create larger files. On the Apple IIGS personal computer, memory expansion lets you run high-performance programs that take full advantage of the computer's sound and graphics capabilities.

Three cards are available:
- Apple IIGS Memory Expansion Card
- Apple IIc Memory Expansion Card (for Apple IIc only, not Apple IIc Plus)
- Apple II Memory Expansion Card (for Apple IIe, Apple II Plus, and Apple II computers)

These cards are compatible with three operating systems: ProDOS, DOS 3.3, and Pascal 1.3. (Earlier versions of Pascal can be upgraded to version 1.3.) DOS 3.3 programs cannot be booted from the Memory Expansion Card.

Environmental requirements are the same for all three cards:
- ambient temperature: 50 to 104 degrees F (10 to 40 degrees C)
- relative humidity: 0% to 95% (non condensing)

Voltage is the same for all three cards: 4.75 to 5.25 volts DC

Apple IIGS Memory Expansion Card

This card is used with an Apple IIGS personal computer with a monitor and disk drive.

Power Consumption:
- operating: 200 milliamps in 256K configurations
  600 milliamps in 1MB configuration
- standby: 140 milliamps in 256K configuration
  370 milliamps in 1MB configuration

Apple IIc Memory Expansion Card/Kit

The Apple IIc Memory Expansion Card is used with an Apple IIc personal computer (model number A2S4100).

The Apple IIc Memory Expansion Kit is used with an Apple IIc personal computer (model number A2S4000).

Power Consumption:
- operating: 100 milliamps in 256K configurations
200 milliamps in 1MB configuration
- standby: 90 milliamps in 256K configuration
  180 milliamps in 1MB configuration

Apple II Memory Expansion Card
----------------------------------
The Apple II Memory Expansion Card is used with an Apple IIe personal computer (preferably enhanced) that has a monitor and disk drive, or with an Apple II Plus or Apple II personal computer with a monitor and disk drive.

Power Consumption:
- operating: 100 milliamps in 256K configurations
  200 milliamps in 1MB configuration
- standby: 50 milliamps in 256K configuration
  150 milliamps in 1MB configuration

Apple II Memory Expansion Card Technical Reference
==================================================
The Memory expansion card looks like, operates as, and is accessed exactly the same way as an Apple Protocol Converter device.

There are only two ways to access the card:
- as an Apple Protocol Converter device
- as a RAM disk.

Through the protocol converter, you can access all the memory on the card at any time.

Article Change History:
15 Nov 1996 - Revised formatting.
30 Aug 1994 - Reviewed for technical accuracy.
Copyright 1991-96, Apple Computer, Inc.
Keywords: specsht

### END OF FILE A2TIL056.TXT
This article describes two Apple II Monochrome Monitors:

* the Apple Monochrome Monitor (for the Apple IIGS, Apple IIc Plus, or Apple IIc)

* the Apple Monochrome Monitor IIe (for the Apple IIe, Apple II Plus, or Apple II)

Both these monitors display crisp, easy-to-read text and sharp graphics. Their 12 inch high-resolution antiglare screens are easy on your eyes, making them the low-cost displays of choice for text-based applications and other applications that don't require color.

System Requirements

* To use an Apple Monochrome Monitor IIe, you need an Apple IIe, Apple II Plus, or Apple II personal computer.

* To use an Apple Monochrome monitor, you need an Apple IIGS, Apple IIc Plus, or Apple IIc personal computer. If you have an Apple IIc Plus or Apple IIc, you may also wish to purchase an Apple Monitor Stand.

Picture Tube

* Apple Monochrome Monitor IIe
  12 inches (30.5 centimeters) diagonal
  High-contrast
  Antiglare
  90 degrees diagonal deflection
  Green Phosphor (EIA Type P31)

* Apple Monochrome Monitor
  12 inches (30.5 centimeters) diagonal
  High-contrast
  Antiglare
  90 degrees diagonal deflection
  White Phosphor (EIA Type P4)

Active Display Area

* both monitors:
  215mm horizontal by 160mm vertical (remainder of area is used for border)

Scanning

* both monitors:
  EIA standard: 525 lines; 30 frames, 60 fields/second; overscan

Scan Rates

* both monitors:
  Horizontal: 15.7 kilohertz
Vertical: 59.9 hertz

Input Signal
------------
* both monitors:
  Composite video, 1.0 (0.1) volts peak-to-peak, negative sync

Video Bandwidth
---------------
* both monitors:
  Less than 3 decibels down at 10 megahertz

Display Capability
------------------
* Apple Monochrome Monitor IIe
  With Apple IIe: 560 dots horizontally by 192 dots vertically

  * Apple Monochrome Monitor
    With Apple IIc Plus or Apple IIc: 560 dots horiz. by 192 dots vert.
    With Apple IIIGS: 640 dots horizontally by 200 dots vertically

Text display
------------
* both monitors: up to 80 columns by 25 lines

Horizontal linearity
---------------------
* both monitors: less than 10%

Vertical linearity
------------------
* both monitors: less than 7%

Video Input Connector
----------------------
* both monitors: RCA-style phone jack (75 ohm)

Controls
--------
* Apple Monochrome Monitor IIe
  Front: power on/off, contrast
  Rear: brightness, vertical hold, height

  * Apple Monochrome Monitor
    Side: power on/off, contrast
    Rear: brightness, vertical hold, vertical amplitude

Electrical Requirements
-----------------------
* both monitors:
  Line voltage 108 to 132 volts AC
  Frequency 50 to 60 hertz
  Power consumption
    Typically less than 20 watts
    Maximum 45 watts

Environmental requirements
--------------------------
* Apple Monochrome Monitor IIe
  Operating temperature: 41 to 104 degrees F (5 to 40 degrees C)
  Maximum humidity: 90%
  Altitude: 0 to 10,000 ft. (0 to 3,048 m)

* Apple Monochrome Monitor
  Operating temperature: 32 to 122 degrees F (0 to 5 degrees C)
  Maximum humidity: 90%
Altitude: 0 to 10,000 ft. (0 to 3,048 m)

Dimensions

* Apple Monochrome Monitor IIe
  Height: 10.63 in. (27.0 cm)
  Width: 14.56 in. (37.0 cm)
  Depth: 12.50 in (31.8 cm)
  Weight: 18 lbs. (8.16 kg)

* Apple Monochrome Monitor
  Height: 10 in. (25.5 cm)
  Width: 12.3 in. (31.0 cm)
  Depth: 14.3 in (37.5 cm)
  Weight: 18 lbs. (8.16 kg)

Copyright 1991 Apple Computer, Inc.
Keywords: SPECSHT

### END OF FILE A2TIL057.TXT
I work on an AppleShare/Aristotle network setup. I created a Drop Box on the server, so that users can save their AppleWorks files directly into the Drop Box on the server by using the appropriate ProDOS pathname. It doesn't work! (Owner has all privileges, everyone else has Make Changes only.)

I first tested this on a Macintosh workstation, trying to save a document to a Drop Box using the "Save As" command. Drop Boxes are dimmed in the dialog box, so I wasn't able to open the Drop Box folder and save the document. The only alternative I could think of was to save the document somewhere else, return to the Finder, and then drag the document into the Drop Box.

Are there any alternatives for Apple II users who want to use Drop Boxes?
Description: Apple II Pascal: Disk directory structure

Header: Apple II Pascal: Disk directory structure

Const
maxdir= 77; {Maximum number of entries in directory}
vidleng= 7; {Number of characters in volume ID}
tidleng= 15; {Number of characters in title ID}
fbblksize= 512; {Standard disk block length}
dirblk= 2; {Directory starts at this disk-block address}

TYPE
datarec=
  PACKED RECORD
    month: 0..12; {0 implies meaningless data}
    day: 0..31; {Day of the month}
    year: 0..100; {100 implies the dated volume is temporary}
  END {datarec};

vid=
  string[vidleng];

dirrange=
  0..maxdir;

tid=
  string[tidleng];

filekind=
  {untyped, xdskfile, codefile, textfile, infofile, datafile,
   graffile, fotofile, securedir};

direntry=
  PACKED RECORD
    dfirstblk: integer; {1st physical disk address}
    dlastblk: integer; {Points at block following last used block}
    CASE DFKind: filekind of
      Securedir, untypedfile: {Only in dir[0] -- this is volume info}
        [Filler1: 0..2048; {waste 13 bits for compatibility}
        dvid: vid; {name of disk volume}
        deovblk: integer; {last block in volume}
        dnumfiles: dirrange; {number of files in directory}
        dloadtime: integer; {Time of last access}
        dlastboot: daterec; {Most recent date setting}
      xdskfile, codefile, textfile, infofile, datafile,
      graffile, fotofile: {regular file info}
        [Filler2: 0..1024; {waste 12 bits for compatibility}
        status: boolean; {for filer wildcards}
        dtid: tid; {title of file}
        dlastbyte: 1..fbblksize; {Number of bytes in files last block}
        daccess: daterec; {Date of last modification}
      END; {case dfkind; direntry}
  END; {case dfkind; direntry}

directory =
  ARRAY[dirrange] of direntry;

To use this information, do a UNITREAD on the desired volume.

For example,

PROGRAM ShowHow;
All of the above declarations plus:
VAR
  DirInfo: Directory;
  UnNum: Integer
BEGIN
  UnNum:=4;
  UNITREAD(UnNum,DirInfo,SIZEOF(DirInfo),2);
END.

This program reads the directory information on volume 4 and stores it in the
Directory variable DirInfo. The last parameter, 2, indicates to UNITREAD to
start reading with block 2, where the directory information starts.

With Pascal 1.3, you can chain to and from the filer and thereby easily handle
files within programs.
Pascal Technote #4

Keywords:
This article discusses how Pascal v1.1 identifies peripheral cards.

Pascal 1.1 uses four firmware bytes to identify the peripheral card. Both the identifying bytes and the branch table are near the beginning of the $Cs00 ROM space (where s = slot). The identifiers are listed in Table A-2.

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Cs05</td>
<td>$38</td>
</tr>
<tr>
<td>$Cs07</td>
<td>$18</td>
</tr>
<tr>
<td>$Cs0B</td>
<td>$01</td>
</tr>
<tr>
<td>$Cs0C</td>
<td>$ci</td>
</tr>
</tbody>
</table>

Table A-2. Bytes Used for Device Identification

The first digit, c, of the Device Signature byte identifies the device class as listed in Table A-3.

<table>
<thead>
<tr>
<th>Digit</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>reserved</td>
</tr>
<tr>
<td>$1</td>
<td>printer</td>
</tr>
<tr>
<td>$2</td>
<td>joystick or other X-Y input device</td>
</tr>
<tr>
<td>$3</td>
<td>serial or parallel I/O card</td>
</tr>
<tr>
<td>$4</td>
<td>modem</td>
</tr>
<tr>
<td>$5</td>
<td>sound or speech device</td>
</tr>
<tr>
<td>$6</td>
<td>clock</td>
</tr>
<tr>
<td>$7</td>
<td>mass storage device</td>
</tr>
<tr>
<td>$8</td>
<td>80-column card</td>
</tr>
<tr>
<td>$9</td>
<td>network or bus interface</td>
</tr>
<tr>
<td>$A</td>
<td>special purpose (none of the above)</td>
</tr>
<tr>
<td>$B-F</td>
<td>reserved for future expansion</td>
</tr>
</tbody>
</table>

Table A-3. Device Class Digit

The second digit, i, of the Device Signature byte is a unique identifier for the card, assigned by Apple Developer Technical Support. For example, in the Device Signature of the SSC---$31---the 3 signifies that the device is a serial or parallel I/O card; the 1 is Apple Developer Technical Support's unique identifier for that card.

Article Change History:
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1985-97, Apple Computer, Inc.
Keywords:
### END OF FILE A2TIL060.TXT
Description: Apple II Peripheral Cards: Sending TABs to your Printer

Problems you may have sending TAB commands to your printer may stem from the interface cards "trapping" the <CTRL-I> before it goes to the printer.

To send a TAB to a DMP from an Apple IIe using a Parallel Interface Card:

10 I$ = CHR$(9): Q$ = CHR$(17)
15 PRINT I$; Q$: REM command char for card is now CTRL-Q
20 PRINT I$: REM this sends the TAB


To send a TAB to an Imagewriter from an Apple IIc:

First send <CTRL-I>Z to "zap" future commands. The I/F card will ignore following <CTRL-I>'s.

10 I$ = CHR$(9)
15 PRINT I$;"Z": REM zap
20 PRINT I$: REM this sends the TAB

Reference: Apple IIc Reference Manual, section 7.1

To send a TAB to an Imagewriter from an Apple IIe using a Super Serial Card:

Send the TAB character twice or "zap" as with the Apple IIc.

10 I$ = CHR$(9)
15 PRINT I$;I$: REM this sends the TAB


BASIC's TAB command doesn't work properly with either the (old) High Speed Serial Interface or the Apple Silentype. Integer BASIC it is limited to 40 columns, while a TAB(20) in Applesoft will sometimes output 20 spaces instead of going to column 20. An example that gets around this is:

10 PRINT "HI";POKE 36,55: PRINT "THERE"

POKE 36,55 will put the "THERE" in the 56th column (remember, Apple counts columns from 0 to 79) while still printing "HI" in column 0.

Following is a sample program that dealers can show to customers:

10 PRINT CHR$(4);"PR#1" :REM TURN THE PRINTER ON WITHOUT DISCONNECTING PRODOS
20 PRINT CHR$(9);CHR$(1):REM SWITCH THE CONTROL CODE FROM CTL-I TO CTL-A
30 PRINT CHR$(27);"(010,020,030.":REM SET UP THE TAB LOCATIONS
40 I$=CHR$(9)
50 PRINT I$;"TEN";I$;"TWENTY";I$;"THIRTY":REM SEND THE LINE WITH TAB'S
60 PRINT CHR$(4);"PR#0":REM TURN OFF THE PRINTER

Apple Technical Communications

Keywords:
# APPLE II COMPUTER TECHNICAL INFORMATION

The following table identifies compatible peripherals for the Apple II line of computers.

<table>
<thead>
<tr>
<th>Item</th>
<th>Apple II CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II Plus</td>
</tr>
<tr>
<td><strong>Drives</strong></td>
<td></td>
</tr>
<tr>
<td>Disk II</td>
<td>X 1</td>
</tr>
<tr>
<td>DuoDisk</td>
<td>X 2</td>
</tr>
<tr>
<td>Unidisk</td>
<td>X 2</td>
</tr>
<tr>
<td>Unidisk 3.5</td>
<td>X 3,7</td>
</tr>
<tr>
<td>IIc External</td>
<td>X 2</td>
</tr>
<tr>
<td>Apple 3.5</td>
<td>X</td>
</tr>
<tr>
<td>Apple 5.25</td>
<td>X 11</td>
</tr>
<tr>
<td>Profile (5M,10M)</td>
<td>X 4,7</td>
</tr>
<tr>
<td>Hard Disk 20SC</td>
<td>X 6,7</td>
</tr>
<tr>
<td><strong>Cards</strong></td>
<td></td>
</tr>
<tr>
<td>II Memory Expansion</td>
<td>X 7</td>
</tr>
<tr>
<td>IIGS Memory Expansion</td>
<td>X</td>
</tr>
<tr>
<td>Super Serial</td>
<td>X</td>
</tr>
<tr>
<td>Parallel Interface</td>
<td>X</td>
</tr>
<tr>
<td>80-column</td>
<td>X</td>
</tr>
<tr>
<td>Extended 80-column</td>
<td>X</td>
</tr>
<tr>
<td>Apple Modem 300/1200</td>
<td>X 12</td>
</tr>
<tr>
<td>Apple Personal Modem</td>
<td>X 12</td>
</tr>
<tr>
<td>Imagewriter</td>
<td>X 12</td>
</tr>
<tr>
<td>Imagewriter II</td>
<td>X 12</td>
</tr>
<tr>
<td>Daisy Wheel Printer</td>
<td>X 12</td>
</tr>
<tr>
<td>LaserWriter</td>
<td>X 12</td>
</tr>
<tr>
<td><strong>Monitors</strong></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>X</td>
</tr>
<tr>
<td>IIc</td>
<td>X</td>
</tr>
<tr>
<td>ColorMonitor IIc, IIE</td>
<td>X</td>
</tr>
<tr>
<td>ColorMonitor 100</td>
<td>X 10</td>
</tr>
<tr>
<td>AppleColor RGB</td>
<td>9</td>
</tr>
<tr>
<td>AppleColor Composite</td>
<td>X</td>
</tr>
<tr>
<td>Monochrome</td>
<td>X</td>
</tr>
</tbody>
</table>
Footnotes:
1 - Requires Disk II controller card
2 - Requires Duodisk/Unidisk controller card
3 - Requires Unidisk 3.5 controller card
4 - Requires Profile Interface Card
5 - Will auto boot on an enhanced IIe
6 - Requires Apple II SCSI Card
7 - Requires 64K RAM for Prodos
8 - This function is built into the Apple IIc
9 - A third party solution is available
10- Requires Extended 80-Column AppleColor Card
11- May be daisy-chained from a Unidisk
12- Requires a Super Serial Card
13- Limited color capability
14- Will only have access to one of the drives

Note: "IIe" stands for either the unenhanced or the enhanced Apple IIe.
"IIc(new)" refers to an Apple IIc with memory expansion socket.

Article Change History:
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1989-97, Apple Computer, Inc.
Keywords: ktable

### END OF FILE A2TIL062.TXT
To make an Apple II Plus generate both lowercase and uppercase characters for word processing applications you need a Videx (or other manufacturer) 80-column card for the Apple II Plus. The Videx VideoTerm card handles both the reading of keystrokes and their proper display.

Note: You must make the Apple II Plus shift key modification for this to work. Search on "shift key mod" in the Tech Info Library for the modification requirements.

Copyright 1988 Apple Computer, Inc.

Keywords:
Here's how to determine whether an Apple II Plus has a revision 7 motherboard or a pre-revision 7 motherboard:

- Look at the motherboard's part number. As you face the front of the computer, it's in the upper-left corner of the motherboard. The number begins with nnn-nnn.

- If the part number ends with 07, or with A, B, or C -- the motherboard is revision 7. Otherwise, it's pre-revision 7.
Can I use the monitor and disk drives from an Apple II Plus with an Apple IIe?

Yes, it's okay to switch the monitor and drives between the two systems.

Copyright 1991 Apple Computer, Inc.
Keywords:
What is the meaning of a relocation/configuration error on the Apple II Plus when running ProDOS?

ProDOS requires 64K of RAM to run. The error you are getting means that you have only 48K of RAM.

Article Change History:
17 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-97, Apple Computer, Inc.
Keywords:
Description: Apple II ProFile Interface Card Modification for the Apple II GS

This article last reviewed: 28 March 1988

PROBLEM DESCRIPTION: Some ProFile Interface cards will not work properly when installed in the Apple IIGS. ProFile directory information might become damaged and cause the user not to be able to access data stored on the ProFile.

CAUSE: There might be an incomplete ground path through the card.

CURE: If ANY ProFile Interface Card is to be installed in an Apple IIGS, check first to see that a jumper, made of 24-26 gauge multistrand wire is installed between pin 12 of IC C6 (2716 EPROM-Apple Part# 341-0299) and pin 1 of IC B4 (74LS368-Apple Part# 305-0368) on the non-component side of the board. If needed, the jumper should be installed by a knowledgeable technician to assure proper operation of the ProFile when interfaced with the Apple IIGS. The jumper wire should be just long enough to make the connection. The technician should remove the EPROM before soldering, thus preventing any damage to the chip.

Copyright 1988, Apple Computer, Inc.

Keywords: hts

### END OF FILE A2TIL067.TXT
Listed below are the pinout for the cable between the Apple II SCSI card and any standard SCSI system cable.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SCSI Card port</strong></td>
<td><strong>SCSI System Cable</strong></td>
</tr>
<tr>
<td><strong>DB-25 connector</strong></td>
<td><strong>Apple 50 pin connector</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REQ' Request</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>MSG' Message</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>I/O'</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>RST' Reset</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>ACK' Acknowledge</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>BSY' Busy</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>GND Ground</td>
<td>16,18,19</td>
</tr>
<tr>
<td>8</td>
<td>DB0' Data Line 0</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>GND Ground</td>
<td>20,21,22</td>
</tr>
<tr>
<td>10</td>
<td>DB3' Data Line 3</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>DB5' Data Line 5</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>DB6' Data Line 6</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>DB7' Data Line 7</td>
<td>33</td>
</tr>
<tr>
<td>14</td>
<td>GND Ground</td>
<td>1,2,3</td>
</tr>
<tr>
<td>15</td>
<td>C/D' Carrier Detect</td>
<td>48</td>
</tr>
<tr>
<td>16</td>
<td>GND Ground</td>
<td>4,5,6</td>
</tr>
<tr>
<td>17</td>
<td>ATN' Attention</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>GND Ground</td>
<td>7,8,9</td>
</tr>
<tr>
<td>19</td>
<td>SEL' Select</td>
<td>47</td>
</tr>
<tr>
<td>20</td>
<td>DBP' Parity</td>
<td>34</td>
</tr>
<tr>
<td>21</td>
<td>DB1' Data Line 1</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>DB2' Data Line 2</td>
<td>28</td>
</tr>
<tr>
<td>23</td>
<td>DB4' Data Line 4</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>GND Ground</td>
<td>23,24,25</td>
</tr>
<tr>
<td>25</td>
<td>TERM\PW\R</td>
<td>38</td>
</tr>
</tbody>
</table>

Important SCSI Card Information
---------------------------------

The prime (') next to the signal name indicates the signal voltage levels are negative, "low true". The SCSI port uses -5V logic levels.

Because the SCSI port is a DB-25 connector, it looks like a RS-232 port but is not a RS-232 port. Do not plug any RS-232 device into the SCSI port. Doing so can damage the 5380 chip on the card.

Article Change History:
15 Nov 1996 - Reviewed for technical accuracy, revised formatting.

Copyright 1986-96, Apple Computer, Inc.

Keywords:
This article discusses a potential problem with the Apple IIGS, Apple II SCSI card and programs using interrupts.

Apple II system crashes may occur with programs using interrupts during access of SCSI disk drives connected to the Apple II SCSI card. Once interrupts are enabled, it is possible an interrupt may occur during a SCSI drive data transfer. Programs initiate data transfer by passing control to the SCSI card.

The SCSI card firmware places code in its own stack for executing. If taking an interrupt also places code on the same stack it may wipe out some or all of the previous SCSI firmware code. Returning from the interrupt, returns to the portion of the stack corrupted by the interrupt, which results in some kind of unidentifiable system crash.

Crashes are possible if BOTH of the following conditions apply:

- The SCSI card is used with an interrupt driven program, like AppleTalk.
- This application program calls the SCSI card directly, NOT using ProDOS.

To work around this possibility, make sure your applications use ProDOS to handle any interrupts. This may decrease SCSI disk data transfer rates but will help reduce system crashes.

Article Change History:
15 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1986-96, Apple Computer, Inc.
Keywords:
I am using an Apple II SCSI card to transfer files and sometimes large files become corrupted. Is there a fix for this problem?

Files larger than 64K become corrupted during the transfer process when using the Apple II SCSI Card. Use the newer High Speed SCSI card drivers with the older SCSI cards.
This article contains the technical specifications for the Apple II SCSI card.

Technical Specifications

Hardware

Provides an electrical interface between external SCSI devices and the CPU.

Provides the address and control lines required by the Apple II's microprocessor for accessing and controlling the SCSI chip and Smartport firmware.

Provides other circuitry to interface the 5380 IC with the Apple II CPU control signals.

NCR 5380 SCSI IC

Implements SCSI bus (5380 data sheet in Chapter 2 of the Hardware Technical Reference manual).

On board RAM

8 banks of 1K, accessed with special logic circuits. Used for status of devices at SCSI bus initialization (including the status of the Apple II SCSI card itself)

On Board ROM

8 banks of 1K, accessed with special logic circuits and used for storing Smartport firmware

Interface

25-pin SCSI connector

Input/Output

Parallel transmission, two modes for data i/o operations
- PDMA (pseudo-DMA), default
- Block Move only supported by 65816 CPUs and must be enabled by the application
- Maximum storage area under ProDOS: 32 megabytes

Firmware
Smartport program converts the microprocessor commands or calls issued by CPU to a format compatible with external SCSI devices.

Issues calls to the microprocessor to give it the status of the external SCSI devices and allow the CPU to control their operation.

Commands supported: STATUS, READ BLOCK, WRITE BLOCK, FORMAT, CONTROL, INIT, OPEN, CLOSE, READ, WRITE

Boot capability with Autostart ROM when you install the card in the slot with highest priority, which may depend on the operating environment.

When Smartport does not find the SCSI device capable of starting up the system, Smartport returns control to the environment of the Apple II and the startup search continues through lower-priority slots.

Electric
----------

Voltage requirement: 4.75 to 5.25 volts DC
Power consumption in milliamps (ma)
Standby: 340 ma
Operating: 390 ma

Environmental
---------------

Ambient temperature: 50 to 104 deg F (10 to 40 deg C)
Relative humidity: 20 to 95 percent (non condensing)

System Requirements
---------------------

Apple IIGS, Apple IIe or Apple II Plus
Apple II SCSI Card
Apple SCSI System Cable
One or more SCSI-compatible peripherals, can be a high-speed printer interface

Daisy chaining
---------------

Apple II with the SCSI card in slot 5 and ONLY a serial printer or modem card in slot 2.
- Running ProDOS 1.2: 4 external devices
- Running ProDOS 16: 7 external devices

Additional SCSI system components as required
-----------------------------------------------

Cable Terminator
Peripheral Cables
Cable Extenders (Maximum total length of cables: 20 feet (6.5 meters)).

Read the manual for the Apple SCSI Cable System before trying to connect any SCSI devices.

Article Change History
15 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1986-96, Apple Computer, Inc.
Keywords: spcsht
This article describes how to obtain the Apple II SCSI Card ROM upgrade.

There is a repair extension that covers your on this. Contact your dealer about getting the cards upgraded. Here is the information the dealer will need:

SCSI INTERFACE CARD IIE & IIGS ROM UPGRADE--OLC123
(Announced March 88)

Users who upgrade to Apple IIGS Operating System Version 4.0 or greater must use the latest revisions of both the SCSI Interface Card and the ProFile Interface Card. You can determine the latest version of these interface cards by checking the part number of their ROM. As of March 88, ROM part number 341-0437, Revision A, is the latest version of the SCSI Interface Card. All SCSI and ProFile Interface Cards now shipped by Apple are the latest revisions.

Apple has revised the ROM on the Apple II SCSI Interface Card to make the card compatible with the Apple-CD SC and the Apple IIGS Operating System. When other products requiring the new ROM are introduced, you will be notified by a Service mailing. The ROM on the card can be identified by the new part number, 341-0437. All Service Stock and Finished Goods inventory has been upgraded to the new ROM.
I installed the software from the Apple II Setup 2.1.1 disk (680-5060-B) on top of Apple II Setup 2.0.1. I did the other setup steps and tried to start up an Apple IIGS from the server. A GS/OS-specific file could not be found, and I got an error $0046.

I went back to Apple II Setup 2.0.1, and all was well.

Can you explain?

The $0046 error is a "file not found" error. This error normally occurs because part of GS/OS is not on the startup disk—in this case, the server. For the server to have a working GS/OS system to start up the Apple IIGS, the GS/OS Installer needs to be run from an Apple IIGS that is logged on to the server. Then you install the desired GS/OS configuration on the server volume. We believe that this is what is meant by "did the other setup steps".

If we are correct, it is most likely that an older version of the 16-bit operating system is on the server. The 2.1.1 version was a release specifically for version 5.0.2 of GS/OS. If version 2.1.1 was installed while ProDOS 16 (System Disk 3.2 or earlier) is used on the server, there will be a problem with versions being matched correctly. Version 2.0.1 was designed to work with ProDOS 16, the predecessor to GS/OS. The files used on version 2.0.1 are quite different from the files used with 2.1.1.

We suggest that you use version 2.1.1 of the Apple II Setup Installer with a server having GS/OS 5.0.2 installed. Use version 2.0.1 on servers providing the earlier ProDOS 16 system files, which are found on System Disk 3.2 and earlier.

Also note that GS/OS 5.0 provided a version of Apple II Setup labelled "2.1." This version should be used only with GS/OS 5.0. However, the best solution is to use GS/OS 5.0.2 and Apple II Setup 2.1.1.
Program Sprio;

USES Turtlegraphics, Applestuff;
Var angle, distance : integer;
    CH : Char;                        (* added *)
Begin
    angle := 0;
    While not Keypress Do
        Begin
            InitTurtle;
            Pencolor (white);
            For distance := 0 to 99 Do
                Begin
                    Move (2 * distance);
                    Turn (angle);
                    End;
            angle := angle + 5;
        End;
    CH:=CHR (17);                       (* added *)
    Unitwrite (6,CH,1,0,12);            (* added *)
    Textmode
End.

Page 13...The discussion on "Echoing to the screen" assumes that you have already done a PR#1 before you do the T command.

Page 18...The discussion in the last paragraph assumes that you have already done a PR#1 before you do the Q command.

Page 38...Line 4, "for the right margin is 2" should be "for the left margin is 2"

Page 39...Program line 6040 should end with Then Goto 6070
Apple Tech Notes
The table below lists current SHIPPING Apple software products for the Apple II and provides for each:

<table>
<thead>
<tr>
<th>Product</th>
<th>Version</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Access II</td>
<td>1.3.1</td>
<td>For Apple II</td>
</tr>
<tr>
<td>Apple II System</td>
<td>3.2</td>
<td>For Apple II systems</td>
</tr>
<tr>
<td>Apple IIGS System</td>
<td>6.0.1</td>
<td>For Apple IIGS only</td>
</tr>
<tr>
<td>Apple IIe Card Software</td>
<td>2.2.1</td>
<td>For Macintosh computers using IIe card.</td>
</tr>
<tr>
<td>Aristotle</td>
<td>xxx</td>
<td>For Apple II</td>
</tr>
<tr>
<td>HyperMover</td>
<td>1.1</td>
<td>HyperCard IIGS</td>
</tr>
</tbody>
</table>

Support Information Services
Copyright 1994, Apple Computer, Inc.
Keywords: ktable,ksts,kcompat
Description: Apple II System Disk 3.0: Requires MouseText, 128K Memory
Header: Apple II System Disk 3.0: Requires MouseText, 128K Memory

This article last reviewed: 20 January 1989

Here are some questions and answers about Apple II System Disk 3.0 for the Apple IIe and Apple IIc:

Q) Will this disk operate on an unenhanced Apple IIe?

A) System Disk v3.0 uses an AppleWorks-style interface, and this requires the availability of MouseText characters, which do NOT exist in an unenhanced Apple IIe. The program may also use some of the additional 27 instructions available only in the 65C02 CPU.

Q) What is the latest version of System software that will operate with an unenhanced Apple IIe?

A) System Utilities Version v2.1.1 will work on an unenhanced Apple IIe, but even that requires some MouseText characters, and will show an abnormal display -- for example, Upper Case Inverse Capital S characters instead of straight horizontal lines.

However, the program runs properly in spite of this display anomaly. System Utilities v2.1 does not use MouseText characters and should function normally on an unenhanced Apple IIe.

Q) How much memory does the System Disk v3.0 require to operate?

A) When booted on a 64K enhanced Apple IIe, the program gives an error message stating it requires 80-column text, and this indicates it requires 128K of memory.

Copyright 1989 Apple Computer, Inc.

Keywords:
This article describes what to do, so that Inter*Poll can identify an Apple IIe or Apple IIGS connected to a network. There are some very specific criteria that must be met:

- The Apple IIGS must have Built-in AppleTalk selected in the Control Panel.
- The Apple IIGS must have the proper port set to "Your Card".
- An Apple IIe with the Workstation Card must be past the Password screen.

The steps for each computer are given below.

**Apple IIGS**

For an Apple IIGS to appear in the "Device List" window of Inter*Poll, these steps must be followed:

1) Select "Built-in AppleTalk" from the Control Panel. At the same time, set the port that the network is connected to, generally the Printer port, to "Your Card".

2) Shut down and restart the system.

3) Run Inter*Poll on the Macintosh, or have it running and checking the network.

The Apple IIGS should show up in the Device List window.

Note: Responder is built into the AppleTalk portion of the software for the Apple IIGS.

**Apple IIe**

1) Install the Apple II Workstation Card in slot 7 of the Apple IIe and connect the LocalTalk port to the network.

2) Start up the system and log on to a ProDOS server on the network.

Once the system goes past the Password screen, the device shows up in the Device List window of Inter*Poll.

To see if there was something unique about this setup procedure, we considered the Macintosh in a similar environment. If the system is powered up, but no software is loaded (that is, the Macintosh screen shows the disk with a flashing question mark in the middle of the disk), the system is not identifiable from Inter*Poll. At this point, there is no AppleTalk software to respond to the Inter*Poll request. The same is true for an Apple II.

Copyright 1989 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL077.TXT
The Apple II Video Overlay card can receive video signals from any number of sources: VCR, Video camera, Video disc player, even cable television. Because there are numerous connectors associated with these video sources, it is necessary to clarify the connection schemes as they relate to the Apple II Video Overlay Card.

DISCUSSION

Connection Schemes

RGB Connections
---------------
Any RGB monitor must be connected to the DB-15 connector on the card. The AppleColor RGB Monitor connects directly with the DB-15 cable that ships with the monitor.

If you are using another RGB monitor, you must build the correct cable. The Apple II Video Overlay Card DB-15 connector has the same pinout as the AppleColor RGB Monitor. For more information on this reference Tech Info Library article "AppleColor RGB Monitor input connector: Pinouts". It is a simple matter to construct the rest of the cable, using the pinout supplied with the third-party monitor.

External Video Source Connections
---------------------------------
To connect external video sources to the Apple II Video Overlay Card, at least one end of the cable must have an RCA phono plug. This end will connect to the overlay card. Normally, consumer electronics video sources will have an RCA connector for direct video output. To ensure top quality video reproduction, use gold-plated RCA connectors.

BNC-Style Connections
---------------------
It is normal for some high-end professional video equipment to have BNC-style connectors for the video output. If this is the case, an adapter must be used to convert the BNC connector to RCA phono type for connection to the card. These are readily available at most electronics stores.

RF Connections (also known as an "F" connector)
-----------------------------------------------
If your video equipment uses an RF cable (also known as an "F" connector), it cannot be directly connected to the Apple II Video Overlay Card. You must connect this cable to a VCR first, then connect the VCR to the overlay card, using an RCA phono type cable.

S-VHS Information
------------------
It is not possible to feed an S-VHS (Super VHS) signal into the overlay card. If your S-VHS equipment has RCA phono jacks, cables can be connected from...
these jacks to the card, but the overlays resulting from this connection will have the resolution of standard VHS, not S-VHS.

Article Change History:
15 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1988-96, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL078.TXT
Description: Apple II Video Overlay Card: Configurations (11/96)
Header: Apple II Video Overlay Card: Configurations (11/96)

Article Created: 03 April 89
Article Reviewed/Updated: 18 November 1996

TOPIC -----------------------------------------------------------

Listed below are several possible configurations using the Video Overlay Card.

DISCUSSION ------------------------------------------------------

Depending on how sophisticated a user wishes to be, and what the user wishes to accomplish, there are numerous possibilities for connecting monitors and other video equipment, to the Apple II Video Overlay Card. A setup could be as simple as a VCR, an Apple IIGS, and a single monitor; or as complicated as a videodisc player with a composite monitor, an Apple IIGS with RGB and a composite monitor, and a VCR with a composite monitor.

Typical Configuration
---------------------

A typical configuration might be a VCR or video camera, for a video source, an Apple IIe (or Apple IIGS) with the Overlay card and VideoMix software installed, and a RGB monitor. This configuration would allow creation of overlays for direct viewing only. The addition of a second VCR would permit recording of the overlays created. If a composite monitor were connected to the output of the Overlay Card, the picture displayed there would be representative of what is being recorded on the VCR.

High-end Configuration
----------------------

A high-end configuration might include the connection of an interactive video source, which would then display selected video sequences, as directed by the computer, while the program would automatically provide the proper window for the resulting video input. This setup would require the connection of the device control cable from the external device to the serial port on the computer.

Article Change History:
18 Nov 1996 – Reviewed for technical accuracy, revised formatting.
Copyright 1989-96, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL079.TXT
This article describes the Apple II Video Overlay Card. This card has been discontinued and is no longer available from Apple.

Overview
--------

The Apple II Video Overlay Card offers Apple II computer owners a wealth of possibilities for learning and creativity by merging video and computing. The Apple II Video Overlay Card lets you superimpose Apple II screen images on video from a variety of sources: VCR, video disc, video camera, or television. It also allows you to display the combined images of an RGB or composite monitor and to record them on a VCR.

You start by using the Apple II application of your choice to create your own text, graphics, or animations. Then with VideoMix, the software included with the card, you control where these overlays appear and blend them with the video to achieve the effects you want.

With the Apple II Video Overlay Card and an Apple IIGS or IIe computer, you can add your own captions and notes to educational videos. You can also create your own video productions and interactive applications for use at home or in school.

System Requirements
-------------------

To use the Apple II Video Overlay Card, you will need one of the following systems:

- an Apple IIGS personal computer with at least 512K of RAM, ROM version 01 or 03, and at least one 800K 3.5-inch disk drive; and a VCR, videodisc player, or video camera

- an Apple IIe personal computer with 128K of RAM and an enhanced main logic board (revision B); and a VCR, videodisc player, or video camera

To display your videos, you can use the Apple IIGS or IIe computer with either the AppleColor RGB Monitor or the AppleColor Composite Monitor. The AppleColor RGB Monitor comes with the required DB-15 connector. The AppleColor Composite Monitor comes with the required RCA cable.

Technical Specifications
------------------------


- Environmental requirements
  Operating temperature: 50 to 104 degrees F (10 C to 40 degrees C)
  Storage temperature: -40 to 116.6 F (~40 to 47 degrees C)
  Relative humidity: 20% to 95% (noncondensing)
Altitude: 0 to 10,000 ft. (0 to 3,048 m)

Article Change History:
18 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-96, Apple Computer, Inc.
Keywords: specsht

### END OF FILE A2TIL080.TXT
This article discusses the features of the Apple II Video Overlay Card.

### DISCUSSION

**Genlock circuitry**

- Synchronizes the Apple II timing to external video timing.
- Allows a user to superimpose Apple II graphics on top of an external video signal for titling or annotating video material.

**RGB and Composite Outputs**

Allows a user to simultaneously view overlays on an AppleColor Composite or RGB monitor while recording the overlay to a VCR.

**Apple IIGS Graphics Chip Set**

- Allows the video overlay card to display standard graphics when not producing overlays.
- Improves composite video output by re-generating the video output signal from the computer.
- Broadcast-quality video output.
- Allows a user to use the overlay card in a professional broadcast environment (no degradation of video quality when passed through the overlay card).

**VideoMix Software**

- Software control of the overlay card's functions.
- Choice of key color (color which is transparent to the video signal), set the video/graphic mix, and adjust the color/tint of the RGB video.
- Apple IIe and Apple IIGS compatibility
- Use of the overlay card with existing hardware and the extensive library of Apple II software.

**Article Change History:**

18 Nov 1996 - Reviewed for technical accuracy, revised formatting.

Copyright 1989-06, Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL081.TXT
Below is a description of the Apple II Video Overlay Card. This product has been discontinued and is no longer available from Apple.

DISCUSSION

The Apple II Video Overlay Card product, for the Apple IIe and Apple IIGS, includes an interface card and VideoMix software.

When in operation, the overlay appears as a computer image on top of a video image. The video image can be from any external video source: video tape, video disc, cable television, or video camera and the image can be shown on either a composite or RGB monitor. The NTSC signal output from the overlay card is of broadcast quality and can be recorded on a VCR.

The Apple II Video Overlay Card brings previously expensive genlock capabilities to the Apple II family of computers, and creates new possibilities for learning and creativity.

The overlay card has a complete, though modified, Apple IIGS graphics subsystem (Mega II, VGC, and supporting circuitry), which provides genlock and overlay capabilities, as well as improved composite video output. With a proper NTSC signal presented to the card, an FCC-legal output is supplied from the card, therefore the card is usable in professional broadcast environments.

After genlocking to the incoming signal, the overlay card determines which pixels will be video and which will be graphics, or if there will be combinations. These combinations are selected by way of the VideoMix software, which sets up the card for the desired mix of graphics and video. The user chooses a key color (the color that is transparent to the incoming video and is treated separately from the other colors), and what the video/graphic mix will be. VideoMix also allows the user to adjust the tint and color of the RGB video, as on a color television. The user can also choose a color from the screen to be the key color.

Because the overlay card is a completely independent subsystem, it functions with any existing Apple II painting, drawing, and animation software -- these being the more relevant products conducive to creating overlays. The overlay card works with virtually all Apple II software.

Article Change History:
18 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1988-96, Apple Computer, Inc.
Keywords: specsht
Here are some helpful tips and hints for using the Apple II Video Overlay card.

As you plan your video presentation, think about how the overlay will enhance your presentation. Do you want to include:

- Opening title and closing credits?
- Highlight information presented in the video?
- Dazzle the audience with special effects?

Planning For Computer Graphics

Try to determine where the computer graphics would be useful only where appropriate. You may find yourself overusing computer graphics. Consider whether you should highlight your video with computer graphics, narration, or a combination. Your overlays will be more effective if you use them judiciously.

Decide on a workable design for your graphics, and use it consistently throughout your presentation. For example, always use the same font for the text, the same colors for the graphic elements, such as line and boxes, and the same kind of special effects. Consistent use of computer graphics will make your presentation seem more unified and easier to follow.

Use high-quality video equipment and software that allows high resolution graphics. Clean the heads on your VCR if you haven’t cleaned them lately. The better the video equipment and computer images, the better your overlays will look.

When shooting a video for an overlay, try to anticipate where your graphics will fit into the shot and leave enough space for them. For example, if you plan to superimpose someone’s name below a close-up of their face, leave enough room in the lower third of the screen. Treat the graphics as an integral part of the composition, not as an afterthought.

Designing For The Screen

Keep it simple, don’t try to cram too much into a single overlay. If your video has lots of motion, use simple graphics. If your graphics are complex, consider using a still scene for the video portion.

Limit the information in each overlay to one or two points. Presenting too many facts in one overlay will not help the viewers remember them. Television viewers may not be able to flip back to review something they missed.

Use readable fonts for text. Bold, simple fonts seem crisp and are easily read on the screen. The color of your text should contrast with the video colors. If you plan to record the overlay, make the text at least 16 point.
Special Considerations for Composite Video

Avoid using computer graphics that are extremely bright. If the colors in your graphics are too intense, especially if they are hot colors such as bright red, the graphics may appear to vibrate along the edges. You can correct the problem by using a less intense color, like off-white instead of white. You can also reduce the intensity of a color by allowing some of the video image to blend in, using VideoMix.

If you are recording your overlays, view them on a composite monitor or a television.

Colors displayed on an RGB monitor are more stable than colors displayed on a composite monitor as they are less likely to shimmer or bleed into another color. If you are recording your overlays on tape, a composite monitor or a television will show you a better representation of the overlay's appearance during playback. By viewing your overlays this way, without an RGB monitor, you will be better able to see, and correct, problems before they are recorded on the videotape.

Article Change History:
18 Nov 1996 — Reviewed for technical accuracy, revised formatting.
Copyright 1989–96, Apple Computer, Inc.
Keywords:
This article discusses how to use the Key Color selection of the Video Overlay Card.

Creating an overlay with the Apple II Video Overlay Card requires selection of a control color, called Key Color.

The VideoMix software treats the Key Color differently from the other colors. All colors not designated as the Key Color are treated as a group and are called non-Key colors.

For example, if the Key Color is Black, the video input signal will show through only where black is displayed on the screen. Where any other color is shown, the video will not show through and those areas will be showing the computer generated graphic. This would be the display, assuming VideoMix is set for 100% Key and 0% non-Key. By moving the sliders within VideoMix, these proportions can be changed to suit the user.

There are two methods for selecting the Key Color, select from Screen, and select from the color palette.

Selecting from the color palette allows selection of the Key Color from a palette of sixteen different colors. Use the mouse (Apple IIGS), or the arrow keys (Apple IIe), to select a color rectangle from the palette.

The other method is to use the option Select From Screen. An "X" appears in the box, and a hand with a pointing finger replaces the arrow cursor on the screen. With the hand cursor in the computer graphics area of the screen, click on the color of your choice. This becomes the Key Color.

Apple IIGS Note

The Apple IIGS can display graphics in one of two modes: 320 mode or 640 mode. In 320 mode, the computer can display sixteen pure colors. In 640 mode, it can display only two true colors: black and white. All other colors are blended colors formed by a process known as dithering. Dithered colors are formed by displaying two colors in adjacent pixels. Because the pixels are so small and close together, your eye perceives them as a single color. Light blue, for example, is formed by adjacent blue and white pixels. When a dithered color is picked, the Key Color is the color of the pixel you happened to click on. If you picked the light blue color, the key color could be either blue or white.

Using dithered colors for your Key Color can produce some interesting, and sometimes unexpected, translucence effects in your overlay. These effects, while attractive, may not be completely reproducible. To avoid this, it would be better to have your computer in 320 mode when making overlays. If you wish to use 640 mode, it is best to use black or white as your Key Color.
18 Nov 1996 – Reviewed for technical accuracy, revised formatting.
Copyright 1989-96, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL084.TXT
Here's how to transfer Apple II VisiCalc files to an MS-DOS format:

1. Save the Apple II VisiCalc file to disk in the DIF format.
2. Transfer the file, via terminal software, to the MS-DOS system.
3. Save the file.

The file can now be read into any of the MS-DOS spreadsheet applications that support a DIF format — Lotus 1-2-3, for example.
This article describes the Apple II Workstation Card. This product has been discontinued and is no longer available from Apple.

The Apple II Workstation Card connects the Apple IIe computer to an AppleTalk network using the LocalTalk Cabling System. This card includes a built-in Super Serial port for direct connection to serial devices such as ImageWriter printers. This card is ideally suited to educational environments where users want to share printers and reduce the amount of time spent handling disks.

The Apple II Workstation Card, together with the AppleShare IIe Workstation software included with it, gives users of enhanced Apple IIe computers access to AppleShare file servers, network printers (such as LaserWriter and ImageWriters), and to AppleShare print servers. Also, in conjunction with an AppleShare file server connected to an AppleTalk network, allows Apple IIe users to start up from the file server without using local disk drives.

Apple IIe users can print to network printers and share information stored on AppleShare file servers. At the same time, other Apple II, Macintosh, and MS-DOS users can access folders, documents, applications, and shared storage. Using an AppleShare file server or network printer is as easy as using a local ProDOS disk or serial printer.

System and Network Requirements
-------------------------------
An enhanced Apple IIe computer with 128K RAM, monitor, LocalTalk cabling and Apple II Workstation Card installed.

An Apple IIIGS system (in which the function of the Apple II Workstation Card is built-in).

If the network doesn't include an AppleShare file server, each workstation requires a 3.5-inch disk drive.

To initially load workstation software onto an AppleShare file server, a 3.5-inch disk drive is required at one of the workstations.

Recommended Equipment
---------------------
The following are recommended, but not required.

One or more AppleShare file servers (for diskless startup and file server access).
One or more LaserWriter, ImageWriter II, or ImageWriter LQ printers.

Technical Specifications
------------------------
Processor: 65C02, two-megahertz clock speed
Memory: 16K RAM, 64K ROM

Two 8-pin minicircular (RS-422) ports:
- one LocalTalk port
- one Super Serial port

Article Change History:
18 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-96, Apple Computer, Inc.
Keywords: specsht

### END OF FILE A2TIL086.TXT
TOPIC

When attempting to print from Magic Slate v2.0 using an Apple IIe and a Workstation Card connected to an ImageWriter II, using AppleTalk, we get the message "includeProcSet IWEm 1 1" on the printout. Is there a fix for this problem?

DISCUSSION

Magic Slate thinks it is talking to a LaserWriter instead of an ImageWriter II. Because the Apple II Workstation card emulates a Super Serial Card, you should select that interface in the Magic Slate program.

Also, on an Apple IIe, you always have to run Chooser.II before you run an application and without powering off the computer, see below.

1) Launch your Apple II workstation disk.

2) Choose your printer.

3) Quit Chooser.II, but DO NOT power off.

4) Launch Magic Slate by ProDOS pathname. For example, -/volumename/application name.

5) Configure Magic Slate to print to an ImageWriter at the slot that contains the workstation card.

If this doesn't work, perhaps Magic Slate is not flexible in the slot location or is clearing the Chooser.II info on launch.

Article Change History:
18 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-96, Apple Computer, Inc.
Keywords:
This article discusses the Apple II Workstation card and Apple IIGS support.

The Apple II Workstation Cards is not supported in the Apple IIGS because of the following reasons.

* When the Apple II Workstation Card is installed, only ProDOS 8 applications can run. The Workstation Card tells the server that it is an Apple IIe. Therefore, it will not work in a ProDOS 16 network environment. Typically, this means only the first 64K of memory will be used.

* The Workstation Card is not fully tested in this configuration and it is not supported by Apple.

Article Change History:
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.

Copyright 1989-97, Apple Computer, Inc.

Keywords:
If you want to run Apple II Workstation Cards on a network, and also want to have some workstations' printers directly connected to the serial port on the Workstation card, try the following solution:

Install the card in slot 7 on the Apple II.

Run the new Chooser II (ver. 1.2.1) software. When the Apple II WorkStation Card is installed, a new option window appears in the lower righthand corner that allows the output to be directed to either the serial port or the AppleTalk port on the card. Once the serial port is selected, everything should work perfectly.

Copyright 1989 Apple Computer, Inc.

Keywords:
This article describes the Apple II Workstation Card.

DISCUSSION

The Apple II Workstation Card provides an AppleTalk interface for the enhanced Apple IIe computer. It makes the Apple IIe an AppleTalk node on a LocalTalk network.

Hardware

The card has its own 65C02 processor, ROM, RAM, and a custom PAL chip. The card attaches to a connector module housing two Mini-8 serial ports. One of these ports supports AppleTalk, the other emulates a Super Serial Card.

The card can be installed in any Apple IIe slot except for slot 3 (the additional 64K of RAM on the Extended 80-Column card is assigned to slot 3, making it unavailable). Slot 7 is the usual choice for the Workstation Card.

The red and green LEDs indicate only that the card has passed an internal diagnostic, and do not indicate that the network interface is active.

The upper Mini-8 connector (PORT A) supports either the AppleTalk interface or a Super Serial interface. The lower Mini-8 connector (PORT B) supports only the serial interface.

Software

The Apple IIe Workstation Card contains AppleTalk code in ROM, code to allow printing over the network, printing at the workstation, and starting up over the network. The Apple IIe Workstation Card can start up either from a local disk, or remotely over the network from a startup server running on a file server.

Local Startup

When the workstation starts up from a local device, the card makes itself look like a Super Serial Card, with special ID bytes to indicate that it is actually an Apple II Workstation Card.

Network Startup

The card emulates a Disk II drive on power up to enable network startup, and, if in the highest number slot (normal practice) downloads the operating system from a network startup server, if available.

In addition, either of these other two methods can be used to start up over a network:

- Use the PR# command specifying the card’s slot and hold down the Open Apple key while pressing Return. (Issuing the PR# command and pressing Return without pressing the Open Apple key causes printing to take place.)

- Using a BOOT call also causes the startup process to take place.
Printing Over the Network
-----------------------------------
The printing task begins when you issue a PR# command from the workstation. The application program sends print data out through the SSC entry points as defined by the PR# command. The card captures the stream of characters to be printed, because it appears to be a normal Super Serial Card in a slot and sends it to the selected printer or spooler.

Only ProDOS applications are supported on the network using the card. An important feature of the card is that it does not require the use of main memory, because most applications use all or almost all of Apple IIe memory (including "reserved" areas).

Article Change History:
28 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1988-97, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL090.TXT
This article provides technical specifications for the Apple II Workstation Card. This card has been discontinued by Apple.

**DISCUSSION**

**Processor**

6501; 2 MHz clock speed

**Memory**

16K RAM
64K ROM

**Ports**

Two 8-pin, mini-circular, RS-422 ports:
* One LocalTalk port
* One Super Serial port

**Article Change History:**
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.

Copyright 1991-97, Apple Computer, Inc.
Keywords: specsht

### END OF FILE A2TIL091.TXT
This article discusses the ways in which the Apple II Workstation Card understands zones and network IDs. Some of the discussion refers to the following setup diagram:

Setup:

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>LocalTalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Macintosh II server</td>
<td>LaserWriter</td>
</tr>
<tr>
<td>w/Apple II start</td>
<td>Apple II</td>
</tr>
<tr>
<td>blocks</td>
<td>Macintosh SE</td>
</tr>
<tr>
<td>zone: zone1</td>
<td>zone: zone1</td>
</tr>
<tr>
<td>net #: 1</td>
<td>net #: 2</td>
</tr>
</tbody>
</table>

The only zone-related limitation concerns starting an Apple II diskless workstation. The ProDOS-prepared AppleShare server must be within the same zone as the diskless workstation. Once the Apple II has started over the network, the Workstation Card and the Apple IIGS are fully aware of zones and network IDs. This means that, once started, the Apple II can log on any ProDOS-prepared, AppleShare file server in any zone available on the Internet. The number of bridges or zones does not affect the access to another server.

When the Apple II broadcasts an AppleTalk Transaction Protocol (ATP) request, this ATP request is sent across the entire zone in search of a file server with boot blocks. In the given example, both 'net#1' and 'net#2' are in the same zone, "zone1". The FastPath passes zone broadcasts from either "net#1" or "net#2" to the other.

Once startup is completed, the AppleShare II Workstation software is executed. From this application, the user can choose the appropriate zone and log on to the desired ProDOS-prepared server. At this time, Name Binding Protocol (NBP) translates the names into the associated Internet socket addresses of the corresponding network entities. In this case, the Apple II workstation name is translated to an address, and the server name is translated to an address. These addresses notate network IDs, zone IDs, bridge IDs, and network entity IDs.

When a workstation is instructed to print, it looks for the chosen printer with the address provided by NBP. The address specifies the location of the printer. Because the printer is on "net#2" (the same network as the Macintosh SE), the FastPath determines that the address belongs on "net#2". The FastPath does not accept the traffic, because the address is local to "net#2". However, when the Apple II requests service from the server, the FastPath recognizes the address as one that belongs to "net#1". In this case, the FastPath forwards the traffic to "net#1".
condition, the FastPath lets the request travel over the bridge to the server.

Typically, routing is handled at the fourth OSI layer, the transport layer of AppleTalk. Manufacturers working with AppleTalk use the transport layer to handle routing. Manufacturers working with other protocols may handle routing at a higher layer in the OSI model.

Article Change History:
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1989–97, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL092.TXT
Description: Apple II+ Mini-Assembler (1 of 4)
Header: Apple II+ Mini-Assembler (1 of 4)

This article last reviewed: 21 September 1984

The attached listing is a relocated version of the mini-assembler for the Apple II+ with instructions for the Apple II version. This version can be BRUN from the disk or BLOADed and start with CALL 2048 from Applesoft. To restart use CALL 2051. From machine language the start is 800G and the restart is 803G. Users who have Integer Basic available need only enter that language and use the instructions in part one of this note.

Please note that the mini-assembler performs a NEW command, so it will wipe out any resident Applesoft program. Also note that the mini-assembler loads from $800 to $947. Don't try to assemble anything into those locations.

This note covers the operation of the mini-assembler only. It is not a course in assembly language programming. For a reference on programming the 6502 microprocessor, refer to the Synertek Programming manual or any of the tutorials available. This note assumes the user has a working knowledge of 6502 programming and mnemonics.

The mini-assembler is a programming aid aimed at reducing the amount of time required to convert a handwritten program to object code. The mini-assembler is basically a look-up table for opcodes. With it, you can type mnemonics with their absolute addresses, and the assembler will convert it to the correct object code and store it in memory.

Typing "F666G" puts the user in mini-assembler mode. While in this mode, any line typed in will be interpreted as an assembly language instruction, assembled, and stored in binary form unless the first character on the command line is a "$".

If the first character of a command line is a "$", the remainder of the line will be interpreted as a normal monitor command, executed, and control returned to the mini-assembler. To get out of the mini-assembler, press RESET.

If the first character on the line is blank, the assembled instruction will be stored starting at the address immediately following the previously assembled instruction. If the first character is not a blank nor a "$", the line is assumed to contain an assembly language instruction preceded by the instruction address (a hex number followed by a ":"). In either case, the instruction will be retyped over the line just entered in disassembler format to provide a visual check of what has been assembled.

The counter that keeps track of where the next instruction will be stored is the pseudo PC (Program Counter) and it can be changed by many monitor commands (eg. 'L', 'T', . . . ). Therefore, it is advisable to use the explicit instruction address mode after every monitor command and, of course, when the mini-assembler is first entered.

Errors (unrecognized mnemonic, illegal format, etc.) are signalled by a "beep" and a caret ("^") will be printed beneath the last character read from the input line by the mini-assembler.

Keywords:
### END OF FILE A2TIL093.TXT
Description: Apple II+ Mini-Assembler (2 of 4)
Header: Apple II+ Mini-Assembler (2 of 4)

This article last reviewed: 21 September 1984

The mnemonics and formats accepted by the mini assembler are the same as those listed by the 6502 Programmers Manual, with the following exceptions and differences:

1. All imbedded blanks are ignored, except inside addresses.

2. All addresses typed in are assumed to be in hex (rather than decimal or symbolic). A preceding "$" (indicating hex rather than decimal or symbolic) is therefore optional, except that it should not precede the instruction address).

3. Instructions that operate on the accumulator have a blank operand field instead of "A".

4. When entering a branch instruction, the argument of the branch mnemonic should be the address of the target of the branch. If the destination address is not known at the time the instruction is entered, simply enter an address that is in the neighborhood, and later re-enter the branch instruction with the correct target address. NOTE: If a branch target is specified that is out of range, the mini-assembler will flag the address as being in error.

5. The operand field of an instruction can only be followed by a comment field, which starts with a semicolon (";"). Obviously, the mini-assembler ignores the field and in fact will type over it when the line is typed over in disassembler format.

6. Any page zero references will generate page zero instruction formats if such a mode exists. There is no way to force a page zero address to be two bytes, even if the address has leading zeroes.

In general, to specify an addressing type, simply enter it as it would be listed in the disassembly. For information on the disassembler, see page 49 of the Apple II Reference Manual.

0000:                             ******************
0000:                             *                        *
0000:                             *       APPLE II         *
0000:                             *   MINI-ASSEMBLER       *
0000:                             *                        *
0000:                             ******************
002E:           FORMAT  EQU     $2E
002F:           LENGTH  EQU     $2F
0031:           MODE    EQU     $31
0033:           PROMPT  EQU     $33
0034:           YSAV    EQU     $34
0035:           L       EQU     $35
003A:           PCL     EQU     $3A
003B:           PLH     EQU     $3B
003D:           A1H     EQU     $3D
003E:           A2L     EQU     $3E
003F:           A2H     EQU     $3F
0042:           A4L     EQU     $42
### APPLE II COMPUTER TECHNICAL INFORMATION

<table>
<thead>
<tr>
<th>Offset</th>
<th>Symbol</th>
<th>EQU</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0043:</td>
<td>A4H</td>
<td>EQU</td>
<td>$43</td>
</tr>
<tr>
<td>0044:</td>
<td>FMT</td>
<td>EQU</td>
<td>$44</td>
</tr>
<tr>
<td>0200:</td>
<td>IN</td>
<td>EQU</td>
<td>$200</td>
</tr>
<tr>
<td>D64B:</td>
<td>NEW</td>
<td>EQU</td>
<td>$D64B</td>
</tr>
<tr>
<td>F88E:</td>
<td>INSDS2</td>
<td>EQU</td>
<td>$F88E</td>
</tr>
<tr>
<td>F8D0:</td>
<td>INSTDSP</td>
<td>EQU</td>
<td>$F8D0</td>
</tr>
<tr>
<td>F94A:</td>
<td>PRBL2</td>
<td>EQU</td>
<td>$F94A</td>
</tr>
<tr>
<td>F953:</td>
<td>PCADJ</td>
<td>EQU</td>
<td>$F953</td>
</tr>
<tr>
<td>F9B4:</td>
<td>CHAR1</td>
<td>EQU</td>
<td>$F9B4</td>
</tr>
<tr>
<td>F9BA:</td>
<td>CHAR2</td>
<td>EQU</td>
<td>$F9BA</td>
</tr>
<tr>
<td>F9C0:</td>
<td>MNEML</td>
<td>EQU</td>
<td>$F9C0</td>
</tr>
<tr>
<td>FA00:</td>
<td>MNEMR</td>
<td>EQU</td>
<td>$FA00</td>
</tr>
<tr>
<td>FC1A:</td>
<td>CURSUP</td>
<td>EQU</td>
<td>$FC1A</td>
</tr>
<tr>
<td>FD67:</td>
<td>GETLNZ</td>
<td>EQU</td>
<td>$FD67</td>
</tr>
<tr>
<td>FDED:</td>
<td>COUT</td>
<td>EQU</td>
<td>$FDED</td>
</tr>
<tr>
<td>FE00:</td>
<td>BL1</td>
<td>EQU</td>
<td>$FE00</td>
</tr>
<tr>
<td>FE78:</td>
<td>A1PCLP</td>
<td>EQU</td>
<td>$FE78</td>
</tr>
<tr>
<td>FF3A:</td>
<td>BELL</td>
<td>EQU</td>
<td>$FF3A</td>
</tr>
<tr>
<td>FFA7:</td>
<td>GETNUM</td>
<td>EQU</td>
<td>$FFA7</td>
</tr>
<tr>
<td>FFBE:</td>
<td>TOSUB</td>
<td>EQU</td>
<td>$FFBE</td>
</tr>
<tr>
<td>FFC7:</td>
<td>ZMODE</td>
<td>EQU</td>
<td>$FFC7</td>
</tr>
<tr>
<td>FFC8:</td>
<td>CHRTBL</td>
<td>EQU</td>
<td>$FFCC</td>
</tr>
</tbody>
</table>

Keywords:

### END OF FILE A2TIL094.TXT
APPLE II COMPUTER TECHNICAL INFORMATION

### FILE: A2TIL095.TXT

Description: Apple II+ Mini-Assembler (3 of 4)
Header: Apple II+ Mini-Assembler (3 of 4)

This article last reviewed: 21 September 1984

```
0800: ORG $800
0800: 20 4B D6 JSR NEW ;SCRATCH ANY BASIC PROGRAM
0803: A9 00 LDA #$00
0805: 8D 00 08 STA #$0800
0808: 4C 9D 08 JMP RESETZ ;BRANCH MINI/ASSEM'S START
080B: E9 81 REL SBC #$81 ;IS FMT COMPATIBLE
080D: 4A LSR A ;WITH RELATIVE MODE?
0810: A6 3E LDX A2L ;DOUBLE DECrement
0812: E9 81 SBC #$81
0814: DO 14 BNE ERR3 ;NO.
0816: A4 3F LDY A2H
0818: A6 3E LDX A2L
081A: 88 DEY
081B: CA REL2 DEX
081C: A4 3F FINDOP LDY LENGTH
081E: B9 3D 00 FNDOP2 LDA A1H,Y ;MOVE INST TO (PC)
0820: 91 3A STA (PCL),Y
0822: 88 DEY
0823: 10 F8 BPL FNDOP2
0825: 20 1A FC JSR CURSUP ;RESTORE CURSOR
0828: 20 53 F9 JSR PCADJ ;UPDATE PC
082B: 84 3B STY PCH
082D: A0 17 LDY #$17 ;INIT DELIM INDEX
082F: 88 FKMON2 DEY ;CHECK NEXT DELIM
0831: 30 4B BMI RESETZ ;ERR IF UNRECOGNIZED DELIM
0833: D9 CC FF CMP CHRtbl,Y ;COMPARE WITH DELIM TABLE
0836: D0 F8 BNE FKMON2 ;NO MATCH
0839: CO 15 CPY #$15 ;MATCH, IS IT CR?
083B: D0 E8 BNE FKMON3 ;NO HANDLE IT IN MONITOR
083D: A5 31 LDA MODE
083F: A0 00 LDY #$00
0841: C6 34 DEC YSAV
0843: 20 00 FE JSR BL1 ;HANDLE CR OUTSIDE MONITOR
0846: 4C A0 08 JMP NXTLINE
0849: * *
084B: 20 A7 FF JSR GETNUM ;READ PARAM
084D: A0 00 LDY #$00
084F: 88 FKMON2 DEY ;CHECK NEXT DELIM
0851: 30 4B BMI RESETZ ;ERR IF UNRECOGNIZED DELIM
0853: D9 CC FF CMP CHRtbl,Y ;COMPARE WITH DELIM TABLE
0856: D0 F8 BNE FKMON2 ;NO MATCH
0859: CO 15 CPY #$15 ;MATCH, IS IT CR?
085B: D0 E8 BNE FKMON3 ;NO HANDLE IT IN MONITOR
085D: A5 31 LDA MODE
085F: A0 00 LDY #$00
0861: C6 34 DEC YSAV
0863: 20 00 FE JSR BL1 ;HANDLE CR OUTSIDE MONITOR
0866: 4C A0 08 JMP NXTLINE
0869: * *
```

Apple II Computer Family Articles -- Apple Technical Info Library (TIL)
March 1997 -- Page 145 of 649
086D: BD 00 FA  LDA MNEMR, X  ;GET LOWER MNEMONIC BYTE
0870: C5 42   CMP A4L   ;MATCH?
0872: D0 13   BNE NEXTOP ;NO, TRY NEXT OPCODE
0874: BD C0 F9 LDA MNEML, X  ;GET UPPER MNEMONIC BYTE
0877: C5 43   CMP A4H   ;MATCH?
0879: D0 0C   BNE NEXTOP ;NO, TRY NEXT OPCODE
087B: A5 44   LDA FMT
087D: C0 2E   LDY FORMAT  ;GET TRIAL FORMAT
087F: C5 2E   CMP FORMAT  ;SAME FORMAT?
0881: FO 88   BEQ REL   ;YES
0883: C5 2E   CMP FORMAT  ;SAME FORMAT?
0885: FO 9F   BEQ FINDOP ;YES
0887: C6 3D   NEXTOP DEC A1H ;NO, TRY NEXT OPCODE
0889: DO DC   BNE TRYNEXT
088B: E6 44   INC FMT  ;NO MORE, TRY WITH LEN=2
088D: C6 35   DEC L  ;WAS L=2 ALREADY?
088F: FO D6   BEQ TRYNEXT ;NO
0891: A4 34   ERR LDY YSAV  ;YES, UNRECOGNIZED INST.
0893: 98     ERR2 TIA
0894: AA     TAX
0895: 20 4A F9 JSR PRL2  ;PRINT ^ UNDER LAST READ
0898: A9 DE   LDA #$DE  ;CHAR TO INDICATE ERROR
089A: 20 ED FD JSR COUT  ;POSITION
089D: 20 EA FF RESETZ JSR BELL
08A0: A9 A1   NXTLINE LDA #$A1  ; '!
08A2: 85 33   STA PROMPT ;INITIALIZE PROMPT
08A4: 20 67 FD JSR GETLNZ ;GET LINE
08A7: 20 C7 FF JSR ZMODE ;INIT SCREEN STUFF

Keywords:

### END OF FILE A2TIL095.TXT
Description: Apple II+ Mini-Assembler (4 of 4)

Header: Apple II+ Mini-Assembler (4 of 4)

This article last reviewed: 21 September 1984

08AA: AD 00 02          LDA IN       ;GET CHAR
08AD: C9 AO             CMP #$AO     ;ASCII SPACE?
08AF: FO 13             BEQ SPACE    ;YES
08B1: C8                INY
08B2: C9 A4             CMP #$A4     ;ASCII '"' IN COL 1?
08B4: FO 92             BEQ FKMON    ;YES,SIMULATE MONITOR
08B6: 88                DEY          ;NO, BACKUP A CHAR
08B7: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
08BA: C9 93             CMP #$93     ;':' TERMINATOR?
08BC: 88                DEY          ;NO, ERR
08BD: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
08C4: A9 03             SPACE       LDA #$03     ;COUNT OF CHAR IN MNEMONIC
08C6: 8A                TXA
08C7: 8A                TXA
08C8: 8A                TXA
08C9: 8A                TXA
08CA: FO F4             BEQ NXTMN    ;YES BUT DO 1 MORE SHIFT
08CB: A2 04             LDX #$04     ;4-CHAR ADDRESSING MODE
08CE: FF 09             BEQ ERR2     ;NO ADDR PRECEDING COLON
08D0: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
08D3: FF 03             BEQ ERR2     ;NO, ERR
08D4: A2 04             LDX #$04     ;5-CHAR ADDRESSING MODE
08D8: C9 93             CMP #$93     ;':' TERMINATOR?
08DA: 89                DEY          ;NO, BACKUP A CHAR
08DB: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
08E0: FO 92             BEQ ERR2     ;NO ADDR PRECEDING COLON
08E3: C9 93             CMP #$93     ;':' TERMINATOR?
08E6: FF 03             BEQ ERR2     ;NO, ERR
08E7: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
08E9: 8A                TXA
08EA: 8A                TXA
08EB: 8A                TXA
08EC: 8A                TXA
08ED: 8A                TXA
08EE: FF 03             BEQ ERR2     ;NO ADDR PRECEDING COLON
08F0: C9 93             CMP #$93     ;':' TERMINATOR?
08F2: FF 03             BEQ ERR2     ;NO, ERR
08F3: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
08F6: 8A                TXA
08F7: 8A                TXA
08F8: 8A                TXA
08F9: 8A                TXA
08FA: 8A                TXA
08FB: 8A                TXA
08FC: 8A                TXA
08FD: 8A                TXA
08FE: 8A                TXA
08FF: 8A                TXA
0900: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
0903: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
0906: FF 03             BEQ ERR2     ;NO, ERR
0907: C9 93             CMP #$93     ;':' TERMINATOR?
090A: 89                DEY          ;NO, BACKUP A CHAR
090B: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
090E: A5 3F             LDA A2H
090F: FO 01             BEQ FORM6    ;HIGH ORDER BYTE ZERO
0912: FO 0A             INX          ;NO, INCR FOR 2-BYTE
0915: 84 34             STY YSAV
0918: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
091B: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
091C: FF 03             BEQ ERR2     ;NO, ERR
091D: C9 93             CMP #$93     ;':' TERMINATOR?
091E: FF 03             BEQ ERR2     ;NO, ERR
0920: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
0923: 84 34             STY YSAV
0926: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
0929: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
092A: FF 03             BEQ ERR2     ;NO, ERR
092B: C9 93             CMP #$93     ;':' TERMINATOR?
092C: FF 03             BEQ ERR2     ;NO, ERR
092D: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
092E: 84 34             STY YSAV
0931: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
0934: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
0935: FF 03             BEQ ERR2     ;NO, ERR
0936: C9 93             CMP #$93     ;':' TERMINATOR?
0937: FF 03             BEQ ERR2     ;NO, ERR
0938: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
093B: 84 34             STY YSAV
093C: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
093F: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
0940: FF 03             BEQ ERR2     ;NO, ERR
0941: C9 93             CMP #$93     ;':' TERMINATOR?
0942: FF 03             BEQ ERR2     ;NO, ERR
0943: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
0946: 84 34             STY YSAV
0947: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
094A: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
094B: FF 03             BEQ ERR2     ;NO, ERR
094C: C9 93             CMP #$93     ;':' TERMINATOR?
094D: FF 03             BEQ ERR2     ;NO, ERR
094E: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
0951: 84 34             STY YSAV
0952: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
0955: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
0956: FF 03             BEQ ERR2     ;NO, ERR
0957: C9 93             CMP #$93     ;':' TERMINATOR?
0958: FF 03             BEQ ERR2     ;NO, ERR
0959: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
095C: 84 34             STY YSAV
095D: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
095E: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
095F: FF 03             BEQ ERR2     ;NO, ERR
0960: C9 93             CMP #$93     ;':' TERMINATOR?
0961: FF 03             BEQ ERR2     ;NO, ERR
0962: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
0965: 84 34             STY YSAV
0966: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
0969: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
096A: FF 03             BEQ ERR2     ;NO, ERR
096B: C9 93             CMP #$93     ;':' TERMINATOR?
096C: FF 03             BEQ ERR2     ;NO, ERR
096D: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
096E: 84 34             STY YSAV
0971: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
0974: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
0975: FF 03             BEQ ERR2     ;NO, ERR
0976: C9 93             CMP #$93     ;':' TERMINATOR?
0977: FF 03             BEQ ERR2     ;NO, ERR
0978: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
097B: 84 34             STY YSAV
097C: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
097F: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
0980: FF 03             BEQ ERR2     ;NO, ERR
0981: C9 93             CMP #$93     ;':' TERMINATOR?
0982: FF 03             BEQ ERR2     ;NO, ERR
0983: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
0986: 84 34             STY YSAV
0987: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
098A: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
098B: FF 03             BEQ ERR2     ;NO, ERR
098C: C9 93             CMP #$93     ;':' TERMINATOR?
098D: FF 03             BEQ ERR2     ;NO, ERR
098E: 20 A7 FF          JSR GETNUM   ;GET A NUMBER
0991: 84 34             STY YSAV
0992: 20 78 FE          JSR A1PCLP   ;GET ADDR, PCL, PCH
0995: C9 A4             CMP #$A4     ;ASCII 'S' IN COL 1?
APPLE II COMPUTER TECHNICAL INFORMATION

0915: A2 03           LDX #$03 ; RELOAD FORMAT INDEX
0917: 88             DEY ; BACKUP A CHARACTER
0918: 86 3D FORM7    STX A1H ; SAVE INDEX
091A: CA              DEX ; DONE WITH FORMAT CHECK?
091B: 10 C9          BPL FORM2 ; NO
091D: A5 44          LDA FMT ; YES PUT LENGTH
091F: OA              ASL A ; IN LOW BITS
0920: OA              ASL A
0921: 05 35          ORA L
0923: C9 20          CMP #$20 ; ADD $ IF NONZERO LENGTH
0925: BO 06          BCS FORM8 ; AND DON'T ALREADY HAVE IT
0927: A6 35          LDX L
0929: FO 02          BEQ FORM8
092B: 09 80          ORA #$80
092D: 85 44 FORM8    STA FMT
092F: 84 34          STY YSAV
0931: B9 00 02        LDA IN,Y ; GET NEXT NONBLANK
0934: C9 BB          CMP #$BB ; ';' START OF COMMENT
0936: FO 04          BEQ FORM9 ; YES
0938: C9 8D          CMP #$8D ; A CARRIAGE RETURN ?
093A: DO 80          BNE ERR4 ; NO, ERR
093C: 4C 67 08 FORM9  JMP TRYNEXT
093F: *               GETNSP LDA IN,Y
0942: C8              INY
0943: C9 AO          CMP #$AO ; GET NEXT NON BLANK CHAR
0945: FO F8          BEQ GETNSP
0947: 60             RTS

Keywords:

### END OF FILE A2TIL096.TXT
The following information is for the benefit of users who may wish to interface Apple models to video projectors:

**DISCUSSION**

Apple II, II+, IIe, IIc
1. Number of lines in the raster. 525
2. Whether interlaced. No
3. Signal type. NTSC compatible
4. Frame rate. 60 hz.

Apple III, III+
1. Number of lines in the raster. 525
2. Whether interlaced. No / Yes for III+
3. Signal type. NTSC B/W, NTSC color composite, RGB Pure Video, Composite Sync Signals
4. Frame rate. 60 hz.

Euro IIc, IIe, II+, Euro PAL color card
1. Number of lines in the raster. 625
2. Whether interlaced. No (IIc, IIe)
3. Signal type. Composite PAL video (unmodulated)
4. Frame rate. 50 hz.

Lisa
1. Number of lines in the raster. video output to
2. Whether interlaced. Conrac or Electrohome
3. Signal type. monitor with
4. Frame rate. 22.7 KHz scan rate

Copyright 1984, 1992 Apple Computer, Inc.
Keywords: SPECSHT

### END OF FILE A2TIL097.TXT
### FILE: A2TIL098.TXT

Description: Apple II, II+, IIe, IIc: ASCII characters, values & keystrokes

The following table contains the ASCII codes generated by pressing a key or combination of keys on the Apple II, Apple II Plus, Apple IIe, Apple IIc, and Enhanced Apple IIe. The character names come from the American Standard Code for Interchange of Information. Certain peripherals or programs or functions, such as the BASIC function CHR$, may require the decimal values; certain peripherals or programs may require the hexadecimal values as well.

The fourth column in the table below is for simple keystrokes or those made with the SHIFT key held down; the fifth and sixth columns are for those made either with the CTRL key held down or with both the SHIFT and CTRL keys held down simultaneously.

**NOTE:** An asterisk next to keystrokes or character names means that the Apple II and Apple II Plus can't generate that character from its keyboard. The double asterisk indicates a special case.

The comments column defines the non-printing ASCII characters.

<table>
<thead>
<tr>
<th>Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Regular</th>
<th>CTRL</th>
<th>SHIFT-CTRL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUL</td>
<td>00</td>
<td>00</td>
<td>@ **</td>
<td></td>
<td></td>
<td>null character</td>
</tr>
<tr>
<td>SOH</td>
<td>01</td>
<td>01</td>
<td>a A</td>
<td></td>
<td></td>
<td>start of header</td>
</tr>
<tr>
<td>STX</td>
<td>02</td>
<td>02</td>
<td>b B</td>
<td></td>
<td></td>
<td>start transmission</td>
</tr>
<tr>
<td>ETX</td>
<td>03</td>
<td>03</td>
<td>c C</td>
<td></td>
<td></td>
<td>end of text</td>
</tr>
<tr>
<td>EOT</td>
<td>04</td>
<td>04</td>
<td>d D</td>
<td></td>
<td></td>
<td>end of transmission</td>
</tr>
<tr>
<td>ENQ</td>
<td>05</td>
<td>05</td>
<td>e E</td>
<td></td>
<td></td>
<td>enquire</td>
</tr>
<tr>
<td>ACK</td>
<td>06</td>
<td>06</td>
<td>f F</td>
<td></td>
<td></td>
<td>acknowledge</td>
</tr>
<tr>
<td>BEL</td>
<td>07</td>
<td>07</td>
<td>g G</td>
<td></td>
<td></td>
<td>bell</td>
</tr>
<tr>
<td>BS</td>
<td>08</td>
<td>08</td>
<td>h H</td>
<td></td>
<td></td>
<td>back space</td>
</tr>
<tr>
<td>HT</td>
<td>09</td>
<td>09</td>
<td>i I</td>
<td></td>
<td></td>
<td>horizontal tab</td>
</tr>
<tr>
<td>LF</td>
<td>10</td>
<td>0A</td>
<td>j J</td>
<td></td>
<td></td>
<td>line feed</td>
</tr>
<tr>
<td>VT</td>
<td>11</td>
<td>0B</td>
<td>k K</td>
<td></td>
<td></td>
<td>vertical tab</td>
</tr>
<tr>
<td>FF</td>
<td>12</td>
<td>0C</td>
<td>l L</td>
<td></td>
<td></td>
<td>form feed</td>
</tr>
<tr>
<td>CR</td>
<td>13</td>
<td>0D</td>
<td>m M</td>
<td></td>
<td></td>
<td>carriage return</td>
</tr>
<tr>
<td>SO</td>
<td>14</td>
<td>0E</td>
<td>n N</td>
<td></td>
<td></td>
<td>shift out</td>
</tr>
<tr>
<td>SI</td>
<td>15</td>
<td>0F</td>
<td>o O</td>
<td></td>
<td></td>
<td>shift in</td>
</tr>
<tr>
<td>DLE</td>
<td>16</td>
<td>10</td>
<td>p P</td>
<td></td>
<td></td>
<td>data link escape</td>
</tr>
<tr>
<td>DC1</td>
<td>17</td>
<td>11</td>
<td>q Q</td>
<td></td>
<td></td>
<td>device C 1</td>
</tr>
<tr>
<td>DC2</td>
<td>18</td>
<td>12</td>
<td>r R</td>
<td></td>
<td></td>
<td>device C 2</td>
</tr>
<tr>
<td>DC3</td>
<td>19</td>
<td>13</td>
<td>s S</td>
<td></td>
<td></td>
<td>device C 3</td>
</tr>
<tr>
<td>DC4</td>
<td>20</td>
<td>14</td>
<td>t T</td>
<td></td>
<td></td>
<td>device C 4</td>
</tr>
<tr>
<td>NAK</td>
<td>21</td>
<td>15</td>
<td>u U</td>
<td></td>
<td></td>
<td>negative acknowledge</td>
</tr>
<tr>
<td>SYN</td>
<td>22</td>
<td>16</td>
<td>v V</td>
<td></td>
<td></td>
<td>synchronous idle</td>
</tr>
<tr>
<td>ETB</td>
<td>23</td>
<td>17</td>
<td>w W</td>
<td></td>
<td></td>
<td>end of text block</td>
</tr>
<tr>
<td>CAN</td>
<td>24</td>
<td>18</td>
<td>x X</td>
<td></td>
<td></td>
<td>cancel</td>
</tr>
<tr>
<td>EM</td>
<td>25</td>
<td>19</td>
<td>y Y</td>
<td></td>
<td></td>
<td>end of medium</td>
</tr>
<tr>
<td>SUB</td>
<td>26</td>
<td>1A</td>
<td>z Z</td>
<td></td>
<td></td>
<td>start subroutine</td>
</tr>
<tr>
<td>ESC</td>
<td>27</td>
<td>1B</td>
<td>Escape</td>
<td>[*]</td>
<td></td>
<td>escape</td>
</tr>
<tr>
<td>FS</td>
<td>28</td>
<td>1C</td>
<td>\ *</td>
<td></td>
<td></td>
<td>file separator</td>
</tr>
<tr>
<td>GS</td>
<td>29</td>
<td>1D</td>
<td>] *</td>
<td></td>
<td></td>
<td>group separator</td>
</tr>
<tr>
<td>RS</td>
<td>30</td>
<td>1E</td>
<td>^</td>
<td></td>
<td></td>
<td>record separator</td>
</tr>
<tr>
<td>US</td>
<td>31</td>
<td>1F</td>
<td>_ *</td>
<td></td>
<td></td>
<td>unit separator</td>
</tr>
<tr>
<td>SP</td>
<td>32</td>
<td>20</td>
<td>Space Bar</td>
<td>space</td>
<td></td>
<td>space</td>
</tr>
<tr>
<td>!</td>
<td>33</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;</td>
<td>34</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>35</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>36</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Apple II and Apple II Plus can't generate that character from the keyboard.

** Use SHIFT-P.
Apple Technical Communications

** Keywords:

### END OF FILE A2TIL098.TXT
This article last reviewed: 21 September 1984

This note covers use of the Apple II, IIe and IIc mini-assembler only, not the II+. This is not a course in assembly language programming. For a reference on programming the 6502 microprocessor, refer to the Synertek Programming manual or any of the tutorials available. This note assumes the user has a working knowledge of 6502 programming and mnemonics.

The Apple II mini-assembler is a programming aid aimed at reducing the amount of time required to convert a handwritten program to object code. The $L mini-assembler is basically a look-up table for opcodes. With it, you can type mnemonics with their absolute addresses, and the assembler will convert it to the correct object code and store it in memory.

Typing "$666G" will puts you in mini-assembler mode. While in this mode, any line typed in will be interpreted as an assembly language instruction, assembled, and stored in binary form unless the first character on the command line is a "$".

If the first character of a command line is a "$", the remainder of the line will be interpreted as a normal monitor command, executed, and control returned to the mini-assembler. To get out of the mini-assembler, press RESET.

If the first character on the line is blank, the assembled instruction will be stored starting at the address immediately following the previously assembled instruction. If the first character is not a blank nor a "$", the line is assumed to contain an assembly language instruction preceded by the instruction address (a hex number followed by a ":"). In either case, the instruction will be retyped over the line just entered in dis-assembler format to provide a visual check of what has been assembled.

The counter that keeps track of where the next instruction will be stored is the pseudo PC (Program Counter) and it can be changed by many monitor commands (eg. 'L', 'T', . . .). Therefore, it is advisable to use the explicit instruction address mode after every monitor command and, of course, when the mini-assembler is first entered.

Errors (unrecognized mnemonic, illegal format, etc.) are signalled by a "beep" and a caret ("^") will be printed beneath the last character read from the input line by the mini-assembler.

The mnemonics and formats accepted by the mini-assembler are the same as those listed by the 6502 Programmers Manual, with the following exceptions and differences:

1. All imbedded blanks are ignored, except inside addresses.

2. All addresses entered are assumed to be in hex (rather than decimal or symbolic). A preceding "$" (indicating hex rather than decimal or symbolic) is therefore optional, except that it should not precede the instruction address.

3. Instructions that operate on the accumulator have a blank operand field instead of "A".
4. When entering a branch instruction, the argument of the branch mnemonic should be the address of the target of the branch. If the destination address is not known at the time the instruction is entered, simply enter an address that is in the neighborhood, and later re-enter the branch instruction with the correct target address. NOTE: If a branch target is specified that is out of range, the mini-assembler will flag the address as being in error.

5. The operand field of an instruction can only be followed by a comment field, which starts with a semicolon (";"). Obviously, the mini-assembler ignores the field and in fact will type over it when the line is typed over in disassembler format.

6. Any page zero references will generate page zero instruction formats if such a mode exists. There is no way to force a page zero address to be two bytes, even if the address has leading zeroes.

In general, to specify an addressing type, simply enter it as it would be listed in the disassembly. For information on the disassembler, see page 49 of the Apple II Reference Manual.

Keywords:

### END OF FILE A2TIL099.TXT
For the next step a copy of the image of the application program needs to be programmed into the EPROMs. The program starts at the address pointed to by $67 and $68 and ends at the address pointed to by $AF and $B0. The contents of the end address pointer, $AF and $B0, will be inserted in the control ROM at locations $1F and $23. When control comes back through the input routine pointer, Applesoft has already initialized $67 and $68. So the next step is to move the image of the Applesoft program down to where it originally came from. How this is done will depend on the hardware of the ROM card and the length of the Applesoft program. If you use the Apple firmware card you will have to address the soft switch to select the firmware card and then address the switch again to re-select the Applesoft ROMs. With the ROMPLUS it could be as simple as using the monitor move routine, $FE2C, to move a program of less than 2 kilobytes long.

There is a little more initialization to be done before the Applesoft program can be RUN. The end of program pointer mentioned earlier must be put into $69 and $6A and one more Applesoft routine must be called. Unfortunately this one also drops into Applesoft's command mode so we have to modify the input pointer again to point to a third part of the control ROM. Once this is done the final initialization can be done with a jump to $D4F2.

And now the final part, we need to reset the input pointer so that the program can input normally from the keyboard and actually RUN the program. To make things easier there is a routine set by the Auto-Start ROM that will set the input pointers to the keyboard at location $FE89. Then all that's left to do is jump to $D566 which will run the program.

For a bit of finesse, if we put a $80 into location $D6, the user will not be able to list the program. In fact any attempt to do any Applesoft command except LOAD from cassette will cause the program to RUN. Also, by changing the reset vectors in the Auto-Start ROM to point to the RUN routine, the program will become very difficult to stop or modify. (To change the reset vector, load memory starting at $3F2 with 66 D5 70. See page 36 and 37 of the Apple II Reference manual for more details).

THE LISTING

This listing is all done relative to the start of the ROM so all address are given as one byte. If you use an assembler, simply origin the code in RAM and when it is programmed into the control ROM it will work just fine. The routines are not arranged in order of execution so that the move routine will be at the end since the length of the move routine will vary with the hardware requirements. Just be sure that the three byte jump is inserted behind the move routine.

* THE FIRST 4 INSTRUCTIONS LOOK LIKE A DISK BUT DON'T
* DO ANYTHING
* 00: 24 20 BIT $20
02: 24 00 BIT $00
04: 24 03 BIT $03
06: 24 3C BIT $3C *

* THIS PART INITIALIZES APPLESOFT AND GETS CONTROL BACK
  * AT ENTRY2
  *
  08: A9 1A      ENTRY1  LDA # ENTRY2
  0A: 85 38              STA KSWL
  0C: A5 F8 07          LDA $07F8
  0F: 85 39              STA KSWH
  11: 4C 00 E0          JMP COLDSTART
  *
* RESET INPUT TO THE KEYBOARD AND RUN THE PROGRAM
  *
  14: 20 8 1a    ENTRY3  JSR SETKBD
  17: 4C 66 D5          JMP RUN
  *
* FINISH INITIALIZATION & MOVE THE PROGRAM TEXT DOWN
  * FROM THE ROMS
  *
  1A: A9 14      ENTRY2  LDA # ENTRY3
  1C: 85 38              STA KSWL
  1E: A9 LL              LDA # LENGTH-L
  20: 85 69              STA LOMEML
  22: A9 HH              LDA # LENGTH-H
  24: 85 6A              STA LOMEMH

INSERT YOUR MOVE ROUTINE HERE FOLLOWED BY

: 4C F2 D4          JMP INIT PART 2

Copyright 1984, 1988 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL100.TXT
Some applications require that an Apple start running an Applesoft program from power-up without human interaction. This is easy with the disk and Auto-Start ROM. Simply initialize the diskette with the desired program in memory and the disk will boot and run it when the power comes on. But sometimes a disk drive is undesirable, especially where there is only one program to run and the cost must be kept low. So here is a way to have a card that will load and run an Applesoft program automatically on power-up in any Apple II+.

I will assume the use of a card like the Mountain Computer ROM+ that has a 256 byte "control ROM" and room for some larger ROMs to store the Applesoft program. On the ROM+ this is a bank of up to six 2716 type EPROMs. Using EPROMs has the advantage that you can change your Applesoft program later by erasing the EPROMs and reprogramming and the disadvantages of higher cost and using more power from the Apple's power supply. The power consumption of the EPROMs won't be a problem if the Apple isn't filled with cards.

The software in the control ROM is required to do five things:

1. Pretend that it's a disk controller card so that the Auto-Start ROM will execute its code.
2. Initialize Applesoft.
3. Move an image of the Applesoft program down from the ROMs into the proper area of RAM.
4. Set up the required Applesoft pointers for the end of the program.
5. RUN the program.

All that's needed to convince the Auto-Start that there's a disk controller card out there is to have a ROM whose first four odd bytes match the Apple P5 or P5A PROM. If the monitor finds a ROM that matches it in slot N, it will do a jump to $CN00. The routine that does this starts at $FAA6 and is listed on page 144 of the Apple II reference manual. The first eight bytes in the control ROM will be:

24 20 24 00 24 03 24 3C

Note that by having the even numbered bytes equal to $24, (BIT Page zero) when the code is executed starting at $CN00 nothing will happen until the byte after the $3C.

The proper way to initialize Applesoft is to jump to $E000. Unfortunately this entry into Applesoft falls into the normal command level routine. To regain control so that the control ROM can load a program we can use the same trick that DOS uses. As soon as Applesoft reaches its command level it prints a prompt, ("]") and waits for the user to type in a command. Since all input and output in the Apple is handled through two pointers in RAM, we can divert the input routine to point back into the control ROM. This will leave several levels of subroutine on the 6502 stack but Applesoft will re-initialize the stack when we RUN the program so it doesn't matter.

Now the question becomes what address to put into the pointer. The control
ROM's address will change depending on which peripheral slot it's plugged into.

The low byte is just the offset from the start of the ROM since the address always starts on a 256 byte boundary but the high byte could be anything from $C1 to $C7. When the Auto-Start ROM looks for a disk controller card it saves the high order byte in $7F8. So the contents of $38 and $39, the input pointer, becomes the offset which is stored at location $7F8. Then we can jump to $E000 to initialize Applesoft confident that we will regain control when it's done.

Keywords:

### END OF FILE A2TIL101.TXT
Where can I find the program Muffin?

It's on the DOS 3.3 System Master.

Copyright 1991, Apple Computer, Inc.

Keywords:
"Understanding Your Apple II", an in-depth Apple II and II+ hardware manual, is now available from Quality Software or from your local dealer. The book, by Jim Sather, has a foreword by Steve Wozniak. Some of the book's features:

--Documents all motherboard circuits, including some discussed nowhere else.

--Describes disk controller operation, including previously undocumented details of the logic state sequencer.

--Explains RAM and ROM card operation.

--Reveals previously unnoticed features of Apple graphics.

--Contains 23 software and hardware Application Notes including the shift key mod, disk write protect mod, and EPROM mods.

--Includes a chapter on simple user troubleshooting and maintenance.

--Contains over 100 figures and illustrations, including more than 20 schematics, ten appendices, a glossary and index.

This book runs 352 pages in all! A companion text, "Understanding Your Apple IIe", is also available from:

Quality Software
21601 Marilla Street
Chatsworth, CA - 91311
(818) 709-1721
Copyright 1991 Apple Computer, Inc
Keywords:

### END OF FILE A2TIL103.TXT
Description: Apple II: 80 Column Card Cannot Handle Some "Color" Programs
Header: Apple II: 80 Column Card Cannot Handle Some "Color" Programs

Article Created: 29 April 1991
Article Last Reviewed:
Article Last Updated:

TOPIC -----------------------------------------

I have an Apple IIe, an Enhanced 80 Column card, and an Apple Color Monitor 100. I have two games, Batman and Hunt for Red October, that do not display in color even though they are both advertised as able to run on the Apple II with double high-resolution color graphics.

DISCUSSION -----------------------------------

The problem is that your software is trying to write directly to the video circuitry instead of using calls to the software. The 80 column card cannot handle these kinds of requests.

There are only two possible fixes:

* Get a different type of monitor and video card

* Call the software companies and ask if they have a software patch.

Copyright 1991, Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL104.TXT
I backed up my hard disk with Backup II version 1.01, and the drive went
down (total loss of data). While trying to restore from the backup I get
through 13 of 34 disks, and then I get a DATE/TIME STAMP DO NOT MATCH
error. I have looked for the date and time stamp bytes on the disks to no
avail.

Can I fix Backup II to not look for a DATE/TIME STAMP? Which bytes should
I look for on the bad disks? I have looked at the information on the disks
in question and the data is there.

The actual problem may be with your versions of ProDOS and Backup II.
Specifically, versions of Backup II before 1.1.1 are not compatible with
any ProDOS version greater than 1.1.1. If your Backup II and ProDOS are
incompatible, you have two options:

* Use Backup II v1.1.1, which will read your backup disks

* Downgrade ProDOS to 1.1.1.

The Date/Time stamps for a ProDOS volume reside in bytes $1C-$1F of
block 2. Matching these against previous volumes may solve the problem.

To help you find block 2, here is a good formula for converting ProDOS
blocks to DOS 3.3 sectors:

\[
\text{Block} = (8 \times \text{Track}) + \text{SectorOffset}
\]

\[
\begin{array}{cccccccccccccccc}
\text{Sector:} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F \\
\text{SectorOffset:} & 0 & 7 & 6 & 6 & 5 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 1 & 1 & 0 & 7 \\
\text{Half of Block:} & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 2 \\
\end{array}
\]

It looks like the bytes you need are on Track 0, Sector 11 (first half of
block

Copyright 1991, Apple Computer, Inc.

Keywords:
Here are a few digitizers for the Apple II:

Computereyes by Digital Vision, Inc.
14 Oak St. #2
Needham, MA 02192
(617) 444-9040

Dithertizer II by Computer Station
11610 Page Service Drive
Saint Louis, Mo 63146
(314) 432-7019

Digisector by Micro-Works
P.O. Box 1110
Del Mar, CA 92014
(619) 942-2400

Micro D-Cam by Micro Mint
561 Willow Ave.
Cedarhurst, NY 11516
(516) 374-6793

Micron-Eye by Micron Technology (acquired by Xceed Technologies)
Xceed Technologies
37560 31 Mile Rd.
Richmond, MI 48062
313-727-4085
800-642-7661

The Dithertizer and the Digisector accept input from a standard video camera. The Micro D-Cam and Micron-Eye use a solid state camera made from a special purpose imaging chip. All have software to map the output from the camera to the High-Res Screen of the Apple II.

The Dithertizer uses a feature called contouring. This makes the processor display only those portions of an image which fall in a certain brightness (or darkness) range. With this method you could set the digitizer to display only the darkest spots on the screen. Then you could write software to scan the digitized image for spots, count them and note their position.

Micron-Technology (acquired by Xceed Technologies) makes an RS-232 version of the Micron-Eye. With the proper software, this could be your digitizer for Macintosh, Lisa or Apple III.

To locate a vendor's address and phone numbers, use the vendor name as a search string.

Copyright 1988, 1993, Apple Computer, Inc.
This article discusses how to disable the keyboard during serial I/O on the Apple IIc, Apple IIGS and Apple IIe Super Serial card.

DISCUSSION ------------------------------------------------------

The Apple II serial interface (Apple IIc serial port, Apple IIGS serial port, and Apple IIe Super Serial Card) has a built-in command that disables the keyboard during serial I/O. The command is FD. Here's how to send it from BASIC:

```
10 print chr$(4);"pr#2"
20 print chr$(1);"FD": REM Disable the keyboard...
```

Article Change History:
17 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1988-97, Apple Computer, Inc.
Keywords:
I have an Apple IIc Plus with a 5.25-inch drive. Do I need a file called Start 13 on my system for the drive to work properly?

The file Start 13 was used early on when the Apple II went to a 16-secto
disk format. Start 13 made it possible for older, 13-sector diskettes to
be read. You don't need it for the Apple IIc to work with current
diskettes.

Copyright 1991 Apple Computer, Inc.

Keywords:
Apple II Computer Family Articles -- Apple Technical Info Library (TIL)
March 1997 -- Page 167 of 649

Description: Apple II: How to Copy Software from 5.25 to 3.5-inch Disks
Header: Apple II: How to Copy Software from 5.25 to 3.5-inch Disks

I want to copy Apple IIe software from 5.25-inch to 3.5-inch disks, using an Apple IIGS—and then run the programs. I get a message that the Apple IIe disk was not formatted in ProDOS. What should I do?

If the program was written to run under DOS 3.3, it probably won't work under ProDOS. You can use the System Utilities Disk 3.1 to copy the information over to a 3.5-inch disk (the DOS to ProDOS conversion is handled automatically during the copy). However, if the application interacts with the operating system giving DOS 3.3 commands, it won't run. We recommend that you ask the software developer if they have a ProDOS version.

Copyright 1991 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL109.TXT
This article describes some information sources for the Apple II products.

**GS+**
---
An Apple IIGS magazine published bimonthly by EGO Systems.

EGO Systems
P.O. Box 15366
Chattanooga, TN 37415-0366

**A+/InCider**
----------
An Apple II and Macintosh magazine published monthly by IDG.

IDG Communications/Peterborough, InCider
P.O. Box 50358
Boulder, CO 80321-0358

**A2-Central**
----------
Publishes a number of newsletters that are devoted to the Apple II only. Here's the current list:

**A2-Central**
-------------
Published monthly since January, 1985 and provides technical information on the Apple II.

A2-Central on Disk has been published monthly since February, 1989. Each 800K 3.5-inch disk contains the full text of that month's paper issue, plus text-talking software for blind subscribers. In addition, specific issues contain Apple system software, technical note updates, public domain and shareware software.

**Studio-City**
-------------
Published every other month since February, 1990. Each issue consists of two 800K 3.5-inch disks and includes a HyperStudio stack containing editor Terry Baker's tips, tricks, and letters from readers.

**TimeOut-Central**
-------------
Published every other month since September, 1990. Each issue consists of one 800K 3.5-inch disk and includes a column by the editor, letters from readers, as well as public domain and shareware AppleWorks and TimeOut files.

**Script-Central**
-------------
Published bimonthly and is all about Apple's HyperCard IIGS and HyperTalk, its scripting language.
The Road Apple
--------------
An Apple II "End Users" Underground Newsletter published six times a year.

Al Martin  
1121 NE 177th, Suite B  
Portland, OR 97230.

Scarlett
--------
A monthly newsletter published by:

Big Red Computer Club  
423 Norfolk Avenue  
Norfolk, NE 68701.

AppleWorks Forum
----------------
A monthly newsletter published by:

The National AppleWorks User Group  
Box 87453  
Canton, MI 48187

HyperStudio Network
--------------------
A quarterly newsletter about HyperStudio. They publish an annual 'Best of HyperStudio' disk of stacks, and have discounts on HyperStudio accessories. They also have some teacher-oriented materials.

HyperStudio Network  
Box 103,  
Blawenburg, NJ 08504

Softdisk and Softdisk GS
------------------------
Monthly disk magazines containing a variety of software (public domain, shareware, clip art, reviews, etc.). Softdisk is available on 5.25- or 3.5-inch disks. Softdisk GS is available only on 3.5-inch disks.

Softdisk Publishing  
P.O. Box 30008  
Shreveport, LA 71130-0008  
AOL: zak  Internet: zak@aol.com

USUS
-----
An international non-profit organization dedicated to promoting and influencing software standards to aid in the development of portable software. They have a large software library including a lot of source code (for almost every language or computer).

USUS Inc.  
P.O. Box 1148  
La Jolla, CA 92038

Article Change History:
This article describes interrupt handling routines in the Apple II.

The user should be familiar with the 6502 interrupt requirements as defined in the Synertek Programming and Hardware manuals. This article applies to the interrupt request (IRQ). The use of the non-maskable interrupt (NMI) in a disk system is not recommended. The data and programs on the disk may be destroyed if an NMI occurs while the Apple is writing data to the disk. The DOS disables IRQ during critical code making it relatively safe to use.

HARDWARE
--------

For interrupts, the Apple peripheral slots have defined three pins:

- IRQ, Interrupt ReQuest   pin 30
- INT IN, daisy chain in    pin 28
- INT OUT, daisy chain out  pin 23

The daisy chain structure allows an interface card to disable the next higher number card from requesting an interrupt. Slot 0 has the highest priority and slot 7 has the least.

```
+-----+-----+-----+-----+
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT IN</td>
<td>O</td>
<td>I</td>
<td>O</td>
</tr>
<tr>
<td>and OUT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+-----+-----+-----+-----+
```

The system was designed so that if INT IN for a slot is low then that slot may not generate an interrupt. Each slot should pull INT OUT low when it is requesting an interrupt to disable lower priority slots. Cards that don’t use IRQ should wire INT IN and INT OUT together so that any higher priority slots can still disable cards in lower priority slots. This priority system fails if there is an empty slot between any two interrupting cards.

The hardware logic required to generate INT OUT is INT IN anded with the active low interrupt signal from the peripheral device. IRQ is INT IN anded with the active high interrupt signal from the peripheral device.

SOFTWARE
--------

There are two ways to cause the 6502 to follow the IRQ vector. A logical zero
on the IRQ pin of the 6502 while the IRQ flag of the processor is cleared, or executing a BREAK instruction in a program:

First, the Apple monitor determines whether a BREAK or an IRQ has occurred. In the Auto start ROM, this routine is at $FA40 and in the old monitor it's at $FA86. This routine stores the 6502 accumulator at location $45 and retrieves the processor status flags. A BREAK drops into the monitor with the address of the BREAK operation code + 2 and a dump of the 6502 registers. The Auto-Start ROM has the option of jumping to a user's routine after a break. Both monitor ROMs jump to the address contained in memory at $3FE and $3FF after an IRQ.

Interrupt Request

The user must have the address of his interrupt handler stored in $3FE and $3FF before the first interrupt is generated.

Caution: The accumulator does not contain valid data when it is vectored to $3fe and $3ff. The accumulator must be restored from location $45 before the return from interrupt instruction, (RTI) is executed. The user must also be careful to leave the other registers as they were when an interrupt occurred.

Interrupts and BASIC

If the user is careful to restore all the 6502 registers and not disturb BASIC's memory locations in the interrupt handling routine, the interrupt will be transparent to BASIC. Be very careful of page 0 locations. Save and restore any information on the stack when you're not sure.

Applesoft and Integer BASIC both use the 6502 stack extensively in keeping track of GOSUBs and FOR-NEXT loops. This makes it difficult to have an interrupt modify BASIC program execution. To do this the easiest way, program the interrupt routine to set a flag byte when an event occurs and then program the BASIC program to PEEK that flag byte's address and respond when the flag byte is set.

You may use the Applesoft ONERR GOTO statement to modify the execution of an Applesoft program when the interrupt occurs. The following machine language routine causes an 'error' condition in Applesoft.

```
10 POKE 800,162: POKE 801,100: POKE 802,104: POKE 803,104
20 POKE 804,104: POKE 805,76 : POKE 806,233: POKE 807,242
30 POKE 1022,0 : POKE 1023,8
40 ONERR GOTO 1000
50 PRINT "NO INTERRUPT"
60 GOTO 50
1000 IF PEEK (222) <> 100 THEN END
1010 PRINT "INTERRUPT!!"
1020 RESUME
```

The POKEs set the IRQ vector to generate an error number 100 when an interrupt occurs. The Applesoft onerr routine can check decimal location 222 and if it doesn't equal 100 then you have a normal Applesoft or DOS error. Treat the IRQ generated error like any other Applesoft error. RESUME and the routine on page 82 of the Applesoft reference manual will work normally. Please do a search on ON ERR GOTO for more information.

Interrupts and DOS

The interrupt checking routine in the monitor saves the 6502 accumulator at location $45 while it checks for a break. Unfortunately, DOS also uses
location $45 as temporary storage while DOS parses the numeric parts of its commands. This can result in range errors or reading the wrong record, slot, or drive if an interrupt occurs during parsing. There is no way around this problem at this time. To use interrupts with DOS in the safest way, disable IRQ when doing any disk access.

Article Change History:
28 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1984-97, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL111.TXT
I'm running an Apple IIGS lab (28 systems) with seven LocalTalk ImageWriters.

When using Applesoft BASIC, my computers print properly with a "PR#1" command. However, there is a 30-second delay from the time one computer finishes printing until the next system is allowed to print.

Here is a test program that I'm using:

```
10 PRINT CHR$(4);"PR#1"
20 FOR I=32 TO 126
30 PRINT CHR$(I);""
40 NEXT PRINT
50 PRINT CHR$(4);"PR#0"
```

If I run the above test program simultaneously on two Apple IIGS computers trying to print to one LocalTalk ImageWriter, the first computer to type "run" prints fine. The other computer has to wait for the LocalTalk option board to release the printer.

I have gone through the ImageWriter technical book and can't find anything that allows the LocalTalk card to release the printer immediately after the "PR#0" command.

Is there a reset or release command that I can add to the program to eliminate this wait?

DISCUSSION -------------------------------------------------------

You are experiencing the time it takes the ImageWriter to release after the connection to the computer is lost. Your problem is that the "PR#0" command just changes the mode of the computer; the printer still thinks the first computer should be there.

The printer has a built-in timeout that can't be changed. Something you might try is to insert an "ESC c" as line 45. This command resets the printer and might cause the printer to drop its connection before the computer does.
### FILE: A2TIL113.TXT

**Description:** Apple II: Mouse Memory Locations  
**Header:** Apple II: Mouse Memory Locations

**Article Created:** 13 August 1991  
**Article Last Reviewed:**  
**Article Last Updated:**

**TOPIC**

What are the memory addresses for mouse information on the Apple IIe and Apple IIGS?

**DISCUSSION**

**Apple IIe/IIc**

With the mouse card in slot four of the Apple IIe, locations are stored as follows:

- low byte x $047C
- high byte x $057C
- low byte y $04FC
- high byte y $05FC

(This is different if the card is in a slot other than slot four.)

More data on Apple IIe and IIc applications is on pages 196 through 198 and page 363 of the "Apple IIc Technical Reference Manual" from Addison-Wesley.

**Apple IIGS**

Information on the Apple IIGS locations is on pages 200 through 205 of the "Apple IIGS Firmware Reference" from Addison-Wesley.

Copyright 1991 Apple Computer, Inc.

**Keywords:**

### END OF FILE A2TIL113.TXT
If you are having problems starting a diskless Apple II on LocalTalk over a Kinetics FastPath, from a server residing on Ethernet, it may be because the diskless start-up capability of Apple II workstations is designed to work over a FastPath or other AppleTalk bridges -- but not across zones. If your FastPath has been set up with the Ethernet as a separate zone from the LocalTalk side, this is your problem.

You should also look at the configuration of the FastPath itself. If a Macintosh can access the server normally from the LocalTalk side of the network, then the Apple II should be able to start, because the same network layers are being used for the information transfer. If a Macintosh cannot access the server properly, then you should suspect the configuration of the FastPath itself.

Copyright 1989 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL114.TXT
Description: Apple II: Program To Recover Deleted Files
Header: Apple II: Program To Recover Deleted Files

This article last reviewed: 22 June 1989

TOPIC -----------------------------------------

Is there a way to recover deleted files on an Apple II under Apple DOS 3.3 and ProDOS?

DISCUSSION ------------------------------------

Central Point Software offers Copy II Plus, which allows deleted files to be restored in both DOS 3.3 and ProDOS—provided you have not written to the disk since the file was deleted.

For more details, search the Tech Info Library under "Central Point".
Copyright 1989 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL115.TXT
I want to purchase discontinued Apple II equipment. Where can I find it?

Preowned Electronics has a large selection of used Apple II equipment.

Sun Remarketing is another source as well.

You can find the address and phone number for these companies in a separate article on the Tech Info Library. Search under the name you want to find.

Copyright 1991 Apple Computer, Inc.

Keywords:
When an internet has each side of the InterBridge assigned a different zone name (common practice when using the InterBridge) in this type of internet, the Apple IIe and the Apple IIGS cannot boot across an InterBridge.

However, when both sides of the InterBridge have the same zone name on a one-zone internet, the Apple II systems can start across the InterBridge. This difference occurs, because AppleTalk uses the Name Binding Protocol to understand the network design. (AppleTalk is more concerned with names than it is with numbers.) With both sides of the InterBridge having the same zone name, AppleTalk believes it is dealing with one network (one zone).

This method of name assignment has one disadvantage. All network traffic is passed across the InterBridge, thus defeating the usual reason for installing the bridge—the logical separation of network traffic.

Note: Routers and bridges are different devices. They do perform similar functions, but the router is a higher-level device than the bridge.

Copyright 1989 Apple Computer, Inc.

Keywords:
Can the Apple 5.25 PC Drive (and card) read ProDOS 5.25-inch disks under AFE?

Apple 5.25 PC Drive only supports disks that are formatted using the MFM encoding methods. Therefore, it does not read ProDOS-formatted disks, which use GCR. Alternative ways to move data from the Apple II to the Macintosh include AppleShare, a serial link (cable and/or modem), and by first moving the ProDOS data to 3.5-inch disks, which any Macintosh will mount.

You may find the AFE Works-Works translator helpful when actually translating the files. It is on the InfoSource CD-ROM available from Apple.

Copyright 1990 Apple Computer, Inc.

Keywords:
Description: Apple II: Transferring Files To a Macintosh (9/95)
Header: Apple II: Transferring Files To a Macintosh (9/95)
Article Created: 6 September 1995

TOPIC -----------------------------------------------------------

This article provides instruction on converting Apple II files to MacWrite files using Bank Street Writer.

DISCUSSION ------------------------------------------------------

To convert Apple II Bank Street Writer word processor files into Macintosh MacWrite files follow these steps.

Step 1
------
Use the System Utility option within Bank Street writer to convert the binary Bank Street Writer documents to ProDOS 3.3 ASCII text files. This must be done for each file that you intend to transfer to the Macintosh.

NOTE:
Make sure that the names of the files contain only the letters (A-Z), no numbers or other marks.

Step 2
------
Use the ProDOS System Utilities Diskette to copy the DOS 3.3 ASCII text files that you have created to a ProDOS formatted disk. (You will need your original DOS 3.3 disk, and a new disk that has been formatted with ProDOS.)

Step 3
------
Use an Apple II computer that is equipped with both a 5 1/4" disk drive and a 3 1/2" disk drive. Again, use the ProDOS System Utilities disk to copy the files from the 5 1/4" disk to a ProDOS formatted 3 1/2" disk.

Step 4
------
Use a Macintosh computer equipped with a FDHD (high density) disk drive (Macintosh SE/30 or later) and PC Exchange 1.1 or later.

Step 5
------
Insert the disk into your Macintosh and use MacWrite or your favorite word processor to open each file. Once you have verified that everything is intact, choose "Save as..." from the file menu and save the file.

Support Information Services
Copyright 1995, Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL119.TXT
Is it possible to convert ProDOS clip art files to Macintosh SuperPaint files using Apple File Exchange (AFE)? If so, what translator is needed?

We don't know of a product that converts graphic files between Apple II and Macintosh formats. This type of conversion is one of the most difficult, as the files are usually stored as an approximation of the hardware's display capabilities, which vary greatly between different computer lines.

Though we couldn't find a product that will do this, what you're probably looking for is a utility that will convert a file into a "standard format," such as Graphic Interchange Format (GIF). Once in this format, you could move it to the Macintosh and re-translate it.

Checking the MENU software library on AppleLink for a utility to do this.

Copyright 1991 Apple Computer, Inc.

Keywords:
Third party dot matrix impact printers need to receive a Carriage Return within a control code in order to set print densities to certain values. Unfortunately, when a CR is sent from an Apple IIc or a Super Serial Card, the interface automatically sends a Line Feed as well. Temporarily turning off the interface's automatic LF can be done with a Control-I K. To turn automatic LF back on, use Control-I L.

The problem is, these characters may be ignored by the interface and sent to the printer instead.

There are other ways of getting back to default conditions on a printer, such as sending a 'RESET' code, or turning off/turning on the printer. The problem with this is that some printers take a long time resetting. This can be noisy and sometimes very time consuming, especially if done often.

Here is why this happens (and a solution):

The Super Serial Card (and its Apple IIc serial port equivalent) will forward control characters if preceded by a Control-I. While it's true that Control-I is the command to send to set up specific functions, in order to send the command to the card without it forwarding said command to the printer, you must send the command preceded by TWO Control-I's.

- The first Control-I alerts the card that a command it needs to operate on is forthcoming.
- The second Control-I is used by the card, along with its attendant characters, as the command string, to change interface functions.

If what follows the first Control-I is not a control character, the card (firmware) forwards the next characters to the printer.

Copyright 1989 Apple Computer, Inc.

Keywords:
I am having problems with my Apple II, switch boxes, and ImageWriter II. What actually is the difference between the ImageWriter and the ImageWriter II? Is there solution guaranteed to work? Do you know of anybody who is having success with ImageWriter IIs and switch boxes?

The workaround is to use XON/XOFF handshaking.

Following is an explanation of what happens when switching between an Apple IIIGS and an Apple IIe. Also included is an explanation of why this may not be a problem with ImageWriters, and why a MicroBuffer may cure this as well.

Set-Up:

Our configuration to test this problem was an Apple IIe equipped with a Super Serial Card, an Apple IIIGS, and an ImageWriter II, along with two commercial switch boxes. Line status was monitored with a Data Specification RS-232 Break-Out box. A Fluke 8050A Digital Multi-Meter was used to measure the voltage levels. Software used was AppleWriter II with the same file open on both systems.

The Test:

When switching between the systems, transitions were noted on the Transmit line, which caused DTR from the printer to go into the high state, effectively shutting off communication with the connected computer. If the printer does a reset in between the systems, the now-connected system prints correctly. If there is no reset when switching, it is necessary to reset the printer by either deselecting/selecting, as you stated, or by powering off the printer, and powering it on again. Either of these actions resets the DTR line and re-establishes communications with the computer.

Our first thought was to use a switch box with a make-before-break switch. The reason this would not work with Apple IIe and Apple IIIGS systems connected is the difference in voltage levels between the systems. The Apple IIIGS system output device, AMD 26LS30, is supplied with +/-5VDC, while the Super Serial Card output device, TI 75189, is provided with +/-12VDC. This means that the Apple IIIGS outputs -4.7 volts for a "Low" signal while the Apple IIe outputs -9.7 volts. When the switch is thrown from one position to the other, here's what happens:

```
Ground Level ________ ___________
-4.7 __/\ /______
\ / __ __
-9.7 ___ ___
```

These voltage levels can cause a transition on the Transmit line, effectively shutting off communication with the connected computer. If the printer does a reset in between the systems, the now-connected system prints correctly. If there is no reset when switching, it is necessary to reset the printer by either deselecting/selecting, as you stated, or by powering off the printer, and powering it on again. Either of these actions resets the DTR line and re-establishes communications with the computer.

Our first thought was to use a switch box with a make-before-break switch. The reason this would not work with Apple IIe and Apple IIIGS systems connected is the difference in voltage levels between the systems. The Apple IIIGS system output device, AMD 26LS30, is supplied with +/-5VDC, while the Super Serial Card output device, TI 75189, is provided with +/-12VDC. This means that the Apple IIIGS outputs -4.7 volts for a "Low" signal while the Apple IIe outputs -9.7 volts. When the switch is thrown from one position to the other, here's what happens:
GS-> IIe   IIe-> IIGS

With the switch type a break-before-make, when the switch opens between contacts, the voltage level rises to Ground, then drops to a Low level again. This positive transition to Ground causes the printer to see either a start bit or a DSR level shift from the computer, which then sets DTR false. If the switch box is a make-before-break switch, there would be current flow from the Apple IIe into the Apple IIGS output because of the different voltage level in the output "Low" signal, which could cause damage to the interface chips in the Apple IIGS.

XON/XOFF works because the printer sends/receives the XON/XOFF handshaking over the normal data communications lines, pins 2 and 3, and even though these lines are affected by the level transitions caused by the switch action, these transitions are not recognized as XON/XOFF by the printer or the computer. Because the equipment doesn't see these transitions as requests to halt data flow, there is no attendant response to incorrect data by the printer, and the information flow continues.

The ImageWriter has 75189 receiver chips installed, functionally equivalent to the 1489 Line Receiver, which are much less sensitive to level transitions because they are designed to operate at lower frequency limits. This causes them to be much more tolerant of the level transitions that occur during the actual time of the switch. ImageWriter IIIs have 26LS32s for receivers. They are designed for higher speed use, and thus are much more sensitive to the level transitions occurring. This is our interpretation of why this problem does not exist with the ImageWriter.

A MicroBuffer might cure this problem because the ImageWriter II responds to the level transitions occurring during the switch time, but when this transition is sent to a buffer, it knows it is not data, so it ignores the change in potential between connections.

To use XON/XOFF with older software, it is necessary to use a pre-boot program to set up the Super Serial Card before using the software. On the Apple IIGS, if you cannot gain access to the Control Panel from within the application, the pre-boot needs to be used there, too.

The pre-boot program should look like this in DOS 3.3 or ProDOS:

10 D$=CHR$(4)
20 PRINT D$;"PR#1"
30 PRINT CHR$(9);"X E";CHR$(13)
40 PRINT D$;"PR#0"

Enter this short program into the system in immediate mode prior to starting up the systems, or save it on disk as either a HELLO (DOS 3.3) or STARTUP (ProDOS) program to run before the software boots.

Bottom Line
------------

Change the ImageWriter II to XON/XOFF handshaking by setting SW 2-3 Open, and the problem of not being able to print from multiple systems should vanish. It is less convenient, but we have not been able to make the setup fail using this method.

Copyright 1989 Apple Computer, Inc.

Keywords:
I'm having a problem in setting up a lab network using a Macintosh SE/30 as a server, with a combination of Apple II GS and Apple IIe workstations. I am also using Apple II Setup v2.0.1.

I get the following error message when I try to log on to Aristotle as Administrator from an Apple II GS: "an error occurred loading the file /volumename/System/System.Setup/Cdev.Init".

When I try using a different startup application (such as BASIC.SYSTEM), I get this message: "Bad OS ver 0011". I'm using version 5.0.2 to install Server Network Startup, and Server Quick Logoff.

Also, I've been getting a System Error when setting up a Macintosh SE/30 as a server and installing System 6.0.3 from the Install menu of the File Server installation disk. Reinstalling System 6.0.5 seems to cure this, however.

The problem you are seeing with Aristotle is a result of using the wrong version of the Apple II Setup. You have to use Apple II Setup v2.1 or 2.1.1, not v2.0.1, when setting up the software.

As for the problem of installing 6.0.3 from the File Server installation disk, it could be that there is something corrupted in the installation scripts for that version. Nothing you described is a wrong procedure.

Copyright 1991, Apple Computer, Inc.

Keywords:
Description: Apple II-to-IBM Host File Transfer
Header: Apple II-to-IBM Host File Transfer

This article last reviewed: 1 May 1990

TOPIC -----------------------------------------------------------

How can I transfer an ASCII file from an Apple IIe to an IBM mainframe?

I haven't been able to find any 3270 Apple II solutions. Assuming there isn't a Macintosh available, we could send the ASCII file from the Apple IIe over CompuServe or some other network to a Macintosh (or even an MS-DOS PC) connected to a mainframe. Then, we could make the ASCII-to-EBCDIC conversion and store it on the mainframe.

Are there any other solutions?

DISCUSSION ------------------------------------------------------

There are two other options. All options, including the one you mentioned, are based on file transfer from the ASCII environment to the EBCDIC environment (microcomputer to mainframe host). This file transfer is where the conversion will take place.

The first option depends on the services available from the mainframe. This method requires a mainframe-attached protocol converter that uses the XModem protocol, plus a communications package on the Apple IIe that also supports XModem. This setup should allow the Apple IIe to dial directly into the protocol converter and upload the file to the mainframe.

The second option is to dial the Macintosh or MS-DOS PC directly instead of paying for a commercial communications service. Since both computers require modems to access the commercial service, and most likely use XModem for the transfer, there should be no difficulties connecting directly to one another with their communications software and using XModem for the transfer. Once transferred from the Apple IIe to the Macintosh or PC attached to the mainframe, the file can be uploaded from the Macintosh or PC using the host's file transfer method.

Copyright 1990 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL124.TXT
### DESCRIPTION:

Apple II/II+/IIe: Cable Compatibility (9/94)

**Header:** Apple II/II+/IIe: Cable Compatibility (9/94)

Article Created: 27 September 1994

**TOPIC**

This article provides cable compatibility information for Apple computer systems and a variety of Apple peripherals.

The left column lists the peripherals, the right column lists the cable required to connect one of the following computers to it: Apple II, Apple II Plus, or the Apple IIe.

Part numbers which begin with a letter are the finished goods part number, the seven digit numbers are the service part numbers.

**DISCUSSION**

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>Cable part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppleFax Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Personal Modem</td>
<td>A2C0312/590-0555 (smoke) or A9C0314/590-0556 (w/jumper on Super Serial Card)</td>
</tr>
<tr>
<td>Apple Data Modem 2400</td>
<td></td>
</tr>
<tr>
<td>Apple Modem 300</td>
<td>A2C0354/590-0121</td>
</tr>
<tr>
<td>Apple Modem 1200</td>
<td></td>
</tr>
<tr>
<td>Apple ImageWriter II or II/L</td>
<td>A9C0314/590-0556 (smoke) or LocalTalk or A2C0312/590-0555 (w/jumper to modem)</td>
</tr>
<tr>
<td>ImageWriter LQ</td>
<td></td>
</tr>
<tr>
<td>Apple ImageWriter Printer</td>
<td>A2C0352/590-0037</td>
</tr>
<tr>
<td>Apple ImageWriter 15&quot;</td>
<td></td>
</tr>
<tr>
<td>LaserWriter, Plus, IIInt, IIIntx, IIf, IIfg</td>
<td>LocalTalk (Req. WorkStation Card)</td>
</tr>
<tr>
<td>LaserWriter Pro 600/630/810</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter NT, NTR</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter LS</td>
<td>N/A</td>
</tr>
<tr>
<td>StyleWriter &amp; StyleWriter II</td>
<td></td>
</tr>
<tr>
<td>Color StyleWriter/Color StyleWriter Pro</td>
<td></td>
</tr>
<tr>
<td>Apple LaserWriter IIsc</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal LaserWriter SC</td>
<td></td>
</tr>
<tr>
<td>AppleCD SC</td>
<td>M0206/658-8031 (SCSI System cable)*</td>
</tr>
<tr>
<td>Apple Hard Disk 20/40/80</td>
<td></td>
</tr>
</tbody>
</table>
Apple Tape Backup 40SC                         N/A
Apple Scanner
Apple Color OneScanner
Apple Color Printer

LEGEND
* Requires M3503 LL/B/658-8032 Cable Terminator and Apple II SCSI Card.

A9M0320 or A3M0025 w/590-0037 require Super Serial Card BUT A9M0302 or
A3M0025 w/590-0030 & 590-0550 doesn't (Buses Built In).

When using an ImageWriter II/LQ with the Apple IIE and cable part number 590-
0555, the jumper on the Super Serial Card must be on "Modem".

Support Information Services
Copyright 1994, Apple Computer, Inc.
Keywords: ktable, cabinfo, review

### END OF FILE A2TIL125.TXT
This article provides cable compatibility information for Apple computer systems and a variety of Apple peripherals.

The left column lists the peripherals, the right column lists the cable required to connect one of the following computers to it; Apple IIc Plus.

Part numbers which begin with a letter are the finished goods part number, the seven digit numbers are the service part numbers.

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>Cable part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppleFax Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Personal Modem</td>
<td>M0197/590-0552 (smoke)</td>
</tr>
<tr>
<td>Apple Data Modem 2400</td>
<td></td>
</tr>
<tr>
<td>Apple Modem 300</td>
<td>590-0197 &amp; 590-0341</td>
</tr>
<tr>
<td>Apple Modem 1200</td>
<td></td>
</tr>
<tr>
<td>Apple ImageWriter II or II/L</td>
<td>M0197/590-0552</td>
</tr>
<tr>
<td>ImageWriter LQ</td>
<td></td>
</tr>
<tr>
<td>Apple ImageWriter Printer</td>
<td>M0150/590-0169 &amp; 590-0553</td>
</tr>
<tr>
<td>Apple ImageWriter 15&quot;</td>
<td>A2C0352/590-0037 &amp; A9M0333/590-0550</td>
</tr>
<tr>
<td>LaserWriter, Plus, IInt, IIntx, IIf, IIG</td>
<td>N/A</td>
</tr>
<tr>
<td>LaserWriter Pro 600/630/810</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter NT, NTR</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter LS</td>
<td>N/A</td>
</tr>
<tr>
<td>StyleWriter &amp; StyleWriter II</td>
<td></td>
</tr>
<tr>
<td>Color StyleWriter/Color StyleWriter Pro</td>
<td></td>
</tr>
<tr>
<td>Apple LaserWriter IIsC</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal LaserWriter SC</td>
<td></td>
</tr>
<tr>
<td>AppleCD SC</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Hard Disk 20/40/80</td>
<td></td>
</tr>
<tr>
<td>Apple Tape Backup 40SC</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Scanner</td>
<td></td>
</tr>
<tr>
<td>Apple Color OneScanner</td>
<td></td>
</tr>
</tbody>
</table>
Apple Color Printer

Support Information Services
Copyright 1994, Apple Computer, Inc
Keywords: ktable,cabinfo,review

### END OF FILE A2TIL126.TXT
CENTRAL PROCESSING UNIT (CPU)
- Microprocessor: 4 MHz 65C02
- Clock Speed: 1 or 4 Mhz (user selectable -- press ESC key when you power the unit on)
- Address bus: 16 bits
- Address range: 65,536 bytes (64K)
- Data bus: 8 bits
- Registers (8 bit): accumulator, two index registers, stack pointer, and processor status register

MEMORY
- 128K or RAM (random-access memory), optionally expandable to 1.125 megabytes
- 32K of ROM (read-only memory), containing:
  - System monitor
  - AppleSoft BASIC interpreter
  - 80-column display firmware

TEXT DISPLAY MODES
- 80-column text (80 columns by 24 lines)
- 40-column text (40 columns by 24 lines)
- All text can appear on the screen as normal, inverse, flashing, or MouseText characters

GRAPHICS DISPLAY MODES
- Double high-resolution (560 dots horizontally by 192 dots vertically; 16 colors)
- High-resolution (280 dots horizontally by 192 dots vertically; 6 colors)
- Low-resolution (40 dots horizontally by 48 dots vertically; 16 colors)
- All graphics can be configured to allow four lines of text at the bottom of the screen.

KEYBOARD
- 63-key full-sized keyboard
- Full 128-character ASCII, including 96 uppercase and lowercase alphanumeric characters, and 32 control characters
- Special-purpose keys: shift, caps lock, control, escape, return, tab, delete,
  up arrow, down arrow, left arrow, right arrow, reset, open apple, option
- Keyboard is switchable between QWERTY and Dvorak layouts
- Includes volume slide control for speaker

DISK DRIVE
- Disk size: 3.5 inches
- Capacity: 800 kilobytes
- Recording surfaces: 2
- Tracks per surface: 80
- Blocks per disk: 1,600
- Push button for motorized eject

INTERFACES
- External disk drive port using 19-pin, D-style connector, allows a daisy-chain connection of up to three additional drives (Apple 3.5 Drive, UniDisk 3.5, and/or Apple 5.25)
- Two RS-232 serial ports with 8-pin minicircular connectors (for printer,
modem, and other accessories)
- NTSC (composite) color video, via RCA phone jack
- 15-pin, D-style connector for video expansion
- 9-pin, D-style connector for mouse, joystick, hand controllers, or other
  accessories
- Internal, 34-pin connector for memory expansion up to 1.125 megabytes
- Standard, 3-pin grounded power plug

ELECTRICAL REQUIREMENTS
- Line voltage: 90 to 130 volts AC
- Line frequency: 50 to 60 hertz
- Maximum power consumption: 20 watts continuous
- Supply voltages:
  +5 volts (±5%)
  +12 volts (±10%)
  -12 volts (±10%)

- Maximum supply currents:
  +5 volts=1.5 amps
  -5 volts= 30 milliamps
  +12 volts= 0.9 amps continuous -- 1.5 amps intermittent
  -12 volts= 100 milliamps

ENVIRONMENTAL REQUIREMENTS
- Operating temperature: 50 to 104 degrees F (10 TO 40 degrees C)
- Relative humidity: 20% to 95%

SAFETY AND EMI QUALIFICATIONS
- FCC part 15 Class B Computing Devices
- UL 11 Office Appliances and Business Equipment

SIZE AND WEIGHT
- Height: 2.5 inches (6.35 cm)
- Width: 12 inches (30.48 cm)
- Depth: 11.5 inches (29.2 cm)
- Weight: 7lb. (3.2 kg)

Included with the Apple IIc Plus package:

- Apple IIc Plus personal computer with built-in 800K disk drive
- Power cord
- Apple II System Disk
- Tutorial disk
- Owner's guide
- Apple II System Disk User's Guide
- A Touch of AppleSoft BASIC manual
- Limited warranty statement
- Packing list
Copyright 1988 Apple Computer, Inc.
Keywords: SPECSHT

### END OF FILE A2TIL127.TXT
Description: Apple IIc: 80/40 switch
Header: Apple IIc: 80/40 switch

The 80/40 switch on the Apple IIc only sets a bit in memory. While a program can read this bit and use the setting in a decision to display 80 or 40 columns, in practice, only a few programs, e.g. Apple Writer, take advantage of the switch in that way. In itself, the 80/40 switch does not force 80 column firmware on or off; only a software command like Applesoft's PR#3 or PR#0 can do that.

The 80/40 switch on the Apple IIc was designed for customers who use their television set as a monitor. A television set doesn't display 80 columns of text very legibly; 40 columns reads much better. Unfortunately, most Apple II software packages, written before the Apple IIc, don't check the bit set by the 80/40 switch.

Because the bit setting is independent from the PR#3 command, programmers can use the bit set by the 80/40 switch for features other than 80/40 column display:

```
10 TEXT:HOME:REM INITIALIZATION
100 SWITCH = PEEK(49248):REM MEMORY LOCATION FOR CURRENT SWITCH SETTING
110 VTAB 12
120 IF SWITCH > 127 THEN PRINT "80/40 SWITCH DOWN":REM OR ANYTHING ELSE
130 IF SWITCH < 128 THEN PRINT "80/40 SWITCH UP ":REM OR ANYTHING ELSE
140 GOTO 100
```

For more info, see the two-volume Apple IIc (16K ROM) Technical Reference Manual, pages 5 and 77 of Volume I and page 128 of Volume II, or the one-volume manual published by Addison-Wesley, pages 5, 80, and 342.

Apple Technical Communications

Keywords:
This article provides cable compatibility information for Apple computer systems and a variety of Apple peripherals.

The left column lists the peripherals, the right column lists the cable required to connect the Apple IIc.

Part numbers which begin with a letter are the finished goods part number, the seven digit numbers are the service part numbers.

### DISCUSSION

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>Cable part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppleFax Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Personal Modem</td>
<td>A2C4505/590-0554 (smoke)</td>
</tr>
<tr>
<td>Apple Data Modem 2400</td>
<td></td>
</tr>
<tr>
<td>Apple Modem 300</td>
<td>A2C0354/590-0121</td>
</tr>
<tr>
<td>Apple Modem 1200</td>
<td></td>
</tr>
<tr>
<td>Apple ImageWriter II or II/L</td>
<td>A2C4505/590-0554 (smoke) or</td>
</tr>
<tr>
<td>ImageWriter LQ</td>
<td>590-0333 (beige)</td>
</tr>
<tr>
<td>Apple ImageWriter Printer</td>
<td>590-0191</td>
</tr>
<tr>
<td>Apple ImageWriter 15&quot;</td>
<td></td>
</tr>
<tr>
<td>LaserWriter, Plus, II, II, II, II</td>
<td>N/A</td>
</tr>
<tr>
<td>LaserWriter Pro 600/630/810</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter NT, NTR</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter LS</td>
<td>N/A</td>
</tr>
<tr>
<td>StyleWriter &amp; StyleWriter II</td>
<td></td>
</tr>
<tr>
<td>Color StyleWriter/Color StyleWriter Pro</td>
<td></td>
</tr>
<tr>
<td>Apple LaserWriter IIsc</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal LaserWriter SC</td>
<td></td>
</tr>
<tr>
<td>AppleCD SC</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Hard Disk 20/40/80</td>
<td></td>
</tr>
<tr>
<td>Apple Tape Backup 40SC</td>
<td>N/A</td>
</tr>
</tbody>
</table>
This article describes the Apple IIc computer (now discontinued).

The Apple IIc is a compact personal computer about the same size as a loose-leaf notebook, small enough to fit in a briefcase, and light enough to carry with you. It has 128K of RAM, a built-in disk drive, and a full-size keyboard. It runs thousands of programs from the Apple II software library.

Features
--------
- 128K RAM and 16K ROM
- Enhanced version of the processor used in the Apple IIe
- Built-in 5.25-inch disk drive
- Full-size keyboard that produces the entire ASCII character set in both 80-column and 40-column formats.
- Three separate color graphic modes
- Built-in speaker with volume control and a headphone jack
- Two built-in serial ports for adding a modem and printer, as well as built-in connectors for attaching a mouse, joystick, hand controllers, second disk drive, and television display
- External (floor-mounted or table-mounted) power unit
- Built-in Applesoft BASIC programming language

Support Information Services
Keywords: specsht
Is Optical Character Recognition software available for Apple II computers?

WestCode Software developed INWORDS, Optical Character Recognition (OCR) software for the Apple IIe and Apple IIGS. You use the software with hand-held scanners. It scans text at up to 3000 characters per minute.

You can find the address and phone number for this company in a separate article in the Tech Info Library.

Copyright 1991, Apple Computer, Inc.
Keywords:
Description: Apple IIe Card: Can't Use Apple II Memory Expansion Cards
Header: Apple IIe Card: Can't Use Apple II Memory Expansion Cards

Article Created: 13 August 1991
Article Last Reviewed: 23 July 1992
Article Last Updated:

TOPIC

Up to 1MB of the Macintosh LC's memory can be addressed via a "virtual" Apple IIe-style memory expansion card. Does this mean that an Apple IIe memory card can be installed in the Macintosh LC?

DISCUSSION

The Apple IIe Card uses the memory of the Macintosh LC. The Macintosh LC cannot utilize Apple II memory expansion cards, for several reasons:

- No slot available in the Macintosh LC.
- Apple II cards are too large for the Macintosh LC.
- The RAM is too slow.

Copyright 1991 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL132.TXT
TOPIC

This article gives the specifications for the Apple IIe Card for the Macintosh LC and Performa 400, 405, 430, and 450 computers. For a description of the Apple IIe Card software, search under "Apple IIe Card" and "software".

DISCUSSION

OVERVIEW

The Apple IIe Card lets the Apple Macintosh LC computer and Performa 400 series run the more than 10,000 Apple IIe programs. To assure compatibility with virtually all Apple IIe applications, the Apple IIe Card contains a 65C02 microprocessor -- the same one that's built in to the Apple IIe personal computer. The card comes with 128K RAM standard and can use up to 1MB of Macintosh LC RAM. A floppy-drive controller and connector ports for a 5.25-inch floppy disk drive and an Apple Joystick II are also included.

The Apple IIe Card takes full advantage of the Macintosh LC Performa 400 series' components, including the monitor, keyboard, mouse, and internal disk drives. With the superior resolution offered by Macintosh monitors, text and graphics generated by Apple IIe applications appear crisp and clear in all Apple IIe video modes. Regardless of the video mode, Apple IIe applications run at normal Apple IIe speeds -- or, using an optional mode of the Apple IIe Card, they can be run up to twice as fast.

SPECIFICATIONS

Central Processing Unit

* Processor: 65C02
* Clock Speed: 1.02MHz or 1.9MHz
* Address Bus: 16 bits
* Address Range: 2 banks of 65,536 bytes (128K total)
* Data Bus: 8 bits - Registers: Accumulator, two index registers, stack pointer, processor status, and program counter

Memory

* 256K of RAM (Apple IIe uses 128K of this RAM) on Apple IIe Card
* Ability to access up to 1MB of Macintosh LC RAM
* Apple IIe ROM in write-protected portions of Apple IIe Card memory

Text Display Modes

* 80 columns, 24 lines, 5x7 dot matrix
* 40 columns, 24 lines, 5x7 dot matrix
* All text can appear on the screen as normal, inverse, or MouseText characters

Graphics Display Modes
----------------------
* Low-resolution color: 16 colors, 40x48
* High-resolution color: 6 colors, 280x192
* Double high-resolution color: 16 colors, 140x192
* Double high-resolution monochrome: 560x192

Compatible Operating Systems
-----------------------------
* ProDOS
* DOS 3.3
* Pascal

Drives Supported
-----------------
* Two Apple 5.25 Drives (Platinum 5.25 Drive is the only 5.25-inch drive supported)
* One UniDisk 3.5 Drive (White 3.5-inch external)
* Internal SuperDrive

Monitors Supported
-------------------
All Macintosh LC monitors are supported (12- and 13-inch)

Keywords: SPECSHT

### END OF FILE A2TIL133.TXT
How do you specify applications on the IIe card to save on a hard drive with a ProDOS partition?

There are two different methods of specifying the hard drive when saving applications on the Apple IIe or, in this case, the Apple IIe card. A ProDOS device is designated by a physical location and by path name. The physical location on an Apple IIe is determined by the physical location of the SCSI card.

On the Apple IIe card, use the control panel to configure where the hard drive partition is going to be phantomed to. This is done for software compatibility. If you look in the Apple IIe control panel slot assignments, you will find a hard-drive icon. When you place the hard drive in a slot (virtual, not physical), you assign how the drive will be accessed when referred to in the physical convention.

In other words, the Apple IIe card doesn't have any physical slots but has to emulate the Apple IIe. You use the control panel to configure how the software will see the Apple IIe card.

In ProDOS, the commands for saving a BASIC file are:

Physical Designation

```
Save Programname, S7,D1 \<---- S7 equals slot 7, D1 = Drive 1
```

Change the slot number, Sx to your configuration.

Pathname Designation

```
Save VolumeName/ProgramName
```

If your hard drive were named ProDOS, you would type

```
Save ProDOS/ProgramName
```

ProDOS also supports nested folders. All you would have to do is to specify the complete path name, such as VolumeName/Pathname/ProgramName

These commands are all from BASIC. Within an application, you will need to determine what the program is asking for. If it asks for slot and drive, type the slot you configured the hard drive for. If it is asking for path information, type the pathname.

NOTE. The above information applies only to ProDOS. Apple DOS, the original operating system for Apple II computers, does not support hard drives.

Copyright 1992, Apple Computer, Inc.

Keywords:
TOPIC
When I'm running the Apple IIe Card, AppleWorks does not seem to access the clock correctly: the date is wrong.

DISCUSSION
Update the version of ProDOS on your AppleWorks disk to version 1.9. This version of ProDOS is shipping on the Apple II System Utilities version 3.2. Copyright 1991 Apple Computer, Inc.

Keywords:
Description: Apple IIe Emulation on an Apple III
Header: Apple IIe Emulation on an Apple III

Titan Technologies, Inc. (makers of the "Accelerator" board) have a new product called the "III PLUS II". This board allows an Apple III to emulate an Apple IIe, features standard Apple II game ports, supports Pilot, Logo, and ProDOS, and comes in 3 flavors: 16K, 64K & 128K. Scheduled release: August 15, 1984.

Titan Technologies, Inc.
P.O. Box 8050
310 W. Ann
Ann Arbor, MI 48107
(313) 662-8542
Apple Technical Communications

Keywords:

### END OF FILE A2TIL136.TXT
This article documents the benefits of the Apple IIe Enhancement Kit.

The Apple IIe Enhancement improves the performance of the Apple IIe by replacing four chips on the main circuit board.

The Enhancement has four major benefits:

1. **Apple IIc compatibility:**
   Users can take advantage of software developed for the Apple IIc.

2. **Product line consistency:**
   Apple II software can be used on both the Apple IIe and IIc.

3. **The MouseText character set** makes it easy for developers to create software that uses pull-down menus, windows, and icons.

4. **Easier programming for users:**
   a. Accepts BASIC commands in both upper- and lowercase
   b. Additional instructions in the 65C02
   c. Mini-assembler for machine language programs.

The Apple IIe Enhancement Kit, Order A2M2052, is available from Apple Authorized Dealers for users who wish to upgrade their systems.

Article Change History:

Support Information Services
Copyright 1985-94, Apple Computer, Inc.
Keywords:
We are having trouble connecting an Apple IIe configured with an Apple Parallel card to an Epson LX-86. Both the printer and Apple IIe test work okay separately. The only questionable item seems to be the cable.

We couldn't find anything on connecting the Epson LX-86 printer to an Apple IIe. However, there is an article in the Tech Info Library that may help: "Epson FX 80: Connecting it to an Apple II Plus or Apple IIe".

We recommend that you contact Epson to verify that the connection is the same. If the pinouts on the LX are different from the FX, get the pinouts of the LX from Epson. You can find the pinouts of the Parallel card in the "Peripheral Interface Guide" on page 2.4 with the DIP switch settings for the Parallel card on that page.

To find the article, search the Tech Info Library under "Epson" and "FX 80".

Copyright 1991 Apple Computer, Inc.
Keywords:
Apple IIe computers have built-in diagnostics used during manufacturing. You may invoke the diagnostics by holding down the solid-Apple key while powering the system on, or by unplugging the keyboard and turning the Apple IIe on.

If you depress both the solid and open-Apple keys while powering the system on, the same diagnostics will be run along with a high-pitched tone.

The tone or beep, included in a machine language loop that tests the computers IOU and MMU, merely indicates that the speaker I/O location does indeed work. Because the Apple II performs the IOU/MMU test a random number of times, the beep sounds a random number of times. In addition, the diagnostic routine varies between the Apple IIe, Apple IIe enhanced, and Apple IIc.

The diagnostics test the motherboard’s RAM as well as a number of unique LSI components (MMU, IOU, and other ROMs) on the board. If the keyboard is connected, the diagnostic will run through the series of individual tests once. If the keyboard is not connected, the test runs continuously until the system is powered off.

The ICs are tested in the following order: MMU, IOU, E8 ROM, E10 ROM, the eight RAM chips. "Kernel OK" appears on the screen if everything passes the diagnostic.

Note: The diagnostic stops and hangs the processor with the first error detected. There may be subsequent problems in the system; they will go undetected until the first problem is fixed.

Here are some error messages and what they mean:

**MMU**

FLAG E4:0 The Read Lang Card Bank0 switch didn't initialize properly during reset.
1 The Read Lang Card RAM switch didn't initialize properly during reset.
2 The RAMRD switch didn't initialize properly during reset.
3 The RAMWRT switch didn't initialize properly during reset.
4 The ALTZP switch didn't initialize properly during reset.
5 The C3ROM switch didn't initialize properly during reset.
6 The 80STORE switch didn't initialize properly during reset.
7 The Read Lang Card Bank0 switch won't change.
8 The Read Lang Card RAM switch won't change.
9 The RAMRD switch won't change.
A The RAMWRT switch won't change.
B The ALTZP switch won't change.
C The C3ROM switch won't change.
D The 80STORE switch won't change.

If you receive an MMU FLAG E4 error number, suspect the MMU at location E4.

**IOU**

FLAG E5:0 The 80VID switch didn't initialize properly during reset.

If you receive an IOU FLAG E5 error number, suspect the IOU at location E5.
The ALTCHAR switch didn't initialize properly during reset.
2 The TEXT switch didn't initialize properly during reset.
3 The PAGE2 switch didn't initialize properly during reset.
4 The MIXMODE switch didn't initialize properly during reset.
5 The HIRES switch didn't initialize properly during reset.
6 The 80VID switch won't change.
7 The ALTCHAR switch won't change.
8 The TEXT switch won't change.
9 The PAGE2 switch won't change.
A The MIXMODE switch won't change.
B The HIRES switch won't change.

If you receive an IOU FLAG E5 error, suspect the IOU at location E5.

Keywords:

### END OF FILE A2TIL139.TXT
This article describes the Apple IIe computer.

Features
--------
- A built-in numeric keypad
- 128K of random access memory and 16K of read-only memory, including Applesoft BASIC
- A 65C02 microprocessor
- Multipurpose memory-expansion and video slot and seven additional I/O expansion slots
- Typewriter-style keyboard, with 128 ASCII codes
- Special-purpose keys, including two programmable keys
- High-fidelity speaker
- Multipurpose hand control inputs and outputs, and cassette input and output.

The Extended 80-Column Text Card is installed in the Apple IIe's aux/video slot.

Order Number
-------------
Apple IIe 128K A2S2128
Keywords: specsht

### END OF FILE A2TIL140.TXT
I have an Apple IIe network problem. I have a printer network only with no file server. The school district wants to use the printer network with its 5.25-inch disk drives. There are about 50 labs with 20 to 25 Apple IIe systems in each lab.

I created a Chooser and Menu program "startup disk". I copied the necessary files and ATINIT to let the startup disk auto-select the networked printers. We found a public-domain menu program that requires only 1.5K. This lets the Chooser be part of the menu and lets teachers and students (especially K-3) select program without using pathnames.

I understand the AppleTalk network process and the need for the 3.5-inch drive. However, why can't we also provide support for the Apple IIe and the 5.25-inch drives?

The only issue with using 5.25-inch drives for the described environment concerns disk space. After adding ProDOS 8, Chooser.II (with associated files), and ATINIT, the remaining space is all that is available for applications and data files on the startup disk. This means that there is approximately only 60K available for applications on a disk configured with the needed resources for network printing.

For a printer choice to be retained, you need run Chooser.II only once, as long as the selected printer maintains the same name and stays available on the network. The selected printer is stored in the ATINIT file of the disk that contains Chooser.II. On subsequent startups with that disk, the printer that was previously selected becomes the default printer. Thus, Chooser.II is not required to be run every session.

If only one 5.25-inch drive is available and if applications and/or data files larger than 60K are to be used, it is possible to start up with the disk described above, then switch (without restarting) to a second disk containing the larger application or data file. We do not know of any menu programs that can launch an application on a second disk, although such a program would not difficult for an Apple II programmer to write.

However, since Chooser.II needs to run only once (unless something about the printer changes), alternate methods of launching an application from the second disk can be considered. One example would be an Applesoft program that launched the menu program. By giving the Applesoft program a simple name (like MENU) and placing it in the main directory, the students would be able to switch disks, type RUN MENU, and then select the application desired.

Copyright 1990 Apple Computer, Inc.
There are two ways to make an Apple IIe with a 5.25-inch drive into an AppleTalk workstation. The first is to start the Apple IIe systems over the network. The second method is to use a 3.5-inch disk drive temporarily to build a startup disk. (Workstation Card software is shipped only on a 3.5-inch disk.)

Option 1: Startup Across the Network
------------------------------------
With this option, there is no need for the 5.25-inch drives or the Workstation software. Just prepare the AppleShare file server for use with Apple II computers. With that done, users with Apple IIe/Workstation Card systems need only power on with no disks in the drives. The computers start across the network. Having the 5.25-inch drives lets users copy files to their own disks to take home.

Option 2: Building a Local Startup Disk
---------------------------------------
This second option uses the 5.25-inch drive for local starting. The Workstation Card software ships on a 3.5-inch disk, because of software space requirements. However, you can build a workable 5.25-inch disk. This requires use of a 3.5-inch drive while building the 5.25-inch disk. Once the 5.25-inch disk is built, the 3.5-inch drive is not necessary for running the labs. The following files are the absolute minimum for a network start-up disk:

- PRODOS
- ATINIT
- SELECTOR.SYSTEM
- System.APPS
- LOGOFF
- LOGON
- BASIC

In this configuration, SELECTOR.SYSTEM displays several applications from which to choose. However, only the "File Server Log On", "File Server Log Off", and "ProDOS BASIC" items actually run programs. All other choices display an error message. When acknowledged, the error message returns to the SELECTOR. Unfortunately, the applications list in the SELECTOR window cannot be changed.

With the above files on the 5.25-inch disk, the student may log on, log off, and enter Applesoft BASIC. If leaving the student in BASIC is satisfactory, this is all that is needed.

If Aristotle is used for a menu system, you will need a 3.5-inch drive to transfer the Aristotle programs to the server. Once the Aristotle programs have been moved to the server, saving a one-line Applesoft BASIC program to the 5.25-inch will let the student access the Aristotle program. The program should look something like:

```
10 PRINT CHR$(4);"=/PRODOS.SERVER/ARISTOTLE/MENU.D/DISPLAY"
```

Save this one-line program as "MENU". To use it, select "ProDOS BASIC" in the SELECTOR window, and the Applesoft prompt appears. Then type "-MENU" to get the Aristotle menu. Here is the structure of the Applesoft program:
PRINT CHR$(4);  -- to let an immediate command be executed
"-              -- run the program at the end of this pathname
/PRODOS.SERVER  -- name of the AppleShare file server volume
/ARISTOLE       -- name of the subdirectory containing Aristotle programs
/MENU.D          -- name of the subdirectory containing Display
/DISPLAY"        -- name of the Aristotle menu program to run

Copyright 1989 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL142.TXT
Description: Apple IIe: Video Signal "NTSC-Compatible", Not "NTSC-Compliant"
Header: Apple IIe: Video Signal "NTSC-Compatible", Not "NTSC-Compliant"

This article last reviewed: 8 May 1990

TOPIC -----------------------------------------------------------

I bought Sharp XA305 video recorders to record the video from my Apple IIe systems: however, I am able to record only black and white pictures.

I tried the same setup with an older Sears model VCR and it worked perfectly. I tried a new camcorder and got only black and white pictures again. Sharp told me that this is because the Apple IIe has a substandard NTSC signal.

Can you help?

DISCUSSION ------------------------------------------------------

The composite video signal coming from the Apple IIe is not stated to be an NTSC-compliant signal. The signal coming from the video-out port is only considered NTSC-compatible video. "Compatible" means that generally the Apple IIe video will work with an NTSC device, although it may not work in all situations. Specifically, the Apple IIe video signal should work with all NTSC display devices.

When the Apple II was first designed, economy was of great importance. The video circuitry was built with as few parts as possible. In the design process, it was discovered that certain portions of the NTSC broadcast specification could be omitted, yet still display a color image on a standard television set. The one element that affects the described situation is color burst. The Apple IIe does not contain the color burst element of the NTSC video signal. By modulating other portions of the video signal, the Apple IIe simulates this missing information and allows an image to be produced on a television. To provide a consistent color video image for video tape, this color burst needs to be present.

In summary, the Apple IIe composite video signal was designed for display proposes, not for videotaping purposes. The Apple IIe composite signal is close to the NTSC specification and allows the video signal to be displayed on television screens. This, however, does not indicate that the signal can be recorded. Since the signal is similar to the full NTSC specification, video sometimes records properly on videotape with certain VCRs. In other environments, the signal may not record at all. The capability to record a monochrome image falls between these extremes.

To have a true NTSC signal designed for videotaping, the Video Overlay Card is required.

Copyright 1990 Apple Computer, Inc.

Keywords:

### END OF FILE A2TII143.TXT
This article describes the Apple IIGS personal computer model with 1MB of RAM and ROM version 03.

**OVERVIEW**

The Apple IIGS combines the best of the previous Apple II computers: built-in accessory ports for easy addition of peripherals, as well as versatile expansion slots for system customization. The Apple IIGS also provides an easy-to-use interface similar to that of the Macintosh personal computer. It also offers powerful features such as high-resolution color graphics, 15-voice sound capability, and the advanced 65C816 microprocessor.

The Apple IIGS features GS/OS, an operating system developed exclusively to take advantage of the computer's hardware features. GS/OS offers high-performance capabilities such as rapid disk access and program launching, while increasing the system's ease of use.

**SYSTEM SOFTWARE**

The Apple IIGS Personal computer features Version 5.0.4 of Apple IIGS System Software, including the following:

* GS/OS Operating System. Exclusively created for the Apple IIGS personal computer, GS/OS dramatically increases the speed of both disk access and program launching. It also includes File System Translators (FSTs) that allow applications to directly access files created using other file systems, such as the ISO/High Sierra file system used by CD-ROM devices.

* Finder. The Apple IIGS Finder has been revised extensively to take full advantage of the GS/OS operation system. In addition to providing support for disk partitions and other new features, the Apple IIGS Finder is easier to use, faster, and more informative than the earlier version. The Finder also supports the AppleShare File Server, allowing you to share program files and data with other AppleShare users.

* Advanced Disk Utility. With its graphics-based interface, the Advanced Disk Utility makes it easy to initialize, name, erase, and partition hard disks, as well as to work with both 5.25- and 3.5-inch floppy disks.

* Installer. This program allows you to update your startup disks with the latest system software. It also lets you add special system files to customize startup disks for use with your particular system configuration.

**TECHNICAL SPECIFICATIONS**

Central Processing Unit (CPU)
APPLE II COMPUTER TECHNICAL INFORMATION

Microprocessor: 65C816
Clock speed: 2.8 or 1.02 megahertz; user- or software selectable
Address bus: 24 bits
Data bus: 8 bits
Address range: 16,777,216 bytes
16-bit registers: accumulator, two index registers, direct register, stack pointer, and program counter
8-bit registers: data bank, status
Addressable memory: up to 8MB of ROM

Memory
------
1MB RAM, expandable to 8MB
256K ROM, expandable to 1MB (ROM revision 03)

Text Display Modes
------------------
40 columns by 24 lines
80 columns by 24 lines

Graphics Display Modes
----------------------
Super-high-resolution:
* 320 dots horizontally by 200 dots vertically, in up to 16 colors per screen, from a palette of 4,069 colors
* 640 dots horizontally by 200 dots vertically, in 4 or more colors per line and 128 colors per screen from a palette of 4,096 colors.

Double-high-resolution (560 dots horizontally by 192 dots vertically; 16 colors)

Double-low-resolution (80 dots horizontally by 48 dots vertically; 6 colors)

High-resolution (280 dots horizontally by 192 dots vertically; 6 colors)

Low-resolution (40 dots horizontally by 48 dots vertically; 16 colors)

Sound Capability
----------------
An Ensoniq 32-oscillator digital synthesizer chip with dedicated 64K RAM:
* produces up to 15 voices simultaneously.
* uses external speaker or headphones via audio output jack (volume is set through the Control Panel).

Character Sets
--------------
32 letters (uppercase and lowercase), 32 special characters, 32 MouseText characters, and 12 unique characters for each of these international character sets: U.S., U.K., French, Danish, Spanish, Italian, German, and Swedish.

Keyboard
--------
* Standard typewriter-style
* 80 keys, plus 14 key numeric keypad
* Two Apple Desktop Bus (ADB) connectors (one for attaching the keyboard to the computer; one for daisy-chaining additional input devices)
* Keyboard layouts, selectable through the Control Panel:
  QWERTY (Sholes)
  Dvorak
  Nine international (all those listed under Character Sets, plus French Canadian)

Interfaces
* One multipurpose RAM/ROM memory expansion slot
* Seven general-purpose input/output slots for peripherals control cards, all fully buffered, with interrupt and DMA priority
* Serial ports: two 8-pin minicircular connectors (either can be used to connect AppleTalk devices); utilize SCC communications chip
* Disk drive port: one 19-pin D-style connector (allows daisy-chain connection of up to four Apple 3.5, Apple 5.25, or UniDisk disk drives)
* Video output
  Analog RGB, via 15-pin D-style connector
  Composite color, via RCA phone connector
* Apple Desktop Bus port; one 4-pin mini-circular connector on back of computer
* Game I/O: 9-pin D-style connector for joysticks, graphics tablet, and similar devices
* Audio
  RCA mini headphone/speaker output jack with programmable volume control
  Input/Output connector on main logic board

**Operating Systems Supported**

* GS/OS
* ProDOS 16 and ProDOS 8
* Pascal
* DOS 3.3
* CP/M (with appropriate co-processor card)

**Other Features**

* Real-time clock (set through Control Panel)
* Battery backup for Control Panel settings

**Electrical Requirements**

* Line voltage: 107 to 132 volts AC; 50 to 60 hertz
* Power consumption:
  Typical: 11 watts
  Maximum: 60 watts
* Supply voltages:
  +5 volts (3%)
  +12 volts (6%)
  -5 volts (10%)
  -12 volts (10%)
* Maximum supply currents:
  +5 volts: 2.5 amps
  +12 volts: 1.5 amps
  -5 volts: 250 milliamps
  -12 volts: 250 milliamps

**Environmental Requirements**

* Operating temperature: 32 to 113 degrees F (0 to 45 degrees C)
* Maximum temperature on power supply case: 130 degrees F (55 degrees C)
* Relative humidity: 5% to 85%

**Safety and EMI Qualifications**

* FCC Part 15 Class B Computing Devices
* CSA 22.2, NO. 154-1979
* UL 114 - Office Appliances and Business Equipment

**Dimensions and Weight (main unit only)**

* Height: 4.6 in. (11.7 cm)
* Width: 11.2 in. (28.4 cm)
* Depth: 13.7 in. (34.8 cm)
* Weight:  8.72 lb.  (3.96 kg)
Copyright 1991 Apple Computer, Inc.
Keywords:  SPECSHT

### END OF FILE A2TIL144.TXT
Description: Apple IIGS Adapter Cable: Pinouts
Header: Apple IIGS Adapter Cable: Pinouts

This article last reviewed: 19 November 1986

Mini-8	Function	DB-25
 1     | HSKo --> DSR   | 6   
 2     | HSKi <-- DTR   | 20  
 3     | TXD-> --> RXD  | 3   
 4     | SGND --- SGND | 7   
 5     | RXD- <-- TXD  | 2   
 6     | NC            | 8   
 7     | GPl* <-- RTS  | 4--+
 8     | NC CTS        | 5--+

- FGND NC FGND 1------+

Shield o----------o Shield----+

Pins 4 and 8 are jumpered on the mini-8 side of the cable; pins 4 and 5 are jumpered on the DB-25 side of the cable as are pins 1 and the shield.

To connect DB-25 cables of Apple II family peripheral cables to the serial ports of the Apple IIGS, use the Apple IIGS Peripheral Adapter Cable. This short cable's male mini-circular 8 connector plugs into the IIGS printer and phone serial ports with the female mini-circular 8 connectors on the back of the IIGS. The DB-25 connector at the other end of the adapter cable will take the DB-25 connectors of the DB-25 cables used with many Apple peripherals.

Some modems and communications software may need a DCD signal and therefore may require a modem eliminator cable in the cable configuration. The modem eliminator cable flips pins 2 with 3 and 6 with 20 and passes GPl access through to pin 8. GPl, for General Purpose input, is a high or low signal read from and determined by the connecting device.

Keywords:
I am trying to run old Apple II programs written in Integer BASIC on an Apple IIGS (original Woz version with 256K of RAM). I can list the programs with the CAT command, but can't run them.

DISCUSSION

The Apple IIGS can run Integer BASIC programs, but only under DOS 3.3, not under ProDOS. ProDOS is not compatible with Integer BASIC (though it is compatible with Applesoft BASIC).

To run your programs, first start up from a known-good DOS 3.3 System Master (or other DOS 3.3 startup disk that loads Integer BASIC in RAM).
Description: Apple IIGS Finder
Header: Apple IIGS Finder

This article last reviewed: 14 August 1987

Overview
--------
The Apple IIGS Finder is similar to the Macintosh Finder, but with enough variation to make it a uniquely Apple II product. The Apple IIGS Finder works only on an Apple IIGS with at least 512K of RAM.

Availability and Distribution
---------------------------------------
The Apple IIGS Finder was announced August 11, 1987. At that time, it was anticipated that it would be shipped on the Apple IIGS System Disk, revision 3.0, and be part of the Endless Disk Drive mailing the last week of August. The dealers, in turn, are expected to pass out the new System Disk revision freely to their customers. Technical Communications planned to send this disk out to all our audience around the same time.

The Endless Disk Drive mailing will contain two System Disks, revision 2.0 and 3.0. This is bound to cause some confusion, but it is necessary. The Finder application replaces the DeskTop program that has been on earlier versions of the System Disk, including version 2.0. Since the Apple IIGS Finder requires a 512K configuration, we might leave some people out in the cold with their 256K machines. This way, we are able to give them an up-to-date system disk with the DeskTop program on it, which will run on their machines.

This System Disk revision, including the Finder, will make its way into new Apple IIGS boxes in the beginning of September. Because of current stock on hand, these new systems including the Finder are not expected to hit dealer shelves until late September to mid-October.

If current Apple IIGS owners would like the Apple IIGS System Disk manual that is going to be bundled with the new Apple IIGS, along with the System Disk 3.0, they may order it from their dealer.

Finder Notes and Tips
---------------------
After making a working copy of the original Apple IIGS System Disk 3.0, unlock the working diskette. If you don't, the window positions and icon arrangements won't be saved to disk.

This Finder allows the user to change and save the color of each individual volume and file icon.

To reach online Help, pull down the Apple menu.

If a volume is brought online while there is another volume of the same name already on the desktop, a dialog box appears, warning the user that the volumes have the same name and that the operation is cancelled. Note, however, that the disk is not ejected, though the volume has not appeared on the desktop. It is best after receiving such a message to manually eject the disk.

If the monochrome monitor is used, be sure to select the Monochrome setting in the Apple IIGS control panel. This will use gray scaling to produce a better overall image.
When a 5 1/4" diskette is inserted into the drive, the Apple IIGS Finder doesn't know it's there -- unless you 'tell' it. There are now 5 1/4" disk drive icons on the desktop, directly below any other volumes that are online. When a 5 1/4" disk is inserted, be sure to click on the respective icon so the finder can recognize the disk.

The Put Back function in the Apple IIGS Finder is the same as the Macintosh Finder's Put Away function. This menu choice lets you return files, that you have thrown in the trash can or recently moved to the desktop, back to their original position.

A major difference between the Apple IIGS Finder and the Macintosh Finder is that the Apple IIGS version has a Preferences option in the Special menu. The Preferences dialog gives you six check-box options, all defaulted to a 'checked' state. They are:

- Display help for dimmed commands

If this option is chosen, the user can select a grayed out menu item, and get information on why that item isn't available.

- Double-check before removing files and folders

If this option is chosen, the Finder will not delete files or folders until the user confirms, via a dialog box, that the files or folders should be deleted.

- Color selected icon's background instead of its outline

This is personal preference, but the default (background color fill) is easier to see than a colored outline.

- Save Finder information onto disk

If this option is chosen, the Finder creates a file called FINDER.DATA that records the window position and size for all open windows. There is also a file called FINDER.ROOT that remembers what windows were open on the desktop when the disk was ejected. If you don't want these items recorded, deselect this check box.

- Hide the Finder's data files

When a window is opened, the default is not to display the FINDER.DATA and FINDER.ROOT files. If you want them displayed, deselect this check box.

- Do a smart block copy

When copying disks of the same size, the default mode for the Apple IIGS Finder is to copy only those blocks that contain information. This speeds up the process. If you want to copy all blocks, regardless of whether they contain information, deselect this check box.

Copyright 1989-93, Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL147.TXT
This document provides installation steps to install Aristotle on an Apple IIgs using GS/OS v 6.0

Hardware Requirements
---------------------
You will need the following hardware:

* A Macintosh Plus, SE, or member of the Classic, LC, Macintosh II, Centris or Quadra families of Macintosh computers operating in System 7 with a minimum of 4 Megabytes of random access memory (RAM) installed for Apple IIe networks.

* A Macintosh computer with 5 MB of RAM installed is recommended for Macintosh and Apple IIgs networks.

Installation
-----------

1) Preparing the hard drive.

Insert the Disk Tools disk from the system software package in the accessory kit, and turn the Macintosh on. Open the program "Apple HD SC Setup" and click "Initialize." Answer any dialogues that ask if you want to erase the hard drive. Once the hard drive has been successfully initialized, click "Quit." When you see the Macintosh desktop, choose "Restart" from the "Special" menu.

2) Installing System 7

Insert the Install disk, or the InstallMeFirst disk from the system software package in the accessory kit. Follow any prompts. Be sure to click "Customize" to install any necessary network card services (Ethernet, Router, and so on).

3) Installing AppleShare 3

a) With the Macintosh turned on, insert the File Server Disk and double-click on the Installer.
   i) Click "Customize"
   ii) Select File Server software, and Apple II Startup.

b) Check Computer's clock and set time in the "General Controls" control panel

c) Check Network Connections
   i) Choose "Chooser" from the Apple menu and make sure AppleTalk is active
ii) Choose "Control Panels" from the Apple Menu and open the Network control panel to verify correct services (Ethernet, or LocalTalk) are selected.

4) Setting Up File Service

a) Open the System Folder (not the folder titled "system") and locate the AppleShare Admin application. Select its icon by clicking on it once and choose "Make Alias" from the "File" menu. Put the alias in the Apple Menu Items folder.

b) Open the AppleShare Admin Application

c) Name the File Server (enter Admin. key and click OK)

   i) This is the name users will see in the Chooser

   ii) Admin. Key is a password you enter whenever entering the Admin. Application. Password can be up to 8 characters long.

d) Enter an Administrator's name and Password

   i) Enter any name -- Default is "Administrator"

   ii) Up to 8 characters for password -- For Administrator's personal account on the server.

e) Check options needed as server Administrator

   i) You will probably assign yourself all available options. Be sure to click "save."

5) Creating Groups

For Aristotle, there must be a group named EXACTLY "Student" and one named EXACTLY "Teacher" not "STUDENTS" and not "TEACHERS."

6) Creating Users

Assign each user to Student or Teacher as a primary group.

Only user's who's primary group is Teacher or student can log onto Aristotle

7) Allowing Guest Access

Double Click on the <any user? option in User List

Default is turned off. Click Login Enabled.

8) Enable Apple II Startup

Select "Enable Apple II Startup" from the Server Preferences in Server menu of the Admin. Program.

This will create a folder named "Users" on the root level of the server volume.

9) Selecting Volumes to Share

a) In the Administrator Application, choose "Access info" from the "Privileges" menu.

b) Select the item to be shared and click "share." The item will appeared in the shared items box on the right side of the dialog box.
c) Set privileges for the administrator. Mark check boxes: See folders, See files, Make changes.
d) Set everyone in users and groups to 'See folders'
e) Click the save button, a dialog box will appear. Select explicit.

Note: If you are going to provide Apple II Network Startup, the entire startup hard disk must be shared.

10) Open the AppleShare Server Application

11) Creating AppleShare Workstation Disk for the IIgs on 3.5 disk.
   a) Start up with the Apple IIgs GSOS 6.0 System Disk
   b) Insert a blank 800 K disk in the second 3.5-inch drive
   c) Format the blank disk and name it "Workstation"
   d) Remove the blank disk and insert GSOS v 6.0 Install Disk.
   e) Open the Installer program on the Install Disk.
   f) Click "Customize" when the Installer program appears.
   g) Eject the Install disk and insert the Workstation disk.
   h) Click "Disk" until you see "Workstation"
   i) Select "Network: AppleShare 3.5 Disk" and click "install."
   j) Swap disks until the installation is complete
   k) Set the Apple IIgs control panel (CMD-CTR-ESC).

Note: It is recommend that you use two 3.5-inch drives.

Note: 01 and 03 ROM revision Setups.

IIgs ROM 01 - Slot 1=your card
    Slot 7=AppleTalk
IIgs ROM 03 - Slot 1=AppleTalk
    Slot 7=AppleTalk

12) Restart the IIgs with the Workstation disk. (CTR-Reset, at prompt type PR#5).

13) Connecting to the server from the IIgs
   a) When Launcher window appears, click "Cancel"
   b) Choose "Control Panel" from the Apple Menu
   c) Select the AppleShare Icon on the left and the name of the server on the right.
   d) Click "OK"
   e) Type in the name and password of the Administrator and click "OK"
   f) Select the name of the volume that will be used for the Apple II software.
g) Click "OK" and close the Control Panel.

14) Installing GSOS system software

a) Choose "Launch" from the "File" menu.

b) When the Launcher window appears, insert the Install disk.

c) Click "Disk" until Install is the Active disk.

d) Select Installer and click "Open."

e) Click "Customize" when the Installer program appears.

f) Click "Disk" until the name of the Server volume appears.

g) Choose the "Network: Server Startup" and "Network: Server Quick Logoff". (Open Apple to select multiple items.)

h) Click "Install" and "Perform this Update"

15) Restarting the IIgs from the network.

a) Open the AppleShare Admin. program from the Macintosh File Server

b) Select a user from the User list (click one time, do not open)

c) Choose "Set startup info" from the "Startup" menu

d) Click "Set Startup App"

e) Click "Desktop" then double-click the name of hard drive and the open the System folder.

f) Select the file called "Setstart.Sys16"

g) Close the Set Startup window and click "OK"

h) Choose "Verify" from the "Startup" menu.

i) Click "OK"

j) Go to the IIgs and change hardware control panel (CMD-CTR-ESC) set the RAM DISK to a minimum of 256k.

k) Restart the IIgs.

l) Log in as Administrator.

** Note: Repeat steps b-i for every user who will log in from an Apple IIgs.

16) Installing Aristotle

a) Insert the Aristotle Menu Software disk in the IIgs floppy drive.

b) Drag the Aristotle folder to the server volume icon on the desktop.

This will put the folder on the root level of the hard disk. This is recommended to minimize problems with access Privileges of enclosing folder.

c) Eject the Aristotle Menu Software Disk.

d) Insert the GSOS Install Disk.
e) Open the Installer Program.

f) Click "Customize" from the Installer program window.

g) Click "Disk" until the name of the server volume appears.

h) Choose the Aristotle Update script on the Left.

i) Open the Aristotle folder on the server volume.

j) Open the Menu.D folder within that Aristotle folder.

k) Click "Install" and quit the Installer.

17) Setting Privileges on the File Server

a) For the folder named "System", NOT the Macintosh System folder.  
Verify that Owner, Group and Everyone can See Folder and See Files 
on the Folder named System. Click "Save"

b) For the "Users" Folder, verify Owner and Group and Everyone can See  
Folders. DO NOT change all enclosed folders. Click "Save"

c) The "users" folder's group should be Teacher

d) For the Aristotle folder, verify that Owner, Group, and Everyone 
can See Folders and See Files. Owner and Group should be able make  
changes.

e) The Aristotle folder's group should be Teacher. Change all enclosed  
folders. Click "Save"

18) Setting up the Startup application for each user

a) A Student User should be set to Menu.D as Startup

b) A Teacher User should be set to Menu.M as startup.

c) Verify each group from the Startup Menu and select Verify startup.

Adding New Users

After installing Aristotle, new users that have been added to the Users and  
Groups datafile will not appear in the User Menu of the Aristotle Menu 
Management Program.

They will appear after performing these steps:

1) Select the name of user.

2) Select "Verify Apple II startup Information" from the "Startup" menu in  
the Administrator Program.

3) With Verification complete, open the Users Window in Aristotle (If  
already open, close and open again.).

If these three steps do not work, check privileges and make sure the user has 
Teacher or Student assigned as a primary Group.

Article Change History:
16 Feb 1995 — Added heading for installation steps section.
03 Feb 1995 — Made corrections to AppleTalk references.
13 Jan 1995 – Made corrections to select file names appearing in article.

Support Information Services
Copyright 1993–95, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL148.TXT
TOPIC

Are there any Applesoft BASIC commands to invoke super-high-resolution graphics on an Apple IIGS?

DISCUSSION

The super-high-resolution graphics of the Apple IIGS are not directly available from Applesoft. Applesoft BASIC supports only the original Apple II low-resolution graphics (40x48 or 40x40 with 4 lines of text) and high-resolution graphics (280x192 or 280x160 with 4 lines of text).

One solution is "Iconix IIGS" from So What Software. This is a set of machine language subroutines accessible from Applesoft. They provide an interface to the super-high-resolution graphics mode of the Apple IIGS.

Other BASIC solutions for super-high-resolution graphics mode include Complete BASIC Compiler from Complete Technologies, AC/BASIC from Absoft Corporation, and Micol Advanced BASIC from Micol Systems.

The Complete BASIC Compiler is similar to Apple's GSBASIC (available from APDA) with the addition of graphics support. AC/BASIC is compatible with Microsoft's QuickBASIC language and provides graphics support similar to what is found in QuickBASIC for the Macintosh. Micol Advanced BASIC is modeled after Applesoft. Anyone familiar with Applesoft should be comfortable with Advanced BASIC.

GSBASIC from APDA provides calls to QuickDraw II. However, GSBASIC does not directly support graphics commands within the BASIC language syntax.

For more details, search the Tech Info Library under "So What Software", "Complete Technologies", "Absoft Corp", and "Micol Systems".

Copyright 1989, 1990 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL149.TXT
I have been having problems adding Apple IIGS systems to an AppleShare network under Apple IIGS System Software Update Version 5.0. Can you give me some help?

The following information applies to Apple IIGS System Software Version 5.0 and later.

Because of recent rapid development of the Apple IIGS operating system, setting up an AppleShare network with IIGS systems can be confusing. For example, the Apple II Setup disk included with AppleShare Version 2.0.1, a Macintosh disk designed to install Apple II features onto the Macintosh file server, is now obsolete. You should use the Apple II Setup disk that comes with the Apple IIGS System Software Update Version 5.0 and later. If you do the AppleShare installation with the obsolete Apple II Setup disk from AppleShare Version 2.0.1, you get the following error message when you try to start an IIGS over the network:

Cannot load (servername) /SYSTEM/SYSTEM.SETUP/CDev.Init.

To add IIGS systems to an AppleShare network properly under Version 5.0, you must buy the Apple IIGS System Software Update Version 5.0 or later. The update package includes the Apple II Setup disk and the manual "AppleTalk Network User's Guide for the Apple IIGS."

Setting up AppleShare on the Macintosh Server

Follow the steps below to set up AppleShare, so that IIGS systems start over the network.

1) Start up with the System Tools disk and run Apple HD SC Setup.
2) Initialize the server hard disk.
3) Name the hard disk using an Apple II convention; for example, "A2." (The shorter the name, the better.)
4) Install the Macintosh System Software on the server, making sure to use the latest version possible for your Macintosh computer.
5) Restart with the AppleShare Version 2.0.1 Server Installer disk. Install "AppleShare 2.0.1 Server" onto the server volume. Be sure you don't click any of the Macintosh-family installation scripts, because they will install old system software, overwriting the system software you just installed.
6) Restart from the AppleShare Server Admin disk and launch the Server Admin application.
7) Enter the administrator's key and password, name your server, and create the users and groups you need.
8) Choose Volume List from the Volumes menu and double-click the server volume. A dialog box allows you to set access privileges. Click all boxes and save enclosed folders.

9) Quit the Server Admin application and restart the Macintosh server from the Apple II Admin disk that came with the Apple IIGS System Software Update Version 5.0.

10) Launch the Installer program on the Apple II Admin disk, and install "Apple II Info" on the server volume; then quit.

11) Restart from the Server Admin disk and launch the Server Admin application.

12) From the Server menu, choose Server Info and click the Apple II feature. Then, click Save.

13) Choose Volume List from the Volumes menu and double-click the server volume. A dialog box allows you to set access privileges. Click all boxes and save enclosed folders.

14) Quit the Server Admin application and restart the server. Keep the server on-line while you perform the steps for the Apple IIGS.

Setting up AppleShare on the Apple IIGS

Follow the steps below to set up AppleShare on the IIGS systems:

1) Start up with the System.Disk that came with the Apple IIGS System Software Update Version 5.0, and format a blank 3.5-inch disk.

2) Launch the System 5.0 Installer on the System.Tools disk.

3) In the Installer, select "AppleShare on 3.5 Disk" and install it on the formatted disk. (You'll have to do some disk swapping.)

4) Shut down the IIGS and restart from the AppleShare 3.5 disk you just created.

5) Enter the administrator's name (usually "Administrator") and password. On the Graphic Control Panel under the Apple menu, click the AppleShare icon and mount the server volume.

6) Launch the Installer program on the IIGS System.Tools disk.

7) Using the Command key (Open Apple), select the following scripts: * Latest Sys. Files (No Finder)
   * Server Network Startup
   * Server Quick Logoff
   * Optional scripts (Install the scripts that the IIGS systems starting up over the network will require; for example, the SCSI driver, 5.25 driver, LaserWriter printer, or AppleTalk printer.)

8) Install the selected scripts on the server volume. The system installs over the network, and the double-arrow icon at the top left of your screen flashes. You may have to do some disk swapping, and the installation may take a fair amount of time.

9) Once the installation is complete, quit and shut off the IIGS.

10) Shut down the file server and restart it from the Server Admin disk.

11) Launch the Server Admin application.
12) Select all users, or all Apple IIGS users who you want to be able
to start up over the network.

13) Under the Apple II menu, choose Set Startup, and designate
"Finder" as the startup application. (It will be located at
/servername/System/Finder.)

14) When you're prompted for a response, allow the system to set the
prefix automatically.

15) If the users you selected will be using a network printer, select
Set Printer.

16) Choose Volume List from the Volumes menu and double-click the
server volume. A dialog box allows you to set access privileges.
Click all boxes and save enclosed folders.

17) Quit the Server Admin program and restart the file server.

18) On the IIGS units that you want to start up over the network,
reset the startup slot from the Control Panel. Systems with ROM 01
should have the printer port set to "Your Card," Slot 7 set to
"Built-in AppleTalk," and the startup slot set to "7." Systems with
ROM 03 should have the printer port set to "Built-in AppleTalk," Slot 7
set to "Built-in AppleTalk," and the startup slot set to "AppleTalk."

(Note: If you have the newer model Apple IIGS with 1MB of RAM on the
logic board, set Slot 7 to AppleTalk and EITHER slot 1 or slot 2 to
AppleTalk.)

19) Restart the Apple IIGS. It now boots over the network and prompts
you to enter a user name and password. Once you enter the name and
password, the "progress thermometer" appears, and then you see the
Apple IIGS System 5.0 desktop with the server volume icon at the top
right.

Support Information Services
Copyright 1990, 1991 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL150.TXT
Apple IIGS System Disk 5.0: Overview

This article last reviewed: 25 September 1989

Apple IIGS System Disk 5.0 is the new release of system software for the Apple IIGS computer. The main features include:

- Support for AppleShare File Server
- Speed, speed, and more speed
- A Control Panel and Control Panel devices (CDEVs)
- Multiple simultaneous installations with the Installer
- 5.25-inch Disk Driver is installed
- Increased ToolBox support

Packaging
---------
The AppleTalk Network User's Guide and AppleShare Apple II Setup Disk are included only in the System Software 5.0 update box. It will not ship with the Apple IIGS hardware system.

The Apple IIGS manual is being rewritten to include the information in the AppleTalk Network User's Guide.

System Requirements
---------------------
Apple IIGS System Disk 5.0 requires an Apple IIGS with a least 768K of memory when operating on a network. As a stand-alone system the 5.0 System Disk requires only 512K.

AppleShare and Network Support
-------------------------------
One of the main new features of Apple IIGS System Software 5.0 is GS/OS support for AppleShare File Server volumes. To use the Apple IIGS with an AppleShare File Server, you need to use version 2.0 or later of the AppleShare File Server software.

There are a number of additions to GS/OS to support AppleShare. These include:
- Booting GS/OS over the network
- Creation of a 3.5-inch Server Startup Disk
- An AppleShare FST (File System Translator) for GS/OS
- A Control Panel File Server Chooser
- Ability to auto-logon to a server
- Server Logoff
@L - Finder support of AppleShare

Network Booting
----------------
To use the Apple IIGS with an AppleShare File Server, you need to use version 2.0 or later of the AppleShare File Server software. If you have an existing AppleShare File Server you need to order:
Apple IIGS System Software version 5.0

This package includes a new "Apple II Setup Disk". This disk is a Macintosh disk that uses the Macintosh Installer to update the AppleShare File Server 2.0.1 server boot blocks to GS/OS. The boot blocks are sent to the workstation when the user requests network booting from the Apple IIGS. The disk is found in the back of the AppleTalk Network User’s Guide that ships inside the stand-alone package. After the Macintosh has been updated, you can use the Apple IIGS Installer (located on the SYSTEM.TOOLS disk) to update the SYSTEM folder on the server hard drive.

All servers on the network should be updated to the new boot blocks at the same time. You should not have boot blocks from Apple IIGS Workstation Software and System Disk 5.0 on the same network. AppleShare File Server will start shipping with the new Apple II Setup Disk mid-summer 1989.

Local Booting
-------------
Using a 3.5-inch disk can speed up server boot times. There are two methods of gaining access to an AppleShare File Server from a 3.5-inch disk:
- Local Network Startup
- AppleShare on 3.5-inch Disk

The first method performs the same function as network booting, and the second boots into the Finder.

Local Network Startup saves time and network traffic when booting an entire class of computers at the same time. The Installer update to allow faster network booting is called "Local Network Startup".

The Installer update that lets you boot into the Finder is called "AppleShare on 3.5 Disk". This type of disk is called a "workstation startup disk".

ExpressLoad
-----------
ExpressLoad is new with Apple IIGS System Software 5.0 and causes GS/OS to load the system and applications faster. ExpressLoad enhances the standard Apple IIGS System Loader and lets large applications load in a shorter time.

Developers can turn applications into ExpressLoad format using the APW tool called Express or the MPW IIGS tool called ExpressIIGS. A load file must contain resources and code segments in a specific order to be compatible with ExpressLoad. ExpressLoad checks files first to see if they are in the proper format. If the file is not in ExpressLoad format, the application is launched by the normal Apple IIGS system loader.

To save memory, ExpressLoad is loaded only on systems with more than 512K of memory. Before loading ExpressLoad, the system checks to see if there is more than 512K of memory. It will not ExpressLoad into a 512K system.

ToolBox
-------
A number of the toolbox routines have been modified to increase speed. They include "special case" code that causes QuickDraw and other routines to operate faster, based on the parameters that were passed to QuickDraw. Programmers do not have to modify their code to support any of these "special case" routines.

Control Panel and CDEVs
-----------------------
The Apple IIGS System Disk 5.0 includes the Graphics Control Panel, which is similar to the Macintosh Control Panel and Chooser. The Graphics Control
Panel is implemented as an NDA (New Desk Accessory). This type of DA is available only to Apple IIGS desktop applications.

The Graphics Control Panel is an expanded facility for controlling any number of system parameters. This functionality lets Apple and third-party developers add Control Panel "devices" (CDEVs). The Graphics Control Panel sets the same information as the existing Apple IIGS Control Panel (now called the Text Control Panel) which is accessed by using the Command-Control-Escape keys. Icons for all CDEVs look the same, letting you identify a CDEV quickly and easily.

CDEVs are located inside the SYSTEM folder, just as fonts and desk accessories:

/disk/SYSTEM/CDEV

Desk Accessories
-------------
Like the current Apple IIGS System Disk, Apple IIGS System Software 5.0 supports New Desk Accessories (NDAs). The system can now support 128 NDAs, thanks to scrolling menus. Desk Accessories are in the following folder:

/disk/SYSTEM/DESK.ACCS

SCSI Manager
-------------
The SCSI manager has been modified to provide a four-fold speed increase and provide additional SCSI support. The new driver is faster because it is loaded into memory and does not use the firmware on the card. When the driver was written, a number of new features were added:

- Full SCSI Device Support
- 7 Physical Devices
- 32 Volumes per Drive
- Full SCSI Command Support
- Access to Non-ProDOS Partitions
- Support for Magneto-Optic Drives (with a driver)

Related Articles
----------------
- Apple IIGS System Disk 5.0: ToolBox Changes
- Apple IIGS System Disk 5.0: Changes to BASIC.SYSTEM
- Apple IIGS System Disk 5.0: Disk II/Apple 5.25-inch Driver
- Apple IIGS System Disk 5.0: Advanced Disk Utility and SCSI Manager

Copyright 1989 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL151.TXT
This article summarizes changes and additions to the Apple IIGS ToolBox that result from Apple IIGS System Disk 5.0.

The Toolbox on the Apple IIGS has been modified to support a number of new features that are available to developers. (If these new features are used in a program, the user must have Apple IIGS System Software 5.0 for the software to function correctly.)

The Resource Manager and Text Edit are new for System Disk 5.0.

Additional documentation is available from APDA.

Control Manager
---------------
The Control Manager has been modified to provide support for more standard control types, including:
- StatText Control -- Display text messages in a rectangle.
- PictureControl -- Display a picture in a rectangle.
- IconButtonControl -- Icon drawn in a rectangle.
- LineEditControl -- Line Edit item used in List Manager.
- TextEditControl -- Works with new TextEdit Tool.
- PopUpControl -- Provide multiple selection buttons within scrolling lists.
- ListControl -- You can now use the control manager to manipulate items in the List Manager.

Desk Manager
------------
The classic desk accessory (CDA) menu now supports scrolling when more than thirteen CDAs are installed. CDAs are accessed by pressing COMMAND-CONTROL-ESC on the keyboard. Because of this change, selections no longer wrap around the screen. The number of CDAs is limited by disk space and boot time to install the files. You may have problems if you install more than 128 CDAs.

Event Manager
-------------
The Journaling feature is changed, to better support the ReadMouse function.

Font Manager
-------------
A problem was fixed in ChooseFont, which caused the system to hang if any update events were pending when the call was made.

Line Edit
---------
Line Edit now supports a password field, in which the characters typed by the user appear on the screen as asterisks (*).

List Manager
------------
The List Manager has been changed to make it easier for programmers to use,
and to support new controls in the Control Manager.

Memory Manager
---------------
The Memory Manager has been modified to improve system performance.

Menu Manager
------------
The Menu Manager now supports a number of new features, including:
- Outline and Shadow text styles in a menu
- scrolling menus
- pop-up menus

Note Sequencer
---------------
The Note Sequencer has been modified to make it easier for developers to create and use sequences in programs.

Print Manager
-------------
The PrChoosePrinter call has been removed. Users should use the Control Panel to select printers. If an application makes this call, a dialog appears on the screen telling the user to use the Control Panel to select a printer. When printing in draft mode to a text printer, the driver translates QuickDraw II commands into command sequences for the printer.

QuickDraw II
------------
QuickDraw II has been modified to function faster.

Resource Manager
-----------------
The Resource Manager is an INIT file that is loaded when the Apple IIGS is started, and stays loaded when the system is running. The Resource Manager maintains the resource fork of a file. This is similar to the resource fork in the Macintosh. This is the first time the a resource fork has existed in the Apple II world. The format of the data is defined by the application. Resources are referred to by a resource type and resource ID number.

Sound Tools
-----------
Four new calls have been added to the sound tools, allowing greater flexibility when playing sounds.

Standard File
-------------
Standard File has been modified to fully support GS/OS path names. The following are GS/OS values, not the ProDOS FST values. These include:
- 13,107 files in a folder
- 254 characters in a file name (using new calls)
- 508 characters in a path name
- The List Manager is being used
- Scan of AppleShare File Server volume every 8 seconds
- Checks for write-protected volumes and folders
- Displays the lock icon next to current path name
- Calls to support multi-selection calls
- Hook so applications can draw custom list items
Text Edit
---------
This is a new feature of Apple IIGS System Software 5.0. It provides standard
text editing for any application. It can be used as a complete text editor or
as the core of a simple word processor. It is similar to Text Edit calls on
the Macintosh. The following features are included in GS TextEdit:
- Edit any amount of text that fits in memory (not 32K as in the Macintosh)
- Mouse activity for text selection (single, double, triple clicking for text,
  words, lines)
- Auto word wrap
- Cut, Copy, and Paste
- Some support of control keys for text manipulation
- Stylistic variations in the text (fonts, sizes, style, color).
- Text can contain a "ruler" to format the text
- Four types of justification
- Three kinds of Tab support
- Programmer can limit the amount of information that can be entered
- Vertical scrolling in a window
- Automatic drag selection
- It is FAST

Window Manager
--------------
Numerous changes speed things up and support the Resource Manager.

Related Articles
----------------
- Apple IIGS System Disk 5.0: Overview
- Apple IIGS System Disk 5.0: Changes to BASIC.SYSTEM
- Apple IIGS System Disk 5.0: Disk II/Apple 5.25-inch Driver
- Apple IIGS System Disk 5.0: Advanced Disk Utility and SCSI Manager
Copyright 1989 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL152.TXT
Overview
--------
Apple IIGS Workstation Software lets you connect an Apple IIGS to a LocalTalk network. This software performs the same function as the Apple II Workstation Card for the Apple IIe. The software makes it possible to start up from an AppleShare File Server 2.0 and run an Apple IIGS without disk drives attached.

The only additional hardware needed is an Apple IIGS Memory Expansion Card containing at least 512K of RAM, and a LocalTalk System Connector Kit.

Apple IIGS Setup
----------------
Before you can use the Apple IIGS on the AppleTalk Network System, you must configure the system correctly.

From the Control Panel (accessed via Open Apple-Control-Esc):

1. Be sure the Maximum RAM Disk Size is at least 256K less than the Largest Selectable. For example, if the Largest Selectable is 1024K, then set the Maximum RAM Disk Size to 768K or less. The default value of 0K is best if you plan to run any Apple IIGS specific programs.

<table>
<thead>
<tr>
<th>Control Panel</th>
<th>RAM Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Minimum RAM Disk Size:</td>
<td>0K</td>
</tr>
<tr>
<td>X Maximum RAM Disk Size:</td>
<td>0K</td>
</tr>
<tr>
<td>Largest Selectable</td>
<td>1024K-</td>
</tr>
<tr>
<td>RAM Status-</td>
<td></td>
</tr>
<tr>
<td>RAM Disk Size:</td>
<td>0K</td>
</tr>
<tr>
<td>Total Ram in Use:</td>
<td>84K</td>
</tr>
<tr>
<td>Total Free RAM:</td>
<td>1195K</td>
</tr>
</tbody>
</table>

(The numbers following Total RAM in Use and Total Free RAM will vary, depending on phase of startup process.)

2. Set Slot 1 or Slot 2 to "Your Card" (Slot 1 is recommended).
   - If slot 1 = "Your Card", plug LocalTalk connector into the Printer Port.
   - If slot 2 = "Your Card", plug LocalTalk connector into the Modem Port.

3. Set Slot 7 to "Built In AppleTalk"

4. Set Startup to Slot 7
Control Panel

Slots

- Slot 1: Your Card
- X Slot 2: Modem Port
- X Slot 3: Built-in Text Display
- X Slot 4: Mouse Port
- X Slot 5: Smart Port
- X Slot 6: Disk Port
- Slot 7: Built-in AppleTalk

Startup Slot: 7

5. Exit the Control Panel. If you had to change the RAM Disk settings, you must POWER DOWN (with the power switch). This will reset the RAM Disk to the setting you have selected. It does not change RAM disk values until power down. This way, you can restart without loss of RAM Disk contents.

Keywords:

### END OF FILE A2TIL153.TXT
Description: Apple IIIGS: 5.25" System Utilities

To organize a user's disks, the Apple IIIGS System Utilities program formats and copies disks and can copy, rename, and delete files, performing most of these functions on 4 of the Apple II operating systems: DOS 3.3, ProDOS, Pascal, and CP/M. Distributed on a 3 1/2" disk, the program works only on the Apple IIIGS.

You can create a 5 1/4" floppy disk version of the program using the System Utilities in the following steps:

1. Format a 5 1/4" disk
2. Copy these 5 files from System Utilities to the 5 1/4" disk:
   a. P8
      -- This is ProDOS - found in the SYSTEM sub-directory.
   b. SYSUTIL.SYSTEM *
   c. GSSU0 *
   d. GSSU1 *
   e. GSSUE1 *

      * These 4 files comprise the System Utilities program, and can be found in the SYS.UTILS sub-directory. They must be kept in the same directory.
3. Rename the file 'P8' to 'PRODOS'

System Utilities may now be booted from the floppy disk. The files take up around 180 blocks and leave about 100 blocks for extra file storage.

Apple Technical Communications

Keywords:

### END OF FILE A2TIL154.TXT
### FILE: A2TIL155.TXT

**Description:** Apple IIgs: Cable Compatibility (10/94)

**Header:** Apple IIgs: Cable Compatibility (10/94)

**Article Created:** 27 September 1994

**Article Reviewed/Updated:** 27 October 1994

**TOPIC**

This article provides cable compatibility information for Apple computer systems and a variety of Apple peripherals.

The left column lists the peripherals, the right column lists the cable required to connect one of the following computers to it; Apple IIgs, or the Apple IIgs upgrade.

Part numbers which begin with a letter are the finished goods part number, the seven digit numbers are the service part numbers.

**DISCUSSION**

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>Cable part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppleFax Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Personal Modem</td>
<td>M0197/590-0552 (smoke)</td>
</tr>
<tr>
<td>Apple Data Modem 2400</td>
<td></td>
</tr>
<tr>
<td>Apple Modem 300</td>
<td>A2C0354/590-0121 &amp; 590-0550</td>
</tr>
<tr>
<td></td>
<td>or 590-0197 &amp; 590-0553</td>
</tr>
<tr>
<td>Apple Modem 1200</td>
<td></td>
</tr>
<tr>
<td>Apple ImageWriter II or II/L</td>
<td>M0197/590-0552 (smoke), LocalTalk</td>
</tr>
<tr>
<td>Apple ImageWriter LQ</td>
<td>optional</td>
</tr>
<tr>
<td>Apple ImageWriter Printer</td>
<td>M0150/590-0169 &amp; 590-0553</td>
</tr>
<tr>
<td>Apple ImageWriter 15&quot;</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>A2C0352*/590-0037 &amp; A9M0333/590-0550</td>
</tr>
<tr>
<td>LaserWriter, Plus, IInt, IItxt, IIif, IIg</td>
<td>LocalTalk</td>
</tr>
<tr>
<td>LaserWriter Pro 600/630/810</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter NT, NTR</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter LS</td>
<td>*</td>
</tr>
<tr>
<td>StyleWriter &amp; StyleWriter II</td>
<td></td>
</tr>
<tr>
<td>Color StyleWriter/Color StyleWriter Pro</td>
<td></td>
</tr>
<tr>
<td>Apple LaserWriter IIsc</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal LaserWriter SC</td>
<td></td>
</tr>
<tr>
<td>AppleCD SC</td>
<td>M0206/658-8031*</td>
</tr>
<tr>
<td>Apple Hard Disk 20/40/80</td>
<td></td>
</tr>
<tr>
<td>Apple Tape Backup 40SC</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Apple Scanner
Apple Color OneScanner
Apple Color Printer

LEGEND
* Requires M3503LL/B/658-8032 Cable Terminator
* The Apple IIgs with GS/OS ver. 6.0 will support the original StyleWriter only.

A9M0320 or A3M0025 w/590-0037 require Super Serial Card BUT A9M0302 or A3M0025 w/590-0037 & 590-0550 doesn't (Buses Built In).

When using an ImageWriter II/LQ with the Apple IIe and cable part number 590-0555, the jumper on the Super Serial Card must be on "Modem".

Article Change History:
27 Oct 1994 - Indicated that StyleWriter is supported by GS/OS ver. 6.0.

Support Information Services
Copyright 1994, Apple Computer, Inc
Keywords: ktable,cabinfo,review

### END OF FILE A2TIL155.TXT
Description: Apple IIGS: Cabling Configurations

Header: Apple IIGS: Cabling Configurations

This article last reviewed: 22 September 1986

The Apple IIGS is very compatible with Apple's existing cable product line. Below you will find the possible configurations for the various Circular 8 cables.

Apple System Peripheral - 8 Cable
Product M0187 / Part 590-0340-A
Circular 8 to Circular 8

Can be used as connecting cable for the Apple IIGS to:

- ImageWriter //
- Apple Personal Modem
- Macintosh Plus (data transfer)
- Apple IIGS (data transfer)

Macintosh Peripheral - 8 Cable
Product M0185 / Part 590-0322-B
Circular 8 to DB9

Can be used as connecting cable for the Apple IIGS to:

- Macintosh 128K and 512K (data transfer)

In any other required combination, use the Apple IIGS Adapter Cable (Circular 8 to DB25 adapter) and the appropriate DB-25 Apple II type cable used on the Super Serial Card.

Keywords:

### END OF FILE A2TIL156.TXT
The Apple IIGS is capable of using all drives available for the Apple IIe, as well as drives built for the Apple IIGS, including the Disk II, Duodisk, Unidisk, Unidisk 3.5, Profile, Apple 3.5 Drive, Apple 5.25 Drive, and SCSI-20. Some of these drives may be plugged directly into the SmartPort on the back of the IIGS, while others require an interface card in one of the expansion I/O slots.

The following drives may be plugged into the SmartPort's DB-19 connector:

-- one Duodisk
-- two Unidisk 5.25 drives
-- two Unidisk 3.5 drives
-- two Apple 5.25 drives
-- two Apple 3.5 drives

Only under Prodos 16 may a combination of up to six drives be daisy-chained to the SmartPort. The chain MUST occur in the order given below and may include up to two (excepting the DuoDisk) in each of the following three categories:

-- nearest to IIGS (maximum of two):
  1. Apple 3.5 Drives
  2. Unidisk 3.5 drives

-- farthest from IIGS (maximum of two):
  3. 5.25 disk drives: Disk II's, Unidisk 5.25 drives, Apple 5.25 drives or ONE Duodisk drive

Under Prodos 8 (also known as Prodos 1.2), four drives are accessible through the SmartPort. These may be a combination of Apple 3.5 drives, Unidisk 3.5 drives, a RAM disk, and a ROM disk, under the same order restrictions as above.

The SmartPort is mapped to slot 5, so drives connected directly to the port are accessed as slot 5, drive 1 and slot 5, drive 2. When more than two drives are used under Prodos 8, or if the RAM disk is active, "phantom slots" are assigned.

To be used on the Apple IIGS, the Disk II requires a Disk II Controller Card, just as on the Apple II or Apple IIe. The drive may be accessed through the slot used for the card, most likely slot 6, in which case the two possible drives are referred to as slot 6, drive 1 and slot 6, drive 2.

A SCSI Interface Card is needed to use the Apple Hard Disk 20SC on the Apple IIGS. A Profile Interface Card must be used with a 5 or 10 Megabyte Profile, accessible by referencing the slot where the interface card resides or by the ProFile's ProDOS pathname.

The Apple IIGS control panel allows you to select the slot from which the computer will be booted, or you may choose to scan slots on bootup to find a device that is ready.
If RAM is added to the Apple IIGS in slot(s) 1-7 instead of the expansion slot -- with an Apple memory card, for instance -- will it be contiguous RAM?

It depends on the memory board used. The Apple II Memory Expansion card will not be used as contiguous RAM, but can be used as a RAM disk (in fact, both GS/OS and ProDOS automatically make it a RAM disk at startup).

Some other manufacturers make memory boards that reside in an "other" slot and maps to contiguous RAM space.

Copyright 1991, Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL158.TXT
This article describes the Apple IIGS computer.

Features
--------
- 256K of built-in RAM and 256K of additional RAM via the Apple IIGS Memory Expansion Card, which is included. The RAM is expandable to 8MB.
- A 16-bit 65C816 processor lets the Apple IIGS run more sophisticated applications, including those with Macintosh-style interface, as well as most existing Apple IIe and IIc software. With a clock speed of 2.8 instead of 1 megahertz, these programs will run up to 2.8 times faster on the IIGS.
- 128K of ROM memory expandable via the memory expansion slot up to one megabyte.
- Control Panel, which enables users to set screen colors and speaker volume.
- Detachable keyboard with 14-key numeric pad. It contains two Apple Desktop Bus ports on opposite ends; one is for connecting the keyboard to the computer, and the second is for the mouse or other ADB-compatible input devices.
- Eight international character sets can be displayed.
- Two built-in serial ports allow for easy connection of AppleTalk, a modem, printer, or other serial devices.
- Seven general purpose expansion slots are available for peripherals, in addition to a dedicated RAM/ROM slot.
- Up to 15 separate audio voices can be generated simultaneously for music, speech, and sound effects.
- Analog RGB port allows for quick connection to the AppleColor RGB Monitor; no adaptors or additional interface are required.

Benefits
--------
- Compatibility with most Apple peripherals.
- The eight expansion slots give the Apple IIGS a virtually unlimited growth path. One slot is dedicated to RAM/ROM cards, while the other seven are general-purpose peripheral-interface slots.
- The disk-drive port lets users take advantage of the 800K Apple 3.5 Drive and 143K 5.25 Drive. They can be used individually, in any combination, or with UniDisk 3.5 drives. Up to four drives can be daisy-chained from the drive port. With the addition of the Apple II SCSI Card and cable, the Apple IIGS can work with the 20MB Apple Hard Disk 20SC.

- With the AppleColor RGB Monitor, the Apple IIGS produces crisp 80-column color text; a palette of 4096 colors, with as many as 256 on screen at once, is available.

- The Apple Desktop Bus (ADB) standard allows for easy connection of multiple input devices such as a graphics table and mouse. Users can connect another ADB peripheral to the keyboard, then daisy-chain more accessories from it. Up to sixteen devices can be connected at one time.

- Access to the AppleTalk Personal Network is possible, without an interface card, via the Apple IIGS's built-in serial ports.

- New applications that use windows, pull-down menus, and other Macintosh features can be used.

- A choice of QWERTY (Sholes), Dvorak, and international keyboard layouts.

Order Number
-------------
A0012LL/A

Keywords: specsht

### END OF FILE A2TIL159.TXT
Some of the features found only on the Apple IIGS:

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>SPECIFICATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>More powerful</td>
<td>65C816</td>
<td>16-bit microprocessor has 24 bit address and 6502 compatibility</td>
</tr>
<tr>
<td>microprocessor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faster Operation</td>
<td>CPU clock speeds of 1 MHz</td>
<td>User can select either of two speeds: 1 MHz speed of 6502 or fast 2.8 MHz.</td>
</tr>
<tr>
<td></td>
<td>and 2.8 MHz</td>
<td></td>
</tr>
<tr>
<td>Memory Expansion</td>
<td>24-bit address bus</td>
<td>Expansion card can expand RAM up to as much as 8 megabytes</td>
</tr>
<tr>
<td>Detached Keyboard</td>
<td>78 keys</td>
<td>Separate keyboard includes cursor keys and numeric pad.</td>
</tr>
<tr>
<td>Apple DeskTop Bus</td>
<td>Low cost serial I/O</td>
<td>Supports detached keyboard, mouse, and other I/O devices.</td>
</tr>
<tr>
<td>RGB Video</td>
<td>R, G, B and sync</td>
<td>Provides both RGB and NTSC video outputs.</td>
</tr>
<tr>
<td>40 and 80 column</td>
<td>Text, background, and</td>
<td>Text, background, and border colors (RGB only) can be any of sixteen colors.</td>
</tr>
<tr>
<td>text in color</td>
<td>border colors (RGB only)</td>
<td></td>
</tr>
<tr>
<td>Super Hi-Res color</td>
<td>True 320x200 or 640x200</td>
<td>Improved graphics with up to 16 graphics colors per scan line-up to 256 colors on screen out of 4096.</td>
</tr>
<tr>
<td>Desktop user</td>
<td>Uses Hi-Res color graphics</td>
<td>Tool box supports desktop interface with mouse, menus, and windows.</td>
</tr>
<tr>
<td>interface</td>
<td>and mouse</td>
<td></td>
</tr>
<tr>
<td>Improved Sound</td>
<td>Ensoniq digital sound IC</td>
<td>Supports 15 independent voices (GS retains Apple II type sound)</td>
</tr>
<tr>
<td></td>
<td>with 32 oscillators</td>
<td></td>
</tr>
<tr>
<td>Control Panel</td>
<td>Built-in desk accessory</td>
<td>User may set machine parameters for display, operating speed, serial ports, disk drives, etc.</td>
</tr>
<tr>
<td>Enhanced Monitor</td>
<td>Monitor in ROM</td>
<td>Handles 16-bit and 24-bit addresses, assembles and disassembles 65C816 and 6502 instructions, performs 32-bit arithmetic, Low level I/O included</td>
</tr>
<tr>
<td>Built-in Clock</td>
<td>Time and Date provided</td>
<td>Has battery back up</td>
</tr>
<tr>
<td>Built-in Serial</td>
<td>Two standard serial ports</td>
<td>Support modems, printers, and AppleTalk. (User can still use serial card in slot)</td>
</tr>
<tr>
<td>ports</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Built-in AppleTalk  Uses one serial port  No card required. User can select either serial port to use for AppleTalk.

Built-in Disk port  Disk I/O port using custom chip  User can select built-in driveport, disk interface cards, or both.

Apple II type features found on the Apple IIIGS:

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>DESCRIPTION</th>
<th>OTHER MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6502 Instruction set</td>
<td>65816 has emulation mode for running 6502 programs</td>
<td>All Apple II</td>
</tr>
<tr>
<td>128k RAM</td>
<td>Main and aux banks, with language-card &amp; I/O spaces</td>
<td>Iic, 128 Iie</td>
</tr>
<tr>
<td>AppleSoft in ROM</td>
<td>Applesoft Basic with lower case and 80-column features</td>
<td>All Apple II</td>
</tr>
<tr>
<td>Monitor in ROM</td>
<td>Supports low level I/O and program development</td>
<td>All Apple II</td>
</tr>
<tr>
<td>40 and 80 column text</td>
<td>Black &amp; White text displays (color text on GS only)</td>
<td>Iic, Iie with 128k or 80 column card</td>
</tr>
<tr>
<td>Lo-Res Color graphics</td>
<td>48x40, 16 colors</td>
<td>All Apple II</td>
</tr>
<tr>
<td>Hi-Res Color graphics</td>
<td>280x192, 6 colors</td>
<td>All Apple II</td>
</tr>
<tr>
<td>Double Hi-Res Color graphics</td>
<td>560x192, 16 colors</td>
<td>Iic, 128k Iie</td>
</tr>
<tr>
<td>Built-in serial ports</td>
<td>Two RS232 compatible ports, for modem, printer, etc.</td>
<td>Iic (similar)</td>
</tr>
<tr>
<td>Built-in disk port</td>
<td>Using IWM chip, supports both 5.25&quot;, 3.5&quot; drives</td>
<td>Iic</td>
</tr>
<tr>
<td>Expansion slots (7)</td>
<td>Slots for peripheral I/O and expansion cards, in addition to built-in ports</td>
<td>II, II Plus, Iie</td>
</tr>
<tr>
<td>Game I/O</td>
<td>9-pin and 16-pin connectors</td>
<td>All Apple II (9 pin Iie, Iic) for paddles and joysticks</td>
</tr>
</tbody>
</table>

Keywords:

### END OF FILE A2TIL160.TXT
Description: Apple IIGS: Disabling the Control Panel
Header: Apple IIGS: Disabling the Control Panel

This article last reviewed: 12 September 1990

TOPIC -----------------------------------------------------------

How can I disable the Control Panel on the Apple IIGS?

DISCUSSION ------------------------------------------------------

The following is Electronic Learning Systems' description of Menu Master, a product that provides a way to disable the Apple IIGS Control Panel. For further information on ELS, search the Technical Information Library on "ELS".

"Menu Master is a simple menu system for the Apple II. It allows creation of customized menus and sub-menus to launch all ProDOS, GS/OS, and DOS 3.3 applications. Menu Master provides automatic pathfinding, simplifying the need to understand or manually set ProDOS paths. Menu Master has password protection, is mouse-compatible, and displays the time and date from any ProDOS clock. A utility feature enables or disables the Apple IIGS Control Panel.

"DOS 3.3 programs can now be launched and returned from, within the ProDOS operating system. DOS 3.3 software developers now have the ability to run DOS 3.3 programs on AppleShare or any ProDOS-specific environment.

"Any Apple II with 128K of memory and an 80-column display can now organize, launch and return from ProDOS, GS/OS, and DOS 3.3 applications with Menu Master. Apple IIc Plus systems can have 3.5-inch diskettes created with DOS 3.3 programs that will run on their computers.

"The network version of Menu Master is compatible with all Apple II networks including AppleShare, Corvus, ELAN, VELAN, and DIGICARD. Menu Master provides all the features of Apple's Aristotle program when used on AppleShare, but requires no memory expansion and can launch DOS 3.3 applications."

Copyright 1990 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL161.TXT
Description: Apple IIGS: Displaying in Monochrome Mode
Header: Apple IIGS: Displaying in Monochrome Mode

This article last reviewed: 6 March 1990

TOPIC

Some of my group's Apple II software applications run in color on the Apple IIGS and look terrible. (Most of the programs with the problem are written in BASIC.) Is there a routine or call for putting the Apple IIGS into monochrome mode?

DISCUSSION

What monitor are you using? The AppleColor Composite Monitor (A2M6020) or the AppleColor RGB Monitor (A2M6014)?

AppleColor Composite Monitor

There is a switch behind the front access door that turns the Composite Monitor to a green character on black background display. This will help the displayed image to appear more clearly.

Additionally, the Apple IIGS Control Panel has the Monitor CDEV for selecting color or monochrome monitor. This may help if you're using the Composite Monitor in the single-color mode. This setting affects only the composite output of the Apple IIGS. This is the only method we know for setting the Apple IIGS to monochrome mode.

AppleColor RGB Monitor

There are certain issues that affect the display on the RGB Monitor's graphics page. If the graphic images are not placed on even nibble boundaries, there will be color bleed that many consider unacceptable. On the RGB Monitor, the only solution is to rewrite the programs, with the even nibble boundary issue in mind.

Copyright 1990 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL162.TXT
Is it possible to partition the hard drive of an Apple IIGS, so one partition contains DOS 3.3 and applications and the other contains GS/OS? I tried it, and now the IIGS can't recognize DOS 3.3 floppy disks.

DOS 3.3 was created when hard disk drives were only a dream for microcomputers. Thus, DOS 3.3 and previous versions understand only the 140K 5.25-inch disks. DOS 3.3 does not understand the 3.5-inch disk and hard-disk environments. When hard disks did appear for the Apple II family and DOS 3.3 was still the operating system of choice, individual hard-drive manufacturers devised independent schemes for dividing their products into multiple 140K volumes so DOS 3.3 could work with the hard drives. ProDOS was created to overcome the limits that DOS 3.3 imposed on storage volumes.

GS/OS would require a File System Translator (FST) to recognize the 5.25-inch disks of the DOS 3.3 operating system. However, the FST would be of no assistance in providing DOS 3.3 partitions on a hard disk, because the lack of hard-disk support is a limitation of DOS 3.3 itself, not the FST. To use DOS 3.3 applications on an Apple IIGS requires restarting from a 5.25-inch DOS 3.3 disk.

Copyright 1990 Apple Computer, Inc.

Keywords:
I have the following configuration:
* Apple IIgs running GSOS 6.0.1 or GSOS 6.0
* Connected to an AppleShare 3.x server
* AppleShare 3.x server has Apple II setup 2.2 installed.

And encounter problems with the Apple IIgs will dropping off the network.
Usually within 3-5 minutes of idle time. The server window "Connected Users" will show the user connected for about 1 minute then drop them from the server. This only occurs if you boot the Apple IIgs from the server.

DISCUSSION  -----------------------------------------------

This problem is difficult to reproduce. Sometimes it will go away simply by doing a clean install of the server and GSOS software. One resolution is to upgrade to Apple II Setup 3.0. You can obtain Apple II setup 3.0 by upgrading to GSOS 6.0.1 or obtaining it from an online service or Apple Authorized Service Provider.
Note: this software comes with GSOS 6.0.1 not AppleShare 3.x. You will need to look in the Apple II area to locate the software.

Support Information Services
Copyright 1994, Apple Computer, Inc
Keywords:

### END OF FILE A2TIL164.TXT
When using Apple IIGS System Installer 5.0 it appears to put the following files into the "Root" directory: BASIC.LAUNCHER, BASIC.SYSTEM, and ICONS.

The same file BASIC.SYSTEM is also in the folder called system. Do we need both? Are they there for Apple IIGS's diskless "boot up"?

Because you mentioned diskless booting, we assume you are talking about installing Apple IIGS/OS 5.0 on the Macintosh AppleShare File Server.

The only copies of BASIC.SYSTEM and BASIC.LAUNCHER that are installed by the Server Network Startup script are those installed at the root directory. The copy of BASIC.SYSTEM in the Macintosh System Folder is installed by the Apple II Setup installer when the server is set up for use by Apple IIs. A copy is put in the System Folder so that the server will have a default startup application for all Apple II users.

It is perfectly acceptable to remove the copy of BASIC.SYSTEM in the System Folder, so long as you remember to set a startup application for each Apple II user. You should not remove those copies of BASIC.SYSTEM and BASIC.LAUNCHER located at the root directory unless there is no need for Applesoft BASIC.

Copyright 1989 Apple Computer, Inc.

Keywords:
On version 1.1 of the Apple IIGS System Disk, dated December 2, the Apple II DeskTop gives a "system error" when the desk accessory Show Text File comes to end-of-file. This doesn't happen with version 1.0, dated November 26.

Furthermore, on both versions, 1.0 and 1.1, of the system disk, this desk accessory will only show the first 32K of a text file.
Copyright 1989 Apple Computer, Inc.
Keywords:
What are the available graphics modes available on the Apple IIgs?

The Apple IIGS can perform graphics under a number of different types of graphics displays: Lo-res and Hi-res modes found on all Apple II systems, the double Hi-res mode available on the Apple IIe and IIc, and new Super Hi-Res modes.

Both Lo-res and Hi-res modes are unchanged from the Apple II, and the manual "Applesoft on the IIgs" shows the commands for using those modes. The IIgs ROM doesn't have routines for the use of double Hi-res graphics; a programmer must add assembler routines that will properly draw lines, locate points, etc., in double Hi-res mode. Commercially available packages include these routines.

Only on the Apple IIgs performs in Super Hi-Res graphics modes with a resolution of 320 X 200 or 640 X 200. Using 320 X 200 mode permits a full 16 colors per line. 640 X 200 mode can also use 16 colors per line, but each pixel is limited to a choice of 4 of the 16 colors. Both modes are supported by the Apple IIgs QuickDraw II tools. To make programming easier, screen memory is mapped contiguously in Super Hi-Res mode.

320 X 200 Super Hi-Res mode
----------------------------

Each line of pixels in 320 mode is associated with a table of 16 entries that correspond to the 16 colors to be shown on that line. Each entry represents one of the possible 4096 colors available on the Apple IIgs. There may be as many as 16 color tables defined, permitting 256 colors on the screen at one time.

Within each line, a byte determines two pixels' colors. The high 4 bits of a byte contain a number from 0 to 15, which is used as an offset into the color table for that line. The pixel mapped to that memory location will have the color found at the appropriate table location. Similarly, the low 4 bits of that byte will determine the color of the adjacent pixel.

Pixels in 320 mode are almost square. The aspect ratio in this mode is 5:6 on an Apple Monochrome Monitor, an AppleColor Monitor, or an Apple RGB Monitor.

640 X 200 Super Hi-Res Mode
-----------------------------

640 mode also allows 16 colors per line, but each pixel is limited to one of four colors (this mode is sometimes called Limited 16 Colors). As in 320 mode, each line addresses one of up to 16 color tables. However, each pixel in the line is represented by only 2 bits, so that each byte contains information about 4 pixels.

To represent 4 adjacent pixels, bits 7 and 6 choose from among colors 0 through 3 in the appropriate color palette, bits 5 and 4 choose colors 4 through 7, bits 3 and 2, from colors 8 through 11, and the last two bits choose from colors 12 through 15. Therefore, each pixel can be one of four colors, but there may be a total of 16 colors on each line.
The pixel aspect ratio in 640 mode is 5:12 on an Apple monitor, so that each pixel's height is approximately twice the width.

Color Fill Mode
---------------

The Apple IIGS can also use 320 X 200 mode with color fill. If this mode is chosen, the color zero (0) takes on a special meaning. A pixel with color 0 will have the same color as the preceding pixel, so that a series of bytes with value 80 00 00 would all be shown in the color represented by the eighth entry in the color palette. Using 0 to represent no color change limits the selection to only 15 colors per line, but does save time for the programmer.

Article Change History:

Support Information Services
Copyright 1986–94, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL167.TXT
How much memory does the Apple II High-Speed SCSI card require? I can't find anything about this in the manual.

The Apple II High-Speed SCSI card requires a minimum of 768K on the Apple IIGS computer.

Article Change History:
21 Nov 1994 - Reviewed for technical accuracy.

Keywords:
I have a customer using Z-BASIC on his Apple IIGS under ProDOS, running as an Apple IIe. Although there are no toolbox calls for accessing the Apple IIGS clock from Z-BASIC, is there a way to do this from Z-BASIC with PEEKs and POKEs or a machine language call?

DISCUSSION ---------------------------------------------

The preferred method is to use the ProDOS GET_TIME call. Note: You need ProDOS 8 version 1.2 or later to get the time on the Apple IIGS.

This method works on any Apple II running under ProDOS and with most Apple II-compatible clocks (because they all come with ProDOS patch routines). More information on the format of the GET_TIME call and other ProDOS commands is in the ProDOS Technical Reference Manual. The GET_TIME call is documented on page 71. Additional information is on page 99 and pages 104 through 106.

When the GET_TIME routine is called, the system date and time are placed into the documented locations. Using PEEKs, the data in those location can be extracted.

Copyright 1989 Apple Computer, Inc.

Keywords:
A low-resolution graphics file on the Apple IIGS can be printed from BASIC without using any special interface cards (for instance, an Apple IIGS with an ImageWriter II connected to the serial port) using Triple-Dump from Beagle Brothers (now WordPerfect Corporation).

This application lets any Apple II prints not only low-resolution, but high-resolution, double-high-resolution, and double-low-resolution files, as well as 40-column and 80-column text. Triple-Dump routines can also be used as part of BASIC programs.

To locate a vendor's address and phone numbers, use the vendor name as a search string.

Copyright 1988, 1993, Apple Computer, Inc.

Keywords:
Is it possible to print to local printers from an Apple IIGS on an Apple II network?

The network in question has an Apple IIGS and an ImageWriter II in each work area. Each of these Apple IIGS systems is networked into a central office where they share a LaserWriter IIINTX. Sometimes users need to print to the local printer, other times to the LaserWriter.

Can they do this while on the network without shutting down their machines and restarting with software locally? They are using network versions of AppleWorks with third party applications and E-mail.

DISCUSSION -------------------------------------

Printing both locally and over the network depends on the application's method of selecting a slot for printing.

AppleWorks does provide a method for assigning a printing slot, allowing three printers to be defined in the Printer Information screen. To do this:

1) Set up the printer specifications for the local ImageWriter printer in slot #1.

2) Set up an ImageWriter printer for slot #7. (This is for the ImageWriter Emulator used in the LaserWriter.)

3) Choose the desired printer by going to the Main Menu/Other Activities/Printer Information screen and selecting a new Open-Apple-H printer.

If the third party programs allow a slot choice within the program, select slot #1 for the local printer and slot #7 for the network printer.

Prior to using a slot #7 printer (the network printer), use the Chooser application to select the appropriate network printer.

(NOTE: These descriptions assume the use of the printer port on the Apple IIGS.)

Copyright 1989 Apple Computer, Inc.

Keywords:
A user is having problems printing to a LaserWriter from AppleWorks (on an Apple IIGS). He can print on letter-size paper but not legal. He has a legal tray and has set the paper length to Legal in AppleWorks. Does AppleWorks on an Apple II support legal printing from a LaserWriter?

If you print in an AppleWorks 2.0 and ProDOS 8 environment, the ImageWriter Emulator (IWEM) does not support legal-size paper; it supports only letter-size paper. IWEM is not alone; the LaserWriter Diablo 630 emulator does not support paper lengths longer than 11 inches.

However, if you try this in AppleWorks on an Apple IIGS with GS/OS environment, everything works smoothly and with the desired results. In addition, the user can select various fonts and styles in AppleWorks for more pleasing results.

Copyright 1989 Apple Computer, Inc.

Keywords:
To support the new fast mode of the Apple IIGS, ProDOS/16 version 2 handles expanded Apple IIGS capabilities, features, and operating modes:

- ProDOS/16 is designed to accept system calls from applications running in either 8-bit or 16-bit mode (the 65816 micro-processor can run in either).
- ProDOS/16 can accept system calls from anywhere in the full 16MB range of memory in the Apple IIGS, and those calls can manipulate data anywhere in memory.
- ProDOS/16 relies on a sophisticated memory management system.
- System calls must be made to ProDOS/16 in order to access system global variables such as date and time, system level, and I/O buffer addresses. ProDOS/16 does not support a global variables page.

There are major differences from ProDOS 1.1.1. ProDOS/16 not strictly upward-compatible from previous ProDOS versions. Programs written to function under ProDOS on an Apple II will not run on the IIGS under ProDOS/16 without some modifications.

ProDOS/16 functions, however, are upward-compatible:

- There is a functionally equivalent ProDOS/16 call for almost every ProDOS system call, usually with the same name.
- Calls are made in nearly the same way as with earlier ProDOS versions.
- For passing values to functions, the parameter blocks have a structure similar to (but not exactly like) earlier ProDOS.
- ProDOS/16, using the same file system as earlier ProDOS, can read from and write to any disk volume produced by ProDOS, using the same file and volume structure, both disk resident and logical.

On the Apple IIGS, ProDOS/8 and ProDOS/16 are designed to the run in tandem, as a package. Whereas ProDOS/16 takes advantage of all the Apple IIGS’s hardware and capabilities, ProDOS/8 is provided to maintain compatibility with ProDOS v1.1.1. In normal situations, you need not be concerned with which operating system is functioning; if you run an Apple IIGS application, ProDOS/16 is loaded automatically.

While most ProDOS/8 calls have functionally exact equivalents in ProDOS/16, some ProDOS/8 calls do not appear in ProDOS/16 because they are unnecessary:

- RENAME: The ProDOS/16 call CHANGE_PATH performs the same function.
- GET_TIME: Under ProDOS/16, the time and date are obtained through a call to the Miscellaneous Tools.
- SET_BUF: Under ProDOS/16, the memory manager, rather than the application, allocates file I/O buffers.
- GET_BUF: This call is unnecessary under ProDOS/16 because the OPEN call returns a handle to the file’s I/O buffer.
- ONLINE: This call is replaced in ProDOS/16 by the VOLUME call.

Under ProDOS/16, you can:

- make ProDOS/16 system calls from anywhere in memory, using ProDOS/16 parameter blocks located anywhere in memory.

- make I/O data transfers to or from anywhere in memory.

- allow limited use of named devices. With ProDOS/8, you must refer to a device by its volume name or its slot and drive number.

- support up to eight system prefixes (ProDOS/8 supports only one).

- have an unlimited number of open files (ProDOS/8 allows only 8).

- have any number of online devices (ProDOS/8 allows a maximum of 14).

  - support of at least 3 separate device protocols (ProDOS/8 supports only one block device protocol).

- extensively support named devices.

- use a volume mounting function, not in ProDOS/8, which prompts the user to mount a needed volume.

Keywords:

### END OF FILE A2TIL173.TXT
Description: Apple IIIGS: ProDOS/8
Header: Apple IIIGS: ProDOS/8

To support the old Apple II mode on the Apple IIIGS, system disks have P8, or ProDOS/8, as it is a version of ProDOS 1.1.1 made especially for Apple IIIGS, although ProDOS/8 works on an Apple IIe or Apple IIc.

ProDOS/8 handles the following Apple IIIGS capabilities, features and operating modes:

- ProDOS/8 accepts system calls from applications running in 8-bit mode only.
- ProDOS/8 accepts system calls from the lowest 64K of memory only.
- ProDOS/8 uses a simple global page bit map.
- ProDOS/8 maintains a section of memory, which can be accessed directly, that contains system global variables such as date and time, system level, and I/O buffer addresses.
- ProDOS/8 reads the Apple IIIGS clock rather than the ThunderClock.

On the Apple IIIGS, ProDOS and ProDOS/16 are designed to run in tandem, as a package. ProDOS/8 is provided to maintain compatibility with ProDOS v1.1.1. In normal situations, you need not be concerned with which operating system is functioning; ProDOS/8 is automatically loaded if you run an application designed to run under ProDOS 1.1.1 or versions earlier.

Apple Technical Communications

Keywords: 

### END OF FILE A2TIL174.TXT
In the Apple IIGS, the bus' higher 'noise' passes on to the ground traces on the ProFile interface card and, after use, corrupts the directory of the ProFile, rendering it invisible to ProDos and inaccessible to the user.

It is possible to recover the directory and make the ProFile usable again. On the report of a ProFile going bad after installation in a Apple IIGS, first see the article "Apple II ProFile Interface Card Modification for the Apple IIGS. This modification lets the card operate correctly for the directory fix. Don't try to repair a directory with an un-modified ProFile card.

For the recovery, use a disk editor program, like the ProDos MLI Exerciser program here:

1. Execute the ProDos Machine Language Interface Exerciser program with the ' - ' command and wait for the main menu.

2. From the main menu, type '80' <Return> to command a read of a block; follow that by typing in the following values from the next screen:

   Parameter Count     $03 (Default)
   Unit Number         $50 (The ProFile card's slot followed by a '0')
   Data Buffer         $00 (This value is where the block to be modified will be loaded)
   Block Number        $02 (This is the bad block to load in)

   After typing in each pair of numbers, press <Return> to go on to the next entry prompt. After pressing <Return> on the last entry, you see a message 'PRESS RETURN TO EXECUTE COMMAND', you press <Return> and then see another message 'Error $00: Call Successful'. At this point, press <Return> to get the main menu.

3. Type 'M' <Return> to modify the buffer. The default should read:

   $00
   $40

   This is the correct setting; press <Return> on each entry and press it once more to go on to modify mode. At this point, you should see a table of numbers and a blinking cursor on the entry we want to 'delete', number '55'. Now that we know that problems with the directory exist, press <ESC> to go to the main menu.

   If the '55' was not in the first position of the table, then this directory recovery procedure won't work. If the '55' was not shown at all, your ProFile possibly has a different reason for not operating.

4. Type '81' <Return> to write the block out to the disk. Press <Return> through the number entries until you reach the 'data buffer' entry. Change it to look like this:

   $01
   $40
Continue to press <Return> through the block number entries and once more to command the actual block write, after which you will see the message 'Error $00: Call Successful' will be displayed.

5. You may now reboot your system and check to see if the ProFile is now recognized. All of the data previously inaccessible should be back and usable.

For more information about using the ProDOS Exerciser Program, see the ProDOS Technical Reference manual.

Copyright 1988 Apple Computer, Inc.
Keywords: hts

### END OF FILE A2TIL175.TXT
This article describes Apple IIGS System 6.0 software and an upgraded version of HyperCard IIGS.

Apple IIGS System 6 software offers an enhanced user interface, greater speed and performance, and data exchange capabilities not available on previous Apple IIGS operating systems. HyperCard IIGS version 1.1 has been upgraded to include a Media Control stack for operating CD ROMs and videodisc players, and new HyperTalk scripting capabilities. As with original HyperCard IIGS, version 1.1 is also in color.

Apple IIGS System 6 provides similar ease-of-use and functionality now available with the System 7 Finder for the Macintosh.

Features and Benefits of Apple IIGS System 6

- Three New File System Translators
  These provide easy access to Macintosh disks, Pascal disks, and Apple II DOS 3.3 disks

- Control Panel and Desk Accessory Enhancements
  You can open control panels directly from the desktop. The software incorporates Find File and Calculator desk accessories.

- Finder Help
  You can access Finder Help through pop-up menus and keep it on screen while stepping through procedures.

- Enhanced Window Handling and Window Appearance
  It's easier to move between and manage multiple windows on a single screen.

- Two New Applications: Teach and Archiver
  Teach is a desktop text processor that enables you to jot down notes, read disk files, and create formatted or unformatted text documents. Teach also provides file import capability from ASCII, AppleWorks version 3.0, AppleWorks GS, MacWrite version 5.0 formats, and AppleWriter. Archiver offers flexible hard disk backup functions to save and restore either individual files or entire volumes.

- Media Control Toolset
  This is a new tool/driver/control panel/desk accessory combination that allows you to integrate, configure, and manage highly sophisticated multimedia effects. Use it in conjunction with HyperCard IIGS version 1.1 to optimize the toolset’s performance.

- The Universal Access Suite
  This suite (also available on Macintosh System 7 software) opens the Apple IIGS to disabled users via Video Keyboard, Easy Access, and Closeview programs.
As with the System 5 series, Apple IIGS System 6 users can network their Apple IIGS computers with each other and with Apple IIe, Macintosh, and MS-DOS computers. However, System 6 improves networking functionality via EasyMount, a new feature that allows users to mount a network server with a simple double-click command.

Apple IIGS System 6 replaces Apple IIGS System 5.0.4 for the stand-alone Apple IIGS, providing a consistent graphical interface and high performance for both the individual and networked user.

Speed and Feature Enhancements for HyperCard IIGS 1.1
-----------------------------------------------------

- Media Control Stack
  This allows control of external media devices such as laserdisc players and CD-ROM drives from within the stack. A common interface to two external devices provides control, using standard buttons or floating control panels for "Play," "Fast Fwd," and so on.

- Tune Builder Stack
  This allows you to create short original tunes by simply clicking the mouse on the stack's music staff. You can play notes in variable time, and with the voices of a large collection of instruments. You can use these tunes as enhancements to other original stacks by cutting and pasting.

- Features from Macintosh HyperCard Versions 2.0 and 2.1
  - HyperTalk extensions
  - X Windows

- The Apple IIGS SuperDrive Controller Card
  Available for the enhanced Apple IIe and Apple IIGS, this allows users to use Apple's SuperDrive, which permits the use of 1.4MB floppy disks. The SuperDrive card also operates all other Apple II 3.5 disk drives.

System Requirements
-------------------

- Apple IIGS personal computer with at least 1MB of RAM, ROM version 01 or 03 and one 3.5-inch disk drive, although configurations of 2MB of RAM and a hard drive is recommended for optimal performance.

- Networked systems require Apple IIGS computers with at least 768K RAM, ROM version 01 or 03, and appropriate LocalTalk cables.

- HyperCard IIGS version 1.1 requires an Apple IIGS personal computer with 1.5MB RAM, one 800K disk drive and hard disk or connection to a networked environment, and system software 5.0.3 or subsequent version.

Copyright 1992 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL176.TXT
Description: Apple IIgs: System Diagnostic Errors

Header: Apple IIgs: System Diagnostic Errors

This article last reviewed: 10 November 1988

Here's the currently available, though incomplete, list, with explanations, of error codes generated by the Apple IIgs when running system diagnostics for the Apple II Family (V1.0B1).

Apple IIgs error codes have the form AABBCDD.

<table>
<thead>
<tr>
<th>Error Code (AA)</th>
<th>Test</th>
<th>Test</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;RM&quot;/01</td>
<td>Checksum</td>
<td>RAM Moving Inversions</td>
<td>Softswitch</td>
</tr>
<tr>
<td>02</td>
<td>RAM Address</td>
<td>FPI Speed</td>
<td>Serial I/O</td>
</tr>
<tr>
<td>03</td>
<td>RAM Address</td>
<td>FPI Speed</td>
<td>Serial I/O</td>
</tr>
<tr>
<td>04</td>
<td>RAM Address</td>
<td>FPI Speed</td>
<td>Serial I/O</td>
</tr>
<tr>
<td>05</td>
<td>RAM Address</td>
<td>FPI Speed</td>
<td>Serial I/O</td>
</tr>
<tr>
<td>06</td>
<td>Real Time Clock</td>
<td>Battery RAM</td>
<td>Front Desk Bus</td>
</tr>
<tr>
<td>07</td>
<td>Real Time Clock</td>
<td>Battery RAM</td>
<td>Front Desk Bus</td>
</tr>
<tr>
<td>08</td>
<td>Real Time Clock</td>
<td>Battery RAM</td>
<td>Front Desk Bus</td>
</tr>
<tr>
<td>09</td>
<td>Real Time Clock</td>
<td>Battery RAM</td>
<td>Front Desk Bus</td>
</tr>
<tr>
<td>0A</td>
<td>Real Time Clock</td>
<td>Battery RAM</td>
<td>Front Desk Bus</td>
</tr>
<tr>
<td>0B</td>
<td>Real Time Clock</td>
<td>Battery RAM</td>
<td>Front Desk Bus</td>
</tr>
</tbody>
</table>

AA=06 serial test

<table>
<thead>
<tr>
<th>BB</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Register R/W</td>
</tr>
<tr>
<td>04</td>
<td>Tx Buffer empty status</td>
</tr>
<tr>
<td>05</td>
<td>Tx Buffer empty failure</td>
</tr>
<tr>
<td>06</td>
<td>All sent status fail</td>
</tr>
<tr>
<td>07</td>
<td>Rx char available</td>
</tr>
<tr>
<td>08</td>
<td>Bad data</td>
</tr>
</tbody>
</table>

AA=03 RAM test

<table>
<thead>
<tr>
<th>BBCC</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA=01</td>
<td>ROM Checksum</td>
</tr>
<tr>
<td>BB=</td>
<td>Failed checksum</td>
</tr>
<tr>
<td>DD=1</td>
<td>Bad RAM</td>
</tr>
</tbody>
</table>

AA=05 Speed

| BB= | speed stuck slow |
| BD=2 | speed stuck fast |

AA=08 Battery RAM

| BB=01 | address test failure and CC= bad address |
| BB=02 | memory failure and CC = pattern, DD = Address |

AA=02 Softswitches

| BB= | Statereg bit |
| CC= | Read softswitch address |

AA=04 Front Desk Bus

| BBCC= | Bad checksum found |
| DD=01 | FDB toolcode encountered a fatal error and no checksum computed |
AA=04  Ram Address
BB=    failed bank No
CC=    failed bit

AA=06  Clock Test
BBCCDD=not used
DD=01  a fatal error occurred after the test to within a second

AA=0A  shadow register functionality

AA=0B Mega II and VGC capability of generating interrupts.
BB=01 VBL interrupt timeout
BB=02 VBL IRQ status fail
BB=03 1/4 SEC interrupt
BB=04 1/4 SEC interrupt
BB=05 ---
BB=06 VGC IRQ
BB=07 SCAN Line
Copyright 1988 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL177.TXT
This article last reviewed: 21 April 1989

An Applesoft "PRINT TAB" statement, such as:

PRINT TAB(10);"A"; TAB(20);"B"; TAB(30);"C"

works on the Apple IIe and ImageWriter II, provided that you precede it with a Tab Enable statement. For example

PRINT CHR$(9);"T E"

However, the PRINT TAB statement (shown above) on an Apple IIGS and an ImageWriter II results in spacing 10 or 20 spaces rather than tabbing to those columns. When using PRINT TAB for screen formatting, there is no such problem.

The reason for this is that, when printing hardcopy, PRINT TAB appears to be tabbing the specified spaces from last character. For example:

50 PRINT TAB (20);"Column 20";TAB (40);"Column 40"

causes the first tab to be placed at column 20, but the second tab is placed at column 68. Here’s why. The first tab statement puts the cursor at column 20. Because the Tab Enable statement defines each tab as 9-characters wide, the tab extends from column 20 to column 28 (one character at column 20 with the remaining 8 characters pushing the last character out to column 28). When the TAB 40 statement executes, 40 spaces are added to the last cursor location (column 28), placing the cursor at column 68.

There are two ways to handle this problem on the Apple IIGS. The first way is use the HTAB statement to format columns correctly:

40 HTAB 40:PRINT "Column 40":HTAB 60: PRINT "Column 60"

Old Apple II manuals state that this is not possible, but HTAB works correctly on the Apple IIGS, both on the screen and on the printer.

Overall, TAB and HTAB work as expected on the screen. When TAB and HTAB are used for printing, three factors must be considered:

- The type of Apple II.
- The interface card through which printing takes place.
- The active printer.

Each of these variables affect the TAB and HTAB commands when used in printing.

The second way to handle this is with the "A" command. Page 92 of the "Apple IIGS Firmware Reference Manual" states that the "A" command ('A'pplesoft Tabbing) duplicates the function of the "T" command of the Super Serial Card. Issuing this command makes the TAB command work as you would expect when using a printer.

Note: The command name ("A") was changed to avoid a conflict between...
"T"erminal mode and "T"abbing.

Keywords:

### END OF FILE A2TIL178.TXT
I'm running an Apple IIGS, with GS/OS 5.02, on an AppleTalk LAN with a "II bootblocked" AppleShare server.

Can I upgrade this network to AppleTalk Phase II? I assume that if I do, my Apple IIGS computers will boot from a server in their own zone. What if I want to have two servers in one physical zone? Where will the Apple IIGS computers boot from?

AppleTalk Phase II has no effect on LocalTalk. The enhancements that Phase II provides are only for EtherNet and Token Ring.

There was an upgrade to the boot blocks for loading GS/OS on the server. This is included with GS/OS 5.02 on a new Apple II setup disk.

The Apple IIGS will boot from the first server it finds.

Copyright 1991, Apple Computer, Inc.

Keywords:
I'm having a problem getting an Apple IIGS to talk to a MicroNet SCSI 30MB HD. I have an Apple High-Speed SCSI card, MicroNet HD, and a 1MB Apple IIGS. I also have v2.0 of the High-Speed SCSI Card Utilities.

Although my Apple II SCSI Utilities see the HD, I can't get GS/OS (v5.0.2) to see the drive.

Assuming the hard drive is compatible with the Apple IIGS (check with MicroNet) here's what you need to do:

Make a new bootable System Tools disk, using the Installer from the SCSI utilities disk, and specifically install the SCSI driver from the new utilities disk that came with the SCSI card. This makes the disk realize there is a SCSI device attached. As the system starts up, it looks for SCSI devices and if it finds one that should be readable but is not, it will then ask if you want to initialize.

Make sure the slot the SCSI card is installed in is properly set in the Control Panel. (That slot should say "your card".)

Copyright 1991, Apple Computer, Inc.

Keywords:
The Video Generation Chip (VGC) supports video output from the Mega II for both Apple II graphics and Super Hi-res graphics, provides an interface to the Real Time Clock chip, supports interrupt handling, and assists disk drive interfacing.

The VGC accepts color information from the Mega II, modifies it according to the current Control Panel selections, and puts out appropriate display information for the NTSC composite video jack and the Video RBG port. The VGC accesses text, background, and border information maintained in the Text and Background Color Register and Border Color Register. 4-bit value determines each of the three color areas, so that there are 16 possible colors for each. These colors correspond to the 16 Apple II Lo-res colors.

Apple II Graphics and Text

If Apple II text mode is used, the VGC removes color information from the NTSC composite output signal, so that color fringing does not occur on a color composite monitor. If a mixed text/graphics mode is chosen, color fringing is unavoidable, since most composite monitors do not have the ability to respond quickly enough to a change in the chroma information. In this case, the bottom four lines of text will show a color fringing anomaly.

The VGC polls the Monochrome/Color Register to determine which type of video signal should be output. If monochrome has been chosen, the VGC will output appropriate dot patterns to represent the chosen colors, so that a monochrome composite monitor will display gray-scale images. An AppleColor RGB Monitor displaying double Hi-res graphics will also display gray-scale images if monochrome is selected.

Super Hi-res Graphics

After the selection of one of the new Apple IIGS Graphics modes, the VGC is responsible for implementing the color mode. It uses memory in the auxiliary 64K bank of Apple II RAM to implement Super Hi-res graphics. In this display buffer, locations $2000-$9CFF are used for pixel information, $9D00-$9DFF are pointers that determine the characteristics of each line, and $9E00-$9FFF hold color palette information.

For 640 or 320 graphics modes, each pixel may be represented respectively by either 2 or 4 bits, wherein the value is a number of a color in the appropriate color palette. Each of the 200 pointers (one for each line) stores the display mode used, the color palette associated with that line, and a flag of enabled or disabled for scan line interrupts. Each of the 16 color palettes contains information on 16 colors. Each of the colors takes two bytes: 4 bits each for the value of red, green, and blue, which allows the three primary colors can be combined in 4096 different ways.

Real Time Clock Interface

The Video Generation Chip also works as an interface between the 65816 microprocessor and the Real Time Clock Chip (RTC). A Real Time Clock register in the VGC is used as a command register for the RTC. The RTC then maintains calendar and clock information within parameter RAM.

VGC Interrupts
Two types of internal interrupts are handled by the VGC: the One-Second interrupt generated by the Real Time Clock Chip and the Scan-Line interrupt generated by scan line information in Super Hi-res mode. The status and enable states of these interrupts are found in the VGC Interrupt Register and the VGC Interrupt Clear Register. The VGC also handles one external interrupt line.

VGC Disk Register

The VGC Disk Register, used as a control register for the disk drive interface, functions in choosing the head to use and the type of drive selected.

Keywords:

### END OF FILE A2TIL181.TXT
Description: Apple III: Won't Boot AII Disk Calibrate in AII Emulation
Header: Apple III: Won't Boot AII Disk Calibrate in AII Emulation

Article Created: 11 March 1986
Article Last Reviewed: 17 July 1992
Article Last Updated:

PROBLEM DESCRIPTION: Apple II Disk Calibration Program will not boot on the Apple III in Apple II Emulation mode.

CAUSE: Peripheral cards may be interfering with the Apple II Disk Calibration program.

CURE: Power down the Apple III and remove ALL interface cards, (especially the ProFile interface card). Reboot the Apple II Emulation Disk then load and run the Apple II Disk Calibration Program.

If this cure does not resolve the problem, go back to the Word Search screen and search on the product's name and HTS and GTS to obtain a General Troubleshooting procedure.

Copyright 1988, Apple Computer, Inc.
Keywords: hts

### END OF FILE A2TIL182.TXT
Description: Apple III QuickFile: Converting Data to Macintosh
Header: Apple III QuickFile: Converting Data to Macintosh

This article last reviewed: 25 March 1988

One method of moving Apple III QuickFile data to a Macintosh involves AppleWorks running on an Apple II with both a 5.25" disk drive and a 3.5" disk drive.

1. Because Apple III SOS and Apple II ProDOS are file-compatible, AppleWorks running on an Apple II can read QuickFile files from an Apple III's 5.25" disk.

2. The AppleWorks files can then be saved to a 3.5 disk.

3. A Macintosh running AFE (Apple File Exchange) can then read, via AFE's Works-to-Works transporter, the files into Microsoft Works.

Keywords:

### END OF FILE A2TIL183.TXT
Description: Apple III Universal Parallel Interface Card (UPIC)
Header: Apple III Universal Parallel Interface Card (UPIC)

This article last reviewed: 2 November 1988

DI=Data In
DO=Data Out

PIN OUTS

20 Pin Connector

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Pin Number</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal Ground</td>
<td>11</td>
<td>Port A output DO1</td>
</tr>
<tr>
<td>2</td>
<td>Acknowledge input</td>
<td>12</td>
<td>Port A output DO2</td>
</tr>
<tr>
<td>3</td>
<td>Port B input DI0</td>
<td>13</td>
<td>Port A output DO3</td>
</tr>
<tr>
<td>4</td>
<td>Port B input DI1</td>
<td>14</td>
<td>Port A output DO4</td>
</tr>
<tr>
<td>5</td>
<td>Port B input DI2</td>
<td>15</td>
<td>Port A output DO5</td>
</tr>
<tr>
<td>6</td>
<td>Port B input DI3</td>
<td>16</td>
<td>Port A output DO6</td>
</tr>
<tr>
<td>7</td>
<td>Port B input DI4</td>
<td>17</td>
<td>Port A output DO7</td>
</tr>
<tr>
<td>8</td>
<td>Strobe output</td>
<td>18</td>
<td>Port B input DI6</td>
</tr>
<tr>
<td>9</td>
<td>Port B input DI5</td>
<td>19</td>
<td>Port B input DI7</td>
</tr>
<tr>
<td>10</td>
<td>Port A output DO0</td>
<td>20</td>
<td>Signal Ground</td>
</tr>
</tbody>
</table>

40 Pin Connector

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Pin Number</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port B output DO0</td>
<td>21</td>
<td>Port A output DO1</td>
</tr>
<tr>
<td>2</td>
<td>Port B output Do1</td>
<td>22</td>
<td>Port A output DO2</td>
</tr>
<tr>
<td>3</td>
<td>Port B output DO2</td>
<td>23</td>
<td>Port A output DO3</td>
</tr>
<tr>
<td>4</td>
<td>Port B output DO3</td>
<td>24</td>
<td>Port A output DO4</td>
</tr>
<tr>
<td>5</td>
<td>Port B output DO4</td>
<td>25</td>
<td>Port A output DO5</td>
</tr>
<tr>
<td>6</td>
<td>Port B output DO5</td>
<td>26</td>
<td>Port A output DO6</td>
</tr>
<tr>
<td>7</td>
<td>Port B output DO6</td>
<td>27</td>
<td>Port A output DO7</td>
</tr>
<tr>
<td>8</td>
<td>Port B output DO7</td>
<td>28</td>
<td>Port B input DI6</td>
</tr>
<tr>
<td>9</td>
<td>Pin removed</td>
<td>29</td>
<td>Port B input DI7</td>
</tr>
<tr>
<td>10</td>
<td>Pin removed</td>
<td>30</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>11</td>
<td>Signal Ground</td>
<td>31</td>
<td>Pin removed</td>
</tr>
<tr>
<td>12</td>
<td>Acknowledge input</td>
<td>32</td>
<td>Pin removed</td>
</tr>
<tr>
<td>13</td>
<td>Port B input DI0</td>
<td>33</td>
<td>Data ready output</td>
</tr>
<tr>
<td>14</td>
<td>Port B input DI1</td>
<td>34</td>
<td>Signal ground</td>
</tr>
<tr>
<td>15</td>
<td>Port B input DI2</td>
<td>35</td>
<td>Signal ground</td>
</tr>
<tr>
<td>16</td>
<td>Port B input DI3</td>
<td>36</td>
<td>Signal ground</td>
</tr>
<tr>
<td>17</td>
<td>Port B input DI4</td>
<td>37</td>
<td>Signal ground</td>
</tr>
<tr>
<td>18</td>
<td>Strobe output</td>
<td>38</td>
<td>Data ready ACK in</td>
</tr>
<tr>
<td>19</td>
<td>Port B input DI5</td>
<td>39</td>
<td>Signal ground</td>
</tr>
<tr>
<td>20</td>
<td>Port A output DO0</td>
<td>40</td>
<td>Signal ground</td>
</tr>
</tbody>
</table>

DATA CONFIGURATION BLOCK

Commonly used configurations for the driver .PRINTER on the SOS 1.3
Update diskette are listed in the following table.

<table>
<thead>
<tr>
<th>Printer</th>
<th>Device configuration block (DCB) values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERRMASK ERRSTAT AUTOLF CTRLWRD TIMEOUT</td>
</tr>
</tbody>
</table>
For further information on the Data Configuration Block please refer to page 19 onwards of the Universal Parallel Interface card manual.

NOTE:

The driver .PARALLEL is used for two way communications i.e. for input and output, when using the 40 pin connector. This driver has a three byte configuration block. Please refer to pages 29 onwards in the UPIC manual for more information.

Copyright 1988 Apple Computer, Inc.
Keywords: HTS,CNFG

### END OF FILE A2TIL184.TXT
The Apple II emulation mode on the Apple III is configured so that the internal drive looks like Slot 6, Drive 1 and the first external drive looks like Slot 6, Drive 2. Emulation mode can't access the third or the fourth external drive.

Apple Tech Notes

Keywords:

### END OF FILE A2TIL185.TXT
The Apple III's RGB color video outputs do NOT generate a color signal for High-Resolution Graphics in the Emulator. Apple II High-Resolution images are available only on the NTSC black and white and color video outputs.

On the left border of the high-resolution graphics screen, the dots flicker uncontrollably.

Apple III Owner's Guide, page 144

Keywords:
### Description: Apple III: Cables for Various Printers (1 of 4)

**Header:** Apple III: Cables for Various Printers (1 of 4)

Version 1.0

**Special Cables:**

APPLE III DRIVERS AID CABLE "A"
(This is the diagram for the "standard" Apple Distributed Modem Eliminator
cable; Apple Part Number A3M0019).

**Device Manufacturer and Models:**
- Apple: Daisy Wheel Printer (Apple P/N A3M0025)
- Apple: Sprint 5/45 (Apple P/N D2M0060)
- C. Itoh: F-10
- MPI: 88G
- MPI: 99G
- Comrex: CR-1
- Brother: HR-1
- Hewlett Packard: 7725
- Hewlett Packard: 7470A
- Anderson Jacobson: 832
- Anderson Jacobson: 833
- Anderson Jacobson: 841
- Qume: Sprint 11

**Pin-to-Pin Connections:**

Apple II (Male)          Serial Device (usually Female)

1 o------------------------o 1
7 o------------------------o 7
2 o------------------------o 3
3 o------------------------o 2
4 o------------------------o 8
5 o--++
8 o------------------------o 5
6 o------------------------o 20
20 o------------------------o 6

**Wiring Comments:**
Tie Apple III pins       Tie device pins
4 + 5 together           4 + 5 together

Apple III pins 4 + 5    Device pins 4 + 5
tie to device pin 8     tie to Apple III pin 8

**NOTE:** For proper operation when using the Apple III Super Serial Card (Apple
P/N A2B0044) in an Apple III make sure that switch SW 2-6 (on the card) is in
the "ON" position and that the jumper block (also on the card) is in the
"TERMINAL" Position.

Apple III Drivers Aid Cable "B"

**Device Manufacturer and Models:**
- NEC: 3500R
- NEC: 3510
- NEC: 3515
- NEC: 3520
- NEC: 3525
NEC  7710
NEC  7715
NEC  7720
NEC  7725

Pin-to-Pin Connections:

Apple III (Male)           N.E.C. Spinwriter (usually Female)
1 o------------------------o 1
2 o------------------------o 3
3 o------------------------o 2
4 o----+                    +---o 4
5 o----+                    +---o 5
6 o------------------------o 7
7 o------------------------o 7
8 o------------------------o 19
  +---o 6
  |---o 8
  +---o 20

Wiring Comments:

Tie Apple III pins        Tie device pins
4 + 5 together; they do   4 + 5 together; they do
not connect to the device not connect to the Apple III

Tie device pins
6 + 8 + 20 together; they do
not connect to the Apple III

Do NOT tie all five:
4, 5, 6, 8 + 20 together!

Note: For proper operation when using the Apple III Super Serial Card (Apple
P/N A2B0044) in an Apple III make sure that switch SW 2-6 (on the card) is in
the "ON" position and that the jumper block (also on the card) is in the
"TERMINAL" Position. Apple III Drivers Aid Cable "C" description on next
record.

Apple Technical Communications

Keywords:

### END OF FILE A2TIL187.TXT
Standard Apple II 150K game paddles cannot be used with the Apple III. A high impedance potentiometer like the Apple II paddle will not work properly connected to an Apple III port.

The analog inputs on Port A and Port B of the Apple III are designed to read a voltage between 0 and 2.4 volts and convert it to a number between 0 and 255. The schematic on page 82 of the Apple III Owner's Guide is drawn for a joystick with 5,000 ohm potentiometers. Only the bottom 20% of the potentiometer's range is used. Using the +12 volt power supply will result in the most stable readings.

The following circuit can be used if the entire range of the potentiometer is desired.

```
+12 or +5 volts
 |<
 |< Rs
 |<
 |<------ must be 2.4 volts at this point.
 |<
GC input ----< Rp (1 - 2K ohms)
 |<
 | 0 volts
```

The voltage range at the GC inputs should go from 0v to 2.4v. The value of Rs can be calculated for +5 volt systems with this formula:

$$Rs = \frac{Rp \times 2.6}{2.4}$$

For +12 volt systems use

$$Rs = \frac{Rp \times 9.6}{2.4}$$

1988

Keywords:
Description: Apple III: Interrupts and Reset on Peripheral Slots
Header: Apple III: Interrupts and Reset on Peripheral Slots

The Apple III slots can not respond to IRQ or RESET from the peripheral cards in emulation mode. There is no way around it because the hardware is different. NMI is not on the same pin as in the Apple II and will act like RESET on the Apple II.

Apple Tech Notes

Keywords:

### END OF FILE A2TIL189.TXT
Description: Apple III: Joystick Input--Apple II Game Incompatibility
Header: Apple III: Joystick Input--Apple II Game Incompatibility

This article last reviewed: 21 September 1984

Some machine language games that use the paddle inputs will not work on the Apple III. The hardware for reading the analog inputs is different, and some software will not be able to take this into account.

Also, the joystick ports on the back of the Apple III are arranged such that some games won't work properly in Emulation mode. Most joystick oriented games will use PDL (0) and PDL (1) for X-Y control. The ports on the Apple III put these signals on different connectors. Here are the Apple II Emulation Mode equivalents of the signals available on ports A and B.

<table>
<thead>
<tr>
<th>pin</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PDL (0)</td>
<td>PDL (1)</td>
</tr>
<tr>
<td>5</td>
<td>PB1</td>
<td>PB2</td>
</tr>
<tr>
<td>8</td>
<td>PDL (2)</td>
<td>PDL (3)</td>
</tr>
<tr>
<td>9</td>
<td>PB3</td>
<td></td>
</tr>
</tbody>
</table>

Copyright 1984 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL190.TXT
Many times it is desirable to have a program send selective, processed output to the printer. Both Business BASIC and Pascal have the commands to handle this chore; however, none of the language reference manuals provide an example for printing to a printer where the syntax of the commands is illustrated.

When directing output to the printer, it is important to remember that Apple III's Sophisticated Operating System (SOS) treats everything as a file. In this sense, any output, whether to a printer or diskette, is handled identically:

1. Programs pass data to SOS as files.
2. In SOS, the SOS File Manager passes the file to the appropriate device driver.
3. The device driver passes the output to the selected device.

The device driver does the job of transmitting the output in the fashion that the device requires it. Input data follows the same path, only in reverse. Understand these passes of files through the operating system. SOS and the device drivers can handle the details; you must handle the concept.

Here is an example of printing to both screen and printer from a Business BASIC program. Without the delay subroutine in line 100, everything would appear to happen at once, so we have it in the program only to improve the sense of sequence during execution.

```
10 OPEN#1, ": REM Declare the printer as a file.
20 PRINT "This is a test.": GOSUB 100
30 REM Output goes to the screen.
40 PRINT#1 "This is a test.": GOSUB 100
50 REM Output goes to File #1, the printer.
60 PRINT "This goes to the screen.": GOSUB 100
70 REM Without file specification
80 PRINT#1 "This goes to the printer."
90 CLOSE#1: END: REM Close the file ": printer" and end.
100 FOR delay = 1 to 2000: NEXT delay: RETURN
```

The program could also use ":silentype" for the printer device driver.

The separate statements OUTPUT#x and PRINT can be used in succession to direct output to device x.

For instance, to simply list a program to the printer, the following commands can be entered at the keyboard in direct mode.

```
OPEN#1, " : Notice, no quotes are needed in direct mode.
OUTPUT#1 (Routes all subsequent output to File #1)
LIST
CLOSE (CLOSE in place of CLOSE#1 will close all
 files instead of "": printer" -- with no other
 files open it's just easier to type.)
```

There are other useful commands using this concept which are variations of other familiar BASIC commands besides PRINT. They are GET#1, INPUT#1, READ#1, and WRITE#1. The Apple III can have as many as ten files open for input and output at one time, so, where "#1" is used in the examples, it could be "#7", and so on.
The following is an example of how to print both to the screen and printer from a Pascal program. Again, the delay procedure is not necessary.

```pascal
program PRINT_OUTPUT;
 var OutFile: text;

 procedure DELAY;
 var Count: integer;
 begin
 for Count := 1 to 2000 do
 end; {Delay}

 begin
 rewrite (OutFile, '.printer'); {Declare the printer}
 as a file.}
 writeln ('This is a test.'); {Output goes to the screen.}
 DELAY;
 writeln (OutFile, 'This is a test.'); {Output goes to}
 {the printer.}
 DELAY;
 writeln ('This goes to the screen.');
 DELAY;
 writeln (OutFile, 'This goes to the printer.');
 close (OutFile) {Close the file ".printer" and end.}
 end. {Print_Output}

The Apple III can have as many as ten files open for input and output at one time; "OutFile" is only one. Additional files can be declared with additional REWRITE statements.

To simply list a program to the printer, go to the Filer and transfer the text file to .PRINTER (for the Apple III) or to PRINTER: (for the Apple II and Apple IIe).

Since Pascal treats output as a file, both of these examples work with both Apple II and Apple III Pascal.
Apple Technical Communications

Keywords:

END OF FILE A2TIL191.TXT
Video Display

Text and graphics may be displayed simultaneously. Using graphics commands, you can display either of two screen buffers.

Graphics modes:
* 280 x 192, 16 colors (with some limitations)
* 280 x 192, monochromatic; -140 x 192, 16 colors
* 560 x 192, monochromatic
* All Apple II modes (in emulation)

Text modes:
* 80-column, 24-line monochromatic
* 40-column, 24-line, 16-color foreground and background
* 40-column, 24-line monochromatic

All text modes have a software-definable 128-character set (uppercase and lowercase) with normal or inverse display.

Central Processing Unit (CPU)

The custom-designed microprocessor circuitry of the Apple III uses the 6502B as its major component. Other circuitry provides extended addressing capability, relocatable stack, zero page, and memory mapping.

* Type: 6502B
* Clock Speed: 1.4 MHz average; 1.8 MHz max
* Operations per Second (8-bit): up to 750,000
* Data Bus: two 8-bit formats, combined for extended addressing
* Address Bus: 19 bits
* Address Range: 262,144 bytes (256K)
* Registers:
 Accumulator (A); Index Registers (X,Y); Stack Pointer (S); Program Counter (PC); Environmental Register (E); Bank (B); Zero Page (Z); Processor Status (P)

Memory

* 256K dynamic RAM
* 4K ROM (initialization and self-test diagnostics)

SOS (Sophisticated Operating System)

SOS handles all system I/O and can be configured to handle standard or custom I/O devices and peripherals by adding or deleting "device drivers." All languages and application programs access data through the SOS file system.

Keyboard

* 61 keys on main keyboard
* 13 keys on numeric keypad
* Full 128-Character, ASCII encoded
* All keys have automatic repeat
* Four directional-arrow keys with two-speed repeat
* Two user-definable Apple keys
* Seven other special keys: Shift, Control, Alpha Lock, Tab, Escape,
Return, Enter.

Storage Devices

* One built-in 5.25-inch, floppy-disk drive, 140K (143,360 bytes) per diskette
* You can connect three additional drives by daisy-chain cable (total: 560K on-line storage)
* You can add up to four ProFile hard-disk drives (5MB each) with plug-in interface cards

Video Output

* RCA phono connector for NTSC monochromatic composite video
* DB-15 connector for:
 * NTSC-color composite video
 * NTSC monochromatic composite video
 * RGB color video
 * Composite sync signal
 * Power-supply voltages
* Color signals appear as 16-level grey scale on monochromatic displays

Audio Output

* Built-in two-inch speaker, miniature phono jack on back panel
* Driven by 6-bit D/A converter or fixed frequency "beep" generator

Serial (Printer/Modem) Port

* RS-232C compatible, DB-25 female connector
* Software-selectable baud rate and duplex mode
* You can use one port for the Silentype printer.

Expansion Ports

* Four 50-pin expansion slots (fully buffered, with interrupt and DMA priority structure)
* Joystick/Silentype Ports: Two DB-9 connectors

Languages Available

* Apple Business BASIC
* Apple III Pascal
* Apple III COBOL

Emulation Mode

This mode provides hardware emulation of 48K Apple II Plus. It can run most Apple II programs, with the exception of Pascal and FORTRAN, without modification.

Electrical Specifications

Plug the Apple III's power cord into a three-wire 110-120 VAC outlet. The Apple III meets the following agency regulations:
* UL 114, Office Appliances and Business Equipment
* CSA 22.2, No. 154-Data Processing Equipment

Physical Specifications

* Height: 4.8 in. (12.20 cm)
* Depth: 18.2 in. (46.22 cm)
* Width: 17.5 in. (44.45 cm)
* Weight: 26 lb. (11.8 kg)
Copyright 1991, Apple Computer, Inc.
Keywords: SPECSHT
This article contains a list of LaserWriter models supporting the Apple II computer series.

In order for an Apple LaserWriter to work with an Apple II system, the LaserWriter hardware needs to support Diablo (straight text) mode. Diablo mode allows the printer to understand text data from the Apple II and convert that data into a printed page. The Apple LaserWriters supporting hardware Diablo mode are the:

- LaserWriter (original model)
- LaserWriter Plus
- LaserWriter IINT
- LaserWriter IINTX
- Personal Laserwriter NT

To put the LaserWriter hardware in Diablo (straight text) mode, do the following:

<table>
<thead>
<tr>
<th>Model</th>
<th>What to do for Diablo mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaserWriter</td>
<td>Change dial on back of LaserWriter to SPECIAL</td>
</tr>
<tr>
<td>LaserWriter Plus</td>
<td>Change dial on back of LaserWriter to SPECIAL</td>
</tr>
<tr>
<td>LaserWriter IINT</td>
<td>Dipswitch 1 = UP</td>
</tr>
<tr>
<td></td>
<td>Dipswitch 2 = Down</td>
</tr>
<tr>
<td>LaserWriter IINTX</td>
<td>Dipswitch 2 = UP</td>
</tr>
<tr>
<td></td>
<td>Dipswitch 3 = UP</td>
</tr>
<tr>
<td></td>
<td>ALL Others = DOWN</td>
</tr>
<tr>
<td>Personal LaserWriter NT</td>
<td>Change pinwheel dial to Setting 3</td>
</tr>
</tbody>
</table>

Copyright 1996, Apple Computer, Inc.

Keywords:
Description: Apple Logo II: Specifications (Discontinued)
Header: Apple Logo II: Specifications (Discontinued)

Order #: D2D0100

--Technical Specifications

Operating System: DOS; for use with Logo II, Logo DOS files can be
converted to ProDOS files with the CONVERT program on the ProDOS User's
Disk or the II System Utilities Disk

--Package
1. Disk: Apple Logo Master
2. Disk: Apple Logo Backup

--System Configuration
1. Apple II Plus, IIe or IIc personal computer
2. Apple II disk drive with controller
3. Apple Language Card
4. Video Display: television or monitor
5. Recommended: ImageWriter or other compatible printer; color display;
 AppleMouse

Apple Technical Communications

Keywords: SPECSHT

END OF FILE A2TIL194.TXT
What is the memory location for the slot number of the drive that Apple Pascal starts up from? How can I change that information or location so the computer will think it was booted from the RAM disk (to which I've already copied the appropriate system files)?

DISCUSSION

The internals of Apple II Pascal are proprietary and confidential and we cannot divulge such information.

However, it is possible to completely load Apple II Pascal into an Apple II RAM Expansion card and start up from it. Here's how:

1) Once you have started Apple Pascal and you are at the command line, type F(ile.

2) At the second command line, type V(ols. Write down the volume number with 2048 blocks. This is your RAM Expansion Card volume number.

3) Format the RAM Expansion Card. Type Q(uit and then X(ecute. This will prompt you for a file name. Type "Formatter" and press Return. Formatter will ask you for a volume to format: type the volume number you wrote down in step 2, and press Return.

4) Do a wild card copy of all the files on Volume 4 to the volume number of your RAM Expansion Card. Type F(ile then T(rans. When you're asked "Transfer What File?", type ":4:=" and press Return. At the "to where?" prompt, type your RAM Expansion Card volume number followed by ":" and press Return.

5) When the copying is finished, make your RAM Expansion Card the startup volume. Type Q(uit followed by another Q and Y. Finally, type Control-Reset.

6) At the Applesoft BASIC prompt, type "PR#" followed by the slot number of your RAM Expansion Card. Pascal should start up.

Apple Pascal supports a maximum of 128K RAM for system memory use, and the remaining RAM may be used as a RAM disk only.

Copyright 1991 Apple Computer, Inc.

Keywords:
This article lists the approximate date of introduction and, where applicable, the date when the model was discontinued for various Apple products. Dates which are missing from the table will be added as they occur.

<table>
<thead>
<tr>
<th>COMPUTER SYSTEMS</th>
<th>Introduced</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple II Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple II</td>
<td>August 1978</td>
<td>December 1982</td>
</tr>
<tr>
<td>Apple II+</td>
<td>June 1979</td>
<td>June 1983</td>
</tr>
<tr>
<td>Apple IIc</td>
<td>April 1984</td>
<td>September 1988</td>
</tr>
<tr>
<td>Apple IIc Plus</td>
<td>September 1988</td>
<td>November 1990</td>
</tr>
<tr>
<td>Apple IIe</td>
<td>January 1983</td>
<td>March 1985</td>
</tr>
<tr>
<td>Apple IIe Enhanced</td>
<td>March 1985</td>
<td>November 1993</td>
</tr>
<tr>
<td>Apple IIGS</td>
<td>September 1986</td>
<td>December 1992</td>
</tr>
<tr>
<td>Apple III Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple III</td>
<td>May 1980</td>
<td>September 1985</td>
</tr>
<tr>
<td>Apple III+</td>
<td>December 1983</td>
<td>September 1985</td>
</tr>
<tr>
<td>Lisa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisa 2</td>
<td>January 1984</td>
<td>January 1985</td>
</tr>
<tr>
<td>Lisa 2/5</td>
<td>January 1984</td>
<td>January 1985</td>
</tr>
<tr>
<td>Lisa 2/10</td>
<td>January 1984</td>
<td>January 1985</td>
</tr>
<tr>
<td>Macintosh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mac 128K</td>
<td>January 1984</td>
<td>October 1985</td>
</tr>
<tr>
<td>Mac 512K</td>
<td>September 1984</td>
<td>April 1986</td>
</tr>
<tr>
<td>Mac 512Ke</td>
<td>April 1986</td>
<td>August 1986</td>
</tr>
<tr>
<td>Mac Plus</td>
<td>January 1986</td>
<td>October 1990</td>
</tr>
<tr>
<td>Macintosh Classic</td>
<td>October 1990</td>
<td>October 1991</td>
</tr>
<tr>
<td>Macintosh Classic II</td>
<td>October 1991</td>
<td>September 1993</td>
</tr>
<tr>
<td>Macintosh Color Classic</td>
<td>February 1993</td>
<td>May 1994</td>
</tr>
<tr>
<td>Macintosh LC</td>
<td>November 1990</td>
<td>March 1992</td>
</tr>
<tr>
<td>Macintosh LC II</td>
<td>March 1992</td>
<td>March 1993</td>
</tr>
<tr>
<td>Macintosh LC III</td>
<td>February 1993</td>
<td>February 1994</td>
</tr>
<tr>
<td>Macintosh LC 475</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Macintosh LC 520</td>
<td>June 1993</td>
<td>February 1995</td>
</tr>
<tr>
<td>Macintosh LC 550</td>
<td>February 1994</td>
<td>April 1995</td>
</tr>
<tr>
<td>Macintosh LC 575</td>
<td>February 1994</td>
<td>April 1995</td>
</tr>
<tr>
<td>Macintosh LC 580</td>
<td>April 1995</td>
<td></td>
</tr>
<tr>
<td>Macintosh LC 630</td>
<td>July 1994</td>
<td>April 1995</td>
</tr>
<tr>
<td>Macintosh LC 630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOS Compatible</td>
<td>April 1995</td>
<td>April 1996</td>
</tr>
<tr>
<td>Macintosh Portable</td>
<td>September 1989</td>
<td>January 1991</td>
</tr>
<tr>
<td>Model</td>
<td>Introduced</td>
<td>Discontinued</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Macintosh Centris 610</td>
<td>February 1993</td>
<td>October 1993</td>
</tr>
<tr>
<td>Macintosh Centris 650</td>
<td>February 1993</td>
<td>October 1993</td>
</tr>
<tr>
<td>Macintosh Centris 660AV</td>
<td>August 1993</td>
<td>October 1993</td>
</tr>
<tr>
<td>Quadra 605</td>
<td>October 1993</td>
<td>October 1994</td>
</tr>
<tr>
<td>Quadra 610</td>
<td>October 1993</td>
<td>May 1994</td>
</tr>
<tr>
<td>Quadra 630</td>
<td>July 1994</td>
<td>April 1995</td>
</tr>
<tr>
<td>Quadra 650</td>
<td>October 1993</td>
<td>September 1994</td>
</tr>
<tr>
<td>Quadra 660AV</td>
<td>October 1993</td>
<td>September 1994</td>
</tr>
<tr>
<td>Quadra 700</td>
<td>October 1991</td>
<td>March 1993</td>
</tr>
<tr>
<td>Quadra 800</td>
<td>February 1993</td>
<td>March 1994</td>
</tr>
<tr>
<td>Quadra 840AV</td>
<td>August 1993</td>
<td>July 1994</td>
</tr>
<tr>
<td>Quadra 900</td>
<td>October 1991</td>
<td>May 1992</td>
</tr>
<tr>
<td>Quadra 950</td>
<td>May 1992</td>
<td>October 1995</td>
</tr>
<tr>
<td>Power Macintosh 4400/160</td>
<td>November 1996</td>
<td></td>
</tr>
<tr>
<td>(Europe only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 4400/200</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 5200/75 LC</td>
<td>April 1995</td>
<td>April 1996</td>
</tr>
<tr>
<td>Power Macintosh 5260/100</td>
<td>April 1996</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 5260/120</td>
<td>October 1996</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 5300/100 LC</td>
<td>September 1995</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 5400/120</td>
<td>April 1996</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 5400/180</td>
<td>October 1996</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 5500/225</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 6400/200</td>
<td>October 1996</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 6500/225</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 6500/250</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 6100/60</td>
<td>March 1994</td>
<td>January 1995</td>
</tr>
<tr>
<td>Power Macintosh 6100/60AV</td>
<td>March 1994</td>
<td>January 1995</td>
</tr>
<tr>
<td>Power Macintosh 6100/66</td>
<td>January 1995</td>
<td>October 1995</td>
</tr>
<tr>
<td>Power Macintosh 6100/66AV</td>
<td>January 1995</td>
<td>April 1995</td>
</tr>
<tr>
<td>Power Macintosh 6100/66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOS Compatible</td>
<td>January 1995</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 7200/75</td>
<td>August 1995</td>
<td>March 1996</td>
</tr>
<tr>
<td>Power Macintosh 7200/90</td>
<td>August 1995</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 7200/120</td>
<td>April 1996</td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 7200/120</td>
<td>April 1996</td>
<td>February 1997</td>
</tr>
<tr>
<td>PC Compatible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Macintosh 7300/180</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Introduced</td>
<td>Discontinued</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>PowerBook 100</td>
<td>October 1991</td>
<td>July 1992</td>
</tr>
<tr>
<td>PowerBook 140</td>
<td>October 1991</td>
<td>August 1992</td>
</tr>
<tr>
<td>PowerBook 145</td>
<td>August 1992</td>
<td>June 1993</td>
</tr>
<tr>
<td>PowerBook 145b</td>
<td>June 1993</td>
<td>July 1994</td>
</tr>
<tr>
<td>PowerBook 150</td>
<td>July 1994</td>
<td>October 1995</td>
</tr>
<tr>
<td>PowerBook 160</td>
<td>October 1992</td>
<td>August 1993</td>
</tr>
<tr>
<td>PowerBook 165</td>
<td>August 1993</td>
<td>July 1994</td>
</tr>
<tr>
<td>PowerBook 165c</td>
<td>February 1993</td>
<td>December 1993</td>
</tr>
<tr>
<td>PowerBook 170</td>
<td>October 1991</td>
<td>October 1992</td>
</tr>
<tr>
<td>PowerBook 180</td>
<td>October 1992</td>
<td>May 1994</td>
</tr>
<tr>
<td>PowerBook 180c</td>
<td>June 1993</td>
<td>March 1994</td>
</tr>
<tr>
<td>PowerBook 190/66</td>
<td>August 1995</td>
<td>September 1996*</td>
</tr>
<tr>
<td>PowerBook 190cs/66</td>
<td>August 1995</td>
<td>September 1996*</td>
</tr>
<tr>
<td>PowerBook 520</td>
<td>May 1994</td>
<td>June 1995</td>
</tr>
<tr>
<td>PowerBook 520c</td>
<td>May 1994</td>
<td>September 1995</td>
</tr>
<tr>
<td>PowerBook 540</td>
<td>May 1994</td>
<td>October 1994</td>
</tr>
<tr>
<td>PowerBook 540c</td>
<td>May 1994</td>
<td>August 1995</td>
</tr>
<tr>
<td>PowerBook 550c</td>
<td>May 1995</td>
<td></td>
</tr>
<tr>
<td>(Available in Japan Only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PowerBook 1400cs/117</td>
<td>October 1996</td>
<td></td>
</tr>
<tr>
<td>PowerBook 1400c/117</td>
<td>October 1996</td>
<td>February 1997</td>
</tr>
<tr>
<td>PowerBook 1400c/133</td>
<td>October 1996</td>
<td></td>
</tr>
<tr>
<td>PowerBook 3400c/180</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>PowerBook 3400c/200</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>PowerBook 3400c/240</td>
<td>February 1997</td>
<td></td>
</tr>
<tr>
<td>PowerBook 5500/100</td>
<td>August 1995</td>
<td>August 1996</td>
</tr>
<tr>
<td>PowerBook 5500c/100</td>
<td>August 1995</td>
<td>September 1996**</td>
</tr>
<tr>
<td>PowerBook 5500cs/100</td>
<td>August 1995</td>
<td>August 1996</td>
</tr>
<tr>
<td>PowerBook Duo 210</td>
<td>October 1992</td>
<td>October 1993</td>
</tr>
<tr>
<td>PowerBook Duo 250</td>
<td>October 1993</td>
<td>May 1994</td>
</tr>
<tr>
<td>PowerBook Duo 270c</td>
<td>October 1993</td>
<td>May 1994</td>
</tr>
<tr>
<td>PowerBook Duo 280</td>
<td>May 1994</td>
<td>November 1994</td>
</tr>
<tr>
<td>PowerBook Duo 280c</td>
<td>May 1994</td>
<td>January 1996</td>
</tr>
<tr>
<td>PowerBook Duo 2300c/100</td>
<td>August 1995</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

* The PowerBook 190cs 8/500 configuration was discontinued 9/96, the 4/500 configuration was not.
** The PowerBook 5300c 8/500 configuration was discontinued 9/96,
the 16/750 configuration was not.

<table>
<thead>
<tr>
<th>PowerBook Docking Solutions</th>
<th>Introduced</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerBook Duo MiniDock</td>
<td>October 1992</td>
<td>August 1995</td>
</tr>
<tr>
<td>PowerBook Duo Dock II</td>
<td>May 1994</td>
<td>May 1995</td>
</tr>
<tr>
<td>PowerBook Duo Dock Plus</td>
<td>May 1995</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performa</th>
<th>Introduced</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performa 200</td>
<td>October 1992</td>
<td>April 1993</td>
</tr>
<tr>
<td>Performa 400</td>
<td>October 1992</td>
<td>April 1993</td>
</tr>
<tr>
<td>Performa 405</td>
<td>April 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 410</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 430</td>
<td>April 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 450</td>
<td>April 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 460</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 466</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 467</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 475</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 476</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 550</td>
<td>October 1993</td>
<td></td>
</tr>
<tr>
<td>Performa 560</td>
<td>January 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 575</td>
<td>April 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 577</td>
<td>April 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 578</td>
<td>April 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 580</td>
<td>May 1995</td>
<td></td>
</tr>
<tr>
<td>Performa 588</td>
<td>April 1995</td>
<td></td>
</tr>
<tr>
<td>Performa 600</td>
<td>October 1992</td>
<td>October 1993</td>
</tr>
<tr>
<td>Performa 630</td>
<td>July 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 630CD</td>
<td>July 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 631</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>Performa 635</td>
<td>July 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 635CD</td>
<td>July 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 636</td>
<td>July 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 637CD</td>
<td>July 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 638CD</td>
<td>July 1994</td>
<td></td>
</tr>
<tr>
<td>Performa 640</td>
<td>May 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 5200CD</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 5210</td>
<td>May 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 5215</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 5220</td>
<td>May 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 5300</td>
<td>October 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6110</td>
<td>September 1994</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6112</td>
<td>September 1994</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6115</td>
<td>September 1994</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6116</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6117</td>
<td>September 1994</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6118</td>
<td>September 1994</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6200</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6205</td>
<td>August 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6214</td>
<td>August 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6216</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6218</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6220</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6290</td>
<td>January 1996</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6230</td>
<td>July 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6300</td>
<td>October 1995</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6320</td>
<td>April 1996</td>
<td>September 1996</td>
</tr>
<tr>
<td>PERFORMA 6400</td>
<td>August 1996</td>
<td></td>
</tr>
<tr>
<td>PERFORMA 6360/160</td>
<td>October 1996</td>
<td></td>
</tr>
</tbody>
</table>

Apple Servers | Introduced | Discontinued
-------- |------------|------------
Apple II Computer Technical Information

<table>
<thead>
<tr>
<th>Computer Type</th>
<th>Introduced</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Server 500/132</td>
<td>April 1996</td>
<td></td>
</tr>
<tr>
<td>Network Server 700/150</td>
<td>April 1996</td>
<td></td>
</tr>
<tr>
<td>Network Server 700/200</td>
<td>September 1996</td>
<td></td>
</tr>
<tr>
<td>Workgroup Server 60</td>
<td>July 1993</td>
<td>October 1993</td>
</tr>
<tr>
<td>Workgroup Server 80</td>
<td>March 1993</td>
<td>October 1994</td>
</tr>
<tr>
<td>Workgroup Server 95</td>
<td>March 1993</td>
<td>April 1995</td>
</tr>
<tr>
<td>Workgroup Server 6150/60</td>
<td>April 1994</td>
<td>April 1995</td>
</tr>
<tr>
<td>Workgroup Server 6150/66</td>
<td>April 1995</td>
<td>October 1995</td>
</tr>
<tr>
<td>Workgroup Server 7250/120</td>
<td>Feb 1996</td>
<td></td>
</tr>
<tr>
<td>Workgroup Server 8150/80</td>
<td>April 1994</td>
<td></td>
</tr>
<tr>
<td>Workgroup Server 8150/110</td>
<td>April 1995</td>
<td></td>
</tr>
<tr>
<td>Workgroup Server 8550/200</td>
<td>September 1996</td>
<td></td>
</tr>
<tr>
<td>Workgroup Server 8550/132</td>
<td>April 1996</td>
<td></td>
</tr>
<tr>
<td>Workgroup Server 9150/80</td>
<td>April 1994</td>
<td>October 1994</td>
</tr>
<tr>
<td>Workgroup Server 9150/120</td>
<td>April 1995</td>
<td></td>
</tr>
</tbody>
</table>

Printers

<table>
<thead>
<tr>
<th>Printer Type</th>
<th>Introduced</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageWriter 15"</td>
<td>April 1984</td>
<td>September 1987</td>
</tr>
<tr>
<td>ImageWriter I</td>
<td>June 1984</td>
<td>December 1985</td>
</tr>
<tr>
<td>ImageWriter II</td>
<td>September 1985</td>
<td></td>
</tr>
<tr>
<td>ImageWriter LQ</td>
<td>August 1987</td>
<td>December 1990</td>
</tr>
<tr>
<td>LaserWriter 12/600</td>
<td>June 1995</td>
<td></td>
</tr>
<tr>
<td>LaserWriter</td>
<td>March 1985</td>
<td>February 1988</td>
</tr>
<tr>
<td>LaserWriter 12/640 PS</td>
<td>June 1996</td>
<td></td>
</tr>
<tr>
<td>LaserWriter 16/600 PS</td>
<td>September 1994</td>
<td></td>
</tr>
<tr>
<td>LaserWriter IIIg</td>
<td>October 1991</td>
<td>May 1993</td>
</tr>
<tr>
<td>LaserWriter Pro 600</td>
<td>January 1993</td>
<td>October 1993</td>
</tr>
<tr>
<td>LaserWriter Pro 630</td>
<td>January 1993</td>
<td>September 1994</td>
</tr>
<tr>
<td>LaserWriter Pro 810</td>
<td>October 1993</td>
<td>November 1994</td>
</tr>
<tr>
<td>LaserWriter Select 300</td>
<td>February 1993</td>
<td>January 1995</td>
</tr>
<tr>
<td>LaserWriter Select 360</td>
<td>October 1993</td>
<td>April 1996</td>
</tr>
<tr>
<td>Personal LaserWriter LS</td>
<td>March 1991</td>
<td>May 1993</td>
</tr>
<tr>
<td>Personal LaserWriter NT</td>
<td>July 1990</td>
<td>1994</td>
</tr>
<tr>
<td>Personal LaserWriter NTR</td>
<td>March 1992</td>
<td>September 1993</td>
</tr>
<tr>
<td>Personal LaserWriter SC</td>
<td>June 1990</td>
<td>September 1993</td>
</tr>
<tr>
<td>Personal LaserWriter 300</td>
<td>June 1993</td>
<td>1994</td>
</tr>
<tr>
<td>Personal LaserWriter 320</td>
<td>October 1993</td>
<td>September 1995</td>
</tr>
<tr>
<td>StyleWriter</td>
<td>March 1991</td>
<td>January 1993</td>
</tr>
<tr>
<td>StyleWriter 1200</td>
<td>April 1995</td>
<td>1995</td>
</tr>
<tr>
<td>StyleWriter II</td>
<td>January 1993</td>
<td>April 1995</td>
</tr>
</tbody>
</table>

Other Printers

- Introduced
- Discontinued
Apple Color Printer
- **Introduced**: January 1993
- **Discontinued**: February 1994

Apple Daisy Wheel Printer
- **Introduced**: May 1980
- **Discontinued**: September 1986

Apple Dot Matrix Printer
- **Introduced**: May 1980
- **Discontinued**: December 1985

Scribe
- **Introduced**: April 1984
- **Discontinued**: August 1986

Silentype
- **Introduced**: January 1980
- **Discontinued**: June 1984

Apple Color OneScanner
- **Introduced**: August 1988
- **Discontinued**: September 1991

Apple OneScanner
- **Introduced**: September 1991
- **Discontinued**: June 1994

Apple Color OneScanner 600/27
- **Introduced**: March 1996

Apple Color OneScanner 1200/30
- **Introduced**: September 1996

QuickTake 100
- **Introduced**: February 1994

QuickTake 150
- **Introduced**: March 1995

QuickTake 200
- **Introduced**: February 1997

Apple Color High-Res RGB
- **Introduced**: March 1987
- **Discontinued**: December 1992

Apple Color RGB
- **Introduced**: September 1986
- **Discontinued**: January 1993

AppleVision 1710
- **Introduced**: January 1996

Apple AudioVision 14
- **Introduced**: August 1993
- **Discontinued**: October 1995

Apple Basic Color
- **Introduced**: February 1993
- **Discontinued**: October 1993

Apple Color Plus Display
- **Introduced**: October 1993

Apple High-Res Mono
- **Introduced**: March 1989
- **Discontinued**: February 1991

Apple Multiple Scan 14
- **Introduced**: August 1995
- **Discontinued**: February 1997

Apple Multiple Scan 15
- **Introduced**: July 1994
- **Discontinued**: February 1997

Apple Multiple Scan 17
- **Introduced**: March 1994

Apple Multiple Scan 20
- **Introduced**: March 1994

Macintosh 12-inch Mono
- **Introduced**: December 1990
- **Discontinued**: October 1993

Macintosh 12-inch RGB
- **Introduced**: October 1990
- **Discontinued**: March 1993

Macintosh 16-inch Color
- **Introduced**: October 1991
- **Discontinued**: April 1994

Macintosh 21-inch Color
- **Introduced**: October 1991
- **Discontinued**: March 1994

Macintosh Color 14 Display
- **Introduced**: December 1992

Macintosh Portrait Display
- **Introduced**: March 1989
- **Discontinued**: December 1992

Macintosh Two-Page Mono
- **Introduced**: March 1989
- **Discontinued**: December 1992

Performa Display
- **Introduced**: September 1992
- **Discontinued**: July 1994

PowerBook Data/Fax Modem
- **Introduced**: October 1991
- **Discontinued**: November 1993

PowerBook Express Modem
- **Introduced**: October 1992

PowerBook Express Modem II
- **Introduced**: October 1992
- **Discontinued**: (Available in Europe Only)

Apple MessagePad
- **Introduced**: August 1993
- **Discontinued**: March 1994

Apple MessagePad 100
- **Introduced**: March 1994
- **Discontinued**: January 1995

Apple MessagePad 110
- **Introduced**: March 1994
- **Discontinued**: January 1995

Apple MessagePad 120
- **Introduced**: January 1995

Apple MessagePad 130
- **Introduced**: March 1996

Apple MessagePad 2000
- **Introduced**: February 1997
End Table

Article Change History:
25 Feb 1997 - Added discontinued date for 5300ce.
24 Feb 1997 - Corrected name of a PowerBook 5300 model.

Copyright 1992–97, Apple Computer, Inc.
Keywords: review, ktable, newton

END OF FILE A2TIL196.TXT
TOPIC

The article contains the most recent part numbers for all Apple diagnostics.

DISCUSSION

Begin_Table

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>P/N</th>
<th>REV</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLE TECHSTEP:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Accessories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z077-8668</td>
<td>Power Adapter, Apple TechStep, Europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X077-8668</td>
<td>Power Adapter, Apple TechStep, Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JA077-8668</td>
<td>Power Adapter, Apple TechStep, Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B077-8668</td>
<td>Power Adapter, Apple TechStep, U.K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>699-0578</td>
<td>Carrying Case, Apple TechStep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590-4512</td>
<td>Cable, Stereo, Apple TechStep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590-4501</td>
<td>Cable, ADB, 2-meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590-0623</td>
<td>Cable, SCSI, Apple TechStep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>077-8405</td>
<td>Cable Wrap Kit, Apple TechStep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>590-0552</td>
<td>Cable, Mini-Din 8, 2-Meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>077-8668</td>
<td>Power Adapter, Apple TechStep, U.S.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Service Parts Available for the Apple TechStep

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>P/N</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>661-0703</td>
<td>Assy, TechStep w/o Port or ROM Packs</td>
<td></td>
</tr>
<tr>
<td>076-0574</td>
<td>Port Pack, Apple TechStep</td>
<td></td>
</tr>
<tr>
<td>661-0150</td>
<td>ROM Pack, CPU Tests, Vol. 1, v1.01</td>
<td></td>
</tr>
<tr>
<td>661-0157</td>
<td>ROM Pack, SCSI HD Tests, v1.0</td>
<td></td>
</tr>
<tr>
<td>661-0149</td>
<td>ROM Pack, CPU Tests, Vol. 4, v1.0</td>
<td></td>
</tr>
</tbody>
</table>

APPLE II FAMILY DIAGNOSTICS STARTER KIT

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>P/N</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>077-8313</td>
<td>Apple II Diagnostics and Updates—REQUIRED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(includes starter kit and one year of updates)</td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS OF APPLE II FAMILY DIAGNOSTICS STARTER KIT

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>P/N</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>077-0100</td>
<td>B Apple II Product Diagnostic, (5.25)</td>
<td></td>
</tr>
<tr>
<td>077-0217</td>
<td>A Apple II Peripheral Diskette, (5.25)</td>
<td></td>
</tr>
<tr>
<td>077-0232</td>
<td>E Apple IIe,IIc Diagnostic 4.0, (5.25)</td>
<td></td>
</tr>
<tr>
<td>077-0233</td>
<td>H Apple IIe,IIc Plus,IIGS, IIGS 1MB Diagnostic 4.1, (3.5)</td>
<td></td>
</tr>
<tr>
<td>077-0234</td>
<td>C Apple II Hard Disk Test 1.0 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCSI Card Test 2.1 (5.25)</td>
</tr>
<tr>
<td>077-0316</td>
<td>A Apple II Video Overlay Card Diagnostic, 1.0 (5.25)</td>
<td></td>
</tr>
<tr>
<td>077-0340</td>
<td>C Apple II Hard Disk Test 1.0 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCSI Card Test 2.1 (3.5)</td>
</tr>
<tr>
<td>077-8148</td>
<td>A Apple IIc Loopback Cable</td>
<td></td>
</tr>
<tr>
<td>077-8219</td>
<td>C SCSI Loopback Test Card</td>
<td></td>
</tr>
</tbody>
</table>
APPLE II COMPUTER TECHNICAL INFORMATION

077-8324 A Apple 5.25 Floppy Drive Test Assembly,
 Version 1.0 (replaces 077-8216)

590-0552 A Cable, APM/ImageWriter II to
 Apple IIGS/Macintosh Plus

661-91097 A Apple IIe 80 Col/64K Card

686-0027 A Profile Limited Data Recovery
 Program 2.0, (5.25)

NOTE: Subscriptions are Non-Refundable.

APPLE II FAMILY DIAGNOSTIC RENEWAL
011-7077 Renewal, Apple II Family Diagnostic
 Updates—REQUIRED

The Apple II Family diagnostics included in this package cover the
following products:

CPUs: Apple II, Apple II+, Apple IIe, Apple IIc, Apple IIc Plus,
 Apple IIGS.

Monitors: Monitor II, Monitor IIc, Monitor ///, AppleColor Monitor 100,
 AppleColor Composite Monitor, ColorMonitor IIe/IIc, Apple
 Monochrome Monitor, AppleColor RGB Monitor, Flat Panel Display.

Drives: ProFile, Disk II, Disk ///, DuoDisk, UniDisk-Apple 5.25 Drive,
 Disk IIc, UniDisk 3.5, Apple 3.5, Hard Disk 20SC.

Printers: Daisy Wheel Printer, Dot Matrix Printer, ImageWriter,
 ImageWriter II, Scribe, Silentype.

Other: Apple II Memory Expansion Card, Apple II SCSI Card, Apple IIGS
 Memory Expansion Card, Apple II Workstation Card, Apple IIc
 Memory Expansion Card, Apple II Keyboards and Mice.

MACINTOSH FAMILY DIAGNOSTICS STARTER KIT
077-8312 Macintosh Diagnostics and Updates—REQUIRED
 (Includes starter kit and one year of updates)
 NOTE: This part number replaced 632-0582 as
 of November 14, 1988

CONTENTS OF MACINTOSH FAMILY DIAGNOSTICS STARTER KIT
073-0301 Macintosh Family Diagnostics Reference Guide
073-0326 MacTest Pro Diagnostics User Guide
073-0368 MacTest Pro Diagnostics Reference Guide
077-0370 MacTest Pro-Application & Modules Nonbootable Disk
077-0070 MacTest Pro-Macintosh CPU Tests, Vol. 1A
077-0071 MacTest Pro-Macintosh CPU Tests, Vol. 1B
077-0371 MacTest Pro-Macintosh CPU Tests, Vol. 2
077-4221 MacTest Pro-Macintosh CPU Tests, Vol. 3
077-0372 MacTest Pro-PowerBook Tests, Vol. 1
077-0400 MacTest Pro-PowerBook Duo Tests, Vol. 1
077-0082 MacTest Pro-Power Macintosh CPU Tests, Vol. 1
077-0083 MacTest Pro-Power Macintosh Upgrade Card Tests
077-0220 MacTest 7.0
077-0243 MacTest SE
077-0244 MacTest II/IIX
077-0251 MacTest SE/30
077-0270 MacTest IIcx/IICi
077-0329 MacTest Portable
077-0359 MacTest MP
077-0360 MacTest CL
077-0258 Macintosh Peripherals Tests, Vol. 1
077-0323 Macintosh Peripherals Tests Vol. 2
077-0363 Macintosh Peripherals Test, Vol.3
077-0268 Macintosh Hard Disk Test
MACINTOSH FAMILY DIAGNOSTIC RENEWAL

011-7091 Renewal, Macintosh Family Diagnostic Updates—REQUIRED

The Macintosh Family diagnostics included in this package cover the following products:

CPUs: Macintosh, Macintosh Plus, SE, SE/30, Macintosh Classic/Classic II
Color Classic, Macintosh II/IIx/fx/IIcx/IIci/IIcsi/IIvx/IIvi/IIvm
Macintosh LC, LC II, LC III, LC 475, LC 520, LC 550, LC 575,
Performa Series, Macintosh Quadra 605, 610, 650, 660AV, 700, 800,
840AV, 900, 950, Macintosh Centris 610, 650, 660AV,
Apple Workgroup Server 60/80/95, PowerBook 100/140/145/145B/160/
PowerBook Duo 210, 230, 250, 270c, Macintosh Portable,
Apple Macintosh TV, Power Macintosh 6100/60, 6100/60AV, 7100/66,
7100/66 AV, 8100/80, 8100/80 AV

Diskette
Drives: Macintosh 800K, Apple 3.5, Apple PC 5.25, 1.4MB SuperDrive

SCSI
DDS-DC Drive, AppleCD SC, AppleCD SC Plus, AppleCD 150, AppleCD 300

Comm/
Network: LocalTalk, EtherTalk Card, AppleFax Modem, Portable Data Modem 2400,
Apple Data Modem 2400, Ethernet NB Card, Int'l XP 2400,
PowerBook FAX/Data Modem, Macintosh Express Modem

Scanners: Apple Scanner, Apple OneScanner

Displays: 12-inch RGB displays; 12-inch Monochrome display; High Res
Monochrome
Monitor; High Res RGB Monitor; Macintosh 13-inch Color Display;
Portrait Display; 16-inch Color Display; Two-Page Monochrome
Display;
21-inch Color Display; Macintosh SE/30 Display; Macintosh Classic
Display; Macintosh Classic II Display; Color Compact Macintosh
Displays; Macintosh Portable Display; PowerBook Displays,
14" AudioVision Display, Basic Color Display

Video
Cards: Macintosh II Video Card, Macintosh II Display Card 8*24;
APPLE II COMPUTER TECHNICAL INFORMATION

Other Cards: Mac SE PC Drive Card, Macintosh II PC Drive Card, Mac IICi Cache Card, Apple IIE Card, Workgroup Server PDS Card, Power Macintosh Upgrade Card

STARTER KIT HARDWARE DIAGNOSTIC TOOLS SOLD SEPARATELY:

Apple II Family:
077-0325 A Apple 5.25 Floppy Drive Test Reference Diskette

Apple IIe:
077-8219 C SCSI Loopback Test Card

Apple IIC:
077-8148 A Apple IIC Loopback Cable

Apple IIGS:
077-0317 A Apple II Video Overlay Card Diagnostic; 1.0 (3.5)
077-8219 C SCSI Loopback Test Card
590-0552 A Cable, APM/ImageWriter II to Apple IIGS/Mac Plus

Macintosh Family:
076-8354 A SIMM Removal Tool

Macintosh Plus:
077-8129 A DB 9 serial port plug (set of 2)---REQUIRED
077-8219 C SCSI Loopback Test Card
590-0552 A Cable, APM/ImageWriter to Apple IIGS and Mac Plus

Macintosh SE & SE/30:
077-8219 C SCSI Loopback Test Card
077-8265 A MINI DIN 8 Serial Loopback Plug
590-0551 A DB9M to MINI DIN 8M Cable
590-0553 B MINI DIN 8M to DB9F Adapter Cable

Macintosh II/IIX/IIfx:
076-0341 A IWM/SWIM IC Extraction Tool
077-8219 C SCSI Loopback Test Card
077-8264 A Macintosh II BUS Master Card
077-8265 A MINI DIN 8 Serial Loopback Plug
590-0551 A DB9M to MINI DIN 8M Cable
590-0553 B MINI DIN 8M to DB9F Adapter Cable

Macintosh IIcx/IIci:
076-0341 A IWM/SWIM IC Extraction Tool
077-8219 C SCSI Loopback Test Card
077-8265 A MINI DIN 8 Serial Loopback Plug
590-0551 A DB9M to MINI DIN 8M Cable
590-0553 B MINI DIN 8M to DB9F Adapter Cable

Macintosh Portable:
590-0552 A Cable, APM, ImageWriter to Apple IIGS/Mac Plus

AppleColor Hi-Res RGB Monitor:
126-6605 A 330 F, 25V, Jitter Adjustment

AppleCD Products:
678-5064 A CD ROM Test Disc 2.0
LaserWriter/LaswerWriter Plus:
076-8354 A SIMM Removal Tool
077-8209 A AppleCAT LaserWriter Test Adapter Cable

LaserWriter II:
076-8354 A SIMM Removal Tool
077-8319 A LaserWriter II Test Connector

HARDWARE AND SOFTWARE DIAGNOSTIC TOOLS NOT INCLUDED IN STARTER KITS:

NOTE: The following tools listed as required are NOT included in the Diagnostic Starter Kits and Updates. Although not included, they are REQUIRED for support of the product listed.

Apple IIe:
890-5124 Loopback Plug, Communications Protocol Card

Apple III:
077-0009 A Clock Calibration Kit--REQUIRED
077-0013 B Apple/III Diagnostic Diskette--REQUIRED

Apple III Plus:
077-0032 A Apple/III Plus Dealer Diagnostic Diskette--REQUIRED

LISA:
077-8043 A Video Align Graticule, Lisa 1.0
077-8102 A Lisa Test for Lisa 1.0
077-8124 C Lisa 2/Macintosh XL Dial. 3.0--REQUIRED
077-8169 A Video Align Graticule for Mac XL/Lisa 2.0--REQUIRED

Macintosh XL:
077-0206 A Screen Mod. Kit Diagnostic 1.0--REQUIRED

Mac Plus:
077-0135 @ Macintosh Voltage Test Cable
077-8222 A SCSI Loopback Card to Mouse Port Cable

Macintosh II/IIX/IIfx/IIfx/IIci:
077-0104 A Twinax Cable w/DB 15 Connector
077-0105 A Twinax T-Connector
077-0106 A Twinax Terminator
077-0107 A Coax Cable
077-0109 A Token Ring Adaptor Cable
077-0256 * EtherTalk: Terminator Kit
077-0257 * EtherTalk: Thin Net Test Cable

Cluster Controller:
077-8156 A DataLine Monitor ROM Pack--Utilities
077-8157 A DataLine Monitor ROM Pack--SNA
077-8158 A DataLine Monitor ROM Pack--BSC

AppleLine:
970-0879 A Loopback Plug--REQUIRED

LaserWriter/Plus:
076-0121 A Power Checker, Laser--REQUIRED

LaserWriter II:
076-0121 A Power Checker, Laser--REQUIRED

Color Plotter:
686-0020 A Apple Plotter Interface Test

Apple Scanner:
077-8300 Apple Scanner Service Test Chart
End_Table

@ Recommended for Stocking
* These tools are required only if you support the EtherTalk Card

Article Change History:
04 May 1995 - Corrected minor problem; reformatted.
27 Jun 1994 - Updated information, revised formatting.

Support Information Services
Copyright 1988-95 Apple Computer, Inc.
Keywords:

END OF FILE A2TIL197.TXT
Description: Apple Writer II (ProDOS): Parallel printer interface problems
Header: Apple Writer II (ProDOS): Parallel printer interface problems

With parallel printer interfaces, the ProDOS version of AppleWriter II has problems somewhat like those in AppleWorks 1.1. Apple Dealers have a patch which upgrades the Apple Writer II software to version 2.1. This upgrade fixes the problems with parallel printer interfaces.

The problems are less obvious with Apple Writer than with AppleWorks because Apple Writer doesn't send as many control codes and formatting commands as AppleWorks.

Apple Technical Communications

Keywords:

END OF FILE A2TIL198.TXT
Description: Apple Writer II under DOS 3.3: Printer codes from all Apples

Many printers have special features that the computer signals by sending command codes. To send codes to a printer from Apple Writer II (DOS 3.3), you must insert the codes into the Apple Writer file you want printed. The manual of the printer may list the codes by several names: decimal, hexadecimal, teletype abbreviations (SOH, ETX, DC1, DC3, etc.), standard keys, and combinations of the above.

Using the chart "ASCII characters, values, and keystrokes", you have to translate from the name of the code in the printer manual into the name of the corresponding keystroke or keystrokes on the keyboards of the Apple II, Apple II Plus, Apple IIe, Enhanced Apple IIe, or Apple IIc.

Some keystrokes put so-called control characters into the Apple Writer file. These control characters are not part of the conventional English character set; while screen shows them, the printer intercepts and does not print them, instead recognizing them as signals to turn special functions on and off or to change printer settings.

NOTE: In the descriptions of the keystrokes, the characters greater than and less than, < and >, are used to contain one keystroke, which can mean that you must simultaneously hold down the control key, the shift key, or both as you press the other key.

With these considerations in mind, here is a list of codes and methods for inserting them in an Apple Writer II file.

Null (ASCII value 0):

II and II Plus: <CTRL-V><CTRL-SHIFT-P><CTRL-V>
All other Apples: <CTRL-SHIFT-2>

Control-A through Control-Z (ASCII decimal values 01 through 26):

Example: Control-Z (ASCII decimal value 26): <CTRL-V><CTRL-Z><CTRL-V>
Exception: Control-V (ASCII decimal value 22) can't be entered. See "Missing Keys" below.

Escape (ASCII value 27):

Some keystroke sequences start with or include the ESCAPE character.

On Apple II without shift key modification:

If the printer manual shows the code as an escape followed by an upper case letter: <CTRL-V><ESC><ESC><ESC><CTRL-V>
If the printer manual shows the code as an escape followed by a non-alphabetic character or lowercase letter: <CTRL-V><ESC><ESC><CTRL-V>
On Apple II with shift key modification: <CTRL-V><ESC><CTRL-V>

Missing keys:

To produce uppercase a-z, press the ESC key first, otherwise Apple Writer II under DOS 3.3 enters the a-z keystroke as lowercase.

The Apple II and Apple II Plus don't have some keys: underline, backward
slash, brackets, braces, vertical line, open single quote, tilde, or delete. You can’t enter a Control-V in Apple Writer. To use these and other characters in Apple Writer, it is necessary to create an Apple Writer glossary file from a BASIC program.

For example, to insert the ASCII value 22 (Control-V) into an Apple Writer file, follow these steps:

1. Start up the DOS System Master.
2. Write and save the following program:

```basic
1 REM APPLE WRITER II GLOSSARY CREATION
10 D$=CHR$(4)
20 PRINT D$;"OPEN CVGLOSS"
30 PRINT D$;"WRITE CVGLOSS"
40 PRINT "V";CHR$(22)
41 REM USE LINE 40 AS A TEMPLATE FOR OTHER NEEDED CODES
42 REM CHOOSE A DIFFERENT GLOSSARY ENTRY FOR EACH CODE
43 REM PRINT "V";CHR$(22) V=ASCII 22 (CONTROL-V)
44 REM PRINT "W";CHR$(31) W=ASCII 31 (CONTROL-UNDERLINE)
45 REM PRINT "X";CHR$(128) X=ASCII 128 (CONTROL-@ WITH THE HIGH BIT SET)
46 REM PRINT "Y";CHR$( ) Y=AND SO ON
50 PRINT D$;"CLOSE CVGLOSS"
```
3. Run the program, thus creating a file called CVGLOSS.
4. Start up the Apple Writer diskette.
5. Press CTRL-Q and select the option to Load a Glossary File.
6. Remove the Apple Writer diskette and insert the diskette containing CVGLOSS.
7. Enter the name CVGLOSS at the "Enter File Name" prompt.
8. Return to Apple Writer and enter your text.
9. At any point where you need to enter a Control-V, type CTRL-G for the glossary function and enter V (uppercase).
10. This procedure should imbed the ASCII 22 in your text. Once CVGLOSS has been created, you can reuse it whenever necessary by following steps 5 through 9 each time you start up Apple Writer.

There's already a glossary file on the Apple Writer II diskette. This file is named SPECIAL and contains key definitions for the keys \, ^, ~, _, |, [], {, }, ESC-D, and ESC-U.

Apple Technical Communications

Keywords:

END OF FILE A2TIL199.TXT
Apple Writer II: DOS Version--Printing With Parallel Printers

Apple Writer may not work properly with some parallel interface cards. Often the interface requires a CTRL-I sequence if it is to print wider than 40 columns. This is easy in Apple Writer II. All you need to do is insert the

<CTRL-V><CTRL-I><CTRL-V> 132N

at the start of each file. You will have to use the CTRL-V before and after the CTRL-I to enter it into the file. Please refer to page 51 of the Apple Writer manual for more details.

Apple Tech Notes

Keywords:

END OF FILE A2TIL200.TXT
Description: Apple Writer II: DOS Version--Recovering "Lost" Text Files

At times you run the risk of saving a short text file over a text file of greater length. You might, for instance, save the empty Apple Writer editor workspace with the same name of a valuable document. This prevents the system accessing the original contents of the file. While the data is still on the diskette, you have made it unaccessible to the system. This program accesses the data so that the system may recover your original file. This program has been tested on Apple Writer II and Apple Writer IIe files. It works with standard DOS Text files, signified by a T in the left margin of a catalog listing. This program does not operate with the ProDOS version of Apple Writer.

```
10 TEXT : NORMAL : HOME
20 INPUT "ENTER THE FILE NAME TO BE READ ";F$
30 INPUT "FIRST BYTE TO READ ";C
40 ONERR GOTO 200
50 D$ = CHR$(4)
60 PRINT D$;"OPEN "F$","L1"
70 PRINT D$;"OPEN NEW";F$
80 B$ = ""
90 PRINT D$;"READ "F$","R";C
100 GET A$
110 C = C + 1
120 IF (ASC (A$) = 13) GOTO 170
130 B$ = B$ + A$
140 PRINT
150 IF (LEN (B$) > 254) GOTO 170
160 GOTO 90
170 PRINT ; PRINT D$;"WRITE NEW";F$
180 PRINT B$
190 GOTO 80 200 PRINT D$;"CLOSE ";F$
210 PRINT D$;"CLOSE NEW";F$
220 END
```

1. Type in the program and save it on your DOS disk. Run it.

2. After the program requests the name of the file that is to be recovered, type in the name giving slot and drive specifications in necessary—e.g., MYFILE, S6, D2.

3. Next the program prompts you for the first byte that you want to read from the file. You type in a number which should be:
 a. an integer between 1 and 32768
 b. the size, in bytes, of the file that was accidentally saved plus 1.

To find the size of this accidentally saved file, [L]oad it under Apple Writer. The size of the file is displayed on the data line after the length entry Len:. Add one to this count and type in the result.

4. Once you have typed in your information, give the program time to run and write the entire file. To read part of the file and write the new file, the program may go back to the drive several times, so please be patient. The cursor will come back to the screen when the program is finished.

Apple Technical Communications
Description: Apple Writer II: DOS Version--Sup-R-Term and Super Serial Card
Header: Apple Writer II: DOS Version--Sup-R-Term and Super Serial Card

Apple Writer may not print with these cards unless you set the following switches on the Super Serial Card to:

 SW2-3 off
 SW2-4 off

This sets the line width to 132 columns and disables the echo to the 40 column Apple video output.

Apple Tech Notes

Keywords:

END OF FILE A2TIL202.TXT
Description: Apple Writer II: Specifications (Discontinued)
Header: Apple Writer II: Specifications (Discontinued)

Article Created: 14 March 1991

Format

16-sector disks

Operating System Environment/Language

Apple DOS 3.3 based. Written in machine language, usable with Integer BASIC or Applesoft BASIC.

Display

Up to 24 lines of 40 or 80 characters.

Storage

Up to 27,000 characters per file, 56 pages of text per disk
Copyright 1991, Apple Computer, Inc.
Keywords: SPECSHT

END OF FILE A2TIL203.TXT
Many printers have special features that the computer signals by sending command codes. To send codes to a printer from Apple Writer IIe under DOS 3.3, you must insert the codes into the Apple Writer file you want printed. The manual of the printer may list the codes by several names: decimal, hexadecimal, teletype abbreviations (SOH, ETX, DC1, DC3, etc.), standard keys, and combinations of the above.

Using the chart "ASCII characters, values, and keystrokes", you have to translate from the name of the code in the printer manual into the name of the corresponding keystroke or keystrokes on the keyboard of the Apple IIe, Enhanced Apple IIe, or Apple IIc.

Some keystrokes put so-called control characters into the Apple Writer file. These control characters are not part of the conventional English character set; while screen shows them, the printer intercepts and does not print them, instead recognizing them as signals to turn special functions on and off or to change printer settings.

NOTE: In the descriptions of the keystrokes, the characters greater than and less than, < and >, are used to contain one keystroke, which can mean that:
1. You must simultaneously hold down the control key, the shift key, or both as you press the other key, or
2. You must press a special key, such as ESC or RETURN.

With these considerations in mind, here is a list of codes and methods for inserting them in an Apple Writer file.

Null (ASCII value 0):

The following patch is for Apple Writer IIe under DOS 3.3. The patch allows you to enter NULs (CTRL-@) when in CTRL-V mode. The only side-effect is that the DELETE key doesn't work for correcting a filename entered from the keyboard for the DOS COMMANDS or ADDITIONAL FUNCTIONS menu; instead, just use the left arrow key.

--Boot the DOS 3.3 System Master diskette.

--Remove the System Master diskette, insert the Apple Writer IIe under DOS 3.3 diskette and type the following commands.

```
BLOAD OBJ.APWRTIIE
CALL -151
1CE1:EA EA EA EA
3EBA:EA EA EA EA
3D0G
UNLOCK OBJ.APWRTIIE
BSAVE OBJ.APWRTIIE,A$1900,L$2F58
LOCK OBJ.APWRTIIE
BLOAD OBJ.APWRTIIF
CALL -151
1D81:EA EA EA EA
4033:EA EA EA EA
3D0G
```
UNLOCK OBJ.APWRTIIF
BSAVE OBJ.APWRTIIF,A$1900,L$30D1
LOCK OBJ.APWRTIIF

If you don't want to do this to your Apple Writer IIe diskette, refer below to the Applesoft BASIC solution.

Control-A through Control-Z (ASCII decimal values 01 through 26):

Example: Control-Z (ASCII decimal value 26): <CTRL-V><CTRL-Z><CTRL-V>

Exception: Control-V (ASCII decimal value 22) can't be entered.
See "Missing Characters" below.
Escape (ASCII value 27): <CTRL-V><ESC><CTRL-V>

Other Control characters: These can be entered in the manner of Control-A through Control-Z.

Missing Characters:

You can't directly enter a Control-V in Apple Writer. To use these and other characters in Apple Writer, it is necessary to use an Apple Writer glossary file.

Apple Writer doesn't send a Null character.

Applesoft BASIC can be used to send a Null character to your printer.

1. Create your Apple Writer document as usual, but substitute a unique character in each place that you want a Null character.

2. Type <CTRL-P> to display the Print/Programs Command menu.

3. Type PD8, Apple Writer's code for Print to Disk on an Apple II.

4. Type NP to begin printing.

5. To the Apple Writer prompt for a file name, do not enter the same name with which the file is already saved. Enter a unique name, and note it down.

6. After the printing to disk is finished, exit Apple Writer and boot up a ProDOS diskette.

7. Run the following program:

100 HOME
110 PRINT TAB(10);APPLE WRITER TO PRINTER"
120 VTAB 5
130 INPUT "NAME OF APPLE WRITER FILE PRINTED TO DISK: ";F$
140 IF F$="" THEN 900
145 VTAB 12
146 INPUT "CHARACTER TO REPLACE: ";X$
147 IF X$="" THEN 145
150 VTAB 10
160 INPUT "PRINTER SLOT #: ";S$
165 IF S$="" THEN 900
170 IF S$="" THEN 900
180 S=VAL$(S$); IF S < 1 OR S > 7 OR INT(S) <> S THEN 150
190 D$=CHR$(4)
200 ONERR GOTO 800
210 PRINT D$;"UNLOCK";F$
220 POKE 216,0
230 VTAB 12: PRINT SPC(75)
240 PRINT D$;"PR#";S
250 PRINT D$;"OPEN";F$280 ONERR GOTO 400
290 PRINT D$;"READ";F$ 300 A$=""
310 GET C$
315 IF C$=CHR$(12) THEN 310
320 IF C$=CHR$(13) THEN 350
330 IF C$=X$ THEN C$=CHR$(0)
340 A$=A$+C$:GOTO 310
350 PRINT A$
390 GOTO 300
400 POKE 216,0
410 PRINT D$;"CLOSE"
420 PRINT D$;"PR#0"
430 VTAB 15
440 PRINT TAB(5);"FILE ";F$;" HAS BEEN PRINTED."
450 GOTO 900
800 POKE 216,0
810 VTAB 12
820 PRINT CHR$(7);"I CAN'T FIND THE FILE ";F$;"."
830 INPUT ";Z$
840 GOTO 100
900 END

Apple Technical Communications

Keywords:

END OF FILE A2TIL204.TXT
Description: Apple Writer IIe under ProDOS: Printer codes from all Apples
Header: Apple Writer IIe under ProDOS: Printer codes from all Apples

Many printers have special features that the computer signals by sending command codes. To send codes to a printer from Apple Writer IIe (version 2.1) under ProDOS, you must insert the codes into the Apple Writer file you want printed. The manual of the printer may list the codes by several names: decimal, hexadecimal, teletype abbreviations (SOH, ETX, DC1, DC3, etc.), standard keys, and combinations of the above.

Using the chart "ASCII characters, values, and keystrokes", you have to translate from the name of the code in the printer manual into the name of the corresponding keystroke or keystrokes on the keyboards of the Apple IIe, Enhanced Apple IIe, or Apple IIc.

Some keystrokes put so-called control characters into the Apple Writer file. These control characters are not part of the conventional English character set; while screen shows them, the printer intercepts and does not print them, instead recognizing them as signals to turn special functions on and off or to change printer settings.

NOTE: In the descriptions of the keystrokes, the characters greater than and less than, < and >, are used to contain one keystroke, which can mean that:

1. You must simultaneously hold down the control key, the shift key, or both as you press the other key, or
2. You must press a special key, such as ESC or RETURN.

With these considerations in mind, here is a list of codes and methods for inserting them in an Apple Writer file.

Null (ASCII value 0):
Because Apple Writer IIe (version 2.1) under ProDOS uses the null character to mark the end of a file, Apple Writer does not allow a null to be inserted into the file. The inserted null would effectively delete any text after it.

Apple Writer does send a null in the place of a Control-Underline character:
<CTRL-V><CTRL-UNDERLINE><CTRL-V>

Control-A through Control-Z (ASCII decimal values 01 through 26):
Example: Control-Z (ASCII decimal value 26): <CTRL-V><CTRL-Z><CTRL-V>
Exception: Control-V (ASCII decimal value 22) can't be entered. See "Missing Characters" below.

Escape (ASCII value 27): <CTRL-V><ESC><CTRL-V>

Other Control characters: These can be entered in the manner of Control-A through Control-Z.

Missing Characters:

In typing a file, there is no way to put a Control-V into the text. During printing, Apple Writer doesn't send a Control-Underline as such.

Applesoft BASIC can be used to send a Control-V or Control-Underline to your
printer.

1. Create your Apple Writer document as usual, but substitute unique characters in each place that you want a Control-V or Control-Underline character.

2. Type <CTRL-P> to display the Print/Programs Command menu. 3. Type PD8, Apple Writer’s code for Print to Disk on an Apple II.

4. Type NP to begin printing.

5. To the Apple Writer prompt for a file name, do not enter the same name with which the file is already saved. Enter a unique name, and note it down.

6. After the printing to disk is finished, exit Apple Writer and boot up a ProDOS diskette.

7. Run the following program, using the following forms of line 330:

Control-V
330 IF C$=X$ THEN C$=CHR$(22)

Control-Underline
330 IF C$=X$ THEN C$=CHR$(31)

100 HOME
110 PRINT TAB(10);APPLE WRITER TO PRINTER"
120 VTAB 5
130 INPUT "NAME OF APPLE WRITER FILE PRINTED TO DISK: ";F$
140 IF F$="" THEN 900
145 VTAB 12
146 INPUT "CHARACTER TO REPLACE: ";X$
147 IF X$="" THEN 145
150 VTAB 10
160 INPUT "PRINTER SLOT #: ";S$
170 IF S$="" THEN 900
180 S=VAL$(S$); IF S < 1 OR S > 7 OR INT(S) <> S THEN 150
190 D$=CHR$(4)
200 ONERR GOTO 800
210 PRINT D$;"UNLOCK";F$
220 POKE 216,0
230 VTAB 12: PRINT SPC(75)
240 PRINT
250 PRINT D$;"PR#";S
260 PRINT CHR$(9);"132N"
270 PRINT D$;"OPEN";F$280 ONERR GOTO 400
290 PRINT D$;"READ";F$ 300 A$=""
310 GET C$
315 IF C$=CHR$(12) THEN 310
320 IF C$=CHR$(13) THEN 350
330 IF C$=X$ THEN C$=CHR$(); REM Substitute ASCII value for unique character
340 A$=A$+C$:GOTO 310
350 PRINT A$
390 GOTO 300
400 POKE 216,0
410 PRINT D$;"CLOSE"
420 PRINT D$;"PR#0"
430 VTAB 15
440 PRINT TAB(5);"FILE ";F$;" HAS BEEN PRINTED."
450 GOTO 900
800 POKE 216,0
810 VTAB 12
820 PRINT CHR$(7);"I CAN'T FIND THE FILE ";F$;"." 830 INPUT "";Z$
840 GOTO 100
900 END
Description: Apple Writer IIe: DOS version--Patch for the IIc

Header: Apple Writer IIe: DOS version--Patch for the IIc

Following is the Apple Writer II Utility Program which updates, for running on an Apple IIc, the DOS 3.3 version of Apple Writer for the IIe only.

To use this patch on your system, start by capturing the BASIC code listed below, using MacTerminal and Access II (DOS 3.3).

Remember to capture ONLY the BASIC code portion of this message. As an alternative, you could capture the entire message and then edit out the unwanted portions with a text editor. Save the file as a standard DOS 3.3 text file with the name PATCH.TEXT. Type the following from the keyboard:

EXEC PATCH.TEXT

You will see several"]"s scroll by at this point. When this stops and the cursor returns, type:

SAVE PATCH APPLERWRITER IIE

RUN PATCH APPLERWRITER IIE

Insert your Apple Writer II master disk and press the Return key. You only need to update your Apple Writer disk once.

After updating your Apple Writer IIe disk, mouse characters will appear on the screen, but only when capital letters are shown in inverse—for example, a capitalized file name appearing on the data line, or when the blinking cursor moves over a capital letter.

NOTE: The utility program does not convert Apple Writer to run under ProDOS.

100 TEXT : SPEED= 255
105 ONERR GOTO 500
110 DS = CHR$(4): REMCTRL-D
115 BEL$ = CHR$(7): REMBELL
120 CR$ = CHR$(13): REMRETURN
125 ESC$ = CHR$(27): REMESCAPE
130 NORMAL : HOME
135 PRINT "APPLEWRITER II UTILITY PROGRAM"
140 VTAB 4: PRINT "USE THIS PROGRAM TO UPDATE YOUR"
145 PRINT "DOS 3.3 APPLEWRITER II FOR USE"
150 PRINT "ON AN APPLE IIC COMPUTER."
155 VTAB 10: PRINT "INSERT YOUR APPLEWRITER II MASTER DISK"
160 PRINT "INTO THE DISK DRIVE AND PRESS 'RETURN' ";
165 GET A$: IF (A$ < > CR$) AND (A$ < > ESC$) GOTO 165
170 IF (A$ = ESC$) THEN HOME : END
175 PRINT
200 HOME : VTAB 12: PRINT "CAREFULLY UPDATING YOUR DISK......."
205 PRINT D$:"UNLOCK OBJ.APWRTIIE"
210 PRINT D$:"BLOAD OBJ.APWRTIIE"
215 GOSUB 300
220 HOME : VTAB 12: PRINT "CAREFULLY UPDATING YOUR DISK......."
225 PRINT D$:"BSAVE OBJ.APWRTIIE, A$1900, L$2F58"
230 PRINT D$:"LOCK OBJ.APWRTIIE"
235 PRINT D$:"UNLOCK OBJ.APWRTIIE"
240 PRINT D$:"BLOAD OBJ.APWRTIIE"
245 GOSUB 300
250 PRINT D$:"BSAVE OBJ.APWRTIIE, A$1900, L$30D1"
255 PRINT D$;"LOCK OBJ.APWRTIIF"
260 HOME : VTAB 12: PRINT "YOUR DISK IS NOW UPDATED."
265 NEW
300 HTAB 11
305 FOR I = 1 TO 10
310 READ AD$,VA$
315 A$ = AD$: GOSUB 400: DA = C
320 A$ = VA$: GOSUB 400: DV = C
325 PRINT ".";
330 POKE DA,DV
335 NEXT I: PRINT
340 RETURN
400 C = 0
405 FOR X = LEN (A$) TO 1 STEP - 1
410 B$ = MID$ (A$,X,1)
415 IF B$ = "A" THEN K = 10: GOTO 450
420 IF B$ = "B" THEN K = 11: GOTO 450
425 IF B$ = "C" THEN K = 12: GOTO 450
430 IF B$ = "D" THEN K = 13: GOTO 450
435 IF B$ = "E" THEN K = 14: GOTO 450
440 IF B$ = "F" THEN K = 15: GOTO 450
445 K = VAL (B$)
450 C = C + 16 ^ (LEN (A$) - X) * K
455 NEXT X
460 RETURN
500 HOME : VTAB 11: PRINT BEL$
505 IF (PEEK (222) < > 4) GOTO 515
510 PRINT "YOUR DISK MUST NOT": PRINT "BE WRITE PROTECTED!":
GOTO 520
515 PRINT "I/O ERROR!": RESTORE
520 FOR D = 0 TO 1000: NEXT : REMDELAY
520 GOTO 130
600 REMDATA IS IN FORMAT OF HEX ADDRESS FOLLOWED
601 REMBY THE NEW VALUE
605 DATA2E0C,F2,2ED4,FA,2EB7,F6,2E98,EC,2E94,F5
610 DATA417F,ED,4185,EC,418B,F0,4191,F4,4197,E6
615 DATA3017,F2,302B,FA,300E,F6,2FEF,EC,2FEB,F5
620 DATA42F8,ED,42FE,EC,4304,F0,430A,F4,4310,E6
Apple Technical Communications

Keywords:

END OF FILE A2TIL206.TXT
This article describes the AppleColor Composite Monitor IIe.

DISCUSSION

The AppleColor Composite Monitor IIe allows users to add color capabilities to their Apple IIe systems.

Features

* Displays high-resolution color graphics, 80-column text in monochrome, or color graphics with text in a 40-column format.
* Can work with composite (NTSC) video output instead of RGB output, so users simply plug the monitor into the video jack of their Apple IIe, Apple II Plus, Apple II, or Apple IIc computer. No need for special cards or adaptors.
* The 13-inch screen provides a large display area for easy viewing.

The monitor provides higher resolution than standard video or television screens. It provides a cost-effective solution for users who require color display and 80-column text, and is compatible with all Apple software.

Order Number

* AppleColor Composite Monitor IIe
 A2M6021

Keywords: specsht

END OF FILE A2TIL207.TXT
There are two AppleColor Composite Monitors shown on the Apple II Products price sheets:

- AppleColor Composite Monitor (IIGS) (part number A2M6020)
- AppleColor Composite Monitor IIe (part number A2M6021)

What are the differences? Are both compatible with both the Apple IIGS and the Apple IIe?

Both composite monitors work with either computer. The main difference is in the outside designs to better match the case of the computer with which the particular monitor is associated.
According to the Apple II Compatibility Guide (P/N A2F2204), the AppleColor Monitor 100 is not compatible with the Apple IIGS. For the many owners of the AppleColor Monitor 100 who are upgrading their IIe's to the Apple IIGS, but who want to avoid having to purchase a new monitor, there is a workaround.

Inside the AppleColor Monitor 100 on the main PC board, almost directly under the neck of the CRT, there is a slide switch labeled "16 color/8 color". To make the AppleColor Monitor 100 work with the Apple IIGS, set the switch to the 8 color position, and use the cable provided with the Color Monitor 100 (svc part # 590-0194-A) to connect it to the Apple IIGS. This configuration makes all colors available.

Apple Computer, Inc. takes no responsibility for any damages incurred, real or implied, that may result from this change.

Copyright 1988 Apple Computer, Inc.

Keywords:

END OF FILE A2TIL209.TXT
TOPIC

The following information has only been partially verified for the 3274-2.2 ROMs. Though this setup should work with the newer ROMs, this has not been confirmed.

DISCUSSION

Hardware Configuration:

Apple IIe

Super Serial Card in Slot 2. The jumper block should be set to terminal.

Straight thru cable - 590-0037

or

Apple IIc

Apple IIc-ImageWriter/Scribe printer cable.

Gender changer - 590-0214

Appleline - 699-0239 with version 2.2 of the ROMs.

Appleline wall mounting power supply - 970-0950

(optional - Loop Back Connector - 970-0879)

Software Configuration:

ProDOS 1.1.1

Apple Access II v 1.1

Set Access II as follows:

Terminal Characteristics

"Set ANSI Mode"

"Do NOT Send LF After CR" - for Supervisor mode

or

"Send LF After CR" - for 'On-Line' mode

"7 Bits per Character"

"Enable XON/XOFF"

"Normal Video"

"Full Duplex"

"No Wraparound"

Set Speed - "2400 baud" Set Parity - "Even"

Appleline Configuration:

Terminal Type..............."VT100"

Baud Rate.................."2400"

Parity...................."Even"

Autobaud................"Enabled"

Speed Indicator..........."Disabled"

Modem type................."Local Connect"

Auto Logoff..............."Disabled"

Special Terminal Capability..."None"

24/25 Line Automatic Toggle..."Disabled"

Notes
1- Set Access II for 2400 baud. 4800 & 9600 seem to overrun it.

2- The autobaud sequence is OpenApple-B Return (OA-B Return).

3- If you use 8 bits per character, set parity to None in Access II and on the Appleline.

For more information on VT-100 keypad sequences, see Apple Access II (030-0923-A, copyright 1983), Appendix i, pp 165-166.

4- The mapping for an Apple IIe or IIc running Access II to IBM 3278 Keys is as follows (not checked):

<table>
<thead>
<tr>
<th>3278 Key</th>
<th>Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF1</td>
<td>Esc 1</td>
</tr>
<tr>
<td>PF2</td>
<td>Esc 2</td>
</tr>
<tr>
<td>PF3</td>
<td>Esc 3</td>
</tr>
<tr>
<td>PF4</td>
<td>Esc 4</td>
</tr>
<tr>
<td>PF5</td>
<td>Esc 5</td>
</tr>
<tr>
<td>PF6</td>
<td>Esc 6</td>
</tr>
<tr>
<td>PF7</td>
<td>Esc 7</td>
</tr>
<tr>
<td>PF8</td>
<td>Esc 8</td>
</tr>
<tr>
<td>PF9</td>
<td>Esc 9</td>
</tr>
<tr>
<td>PF10</td>
<td>Esc 0</td>
</tr>
<tr>
<td>PF11</td>
<td>Esc - (minus)</td>
</tr>
<tr>
<td>PF12</td>
<td>Esc =</td>
</tr>
<tr>
<td>PF13</td>
<td>Esc !</td>
</tr>
<tr>
<td>PF14</td>
<td>Esc @</td>
</tr>
<tr>
<td>PF15</td>
<td>Esc #</td>
</tr>
<tr>
<td>PF16</td>
<td>Esc $</td>
</tr>
<tr>
<td>PF17</td>
<td>Esc %</td>
</tr>
<tr>
<td>PF18</td>
<td>Esc ^</td>
</tr>
<tr>
<td>PF19</td>
<td>Esc &</td>
</tr>
<tr>
<td>PF20</td>
<td>Esc *</td>
</tr>
<tr>
<td>PF21</td>
<td>Esc (</td>
</tr>
<tr>
<td>PF22</td>
<td>Esc)</td>
</tr>
<tr>
<td>PF23</td>
<td>Esc _ (underscore)</td>
</tr>
<tr>
<td>PF24</td>
<td>Esc +</td>
</tr>
</tbody>
</table>

* NEW LINE OA-Return
ENTER Return
TAB Tab
BACK-TAB Control-OA-K
HOME Control-\
LEFT CURSOR Left-Arrow or Control-H
RIGHT CURSOR Right-Arrow or Control-U
DOWN CURSOR Down-Arrow or Control-J
UP CURSOR Up-Arrow or Control-K
PA1 Esc [* PA2 Esc] * DUP Control-OA-U *
* FM Control-Y ATTN Control-A *
* SYS REQ Control-B CURSR SEL Control-D CLEAR Control-E
ERASE INPUT Control-L
ERASE EOF Control-F
* PRINT Control-P
* IDENT Control-V
* TEST Control-T
RESET Control-R
a DEV CNCL Control-R

INSERT Control-]
b DELETE Delete

* NOT TESTED

- According to the documentation (See Appleline Users Manual, Appleline Part II: Guide to Lisa, Chapter 2, p65) Control-X should give a DEV CNCL function, but where DEV CNCL is needed (according to the systems types there) Control-R works. This is the same code as is used for the RESET function.

- According to the documentation (See Appleline Users Manual, Appleline Part II: Guide to Lisa, Chapter 2, p65) Control-underscore should work. Instead it locks Appleline.

Article Change History:
12 Oct 1994 - Reviewed for technical accuracy.

Support Information Services
Copyright 1987-94 Apple Computer, Inc.
Keywords:

END OF FILE A2TIL210.TXT
AppleLink for the Apple II is written in UCSD Pascal, using an operating system that is not entirely compatible with ProDOS. AppleLink is ProDOS-compatible, and you can load and save ProDOS files, but you can't install AppleLink on a ProDOS hard disk.
I have a problem trying to install an Apple IIGS workstation on an AppleShare network.

On my Macintosh SE/30 file server, I've installed System 6.0.5, AppleShare, and Apple II network software. On my Apple IIGS, I made an "AppleShare on 3.5" startup disk, started it up, logged on, and installed Network Server Startup on the file server. After starting the Apple IIGS up from the network and setting the startup application to the Finder, I got the error message, "CANNOT LOAD DESCRIPTOR FILE $0001." I've re-installed everything and the problem persists.

This sounds like an AppleShare server access privileges problem. Set the System Icons privileges to see files and folders for everyone and make sure that this change is made for all enclosed folders.

Copyright 1991, Apple Computer, Inc.

Keywords:
TOPIC ---

1) To run under System 7, AppleShare 3.0 needs 4MB RAM. Does this include having the Print Serving option running as well?

2) Is 5MB enough to run AFS 3.0, APS 3.0, AppleTalk Internet Router and support for Apple II users?

3) I saw something on a limitation of 20 some Apple II users -- is this a simultaneous log-on limit, or can I assign only 20 users the ability to log on from an Apple II?

DISCUSSION --

1) The 4MB requirement for AppleShare 3.0 includes concurrent operation of both file and print services. This includes Apple II access.

2) On a 5MB Macintosh IIci system you would also be able to install the Apple Internet Router, although for performance considerations it would be better to have the Apple Internet Router reside on a dedicated Macintosh. High traffic involving one of the applications can severely impact the performance of the other.

3) Although it is possible to define up to 8,192 users/groups (including the ability to log on from an Apple II), we would recommend not more than 2,000 users/groups. As the number of users/groups grows beyond 2000 and approaches 8000, it can take significantly longer to start up because it takes longer for AppleShare 3.0 to read through so many names. It doesn't affect server running performance or the amount of RAM required. The limitations regarding the number of users, Macintosh and Apple II alike, that can sign on concurrently is defined in the AppleShare 3.0 File Server Preferences. AppleShare 3.0 can accommodate up to 120 connections at one time.

If you plan to have Apple IIGS systems start up over the network, experience has shown that the length of time it takes to have more than 20 Apple IIGS systems do so may exceed the customers expectations. This will not be a problem if the Apple II systems are starting locally and then logging on to the file server.
This article tells how to set up your AppleShare File Server software so that Apple IIGS and Apple IIe systems can start up over the network.

Assuming the hardware is already set up, the installation process should take from one to two hours. This article assumes you are installing AppleShare on a newer Macintosh running System 6.0.7. Note: If you are installing on one of the older Macintosh computers, for example an SE/30, System 6.0.5 would be an acceptable replacement for System 6.0.7.

This article also applies to those with existing AppleShare File Servers. Where necessary, we will explain what material to skip over.

Besides Macintosh system software, you need the AppleShare File Server software (version 2.0.1), Apple part number M0548/B. Finally, you need Apple IIGS System Software Update Version 5.0, Apple part number A0013LL/A. (This version is now shipping with version 5.0.4 in the box.)

Note that IIGS System 5.0.4 is a three-disk set. The third disk, a Macintosh disk called "Apple II Setup", is essential. You will need to buy at least one IIGS System 5.0 Software Update, because this third disk does not ship with new IIGS systems. Table 1 lists the disks required. You also need one blank 800K disk.

Note: For future reference, if a new version of IIGS system software is released, use the complete three-disk set from that system instead of version 5.0.4.

Table 1: Required Disks

<table>
<thead>
<tr>
<th>Disk Name</th>
<th>Format</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Startup 6.0.7</td>
<td>Mac 1.44MB</td>
<td></td>
</tr>
<tr>
<td>System Additions 6.0.7</td>
<td>Mac 1.44MB</td>
<td></td>
</tr>
<tr>
<td>Network Products Installer 6.0.7</td>
<td>Mac 1.44MB</td>
<td></td>
</tr>
<tr>
<td>AppleShare File Server 2.0.1 Installer</td>
<td>Mac 800K</td>
<td>Part of A'Share 2.0.1.</td>
</tr>
<tr>
<td>AppleShare File Server 2.0.1 Admin</td>
<td>Mac 800K</td>
<td>Part of A'Share 2.0.1.</td>
</tr>
<tr>
<td>Apple II Setup 2.0.1</td>
<td>Mac 800K</td>
<td>Part of A'Share 2.0.1.</td>
</tr>
</tbody>
</table>

-->Obsolete disk!

/<System.Disk | ProDOS 800K Part of IIGS System 5.0.4. |
/<System.Tools | ProDOS 800K Part of IIGS System 5.0.4. |
Apple II Setup 2.1.3 | Mac 800K | Part of IIGS System 5.0.4. |

-->New version.
1. Setting up the AppleShare File Server

Follow these steps to set up the AppleShare File Server:

1) If you have an existing server, start up from the Network Products Installer disk and install "Apple II Setup (v2.0.1)". (Others should skip to the next paragraph.)

2) When the Installer prompts you for the "Apple II Setup" disk, insert the Apple II Setup version 2.1.3 disk that came with IIGS System Software 5.0.4.

Do not insert the obsolete Apple II Setup disk that comes in the box with AppleShare 2.0.1. For those with an existing file server, proceed to Section 2, "Preparing AppleShare for Apple II Users".

If you haven't set up your server yet, here is how to do it:

1) Boot the Macintosh with the System Startup disk

2) Launch HDSC Setup and initialize the hard disk. When giving the hard disk a name, use a short name that fits ProDOS conventions. The name must begin with a letter (A to Z) and contain nothing but letters, numerals and periods. No spaces. Lower case is permitted. For this example, we will name the server volume "A2".

3) After the hard disk has been initialized, quit HDSC Setup and launch the Installer. Click "Easy Install".

4) When the installation is complete, quit the Installer.

5) Double-click on the hard disk icon and open the System Folder.

6) Drag "Easy Access," and any printer drivers you don't need, to the Trash. You can also delete MultiFinder. If you won't be doing any printing from the file server, you can throw away Backgrounder and PrintMonitor.

7) When you are done, select "Empty Trash" from the Special menu and close all open windows. Then select "Shut Down" from the Special menu.

With the cleanup out of the way, it's time to install the software:

1) After the Macintosh ejects the System Startup disk, restart from the Network Products Installer disk.

2) Launch the Installer and select "AppleShare File Server (v2.0.1)" and holding down the Shift key, select "Apple II Setup (v2.0.1)".

3) Click Install. The Installer will prompt you for the "AppleShare File Server" disk (that's the AppleShare Installer disk), and shortly thereafter, the "AppleShare Administration" disk.

4) When it prompts you for the "Apple II Setup" disk, insert the Apple II Setup version 2.1.3 disk that came with IIGS System Software 5.0.4.

Important: Do not insert the obsolete Apple II Setup disk that comes in the box with AppleShare 2.0.1

5) When the Installer is finished, quit and restart the Macintosh, letting it start up from the hard drive.

6) The hard drive isn't an AppleShare File Server yet, so you must set it up. Open the System Folder on the hard drive and double-click
"AppleShare Admin".

7) When asked if you want to "Prepare volume 'A2' for use with AppleShare?", click OK. You'll be asked to give the file server a name, for example, "Apple II Forever".

8) Next, the system will prompt you for a Users and Groups file. Open the Server Folder and click "New". Create users and groups according to your needs and preferences, starting with the Administrator.

9) When you are done, select "Save Users and Groups as " from the File menu and save the Users and Groups in the Server folder.

2. Preparing AppleShare for Apple II Users

Here's how to prepare AppleShare for Apple II Users:

1) If you haven't done so, get into the AppleShare Admin program. (There is no need to shut down your server to do this.)

2) Under the Server menu select "Server Info" and click on the check box marked "Apple II Features".

3) Click "Save". Quit the AppleShare Admin program.

4) If you were updating an existing file server, shut down the server and restart. Others can merely select "Restart" from the Special menu to restart the Macintosh. It will come up as an AppleShare File Server.

If you want the file server to support network startup only for Apple IIe users, the server is now ready to start them up over the network, once you set the access privileges on the volume. Users must be able to "See Files, See Folders" to start up.

To set the access privileges, follow these steps:

1) Get into AppleShare Admin and select "Volume List" from the Volume menu.

2) Double-click the server volume.

3) Set the access to "See Files, See Folders" and apply the changes to all enclosed folders -- unless you have an existing file server, in which case you will probably need to assign access by folder.

Apple IIe users need "See Files, See Folders" access to the top level of the server startup volume. Whether you set these changes for the Administrator only, all users, or just the particular groups, depends on how you have planned your server.

If you want IIIGS users to be able to start up over the network, you should continue with the next section, which tells you how to install IIIGS system software onto the server, over the network. This step is required only if the IIIGS users will be starting up over the network. If the IIIGS workstations have hard drives, you should set them up to start up GS/OS on their hard drives, and install AppleShare. This way, they can mount server volumes on the desktop, just like Macintosh users.

3. Installing IIIGS System Software over the Network

Make sure you have the AppleShare File Server and the Apple IIIGS connected via LocalTalk or similar network cabling. The IIIGS should have a minimum of 1MB of RAM and one Apple 3.5 Drive. (You’ll save time if you equip the IIIGS with two Apple 3.5 Drives.)
When you turn on the IIGS, hold down the Control Open-Apple Escape keys to get into the text Control Panel. If you have defined a RAM disk, make sure you leave the system with at least 1MB of memory. Under Slots, ensure that the Startup Slot is set to 5, and that Slot 5 is set to "SmartPort" and Slot 7 to "AppleTalk" or "Built-In AppleTalk". Slot 1 should be set to "Your Card", or on a ROM 03 IIGS to "Built-In AppleTalk". Exit from the Control Panel and turn off the computer.

Be sure you have the original (unmodified) System.Disk and System.Tools diskettes. Lock both diskettes to prevent accidental deleting of critical files. You will also need one blank 800K disk to use as an AppleShare startup disk. Follow these steps:

1) Insert the System.Disk and power on the IIGS.

2) When the Finder desktop appears, insert the blank disk and initialize it. Call it "AppleShare".

3) Launch the Installer from System.Tools. If you have two drives, eject the System.Disk. If you have one drive, eject the System.Tools disk.

4) Insert the blank "AppleShare" disk you just initialized and click the "Disk" button until its name appears.

5) Select the installer script entitled "AppleShare on 3.5 Disk" and click Install. Before installing, the system will display an alert message explaining not to install this on your only copy of the system disk. Click "Perform This Update" to continue. Some disk swapping will be required.

6) When the installation is complete, make sure the AppleShare startup disk you just created is in drive 1, and restart. To save time, you can hold down the Control Open-Apple Reset keys rather than quitting to the Finder and doing a Shutdown.

7) When the Finder desktop is on the screen, use the mouse to select the graphic Control Panel under the Apple menu. If it isn't already highlighted, click on AppleShare.

8) Select the file server and connect using the Administrator name and password. Then select the AppleShare File Server volume and mount it. Close the graphic Control Panel.

9) Run the Installer on System.Tools. Click the "Disk" button until the file server name appears -- in our example, "A2".

Here is how to install some files over the network onto the file server volume:

1) Select the following scripts: Server Network Startup, Server Quick Logoff and optional scripts.

 For optional scripts, select anything that IIGS systems starting over the network will require. For instance, if you need access to a network printer, like a LaserWriter or an AppleTalk ImageWriter, install those scripts.

2) Select the optional scripts you need by holding down the Open Apple key when you click on them.

Caution: do not try to install "Latest System Files" or "Latest System Files (No Finder)", or IIGS users will not be able to start up over the network. Note: There was an error in the original version of this article that indicated you should install the "Latest System Files (No Finder)" script. It was corrected in a subsequent issue of "TechBeat."
When you click "Install", the system installs the IIGS system software over the network. To show network activities, double arrows at the top left of the screen will flash. The installation may take some time.

3) Before you run off to grab a coffee, wait for the alert message telling you to "install this update only on a file server's startup volume". Click "Perform This Update" to continue.

4) When the installation is complete, hold down the Control Open-Apple Escape keys to enter the text Control Panel.

5) Under Slots, set the startup slot to 7. The next time you start up the IIGS, it will be over the network. First, however, you have to set up the server for IIGS users. See section 4 below.

4. Setting up the File Server for IIGS Users

Follow these steps:

1) Leaving the file server running, get into the AppleShare Admin program.

2) Use the Shift-click method to highlight all the IIGS users you want to start up over the network.

3) Select "Set Startup" under the Apple II menu.

4) To have IIGS users start up into the Finder, select "Finder" under the System folder. You can also select a default network printer if one is available, and if you installed the drivers for them in section 3. Note that any printers to be selected must be powered up and visible over the network.

For Apple IIe users, you can set the startup application to be any ProDOS 8 application (file type SYS). Apple IIe systems that will start up over the network must be equipped with AppleShare Workstation cards and 128K of RAM. They must also be enhanced. (If you will be running Aristotle Admin, you'll need an Apple II Memory Expansion card with at least 256K of RAM. IIGS users who want to run Aristotle Admin need to define a RAM disk with 256K of RAM.) IIGS users can also start up to any ProDOS 8, ProDOS-16, or GS/OS application.

When you have finished setting up the startup information for your Apple II users, all that remains is setting the access privileges:

1) Under the "Volumes" menu, select "Volume List", double-click on the server volume, and a dialog box will be displayed.

2) Set the access privileges so that everyone can "See Files, See Folders", and apply changes to all enclosed folders, unless you have an existing server.

In such a case, you should not apply changes to enclosed folders, as there may be folders you do not want IIGS users to have access to. IIGS users need "See Files, See Folders" access to the top level of the server startup volume, the System Folder, and all folders within it. They will also need the same access to the Icons folder, which holds IIGS Finder icons. Users may experience errors if they don't have sufficient access for various operations. If you find some IIGS software that needs write access to a particular folder, you should lock that folder so that adventurous users can't throw it away.

3) When you are finished setting up access privileges, quit from the AppleShare Admin program.
5. Booting over the Network

You should now be able to start up over the network with a IIGS or a IIe. A IIGS starting up over the network displays several different screens during the startup process. You can verify you installed the correct version of the Apple II Setup on your file server by watching the "Starting up over the network" screen. It should say "2.1.3 GS/OS" at the top right if you used version 2.1.3, which comes with IIGS System 5.0.4.

After a few moments, the system prompts the user for a user name or allow guest access, if it is enabled. Be sure to test server logon as a normal user, and not just as the Administrator. That way you can uncover any access privilege problems. If you ever see an error message, take note of any error codes and compare them to the list in the back of the "ProDOS Technical Reference Manual" or in the "Apple IIGS GS/OS Reference." Two of the most common errors are listed in the Appendix at the end of this article. You'll find that most errors are easily explainable unless you mixed up software versions during installation.

You have now completed the installation of software to allow IIGS and IIe users to start up over the network.

Appendix: Common Errors

Cannot load file Start.GS.OS
Error = $0046
This is the message you get if you failed to follow Step 3 correctly. It is a ProDOS file system error $46, which means "Path not found". The GS/OS files the system requires to start up could not be found on the file server. If you have multiple file-server volumes, verify you installed the IIGS System Software over the network onto the server startup volume.

Unable to load descriptors
Error was $004E
This message denotes an access privileges problem. It is a ProDOS file system $4E error. This means the user had insufficient access privileges to complete the required operation, or, possibly, the file was locked. Most likely, you haven't given the user who experienced the error "See Files, See Folders" access to the top level of the server startup volume, the System folder, and all folders within it.

Copyright 1991 Apple Computer, Inc.

Keywords:

END OF FILE A2TIL214.TXT
I have Apple IIGS systems and Apple IIe systems on an AppleShare 2.0.1 network. When the Apple IIGS starts up, it shows ProDOS 1.8 and GS/OS, yet when the Apple IIe systems start up, they show ProDOS 1.4.

I have an application (MECC Communikeys) that apparently doesn't work correctly with ProDOS 1.4. (One Apple IIe works OK, but the other Apple IIe systems lock the entire network.)

Where is ProDOS 1.4 coming from? I've checked for P* and P16 and even copied them from one folder to another.

DISCUSSION

When setting up an AppleShare File Server for an Apple IIe and Apple IIGS environment, two copies of P8 are installed. One copy is installed when the server is updated with the Apple II Setup Disk for the AppleShare File Server (a Macintosh disk). This copy is placed in the Server Folder. Another copy is installed when GS/OS is loaded from an Apple IIGS using the GS/OS SYSTEM.DISK and SYSTEM.TOOLS (Apple IIGS disks). This copy is at the root level of the server.

It appears that an early version of the Apple II Setup Disk was used on the server. Earlier versions of that disk contained earlier versions of P8. Reinstalling the Apple II setup should provide the current version of ProDOS. Use the Apple II Setup Disk marked:

"Version 2.1; For use with Apple IIGS System Software 5.0".

How did you check for the ProDOS files? Was the check done from an Apple IIGS? Was the check done from a Macintosh on the network? Was checking done on the server from within the Admin application? Was the server restarted with a floppy disk and then checked for these files?

If the check was from a Apple IIGS workstation, the Server Folder is not visible. This is where one of the ProDOS files resides, and you would find only one of the ProDOS files.

If you checked from a Macintosh on the network, the result would be the same as when checking from an Apple IIGS workstation. There is no Server Folder available.

If checking was done on the server from within the Admin application, you will see the Server Folder, but you cannot open that folder and review its contents.

If the server was started up from a floppy disk and then the check was done, a second P8 file will be visible in the Server Folder.

Copyright 1990 Apple Computer, Inc.
How many Apple IIIs can be started up from an Macintosh SE/30 AppleShare File Server? Theoretically, 50 nodes can be logged on to an AppleShare file server at a time, but what is the practical limit? I've never seen an Apple II network larger than about 30 nodes, so I can't really estimate the degradation in performance. Do you know of any sites running 40 or more Apple IIe or Apple IIGS systems off of one file server?

DISCUSSION

With 1MB RAM, a Macintosh SE/30 allows 25 Apple II workstations to start up from the server at the same time. With 2MB RAM, the limit is increased to 50 Apple II workstations.

The practical limit for booting depends on the user's situation. For example, 20 Apple IIGS systems starting up at same time from the same server takes approximately 10 minutes, whereas 20 Apple IIe systems take about 4 minutes. The reason is that the Apple IIGS has more than 120K to load across the network, compared to about 20K for the Apple IIe.

The practical limit for workstations logged on to one server depends on the amount of activity taking place on the network. With low traffic, 50 users logged on at one time may be acceptable. As traffic becomes heavier, it is probable that the practical maximum number of active users will decrease.

Copyright 1989 Apple Computer, Inc.

Keywords:
Description: AppleShare: How To Keep Apple II & Macintosh Software Separate
Header: AppleShare: How To Keep Apple II & Macintosh Software Separate

This article last reviewed: 12 December 1989

TOPIC ---

I want to use a utility (that is: Disk Tools, DiskTop or ResEdit) to make Apple II folders (that is: Aristotle, system, and users) invisible to Macintosh users. I want to prevent the users from going into a folder and trashing its contents. I could "lock" them, but if they don't know they are out there it works better in the long run.

Is this process safe?

DISCUSSION --

The problem with making those files invisible to Macintosh users is that they will also be invisible to Apple II GS users -- the Apple II GS users will have no convenient way to launch Applesoft BASIC.

We recommend locking them. This prevents those without adequate AppleShare privileges from removing, renaming, or replacing them.

Copyright 1989 Apple Computer, Inc.

Keywords:

END OF FILE A2TIL217.TXT
Description: AppleShare: Leave LaserWriters on for Apple II Workstations
Header: AppleShare: Leave LaserWriters on for Apple II Workstations

Article Created: 13 August 1991
Article Last Reviewed:
Article Last Updated:

TOPIC ---

Is there a way to download the ImageWriter emulation to a LaserWriter for an Apple II GS on an AppleShare network at the time the servers are turned on each morning?

DISCUSSION ---

That would be a nice enhancement for AppleShare, but presently there is no way to do this. We suggest you download the emulator and leave the printer on. This won't seriously affect the life of the printer.

Copyright 1991, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL218.TXT
I recently set up an AppleShare Network with Apple II and Macintosh computers. All seemed well except for a small item on the Apple II side.

Using Aristotle, everything works fine except the Chooser.

When trying to use Chooser, the window opens to show the application just short of finishing. The Chooser then stops with a message that it cannot load or open:

/System/System.Setup/ATInit

How can I repair the above file without reinstalling the entire AppleShare network?

DISCUSSION

If you're using Apple IIGS computers, you don't need to use the Chooser anymore. Select printers with the Control Panel.

If you're using Apple IIe computers, be sure you use the AppleShare Apple II Setup Disk 2.1.1 or greater when setting up your server.

Copyright 1991 Apple Computer, Inc.

Keywords:
Chapter 1: Choosing AppleSingle or AppleDouble
Terminology

Chapter 2: AppleSingle file header
Magic number
Version number
Filler
Number of entries
Entry descriptors
Predefined entry IDs
File layout
Filename conventions
ProDOS
MS-DOS
UNIX and NFS
Usage

Chapter 3: Filename conventions
ProDOS
MS-DOS
UNIX and NFS
Usage

Appendix

Preface

This document describes version 2 of the AppleSingle/AppleDouble file formats.

To compare this version with version 1 of the AppleSingle/AppleDouble file formats, refer to Appendix B of the A/UX Toolbox: Macintosh ROM Interface manual.

You can also find a description of version 1 in the Apple II File Type Notes for file types $E0.0001-AppleSingle and $E0.0002/$E0.0003-AppleDouble. These
File Type Notes are available through Apple Developer Technical Support.

Chapter 1: About AppleSingle/AppleDouble Formats

When a file is exchanged between file systems that do not support the same file attributes, some of the file's attributes are lost. Apple Computer has developed two file formats, called AppleSingle and AppleDouble, that allow files to maintain their file attributes on foreign file systems that do not support the same attributes.

The AppleSingle and AppleDouble formats were initially developed to store Macintosh files on file systems that do not support the Macintosh file structure. However, these formats can also be used to represent almost any kind of file on almost any file system. They assume only that the file systems used allow you to create a file as a set of contiguous bytes.

The AppleSingle/AppleDouble file format is not tied to a single home file system. A file is stored as a heterogeneous collection of data and attributes, which are interpreted as needed by the application reading the file.

The AppleSingle or AppleDouble format can be used

* as a standard format for transferring files among differing, or heterogeneous, computers.
* as a standard format for transferring files within a single computer.

Choosing AppleSingle or AppleDouble

The AppleSingle and AppleDouble formats are alike in that they use the same components to represent a file on a foreign system: data, resources, and attributes. The difference between the two formats is that the AppleSingle format stores these components in a single foreign file, and the AppleDouble format stores these components in two foreign files one for the data, the other for the resources and attributes.

Applications may use either AppleSingle or AppleDouble when they create files on foreign file systems; however, they must understand both formats.

To find out which format is appropriate for you, examine your application. If the AppleSingle format is used, home file system data cannot be moved or deleted inconsistently; however, the AppleSingle format is harder to update. The AppleDouble format is easier to modify but one of the two AppleDouble files can be moved or deleted inconsistently.

If you are building an AppleTalk Filing Protocol (AFP) server (or any other server that supports the Macintosh computer), then you may want to use one of these formats as your application's internal or external file storage format. The choice is yours. It doesn't matter which format is used within your application, but it is suggested that you use one of these formats as your external storage format so that files can be shared by other applications running on the same machine as your application.

Terminology

The following terms are relevant to the discussion of AppleSingle and AppleDouble file formats.

A Macintosh file has two forks: the resource fork and the data fork. The resource fork contains data used by an application, such as menus, fonts, and icons. An executable file's code is also stored in the resource fork. The data fork contains data specific to an application.

The home file system is the primary file system for which the file's contents were created. The home file system is not necessarily the file system in which the file was created. For example, if a program running on a UNIX...
system creates a file that holds a MacWrite document, the file's home file system is the Macintosh file system, not the UNIX file system because the file's contents are formatted for a Macintosh application.

In contrast to the home file system is the foreign file system, which is the other file system that stores or processes the created file. In the previous example, the UNIX file system is the foreign file system.

Chapter 2: The AppleSingle Format

In the AppleSingle format, a file's contents and attributes are stored in a single file in the foreign file system. For example, both forks of a Macintosh file, the Finder information, and an associated comment are arranged in a single file with a simple structure.

An AppleSingle file consists of a header followed by one or more data entries. The header consists of several fixed fields and a list of entry descriptors, each pointing to a data entry. Each entry is optional and may or may not appear in the file.

- AppleSingle file header -

Table 2-1 describes the contents of an AppleSingle file header.

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magic number</td>
<td>4 bytes</td>
</tr>
<tr>
<td>Version number</td>
<td>4 bytes</td>
</tr>
<tr>
<td>Filler</td>
<td>16 bytes</td>
</tr>
<tr>
<td>Number of entries</td>
<td>2 bytes</td>
</tr>
<tr>
<td>Entry descriptor for each entry:</td>
<td></td>
</tr>
<tr>
<td>Entry ID</td>
<td>4 bytes</td>
</tr>
<tr>
<td>Offset</td>
<td>4 bytes</td>
</tr>
<tr>
<td>Length</td>
<td>4 bytes</td>
</tr>
</tbody>
</table>

Byte ordering in the file header fields follows MC68000 conventions, most significant byte first. The fields in the header file follow the conventions described in the following sections.

Magic number

This field, modeled after the UNIX magic number feature, specifies the file's format. Apple has defined the magic number for the AppleSingle format as $00051600 or 0x00051600.

Version number

This field denotes the version of AppleSingle format in the event the format evolves (more fields may be added to the header). The version described in this developer's note is version $00020000 or 0x00020000.

Filler

This field is all zeros ($00 or 0x00).

Number of entries

This field specifies how many different entries are included in the file. It is an unsigned 16-bit number. If the number of entries is any number other than 0, then that number of entry descriptors immediately follows the number of entries field.

Entry descriptors
The entry descriptors are made up of the following three fields:

* Entry ID, an unsigned 32-bit number, defines what the entry is. Entry IDs range from 1 to $FFFFFFFH. Entry ID 0 is invalid.
* Offset, an unsigned 32-bit number, shows the offset from the beginning of the file to the beginning of the entry's data.
* Length, an unsigned 32-bit number, shows the length of the data in bytes. The length can be 0.

Predefined entry IDs

Apple has defined a set of entry IDs and their values as follows:

<table>
<thead>
<tr>
<th>Entry ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data fork</td>
</tr>
<tr>
<td>2</td>
<td>Resource fork</td>
</tr>
<tr>
<td>3</td>
<td>Real Name, file's name as created on home file system</td>
</tr>
<tr>
<td>4</td>
<td>Comment, Standard Macintosh comment</td>
</tr>
<tr>
<td>5</td>
<td>Icon, B&W, Standard Macintosh black and white icon</td>
</tr>
<tr>
<td>6</td>
<td>Icon, Color, Macintosh color icon</td>
</tr>
<tr>
<td>8</td>
<td>File Dates Info, file creation, modification, and so on</td>
</tr>
<tr>
<td>9</td>
<td>Finder Info, Standard Macintosh Finder information</td>
</tr>
<tr>
<td>10</td>
<td>Macintosh File Info, file information, attributes, and so on</td>
</tr>
<tr>
<td>11</td>
<td>ProDOS File Info, file information, attributes, and so on</td>
</tr>
<tr>
<td>12</td>
<td>MS-DOS File Info, file information, attributes, and so on</td>
</tr>
<tr>
<td>13</td>
<td>Short Name, AFP short name</td>
</tr>
<tr>
<td>14</td>
<td>AFP File Info, file information, attributes, and so on</td>
</tr>
<tr>
<td>15</td>
<td>Directory ID, AFP directory ID</td>
</tr>
</tbody>
</table>

Applications reading an AppleSingle or AppleDouble file interpret the entry IDs that are relevant to their home file system and treat the other entries as opaque data. For example, a Macintosh client application will understand entry IDs 1 through 6 and 8 through 10. A ProDOS client application reading the same file will read entry ID 11 instead of entry IDs 9 and 10.

Entry IDs 1, 3, and 8 are typically created for all files; entry ID 2 only for Macintosh and ProDOS files; entry IDs 4, 5, 6, 9, and 10 only for Macintosh files; entry ID 11 only for ProDOS files; entry ID 12 only for MS-DOS files; and entry IDs 13, 14, and 15 only by AFP servers.

Macintosh Icon entries do not appear in most files because they are typically stored as a bundle in the application file's resource fork.

The File Dates Info entry (ID=8) consists of the file creation, modification, backup and access times (see Figure 2-1), stored as a signed number of seconds before or after 12:00 a.m. (midnight), January 1, 2000 Greenwich Mean Time (GMT). In other words, the start of the year 2000 GMT corresponds to a date-time of 0. Applications must convert to their native date and time conventions. When initially created, a file's backup time and any unknown entries are set to $80000000 or 0x80000000, the earliest reasonable time.

The Macintosh Finder Info entry (ID=9) consists of 16 bytes of Finder Info followed by 16 bytes of extended Finder Info; that is, the field ioFlFndrInfo followed by ioFlXFndrInfo, as returned by the Macintosh PBGetCatInfo call. (The PBGetCatInfo and the internal structures of ioFlFndrInfo and ioFlXFndrInfo are described in Inside Macintosh.)

Newly created files have 0s in all Finder Info subfields. If you are creating an AppleSingle or AppleDouble file, you may assign 0 to any subfield whose value is unknown (most subfields are undefined if the file does not reside on a valid hierarchical file system [HFS] volume), but you may want to set the fdType and fdCreator subfields.
One additional field must be set in the directory Finder Info entry. Whenever the Finder encounters a new ("inited" bit clear) directory, it initializes the frView field of the directory Finder Info to a value indicating how the contents of the directory should be viewed when opened (by icon, by small icon, and so on). Zero is not a legal value. This is not a problem as long as the client has write permission for the directory.

The Finder will place a legal value into the frView field when it initializes the directory. However, if the directory permissions deny making changes, the initial value will remain unchanged and cause the Finder to display things strangely. Consequently, it is appropriate to set the frView field when the Finder Info is assigned to a new host directory. For example:

```c
#define closedView 256   /* Normal view - icon, spatial */
/* ... */
dirFinderInfo.frView = closedView;
```

This results in the traditional "view by icon" display when the Finder first opens the window for that directory.

The Macintosh File Info entry (ID=10) is 32 bits that stores the locked and protected bit. Macintosh file times are stored in entry ID 8.

The ProDOS File Info entry (ID=11) consists of the file access, file type, and file auxiliary type. ProDOS file times are stored in entry ID 8.

The Access word may be used directly in ProDOS 16 or GS/OS calls; only the low byte is significant to ProDOS 8. The File Type word is the file type of the original file; only the low byte is significant to ProDOS 8. The Auxiliary Type long word is the auxiliary type of the original file; only the low word is significant to ProDOS 8.

UNIX file times are stored in entry ID 8.

The MS-DOS File Info entry (ID=12) is 16 bits that stores the MS-DOS attributes. MS-DOS file times are stored in entry ID 8.

The Short Name entry (ID=13) is the AFP short name. AFP servers must keep a mapping of short names for all foreign files. This short name is stored in entry ID 13.

If entry ID 13 does not exist, an AFP server derives a short name and creates this entry. When they derive short names, AFP servers must ensure that the derived names are unique within the directory. In order to ensure that short names for new foreign files don't conflict with existing short names, the following convention is used: AFP servers start all derived names with the character !" ($21 or 0x21). AFP clients are not allowed to access foreign files that begin with this character (!). Except for this restriction on foreign AFP servers, the short name algorithm remains flexible.

The AFP File Info entry (ID=14) is the AFP attributes word, as shown in Figure 2-5. AFP servers should set the BackupNeeded bit whenever a file is modified, or if the AppleSingle/AppleDouble foreign file's modification time is later than the modification time in entry ID 8.

The Directory entry (ID=15) is the AFP directory ID. AFP servers keep the 4-byte directory ID in this entry. This ID is assigned when a directory is created, or when a directory AppleDouble header file without an ID entry is found. The next unused ID is kept in the volume root info file, %RootInfo, in the volume root directory. The %RootInfo file is an AppleDouble header file with entries 3, 4, 8, 9, and 15 (Real Name, Comment, Volume Dates, Finder Info, and Next File ID). It must be locked when it is updated.
The entry data follows all of the entry descriptors. The data in each entry must be in a single, contiguous block. You can leave holes in the file for later expansion of data. For example, even if a file's comment field is only 10 bytes long, you can place the offset of the next field 200 bytes beyond the offset of the comment field, leaving room for the comment to grow to its maximum length of 200 bytes.

The entries can appear in any order, but you can maximize the efficiency of file access by following these conventions:

* Put the data fork entry at the end of the file. The data fork is the most commonly extended entry, and it is easier to increase its length if it is the last entry in the file.
* Put the entries that are most often read, such as Finder Info, File Dates Info, and Macintosh File Info, as close as possible to the header, to increase the probability that a read of the first block or two will retrieve these entries.
* Allocate the resource fork entry in blocks of 4 kilobytes (K) in order to minimize reorganization of AppleSingle files during updates to the resource fork.

- Filename conventions -

AppleSingle name derivations for some of the file systems of interest are defined in the following sections.

ProDOS

To generate the AppleSingle filename, use character substitution or deletion to remove illegal characters, and use truncation, if necessary, to reduce the length of the name to the maximum filename length of 15 characters.

MS-DOS

To generate the AppleSingle filename, use character substitution or deletion to remove illegal characters, and use truncation, if necessary, to reduce the length of the name to 8 characters. Then add the MS-DOS extension that is most appropriate to the file (for example, .TXT for a pure text file).

UNIX and NFS

AppleSingle naming conventions for UNIX and the Network File System (NFS) are essentially the same; they vary only according to the capabilities of the foreign file system. The creating application must use the naming convention that is the most complete subset of the foreign file system, and the naming convention must be constant across a single foreign file system volume.

There are three naming conventions:

* 8-bit
* 7-bit ASCII
* 7-bit alphanumeric

With the 8-bit naming convention, the foreign file system can store at least 93 character filenames consisting of all 8-bit characters except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash, null, and percent characters are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. For example, the home file system name Ca ada return - 20% becomes Ca ada return - 20%25.

With the 7-bit ASCII naming convention, the foreign file system can store at least 93 character filenames consisting of all 7-bit ASCII characters except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash, null, and percent characters are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. In addition, all extended 8-bit characters ($80 $ff or 0x80 0xff) are
replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. For example, the home file system name Ca_ada return - 20% becomes Ca\%96ada return - 20%25.

With the 7-bit alphanumeric naming convention, the foreign file system can store at least 93 character filenames consisting of all 7-bit alphanumeric characters except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash, null, and percent characters are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. In addition, all nonalphanumeric characters except underscore ($5f or 0x5f) and the last period ($2e or 0x2e) are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. For example, the home file system name Ca ada return - 20% becomes Ca\%96ada\%20return\%20\%20\%25.

Since expanding characters into "%" followed by two hexadecimal digits can result in long filenames, some foreign systems may not be able to store complete 31-character filenames. Behavior under these conditions is not defined here.

- Usage -

AppleSingle files must be locked during access to ensure data integrity.

Applications that access AppleSingle files ignore all unknown entries, yet preserve the unknown entries when moving or copying files.

The Real Name entry is associated with file storage. File server applications typically use the reverse mapping of the foreign filename when they present names to the client. Servers do not create or read a Real Name entry.

When the home file system name is renamed, the foreign filename must be renamed according to the filename conventions described in the previous sections.

Chapter 3: The AppleDouble Format

The AppleDouble format uses two files to store data, resources, and attributes. The AppleDouble Data file contains the data fork and the AppleDouble Header file contains the resource fork.

The AppleDouble Data file contains the standard Macintosh data fork with no additional header. The AppleDouble Header file has exactly the same format as the AppleSingle file, except that it does not contain a data fork entry. The magic number in the AppleDouble Header file differs from the magic number in the AppleSingle Header file so that an application can tell whether it needs to look in another file for the data fork. The magic number for the AppleDouble format is $00051607 or 0x00051607.

The entries in the AppleDouble Header file can appear in any order; however, since the resource fork is the entry that is most commonly extended (after the data fork), Apple recommends that the resource fork entry be placed last in the file. The data fork is easily extended because it resides by itself in the AppleDouble Data file.

It is possible to create a new type of entry in the AppleDouble Header file that points to the AppleDouble Data file to make it easy to find. For example, an application-defined entry might hold the name of the AppleDouble Data file. Some foreign file systems might provide a feature that allows a more permanent pointer to be created one that would not require the pointer to be updated if the AppleDouble Data file were renamed.

- Filename conventions -

The following sections present a standard for deriving the AppleDouble Data
Knowing the AppleDouble name derivations for some of the file systems of interest will allow applications running on foreign file systems and users to see which files are AppleDouble pairs. Users who know the derivation can rename or move the files while preserving the connection between the two. However, there is no guaranteed way to prevent one file in the pair from being inconsistently renamed, moved, or deleted.

ProDOS

To generate the AppleDouble Data filename, use character substitution or deletion to remove illegal characters, and use truncation, if necessary, to reduce the length of the name to 13 characters, two characters less than the maximum filename length.

To generate the AppleDouble Header filename, prefix the AppleDouble Data filename with the characters uppercase-R period (R.).

MS-DOS

To generate the AppleDouble Data filename, use character substitution or deletion to remove illegal characters, and use truncation, if necessary, to reduce the length of the name to eight characters. Then add the MS-DOS extension that is most appropriate to the file (for example, .TXT for a pure text file).

To generate the AppleDouble Header filename, add the extension .ADF (for AppleDouble file) to the eight-character filename.

UNIX and NFS

AppleSingle/AppleDouble naming conventions for UNIX and NFS are essentially the same; they vary only according to the capabilities of the foreign file system. The creating application must use the naming convention that is the most complete subset of the foreign file system, and the naming convention must be constant across a single foreign file system volume.

There are three naming conventions:

* 8-bit
* 7-bit ASCII
* 7-bit alphanumeric

With the 8-bit naming convention, the foreign file system can store at least 93 character filenames consisting of all 8-bit characters except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash, null, and percent characters are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. For example, the home file system name Ca ada return - 20\% becomes Ca%96ada return - 20%25.

With the 7-bit ASCII naming convention, the foreign file system can store at least 93 character filenames consisting of all 7-bit ASCII characters except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25 or 0x25). The slash, null, and percent characters are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. In addition, all extended 8-bit characters ($80 $ff or 0x80 0xff) are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. For example, the home file system name Ca ada return - 20\% becomes Ca%96ada return - 20%25.

With the 7-bit alphanumeric naming convention, the foreign file system can store at least 93 character filenames consisting of all 7-bit alphanumeric characters except slash ($2f or 0x2f), null ($00 or 0x00), and percent ($25
or 0x25). The slash, null, and percent characters are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. In addition, all nonalphanumeric characters except underscore (0x5f or 0x25) and the last period (0xe or 0x2e) are replaced by a percent character, followed by the two-character hexadecimal code of the escaped character. For example, the home file system name Ca da return - 20% becomes Ca%6ada%20return%20%2d%20%25.

To generate the AppleDouble Header filename, prefix the AppleDouble Data filename with the percent character (%). Conflicts between AppleDouble Header files and AppleSingle or data files that begin with "%", are resolved by the file’s magic number.

Since expanding characters into "%" followed by two hexadecimal digits can result in long filenames, some foreign systems may not be able to store complete 31-character filenames. Behavior under these conditions is not defined here.

- Usage -

AppleDouble Header files must be locked during access to ensure data integrity.

Applications that access AppleDouble files ignore all unknown entries, yet preserve them when moving or copying files.

Directories are stored as AppleDouble files if they are created by the application.

The Real Name entry is associated with file storage. File server applications typically use the reverse mapping of the foreign filename when they present names to the client. Servers do not create or read a Real Name entry.

When renaming the home file system name, the foreign filename must be renamed according to the filename conventions described in the previous sections.

Applications should not create AppleDouble Header files for preexisting foreign directories or files unless this is necessary to store AppleDouble entries.

Appendix: Updating Version 1 AppleSingle/AppleDouble Files

Applications should create AppleSingle/AppleDouble files using the version 2 format and naming conventions described in this document. Applications should understand version 1 (00010000 or 0x0010000) format and naming conventions but should not create new files in the version 1 format.

You can update version 1 files to version 2 files by performing the following steps:

* Overwrite the version number and filler fields in the AppleSingle or AppleDouble file header.
* Replace the File Info entry (ID=7) in the version 1 file with the File Dates Info entry (ID=8) and one of the following entry IDs: Macintosh File Info (ID=10), ProDOS File Info (ID=11), or MS-DOS File Info (ID=12).

Support Information Services
Copyright 1994, Apple Computer, Inc
Keywords:

END OF FILE A2TIL220.TXT
When you add a function to ProDOS and call the function from BASIC, you don't then return to the BASIC program that called the routine: at that point, you are BASIC. If the added function is more than one word (as specified in the ProDOS Technical Reference Manual), the pointer that should automatically take you to the start of the next line is not updated properly.

You must make a call to Applesoft to go to the end of the current line, which automatically sets the pointer to the start of the next line.

There is a specific call in Applesoft to make this happen. In the Tech Info Library, search on:

- Applesoft and internals

Keywords:

END OF FILE A2TIL221.TXT
Description: Applesoft BASIC: Displaying and printing text in 80 columns

The Apple II permits input and output to only one device at a time, including the 80-Column Text Card in slot 3.

Here is a BASIC program that will send information to the printer, and then to the screen.

10 D$ = CHR$(4)
20 PRINT D$;"PR#1" : REM Turn on the printer in slot 1
30 PRINT "This sentence will be sent to the printer. Make it a long sentence, so we can see if the printer uses 80 columns."
40 PRINT D$;"PR#3" : REM Turn off the printer; return to 80 column screen
50 PRINT "This sentence will appear on the screen."
60 END

If you find that the printer doesn't use 80 columns, then the interface card in the Apple IIe is set for 40 columns. Check the manual for that card, and change the DIP switches for 80 columns.

Use these techniques within any Applesoft BASIC program to turn a printer on and off, and still maintain disk drive access.

This short program shows how to print lines longer than 80 characters without overprinting. An explanation follows the listing.

10 D$=CHR$(4)
20 PRINT D$;"PR#1"
30 PRINT CHR$(9);"80N"
40 PRINT CHR$(9);"C"
50 LIST
60 S2$ = "We get a lot of calls regarding a problem with the Imagewriter I and the Imagewriter II overprinting when using the PRINT command from AppleSoft BASIC with lines that are longer than 80 characters. Here is a workable solution."
70 PRINT D$;"PR#3"

In the statement PRINT CHR$(9); "80N", (which sends Control-I 80N) the number 80 sets the printer card so that it sends a carriage return after sending 80 characters to the printer. The choice of the number, 60, 72, 80, or 132, to name a few options, depends on how you want to use the features of the printer and its interface card. This works for an Apple Super Serial Card, Apple Parallel Interface Card, and other popular interface cards.

After sending Control-I 80N to set the SSC to end its lines at 80 columns, it's still necessary to tell the SSC when that Control-I 80N command should work. That's what Control-I C does: it tells the SSC to issue a carriage return on column overflow.

Column overflow occurs when the SSC detects it has reached the end of the column as set by switches 2-3 and 2-4 or by Control-I 80N. The addition of a line like line 40 should correct similar overstriking problems, especially with listings of BASIC programs. If you run this program, it will correctly print S2$ on an Imagewriter or an ImageWriter II.

On an Apple IIIGS, the Control-I C would need to be a Control-I CE.

Keywords:
Description: Applesoft BASIC: Making a text file from a program file
Header: Applesoft BASIC: Making a text file from a program file

To transfer a program in Applesoft BASIC from the Apple II family of computers to another computer, you must first make a text file from the program. Adapt to your own situation this example:

Assume that your BASIC program begins with line number 10 and ends with line number 30000. Add these lines to the beginning of the program:

1 PRINT CHR$(4);"OPEN TEXTFILE"
2 PRINT CHR$(4);"WRITE TEXTFILE"
3 LIST 10-30000
4 PRINT "CLOSE"
5 END

Save the program with the new lines added, then run the program.

This will work in DOS 3.3 or ProDOS, so long as either was used to boot the disk, and so long as there is disk space available to write the program file.

If your program has used lines 1-5, put the new lines at the end, as lines 30001-5 for example, and then type RUN 30001.

Apple Technical Communications

Keywords:

END OF FILE A2TIL223.TXT
I would like to use a Macintosh word processor to edit Applesoft BASIC files from the Apple II environment. Is there a translator to take "tokenized" Applesoft BASIC files and have them appear on the Macintosh? The tokens (PRINT, DISPLAY...) don't seem to get translated when files are moved to the Macintosh. The original version of Passport (Apple File Exchange) had that capability.

We don't know of an AFE Translator for Applesoft BASIC files to Macintosh text files. You can get around this limitation by "printing" the Applesoft program files to a disk file before the AFE conversion. After editing on the Macintosh, transfer the files back to the Apple II. Then, EXEC each file to make it an Applesoft file. To do this, add the following code to the existing Applesoft program:

```
1 D$ = CHR$(4)
2 PRINT D$; "OPEN PGM.LIST"
3 PRINT D$; "LIST"
4 GOTO 32766
.
32766 PRINT D$; "CLOSE PGM.LIST"
```

The entire Applesoft program will be saved in a text file called "PGM.LIST" and can be converted to a Macintosh format for editing.

After editing is complete, transfer the file back to Apple II text format using the file name "EDITED.FILE". Use the EXEC command to turn the text listing into an Applesoft program in memory.

```
] EXEC EDITED.FILE
```

Be sure to SAVE the program to disk or the EXEC step will have to be repeated each time the user wants to run the program.

Copyright 1991 Apple Computer, Inc.

Keywords:
The Applesoft firmware card was designed to supply floating point BASIC to Apple II owners. There are two options on the card that the user may select.

1. Most obviously, the position of the switch on the rear of the card is used immediately after a system reset to force the selection of one of two banks of ROMs: the firmware card or the motherboard. If the switch is up then the system will default to Applesoft, otherwise the system will default to Integer BASIC.

2. Software, by accessing address $C080, can select Integer BASIC, or, by accessing address $C081, Applesoft.

Unfortunately for systems with Auto Start ROM, every time DOS gets control immediately after a reset, DOS forces a load of the version of BASIC DOS last used, regardless of the position of the switch.

Apple Tech Notes

Keywords:

END OF FILE A2TIL225.TXT
Description: Applesoft: Commas and printing
Header: Applesoft: Commas and printing

The following information applies to the Apple II Plus with a 40-column screen.

The third comma tab field is only available if there is nothing beyond column 23. The first character in the third comma field can print outside the text window.

HTAB can force the cursor outside the text window which can kill a program on the next PRINT statement.

VTAB ignores the text window. VTABBing below the text window will cause all output to be on one line. VTABBing above the text window will scroll into the window but the area above the window won't scroll.

Apple Tech Notes

Keywords:

END OF FILE A2TIL226.TXT
Description: Applesoft: Dotted Vertical Lines in High-Res

The Apple HIRES screen, unable to display all colors at all locations, displays colored vertical or near vertical lines as dashed lines, or not at all. Refer to your Apple II Reference Manual for a more thorough explanation.

Apple Tech Notes

Keywords:

END OF FILE A2TIL227.TXT
FILE: A2TIL228.TXT

Description: Applesoft: Internals--Device I/O Routines
Header: Applesoft: Internals--Device I/O Routines

INLIN D52C
Input a line of text without sending out a prompt from the current input
device into the input buffer, BUF. INLIN uses GDBUF to strip off the most
significant bit on all input characters.

INLIN+2 D52E
Input a line of text prompting with the character in X from the current input
device into the input buffer, BUF. INLIN uses GDBUF to strip off the most
significant bit on all input characters.

GDBUFS D539
Puts a zero at the end of the input buffer, BUF, and masks off the msb on all
bytes. On entry: X = the end of the input line.
On exit:

A = 0
X = FF
Y = 1

INCHR D553
Get one character from the current input device in A and mask off the MSB.
INCHR uses the main Apple input routines and supports normal handshaking.

STROUT DB3A
Print string pointed to by Y,A. The string must end with a null or a quote.

STRPRT DB3D
Print a string whose descriptor is pointed to by FACMO,FACLO.

OUTDO DB5C
Print the character in A. INVERSE, FLASH, and NORMAL in effect.

CRDO DAFB
Print a carriage return.

OUTSPC DB57
Print a space.

OUTQST DB5A
Print a question mark.

INPRT ED19
Print " IN " and the current line number from CURLIN. Uses LINPRT.

LINPRT ED24
Prints the 2 byte unsigned number in X,A.

PRNTFAC ED2E
Prints the current value of FAC. FAC is destroyed. Uses FOUT and STROUT.

Apple Tech Notes

Keywords:

END OF FILE A2TIL228.TXT
Description: Applesoft: Internals--Error Processor Routines
Header: Applesoft: Internals--Error Processor Routines

ERROR D412
Checks ERRFLG and jumps to HNDLERR if ONERR is active. Otherwise it prints
<cr> "?" <error message pointed to by X> "ERROR". If this is during program
execution then it also prints" IN " and the CURLIN.

HANDLERR F2E9
Saves CURLIN in ERRLIN, TXTPTR in ERRPOS, X in ERRNUM, and REMSTK in ERRSTK.
X contains the error code. See the Applesoft Reference Manual page 136 for
the value of X for a given error.

RESUME F317
Restores CURLIN from ERRLIN and TXTPTR from ERRPOS and transfers ERRSTK into
the 6502 stack pointer.

ISCNTC D858
Checks the Apple keyboard for a CTRL-C ($83). Executes the BREAK routine
if there is a CTRL-C.

CHKNUM DD6A
Make sure FAC is numeric. See CHKVAL.

CHKSTR DD6C
Make sure FAC is a string. See CHKVAL.

CHKVAL DD6D
Takes the result of the most recent FAC operation and check this result for a
string or numeric variable. A TYPE MISMATCH ERROR results if FAC and C don't
agree.
On entry:
C set checks for strings
C clear checks for numerics.

ERRDIR E306
Causes ILLEGAL DIRECT ERROR if the program isn't running. X is modified.

ISLETC E07D
Checks A for an ASCII letter ("A" to "Z"). On exit C set if A is a letter.

PARCHK DEB2
Checks for ",", evaluates a formula, and checks for ")". Uses CHKOPN and
FRMEVL then falls into CHKCLS.

CHKCLS DEB8
Checks at TXTPTR for ")". Uses SYNCHR.

CHKOPN DEBB
Checks at TXTPTR for ",". Uses SYNCHR.

CHKCOM DEBE
Checks at TXTPTR for ",". Uses SYNCHR.

SYNCHR DECO
Checks at TXTPTR for the character in A. TXTPTR is not modified. Normally
exits through CHRGET. Exits with SYNTAX ERROR if they don't match.
Apple Tech Notes

Keywords:
FLOATING POINT REGISTER MOVE ROUTINES

MOVFM EAF9
Moves the number in memory Y,A points to into FAC. On exit A and Z reflect FACEXP.

MOV2F EB1E
Pack FAC and temporarily moves it into register 2. On exit A and Z reflect FACEXP.

MOV1F EB21
Pack FAC and moves it temporarily into register 1. On exit A and Z reflect FACEXP.

MOVML EB23
Pack FAC and move it into zero page area starting at X. On exit A and Z reflect FACEXP.

MOVMF EB2B
Pack FAC and move it into memory pointed to by Y,X. On exit A and Z reflect FACEXP.

MOVFA EB53
Move ARG into FAC. On exit A and Z reflect FACEXP.

MOVAF EB63
Move FAC into ARG. On exit A and Z reflect FACEXP.

CONUPK E9E3
Load ARG from memory pointed to by Y,A. On exit A and Z reflect FACEXP.

SUMMARY OF MOVES:

FAC => (Y,A) EB2B MOVMF
FAC => (0,X) EB23 MOVML
FAC => TEMP1 EB21 MOV1F
FAC => TEMP2 EB1E MOV2F
FAC => ARG EB63 MOVAF
ARG => FAC EB53 MOVFA
(Y,A) => FAC EAF9 MOVFM
(Y,A) => ARG E9E3 CONUPK

FLOATING POINT OPERATORS

The following routines require that A and Z reflect FACEXP. Even though FAC move routines set up A and Z, a LDA $9D will insure their proper values.

FMULT E97F
Multiply the FAC by the number in memory pointed to by Y,A.

FMULTT E982
Multiply FAC and ARG. On entry A and Z must reflect FACEXP.

FDIV EA66
Divide the number in memory pointed to by Y,A by FAC.
FDIVT EA69
Divide ARG by FAC. On entry A and Z must reflect FACEXP.

FADD E7BE
Add the number Y,A points to in memory to FAC.

FADDT E7C1
Add FAC and ARG. On entry A and Z must reflect FACEXP.

FSUB E7A7
Subtract FAC from the number Y,A points to in memory.

FSUBT E7AA
Subtract FAC from ARG. On entry A and Z must reflect FACEXP.

TRANSCENDENTAL OPERATORS

FPWRT EE97
Raise ARG to the FAC power. On entry A and Z must reflect the value of FACEXP.

SQR EE8D
Takes the square root of FAC

LOG E941
Log base e of FAC

EXP EF09
Raise e to the FAC power

COS EFEA
Returns the cosine of the FAC in radians.

SIN EFF1
Returns the sine of the FAC in radians.

TAN F03A
Returns the tangent of the FAC in radians.

ATN F09E
Returns the inverse-tangent of the FAC in radians.

OTHER OPERATORS

SGN EB90
Modifies the value of the FAC depending on its value on entry. On exit:

FAC = 1 if FAC was greater than 0
FAC = 0 if FAC was equal to 0
FAC = -1 if FAC was less than 0

ABS EBAF
Absolute value of FAC. If FAC is less than 0 then FAC = -FAC.

INT EC23
Greatest integer value of FAC. Uses QINT and floats the result.

RND EFAE
Form a pseudo-random number in FAC and update RND at 00C9.

SIGN EB82
Set A according to the value of FAC. On exit:

A = 1 if FAC is positive
A = 0 if FAC = 0
A = FF if FAC is negative

FCOMP EBB2
Compare FAC and a packed number in memory pointed to by Y,A. On exit:

A = 1 if (Y,A) < FAC
A = 0 if (Y,A) = FAC
A = FF if (Y,A) > FAC

NEGOP EED0
FAC = -FAC

FADDH E7A0
Add 1/2 to FAC

DIV10 EA55
Divide FAC by 10. Returns positive numbers only.

MUL10 EA39
Multiply FAC by 10. Works for both positive and negative numbers.

Apple Tech Notes

Keywords:

END OF FILE A2TIL230.TXT
LOWER LEVEL INTERFACE ROUTINES

FOUT ED34
FOUT creates an ASCII string in FBUFFR equivalent to the value of FAC. On exit Y,A points to the string, which ends with an ASCII null. FAC is scrambled. Use STROUT to print the number.

SNGFLT E301
SNGFLT converts the unsigned number in Y to a floating point number in FAC.

GIVAYF E2F2
GIVAYF converts the unsigned number in Y,A to a floating point number in FAC.

FLOAT EB93
FLOAT converts the signed number in A to a floating point number in FAC.

CONINT E6FB
CONINT converts FAC into a single byte integer in X and FACLO. CONINT normally exits through CHRGET unless FAC is greater than 255 or less than 0, when it exits via ILLEGAL QUANTITY ERROR.

AYINT E10C
If FAC is less than +32767 and greater than -32767, then execute QINT. Otherwise AYINT exits via ILLEGAL QUANTITY ERROR.

QINT EBF2
Quick greatest integer function. Leaves INT(FAC) in FACHO,MO,LO signed. QINT assumes that the absolute value of the FAC is less than 8388608 (2^23rd power).

GETADR E752
GETADR converts the number in FAC to a 2 byte, unsigned integer in LINNUM. When FAC is greater than 65535 or less than -65535, GETADR exits via ILLEGAL QUANTITY ERROR.

GETNUM E746
GETNUM fetches a 2 byte number, a comma and an unsigned, single byte number from TXTPTR. The first number is stored in LINNUM, while the second is returned to the X register. On entry TXTPTR points to the first character of the formula for the first number. GETNUM uses FRNUM, GETADR, CHKCOM and GETBYTE.

COMBYTE E74C
COMBYTE checks for a comma, then fetches an unsigned, single byte number returned in X. On entry TXTPTR points to the comma. COMBYTE uses CHKCOM and GETBYTE.

FRMEVL DD7B
FRMEVL evaluates the formula at TXTPTR using CHRGET, then leaves the result in FAC. On entry, TXTPTR points to the first character of the formula, while on exit points to the terminator. "A" does not contain the terminator. The format of the temporary result on the stack is:

The address of the operator routine.
The floating point temporary result.
The precedence of the operator.

FRMEVL, the main subroutine for the commands that use formulas, works for
both strings and numbers. If the formula is a string literal, FRMEVL gobbles the opening quote, then executes STRLIT and ST2TXT.

FRMNUN DD67
FRMNUN evaluates the formula at TXTPTTR, puts it in FAC, then makes sure the result is numeric. On entry TXTPTTR points to the first character of the formula. FRMNUN exits through TYPE MISMATCH ERROR if the result is a string.

FIN EC4A
FIN inputs a floating point number into FAC from CHRGET. FIN assumes the 6502 registers and A were set up by the CHRGET that fetched the first digit. FIN only operates on numeric constants, not formulas.

Apple Tech Notes

Keywords:

END OF FILE A2TIL231.TXT
Description: Applesoft: Internals--Floating Point Math Package (1 of 3)
Header: Applesoft: Internals--Floating Point Math Package (1 of 3)

Applesoft's floating point package provides a 9 digit scientific package for evaluating numeric equations. It supports trigonometric functions with arguments in radians, exponents and logarithms to base e.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>msb</td>
<td>most significant bit or byte</td>
</tr>
<tr>
<td>lsb</td>
<td>least significant bit or byte</td>
</tr>
<tr>
<td>eol</td>
<td>end of line token ($00)</td>
</tr>
<tr>
<td>A</td>
<td>the 6502 accumulator</td>
</tr>
<tr>
<td>X</td>
<td>the 6502 X register</td>
</tr>
<tr>
<td>Y</td>
<td>the 6502 Y register</td>
</tr>
<tr>
<td>Z</td>
<td>the zero flag of the 6502 status register</td>
</tr>
<tr>
<td>C</td>
<td>the carry flag of the 6502 status register</td>
</tr>
</tbody>
</table>

A,X is a 16 bit number where A has the msb and X the lsb.

(Y,A) is the number or string whose address is in Y and A, with the msb in Y and the lsb in A.

FAC: the floating point accumulator
ARG: the ARGument register

REAL NUMBER FORMAT

The real number format used throughout Applesoft is: the exponent is a single byte signed number (EXP) in excess of $80 form (the signed value has $80 added to it); the mantissa is 4 bytes (HO,M0H,M0,LO); the binary point is to the right of the most significant bit. Since in binary floating point notation the msb is always 1, the number's sign replaces the msb when the number is stored in memory in packed form. The sign, though, is kept in a separate byte (SGN) when only bit 7 is significant. If the exponent is zero, the number is zero, although the mantissa isn't necessarily zero.

Examples:

```
EXP  HO  MOH  MO  LO  SGN

Packed format
-10  84  A0  00  00  00
10  84  20  00  00  00

FAC format
-10  84  A0  00  00  00  FF
10  84  A0  00  00  00  00
```

Arithmetic routine calling conventions for single argument functions (e.g., SGN, ABS or INT):

On entry the argument is in the FAC.
On exit the result is in the FAC.

Arithmetic routine calling conventions for two argument functions (e.g., FADD and FSUB):

On entry the first argument is in the ARG.
On entry the second argument is in the FAC.
On exit the result is in the FAC.

FLOATING POINT REGISTERS

NOTE: The TEMP locations may be used for other things when not used by the floating point math package.

<table>
<thead>
<tr>
<th>FAC</th>
<th>ARG</th>
<th>TEMP1</th>
<th>TEMP2</th>
<th>TEMP3</th>
<th>RND</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>9D</td>
<td>A5</td>
<td>93</td>
<td>98</td>
<td>8A</td>
</tr>
<tr>
<td>HO</td>
<td>9E</td>
<td>A6</td>
<td>94</td>
<td>99</td>
<td>8B</td>
</tr>
<tr>
<td>MOH</td>
<td>9F</td>
<td>A7</td>
<td>95</td>
<td>9A</td>
<td>8C</td>
</tr>
<tr>
<td>MO</td>
<td>A0</td>
<td>A8</td>
<td>96</td>
<td>9B</td>
<td>8D</td>
</tr>
<tr>
<td>LO</td>
<td>A1</td>
<td>A9</td>
<td>97</td>
<td>9C</td>
<td>8E</td>
</tr>
<tr>
<td>SGN</td>
<td>A2</td>
<td>AA</td>
<td>(packed format)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLOATING POINT CONSTANTS

The following addresses point to useful numbers; they're packed and suitable for use by most of the arithmetic routines including CONUPK and MOVMP.

RND	00C9
-32768	E0FE
1	E913
SQR (1/2)	E92D
SQR (2)	E932
-1/2	E937
LN (2)	E93C
10	EA50
1000000000	ED14
1/2	EE64
LOG (2) base e	EEDB
pi/2	F063
pi*2	F06B
1/4	F070

Keywords:

END OF FILE A2TIL232.TXT
Description: Applesoft: Internals--High resolution graphics routines

Header: Applesoft: Internals--High resolution graphics routines

NOTE: Regardless of which screen is being displayed, HPAG (location $E6) determines onto which screen the software draws graphics. ($20 for HGR, $40 for HGR2)

HGR2 F3D8
Initialize and clear page 2 High-Res.

HGR F3E2
Initialize and clear page 1 High-Res.

HCLR F3F2
Clear the current High-Res screen to black.

BKGD F3F6
Clear the current High-Res screen to last plotted color.

HPOSN F411
Positions the High-Res cursor without plotting. HPAG determines which page the cursor is pointed at.
On entry:
Horizontal = Y,X
Vertical = A

HPLT F457
Call HPOSN then try to plot a dot at the High-Res cursor's position. The dot may not be plotted if plotting non-white at a complementary color X coordinate.

HLIN F53A
Draws a line from the last plotted point or line destination to the coordinate in the 6502 registers.
On entry:
Horizontal = X,A
Vertical = Y

HFIND F5CB
Convert the High-Res cursor's position to X-Y coordinates. HFIND allows the user to tell where on the screen the a shape table left the cursor.
On exit:
$E0 = horizontal lsb
$E1 = horizontal msb
$E2 = vertical

DRAW F601
Draw the shape pointed to by Y,X using the current HCOLOR starting at the current High-Res cursor position. On entry A = rotation factor.

XDRAW F65D
Draw the shape pointed to by Y,X by starting at the current High-Res cursor position inverting the existing color of the dots the shape draws over. On entry A = rotation factor.

SETHCOL F6EC
Set the High-Res color to X. X must be less than 8.

SHLOAD F775
Loads a shape table into memory from tape above MEMSIZ (HIMEM) and sets the pointer at $E8.
Description: Applesoft: Internals--Index to Routines (1 of 4)
Header: Applesoft: Internals--Index to Routines (1 of 4)

The following two lists combine all the routines in the INTERNALS series of Apple Tech Notes. The first list is arranged alphabetically by the name of the routine. The second list is arranged in order of increasing address.

ALPHABETIC LIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>EBAF</td>
</tr>
<tr>
<td>ADDON</td>
<td>D998</td>
</tr>
<tr>
<td>ARG</td>
<td>A5-AA</td>
</tr>
<tr>
<td>ATN</td>
<td>F09E</td>
</tr>
<tr>
<td>AYINT</td>
<td>E10C</td>
</tr>
<tr>
<td>BKGND</td>
<td>F3F6</td>
</tr>
<tr>
<td>BLTU</td>
<td>D393</td>
</tr>
<tr>
<td>CHKCLS</td>
<td>DEBB</td>
</tr>
<tr>
<td>CHKCOM</td>
<td>DEBE</td>
</tr>
<tr>
<td>CHKNUM</td>
<td>DD6A</td>
</tr>
<tr>
<td>CHKOPN</td>
<td>DEBB</td>
</tr>
<tr>
<td>CHKSTR</td>
<td>DD6C</td>
</tr>
<tr>
<td>CHKVAL</td>
<td>DD6D</td>
</tr>
<tr>
<td>CHRGET</td>
<td>00B1</td>
</tr>
<tr>
<td>CHRGOT</td>
<td>00B7</td>
</tr>
<tr>
<td>CLEARC</td>
<td>D66C</td>
</tr>
<tr>
<td>COMBYTE</td>
<td>E74C</td>
</tr>
<tr>
<td>CONINT</td>
<td>E6FB</td>
</tr>
<tr>
<td>CONT</td>
<td>D898</td>
</tr>
<tr>
<td>CONUPK</td>
<td>E9E3</td>
</tr>
<tr>
<td>COS</td>
<td>EFEA</td>
</tr>
<tr>
<td>CRDO</td>
<td>DAFB</td>
</tr>
<tr>
<td>DATA</td>
<td>D995</td>
</tr>
<tr>
<td>DATAN</td>
<td>D9A3</td>
</tr>
<tr>
<td>DIV10</td>
<td>EA55</td>
</tr>
<tr>
<td>DRAW</td>
<td>F601</td>
</tr>
<tr>
<td>ERRDRC</td>
<td>E306</td>
</tr>
<tr>
<td>ERROR</td>
<td>D412</td>
</tr>
<tr>
<td>EXP</td>
<td>EF09</td>
</tr>
<tr>
<td>FAC</td>
<td>9D-A2</td>
</tr>
<tr>
<td>FADD</td>
<td>E7BE</td>
</tr>
<tr>
<td>FADDD</td>
<td>E7A0</td>
</tr>
<tr>
<td>FADTT</td>
<td>E7C1</td>
</tr>
<tr>
<td>FCOMP</td>
<td>EBB2</td>
</tr>
<tr>
<td>FDIV</td>
<td>EA66</td>
</tr>
<tr>
<td>FIDVT</td>
<td>EA69</td>
</tr>
<tr>
<td>FIN</td>
<td>EC4A</td>
</tr>
<tr>
<td>FLOAT</td>
<td>EB93</td>
</tr>
<tr>
<td>FMULT</td>
<td>E97F</td>
</tr>
<tr>
<td>FMULTT</td>
<td>E982</td>
</tr>
<tr>
<td>FNIDN</td>
<td>D61A</td>
</tr>
<tr>
<td>FOUT</td>
<td>ED34</td>
</tr>
<tr>
<td>FPWRT</td>
<td>EE97</td>
</tr>
<tr>
<td>FREFAC</td>
<td>E600</td>
</tr>
<tr>
<td>FRESR</td>
<td>E5FD</td>
</tr>
<tr>
<td>FRETMP</td>
<td>E604</td>
</tr>
<tr>
<td>FRETMS</td>
<td>E635</td>
</tr>
<tr>
<td>FRMEVL</td>
<td>DD7B</td>
</tr>
<tr>
<td>FRNUM</td>
<td>DD67</td>
</tr>
<tr>
<td>FSUB</td>
<td>E7A7</td>
</tr>
<tr>
<td>FSUBT</td>
<td>E7AA</td>
</tr>
</tbody>
</table>
Keywords:

END OF FILE A2TIL234.TXT
ALPHABETIC LIST (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOTO</td>
<td>D93E</td>
</tr>
<tr>
<td>GTBYTEC</td>
<td>E6F5</td>
</tr>
<tr>
<td>HANDLERR</td>
<td>F2E9</td>
</tr>
<tr>
<td>HCLR</td>
<td>F3F2</td>
</tr>
<tr>
<td>HFIND</td>
<td>F5CB</td>
</tr>
<tr>
<td>HFNS</td>
<td>F6B9</td>
</tr>
<tr>
<td>HGR</td>
<td>F3E2</td>
</tr>
<tr>
<td>HGR2</td>
<td>F3D8</td>
</tr>
<tr>
<td>HLIN</td>
<td>F53A</td>
</tr>
<tr>
<td>HPLLOT</td>
<td>F457</td>
</tr>
<tr>
<td>HPOSN</td>
<td>F411</td>
</tr>
<tr>
<td>INCHR</td>
<td>D553</td>
</tr>
<tr>
<td>INLIN</td>
<td>D52C</td>
</tr>
<tr>
<td>INLIN+2</td>
<td>D52E</td>
</tr>
<tr>
<td>INPRT</td>
<td>ED19</td>
</tr>
<tr>
<td>INT</td>
<td>EC23</td>
</tr>
<tr>
<td>ISCNTC</td>
<td>D858</td>
</tr>
<tr>
<td>ISLET</td>
<td>E07D</td>
</tr>
<tr>
<td>LET</td>
<td>DA46</td>
</tr>
<tr>
<td>LINGET</td>
<td>DA0C</td>
</tr>
<tr>
<td>LINFRT</td>
<td>ED24</td>
</tr>
<tr>
<td>LOG</td>
<td>E941</td>
</tr>
<tr>
<td>MOVIF</td>
<td>EB21</td>
</tr>
<tr>
<td>MOV2F</td>
<td>EB1E</td>
</tr>
<tr>
<td>MOVAF</td>
<td>EB63</td>
</tr>
<tr>
<td>MOVFA</td>
<td>EB53</td>
</tr>
<tr>
<td>MOVFM</td>
<td>EAF9</td>
</tr>
<tr>
<td>MOVINS</td>
<td>E5D4</td>
</tr>
<tr>
<td>MOVMF</td>
<td>EB2B</td>
</tr>
<tr>
<td>MOVML</td>
<td>EB23</td>
</tr>
<tr>
<td>MOVSTR</td>
<td>E5E2</td>
</tr>
<tr>
<td>MUL10</td>
<td>EA39</td>
</tr>
<tr>
<td>NEGOP</td>
<td>EED0</td>
</tr>
<tr>
<td>NEWSSTT</td>
<td>D7D2</td>
</tr>
<tr>
<td>OUTDO</td>
<td>DB5C</td>
</tr>
<tr>
<td>OUTQST</td>
<td>DB5A</td>
</tr>
<tr>
<td>OUTSPC</td>
<td>DB57</td>
</tr>
<tr>
<td>PARCHK</td>
<td>DEB2</td>
</tr>
<tr>
<td>PLOTFNS</td>
<td>F1EC</td>
</tr>
<tr>
<td>PRNTFAC</td>
<td>ED2E</td>
</tr>
<tr>
<td>PTRGET</td>
<td>DFE3</td>
</tr>
<tr>
<td>PUTNEW</td>
<td>E42A</td>
</tr>
<tr>
<td>QINT</td>
<td>EBF2</td>
</tr>
<tr>
<td>REASON</td>
<td>D3E3</td>
</tr>
<tr>
<td>REMN</td>
<td>D9A6</td>
</tr>
<tr>
<td>RESTOR</td>
<td>D849</td>
</tr>
<tr>
<td>RESUME</td>
<td>F317</td>
</tr>
<tr>
<td>RND</td>
<td>C9-CD</td>
</tr>
<tr>
<td>RND</td>
<td>EFAE</td>
</tr>
<tr>
<td>RUN</td>
<td>D566</td>
</tr>
<tr>
<td>SCRATCH</td>
<td>D64B</td>
</tr>
<tr>
<td>SETHCOL</td>
<td>F6EC</td>
</tr>
<tr>
<td>SGN</td>
<td>EB90</td>
</tr>
<tr>
<td>SHLOAD</td>
<td>F775</td>
</tr>
<tr>
<td>SIGN</td>
<td>EB82</td>
</tr>
</tbody>
</table>
SIN EFF1
SNGFLT E301
SQR EE8D
STKINI D683
STKINI E3D5
STRLIT E3E7
STRLIT2 E3ED
STROUT DB3A
STRPRT DB3D
STRSPA E3DD
STRTXT DE81
STXTPT D697
SYNCHR DEC0
TAN F03A
TEMP1 93-97
TEMP2 98-9C
TEMP3 8A-8E
XDRAW F65D
Apple Tech Notes

Keywords:

END OF FILE A2TIL235.TXT
Numeric list by Address

<table>
<thead>
<tr>
<th>Addr.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>00B1</td>
<td>CHRGET</td>
</tr>
<tr>
<td>00B7</td>
<td>CHRGOT</td>
</tr>
<tr>
<td>8A-8E</td>
<td>TEMP3</td>
</tr>
<tr>
<td>98-9C</td>
<td>TEMP2</td>
</tr>
<tr>
<td>9D-A2</td>
<td>FAC</td>
</tr>
<tr>
<td>A5-AA</td>
<td>ARG</td>
</tr>
<tr>
<td>C9-C0</td>
<td>RRD</td>
</tr>
<tr>
<td>D393</td>
<td>BLTU</td>
</tr>
<tr>
<td>D3E3</td>
<td>REASON</td>
</tr>
<tr>
<td>D412</td>
<td>ERROR</td>
</tr>
<tr>
<td>D52C</td>
<td>LININ</td>
</tr>
<tr>
<td>D52E</td>
<td>LININ+2</td>
</tr>
<tr>
<td>D539</td>
<td>GDBUPS</td>
</tr>
<tr>
<td>D553</td>
<td>INCHR</td>
</tr>
<tr>
<td>D566</td>
<td>RUN</td>
</tr>
<tr>
<td>D61A</td>
<td>FNDLIN</td>
</tr>
<tr>
<td>D64B</td>
<td>SCRTH</td>
</tr>
<tr>
<td>D66C</td>
<td>CLEARC</td>
</tr>
<tr>
<td>D683</td>
<td>STKINI</td>
</tr>
<tr>
<td>D697</td>
<td>STXTPT</td>
</tr>
<tr>
<td>D7D2</td>
<td>NEWSSTT</td>
</tr>
<tr>
<td>D849</td>
<td>RESTOR</td>
</tr>
<tr>
<td>D858</td>
<td>ISCNTC</td>
</tr>
<tr>
<td>D898</td>
<td>CONT</td>
</tr>
<tr>
<td>D93E</td>
<td>GOTO</td>
</tr>
<tr>
<td>D995</td>
<td>DATA</td>
</tr>
<tr>
<td>D998</td>
<td>ADDON</td>
</tr>
<tr>
<td>D9A3</td>
<td>DAZAN</td>
</tr>
<tr>
<td>D9A6</td>
<td>REMN</td>
</tr>
<tr>
<td>DA0C</td>
<td>LINGET</td>
</tr>
<tr>
<td>DA46</td>
<td>LET</td>
</tr>
<tr>
<td>DA7B</td>
<td>GETSPT</td>
</tr>
<tr>
<td>DAFB</td>
<td>CRDO</td>
</tr>
<tr>
<td>DB3A</td>
<td>STROUT</td>
</tr>
<tr>
<td>DB3D</td>
<td>STRPRT</td>
</tr>
<tr>
<td>DB57</td>
<td>OUTSPC</td>
</tr>
<tr>
<td>DB5A</td>
<td>OUTQST</td>
</tr>
<tr>
<td>DB5C</td>
<td>OUTDO</td>
</tr>
<tr>
<td>DD67</td>
<td>FRNUM</td>
</tr>
<tr>
<td>DD6A</td>
<td>CHNNUM</td>
</tr>
<tr>
<td>DD6C</td>
<td>CHNSTR</td>
</tr>
<tr>
<td>DD6D</td>
<td>CHKVAL</td>
</tr>
<tr>
<td>DD7B</td>
<td>FMEVL</td>
</tr>
<tr>
<td>DE81</td>
<td>STRTXT</td>
</tr>
<tr>
<td>DEB2</td>
<td>PARCHK</td>
</tr>
<tr>
<td>DEB8</td>
<td>CHKCLS</td>
</tr>
<tr>
<td>DEBB</td>
<td>CHKOPN</td>
</tr>
<tr>
<td>DEBE</td>
<td>CHKCOM</td>
</tr>
<tr>
<td>DEC0</td>
<td>SYNCHR</td>
</tr>
<tr>
<td>DFE3</td>
<td>PTRGET</td>
</tr>
<tr>
<td>E07D</td>
<td>ISLET</td>
</tr>
<tr>
<td>E10C</td>
<td>AYINT</td>
</tr>
<tr>
<td>E2F2</td>
<td>GIVAYF</td>
</tr>
<tr>
<td>E301</td>
<td>SNIFLT</td>
</tr>
<tr>
<td>E306</td>
<td>ERRDIR</td>
</tr>
</tbody>
</table>
Description: Applesoft: Internals--Index to routines (4 of 4)
Header: Applesoft: Internals--Index to routines (4 of 4)

Numeric list by Address (continued)

<table>
<thead>
<tr>
<th>Addr</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>E600</td>
<td>FREFAC</td>
</tr>
<tr>
<td>E604</td>
<td>FRETMP</td>
</tr>
<tr>
<td>E635</td>
<td>FRETMS</td>
</tr>
<tr>
<td>E6F5</td>
<td>GTBYTC</td>
</tr>
<tr>
<td>E6F8</td>
<td>GETBYT</td>
</tr>
<tr>
<td>E6FB</td>
<td>CONINT</td>
</tr>
<tr>
<td>E746</td>
<td>GETNUM</td>
</tr>
<tr>
<td>E74C</td>
<td>COMBYTE</td>
</tr>
<tr>
<td>E752</td>
<td>GETADR</td>
</tr>
<tr>
<td>E7A0</td>
<td>FADDH</td>
</tr>
<tr>
<td>E7A7</td>
<td>FSUB</td>
</tr>
<tr>
<td>E7AA</td>
<td>FSUBT</td>
</tr>
<tr>
<td>E7BE</td>
<td>FADD</td>
</tr>
<tr>
<td>E7C1</td>
<td>FADDT</td>
</tr>
<tr>
<td>E941</td>
<td>LOG</td>
</tr>
<tr>
<td>E97F</td>
<td>FMULT</td>
</tr>
<tr>
<td>E982</td>
<td>FMULTT</td>
</tr>
<tr>
<td>E9E3</td>
<td>CONUPK</td>
</tr>
<tr>
<td>EA39</td>
<td>MUL10</td>
</tr>
<tr>
<td>EA55</td>
<td>DIV10</td>
</tr>
<tr>
<td>EA66</td>
<td>FDIV</td>
</tr>
<tr>
<td>EA69</td>
<td>FIDVT</td>
</tr>
<tr>
<td>EAF9</td>
<td>MOVFM</td>
</tr>
<tr>
<td>EB1E</td>
<td>MOV2P</td>
</tr>
<tr>
<td>EB21</td>
<td>MOV1F</td>
</tr>
<tr>
<td>EB23</td>
<td>MOVML</td>
</tr>
<tr>
<td>EB28</td>
<td>MOVMP</td>
</tr>
<tr>
<td>EB53</td>
<td>MOVFA</td>
</tr>
<tr>
<td>EB63</td>
<td>MOVAF</td>
</tr>
<tr>
<td>EB82</td>
<td>SIGN</td>
</tr>
<tr>
<td>EB90</td>
<td>SGN</td>
</tr>
<tr>
<td>EB93</td>
<td>FLOAT</td>
</tr>
<tr>
<td>EBAF</td>
<td>ABS</td>
</tr>
<tr>
<td>EBB2</td>
<td>FCOMP</td>
</tr>
<tr>
<td>EBF2</td>
<td>QINT</td>
</tr>
<tr>
<td>EC23</td>
<td>INT</td>
</tr>
<tr>
<td>EC4A</td>
<td>FIN</td>
</tr>
<tr>
<td>ED19</td>
<td>INFRT</td>
</tr>
<tr>
<td>ED24</td>
<td>LINFRT</td>
</tr>
<tr>
<td>ED2E</td>
<td>FNRTFAC</td>
</tr>
<tr>
<td>ED34</td>
<td>FOOT</td>
</tr>
<tr>
<td>EE8D</td>
<td>SQR</td>
</tr>
<tr>
<td>EE97</td>
<td>FPWRT</td>
</tr>
<tr>
<td>EED0</td>
<td>NEGOP</td>
</tr>
<tr>
<td>EF09</td>
<td>EXP</td>
</tr>
<tr>
<td>EFAE</td>
<td>RND</td>
</tr>
<tr>
<td>EFEA</td>
<td>COS</td>
</tr>
<tr>
<td>EFF1</td>
<td>SIN</td>
</tr>
<tr>
<td>F03A</td>
<td>TAN</td>
</tr>
<tr>
<td>F09E</td>
<td>ATN</td>
</tr>
<tr>
<td>F1EC</td>
<td>PLOTFNS</td>
</tr>
<tr>
<td>F2E9</td>
<td>HANDLERR</td>
</tr>
<tr>
<td>F317</td>
<td>RESUME</td>
</tr>
<tr>
<td>F3D8</td>
<td>HGR2</td>
</tr>
</tbody>
</table>
The following six notes, first published in The Apple Orchard (March 1980) are written for experienced 6502 machine language programmers who wish to use the Applesoft ROM subroutines. The addresses given are for an Apple II+ with an Applesoft firmware card, or Applesoft loaded into a Language Card. Consult your Applesoft Reference manual for more information.

Take special note of CHRGET, the heart of Applesoft. When Applesoft wants the next character of an instruction, it points TXTPTR at the program or input buffer, and JSRs to CHRGET. TXTPTR is temporarily set to the last used DATA statement when Applesoft READS DATA.

ABBREVIATIONS

msb: most significant bit or byte
lsb: least significant bit or byte
eol: end of line token ($00)

A: the 6502 accumulator
X: the 6502 X register
Y: the 6502 Y register
Z: the zero flag of the 6502 status register
C: the carry flag of the 6502 status register

A,X is a 16 bit number where A has the msb and X the lsb.

(Y,A) is the number or string whose address is in Y and A, with the msb in Y and lsb in A.

FAC the floating point accumulator ARG the ARGument register

Apple Tech Notes

Keywords:
The following six notes, first published in The Apple Orchard (March 1980) are written for experienced 6502 machine language programmers who wish to use the Applesoft ROM subroutines. The addresses given are for an Apple II+ with an Applesoft firmware card, or Applesoft loaded into a Language Card. Consult your Applesoft Reference manual for more information.

Take special note of CHRGET, the heart of Applesoft. When Applesoft wants the next character of an instruction, it points TXTPTR at the program or input buffer, and JSRs to CHRGET. TXTPTR is temporarily set to the last used DATA statement when Applesoft READS DATA.

ABBREVIATIONS

msb: most significant bit or byte
lsb: least significant bit or byte
eol: end of line token ($00)

A: the 6502 accumulator
X: the 6502 X register
Y: the 6502 Y register
Z: the zero flag of the 6502 status register
C: the carry flag of the 6502 status register

A,X is a 16 bit number where A has the msb and X the lsb.
(Y,A) is the number or string whose address is in Y and A, with the msb in Y and lsb in A.

FAC the floating point accumulator ARG the ARGument register

Apple Tech Notes

Keywords:
APPLE II COMPUTER TECHNICAL INFORMATION

 PTRGET DFE3
Read a variable name from CHRGET and find it in memory. On entry TXTPTR
points to the first character of the variable name. On exit the address to the
value of the variable is in VARPNT and Y,A. If PTRGET can't find a simple
variable it creates one. If it can't find an array it creates one dimensioned
from 0 to 10 and sets all elements equal to zero.

GETARYPT F7D9
Read a variable name from CHRGET and find it in memory. On entry TXTPTR
points to the first character of the variable name. This routine leaves LOWTR
pointing to the name of the variable array. If the array can't be found the
result is an OUT OF DATA ERROR.

FNDLIN D61A
Searches the program for the line whose number is in LINNUM.
On exit:
C set LOWTR points to the link field of the desired line.
C clear then not found. LOWTR points to the next higher line.

DATA D995
Move TXTPTR to the end of the statement. Looks for the ":" or eol (0).

DATAN D9A3
Calculate the offset in Y from TXTPTR to the next ":" or eol (0).

REMN D9A6
Calculate the offset in Y from TXTPTR to the next eol (0).

ADDON D998
Add Y to TXTPTR.

SCRTCH D64B
The "NEW" command. Clears the program, variables, and stack.

CLEARC D66C
The "CLEAR" command. Clears the variables and stack.

STKINI D683
Clears the stack.

RESTOR D849
Sets the DATA pointer, DATPTR, to the beginning of the program.

STXTPT D697
Set TXTPTR to the beginning of the program.

BLTU D393
Block transfer makes room by moving everything forward.
On entry:
Y,A and HIGHDS = destination of high address + 1
LOWTR = lowest address to be moved
HIGHTR = highest address to be moved + 1
On exit:
LOWTR is unchanged
HIGHTR = LOWTR - $100
HIGHDS = lowest address transferred - $100

Apple II Computer Family Articles -- Apple Technical Info Library (TIL)
March 1997 -- Page 388 of 649
Makes sure there's enough room in memory for another variable. Checks to be sure that the address Y,A is less than FRETOP. May cause garbage collection. Causes "OUT OF MEMORY ERROR" if there's no room.

GARBAG E484
Move all currently used strings up in memory as far as possible. This maximizes the free memory area for more strings or numeric variables.

CONT D898
Moves OLDTXT and OLDLIN into TXTPTR and CURLIN.

NEWSTT D7D2
Execute a new statement. On entry TXTPTR points to the ":" preceding the statement or the zero at the end of the previous line. Use NEWSTT to restart the program with CONT. THIS ROUTINE DOES NOT RETURN.

RUN D566
Run the program in memory. THIS ROUTINE DOES NOT RETURN.

GOTO D93E
Uses LINGET and FNDFLIN to update TXTPTR. GOTO assumes that the 6502 registers and A have been set up by the CHRGET that fetched the first digit.

LET DA46
Uses CHRGET to get address of the variable, ",=", evaluate the formula, and store it. On entry TXTPTR points to the first character of the variable name.

Apple Tech Notes

Keywords:

END OF FILE A2TIL240.TXT
Description: Applesoft: Internals--Page Zero Memory Map (1 of 2)

Header: Applesoft: Internals--Page Zero Memory Map (1 of 2)

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-02</td>
<td>START Initialize low RAM memory</td>
</tr>
<tr>
<td>03-05</td>
<td>RDYJSR Jumps to STROUT</td>
</tr>
<tr>
<td>06,07</td>
<td>ADRAYI Address of AYINT subroutine</td>
</tr>
<tr>
<td>08,09</td>
<td>ADRGAY Address of GIVAYF subroutine</td>
</tr>
<tr>
<td>0A-0C</td>
<td>USRPOK Vector for USR() function</td>
</tr>
<tr>
<td>0D</td>
<td>CHARAC String delimiter</td>
</tr>
<tr>
<td>0E</td>
<td>ENDCR String delimiter</td>
</tr>
<tr>
<td>0F</td>
<td>COUNT General purpose counter</td>
</tr>
<tr>
<td>10</td>
<td>DINFGL Flag to permit arrays</td>
</tr>
<tr>
<td>11</td>
<td>VALTTY Variable type indicator. 0=numeric, 1=string</td>
</tr>
<tr>
<td>12</td>
<td>INTFLG Variable type indicator. 1=integer, 0=real</td>
</tr>
<tr>
<td>13</td>
<td>GARBFL Flag to signal the need for garbage collection</td>
</tr>
<tr>
<td>14</td>
<td>SUBFLG Flag to permit array variables.</td>
</tr>
<tr>
<td>15</td>
<td>INFPLG Determines if this is INPUT or READ</td>
</tr>
<tr>
<td>16</td>
<td>TANSGN Used for the sign during TAN() function</td>
</tr>
<tr>
<td>1A,1B</td>
<td>SHAPE High-Res shape pointer</td>
</tr>
<tr>
<td>1C</td>
<td>HCOLOR1 High-Res running color mask</td>
</tr>
<tr>
<td>1D</td>
<td>COUNTH High-Res counter</td>
</tr>
<tr>
<td>26,27</td>
<td>HBAS High-Res base address pointer</td>
</tr>
<tr>
<td>2C</td>
<td>H2</td>
</tr>
<tr>
<td>2D</td>
<td>V2</td>
</tr>
<tr>
<td>45</td>
<td>ERROV</td>
</tr>
<tr>
<td>50-51</td>
<td>LINNUM 16 bit integer work area</td>
</tr>
<tr>
<td>53,54</td>
<td>LASTPT Pointer to last used string temporary</td>
</tr>
<tr>
<td>55-5D</td>
<td>TEMST Temporary string descriptor storage area</td>
</tr>
<tr>
<td>5E,5F</td>
<td>INDEX General purpose index</td>
</tr>
<tr>
<td>60,61</td>
<td>INDEX2 General purpose index</td>
</tr>
<tr>
<td>62-66</td>
<td>RES Multiply or divide result (HO,MOH,MO,LO)</td>
</tr>
<tr>
<td>67,68</td>
<td>TEXTAB Pointer to start of the program text</td>
</tr>
<tr>
<td>69,6A</td>
<td>VARTAB Pointer to start of simple variable space</td>
</tr>
<tr>
<td>6B,6C</td>
<td>ARYTAB Pointer to start of array variable space</td>
</tr>
<tr>
<td>6D,6E</td>
<td>STREND Pointer to end of storage in use</td>
</tr>
<tr>
<td>6F,70</td>
<td>FRETOP Pointer to top of string free space</td>
</tr>
<tr>
<td>71,72</td>
<td>FRESPC Pointer to new string</td>
</tr>
<tr>
<td>73,74</td>
<td>MEMSIZ Pointer to top of memory</td>
</tr>
<tr>
<td>75,76</td>
<td>CURLIN Current line number</td>
</tr>
<tr>
<td>77,78</td>
<td>OLDDLIN Old line number, set up by ctrl-C, STOP, or END</td>
</tr>
<tr>
<td>79,7A</td>
<td>OLDTXT Old text pointer</td>
</tr>
<tr>
<td>7B,7C</td>
<td>DATLIN Line number where data for next READ comes from</td>
</tr>
<tr>
<td>7D,7E</td>
<td>DATPTR Pointer to data for next READ</td>
</tr>
<tr>
<td>7F,80</td>
<td>INFPTR Pointer to where input is coming from</td>
</tr>
<tr>
<td>81,82</td>
<td>VARNAM Storage area for a variable's name</td>
</tr>
<tr>
<td>83,84</td>
<td>VARPNT Pointer to a variable in memory</td>
</tr>
<tr>
<td>85,86</td>
<td>FORPNT Variable pointer for FOR and LET</td>
</tr>
<tr>
<td>87,88</td>
<td>OPFNT Pointer to current formula operation in OPTAB</td>
</tr>
<tr>
<td>89</td>
<td>OPMASK Mask created by current operator</td>
</tr>
<tr>
<td>8A,8B</td>
<td>DEFPNT Pointer used in function definition</td>
</tr>
<tr>
<td>8C,8D</td>
<td>DSCPNT Pointer to a string descriptor</td>
</tr>
<tr>
<td>8E</td>
<td>TEMPF3 Temporary pointer</td>
</tr>
<tr>
<td>8F</td>
<td>FOUR6 Constant for garbage collection</td>
</tr>
<tr>
<td>90-92</td>
<td>JMFER Internal vector</td>
</tr>
<tr>
<td>93</td>
<td>TEMPF1 Temporary pointer</td>
</tr>
<tr>
<td>94,95</td>
<td>ARYPFT Pointer into an array</td>
</tr>
<tr>
<td>94,95</td>
<td>HIGHDs Destination of highest element in BLT.</td>
</tr>
<tr>
<td>96,97</td>
<td>HIGHTR Source of highest element to move in BLT.</td>
</tr>
<tr>
<td>98</td>
<td>TEMPF2</td>
</tr>
<tr>
<td>99,9A</td>
<td>LOWDS Location of last byte transferred into BLT.</td>
</tr>
<tr>
<td>9B,9C</td>
<td>LOWTR Last thing to move in BLT. See BLTU.</td>
</tr>
</tbody>
</table>
9D-9F DSCTMP Temporary string descriptor
9D-A2 FAC Floating point accumulator.
 (EXP,HO,MOH,MO,LO,SGN)

Apple Tech Notes

Keywords:

END OF FILE A2TIL241.TXT
FILE: A2TIL242.TXT

Title: Applesoft: Internals--Page Zero Memory Map (2 of 2)

A3 SNGFLG Sign of FAC. Set up by FIN.
A4 BITS
A5-AA ARG Floating point argument (EXP, HO, MOH, MO, LO, SGN)
AB,AC STRNG1 Pointer to a string or descriptor
AD,AE FBUFPT Pointer into FBUFFER for FOUT
AF,B0 PRGEND Pointer to the end of the program text
B1-C8 CHRGET Character fetcher
C9-CD RNDX Random number seed
D0,D1 DX High-Res delta-X for shape and HLIN
D2 DY High-Res delta-Y for shape and HLIN
D3 QDRNT High-Res rotation quadrant
D4,D5 E High-Res error for HLIN
D6 RONLY Run only flag
D8 ERRFLG Flag set by ONERR GOTO
DA,DB ERRLIN The line number where the error occurred
DC,DD ERRPOS Where in memory did the error occur
DE ERRNUM Which error occurred
DF ERRSTK 6502 stack pointer from REMSTK after an error
E0,E1 XO High-Res prior X coordinate save
E2 YO High-Res prior Y coordinate save
E4 HCOLOR High-Res color byte for HPLOT, HPOSN
E5 HNDX High-Res horizontal offset save
E6 HPAG High-Res page ($20 = HGR1, $40 = HGR2)
E7 SCALE High-Res scale for SHAPE
E8,E9 SHAPX High-Res start of shape table
EA COLLSN High-Res collision counter
FA FIRST
F1 SPDBYT Controls delay between printed characters
F2 TRFMTAG Controls TRACE mode.
F3 ORMASK Controls masking for INVERSE on video output.
F4-F7 ERRTO Points to the GOTO part of ONERR statement
F8 REMSTK 6502 stack pointer save area.
F9 ROTBYT High-Res rotation factor for SHAPE
100-10F FBUFFR Buffer for FOUT
200-2F0 BUF Input buffer

Apple Tech Notes

Keywords:

END OF FILE A2TIL242.TXT
APPLE II COMPUTER TECHNICAL INFORMATION

Description: Applesoft: Internals--String Utilities (1 of 2)
Header: Applesoft: Internals--String Utilities (1 of 2)

Applesoft strings have two parts: the descriptor and the ASCII string. Your string descriptor contains the length of the string along with the address of the strings first character. Refer to page 137 of the Applesoft Reference Manual for additional information on the string components. During most Applesoft routines the descriptor is left in memory, while a two byte pointer to the descriptor is kept in the FAC. The pointer is the address of the descriptor; therefore, the actual string could be anywhere in memory. The statement 10 A$ = "HI" leaves a descriptor pointing to the program text.

STRINI E3D5

STRINI obtains space for creating a string whose descriptor is pointed to by FACMO/FACLO; it also creates a descriptor for it in DSCTMP. On entry A = length of the string, while FACMO/FACLO point to the string descriptor. STRINI uses GETSPA to force garbage collection when there isn't sufficient room; GETSPA exits with an "OUT OF MEMORY ERROR" when garbage collection free up enough room. GETSPA moves FRESPC and FRETOP down, making room to store the string. STRINI returns with the descriptor of the new string in DSCTMP and the original pointer in DSCPNT.

STRSPA E3DD

STRSPA obtains space for the creation of a string A bytes long, then creates a descriptor for it in DSCTMP. STRSPA uses GETSPA to force garbage collection when there isn't enough room. If garbage collection is unable to make sufficient room, GETSPA exits with an "OUT OF MEMORY" error. GETSPA moves FRESPC and FRETOP down enough to store the string, then returns A unchanged with the new descriptor in DSCTMP.

GETSPT DA7B

GETSPT moves the descriptor pointed to by FACMO/FACLO into the memory pointed to by FORPNT. GETSPT also moves the string’s text up to FRETOP if it isn't in the program's text. GETSPT frees up the string if it was a temporary string. GETSPT uses GETSPA to initiate garbage collection, or alternatively "OUT OF MEMORY" error when the garbage collection doesn't free up sufficient room.

MOVINS E5D4

Moves the string whose descriptor is pointed to by STRNG1 to memory pointed to by FRESPA.

MOVSTR E5E2

MOVSTR moves the string pointed to by Y,X with a length of A to memory pointed to by FRESPA.

Apple Tech Notes

Keywords:

END OF FILE A2TIL243.TXT
Description: Applesoft: Internals--String Utilities (2 of 2)

Header: Applesoft: Internals--String Utilities (2 of 2)

STRTXT DE81

Build a temporary descriptor for a string literal of which the first character is pointed to by TXTPTR plus C and which ends with a quote. FACMO,FACLO points to the resulting temporary descriptor. Skip leading quotes before calling STRLIT. On exit, STRNG2 points to the character after the string literal.

STRLIT E3E7

Build a temporary descriptor for a string literal of which the first character is pointed to by Y,A and which ends with a quote. FACMO,FACLO points to the resulting temporary descriptor. Skip leading quotes before calling STRLIT. On exit, STRNG2 points to the character after the string literal.

STRLT2 E3ED

Take a string literal of which the first character is pointed to by Y,A and build a temporary descriptor for it pointed to by FACMO,FACLO. Save in CHARAC and ENDCHR the characters other than zero that terminate the string. Skip leading quotes before calling STRLIT2. On exit, STRNG2 points to the character after the string literal.

PUTNEW E42A

Move the descriptor in DSCTMP to a temporary descriptor, put a pointer to the descriptor in FACMO,FACLO, and flag the result as a string.

GETSPA E452

Get A bytes of memory below HIMEM for a string.

GETSPA forces garbage collection to make room in memory when necessary and exits with an "OUT OF MEMORY ERROR" if garbage collection can't make enough room.

GETSPA moves FRESPC and FRETOP down enough to store the string. On entry, A equals the number of characters. GETSPA returns with A unchanged and pointer to the space in FRESPC, FRETOP, and Y,X.

FRESTR E5FD

Make sure that the last FAC result was a string and free up the temporary string result. Check the descriptor for a temporary status allocated by PUTNEW. On exit, the address of the string is in INDEX and Y,X. The length of the string is in A. Uses FRETMP.

FREFAC E600

Free up the temporary string pointed to by FACMO,FACLO. Check the descriptor for a temporary status allocated by PUTNEW. On exit the address of the string is in INDEX and Y,X. The length of the string is in A. Uses FRETMP.

FRETMP E604

Free up a temporary string. On entry the pointer to the descriptor is in Y,A. Checks the descriptor for a temporary status allocated by PUTNEW. If so, the temporary is freed up by updating TEMPPRT. If a temp is freed up, a further check tests the string's location for the lowest in memory. If so, that area of memory is freed up by updating FRETOP. On exit the address of the string is in INDEX and Y,X. The length of the string is in A.

FRETMS E635

Free the temporary descriptor without freeing up the string. On entry Y,A point to the descriptor to be freed. On exit Z is set if anything was freed.

Apple Tech Notes
APPLE II COMPUTER TECHNICAL INFORMATION

Keywords:

END OF FILE A2TIL244.TXT
Description: Applesoft: Internals--TXTPTR routines (2 of 2)
Header: Applesoft: Internals--TXTPTR routines (2 of 2)

CHRGET 00B1

CHRGET increments TXTPTR. Use CHRGOT to get the character. TXTPTR now
points at:

CHRGOT 00B7

CHRGOT loads A from TXTPTR and sets certain 6502 status flags. X and Y are
not changed. On exit:

A = the character currently pointed at by TXTPTR
Z is set if A is “:” or eol ($3A or $00)
C is clear if A is an ASCII number (“0” to “9”).

LINGET DA0C

LINGET read a line number (integer 0 to 63999) from TXTPTR into LINNUM.
LINGET assumes the 6502 registers and A have been set up by the JSR to CHRGET
that fetched the first digit. LINGET normally exits through CHARGET, which
fetches the character after the last digit. When the number is greater than
63999, LINGET exits via SYNTAX ERROR. LINNUM is zero when there is no number
at TXTPTR.

GTBYTC E6F5

GTBYTC causes JSR to CHRGET to gobble a character, then evaluates the formula
at TXTPTR, and then it returns a single byte integer in X and FACLO. On
entry TXTPTR points to the first character of the formula. GTBYTC normally
exits through CHRGET. If FAC is greater than 255 or less than 0, it exits
through ILLEGAL QUANTITY ERROR.

GETBYT E6F8

GETBYT evaluates the formula at TXTPTR besides returning a single byte
integer in X and FACLO. On entry, TXTPTR points to the first character of
the formula. GETBYT normally exits through CHRGET. When FAC is greater than
255 or less than 0, it exits through ILLEGAL QUANTITY ERROR.

PLOTFNS F1EC

PLOTFNS gets two LORES plotting coordinates separated by a comma from TXTPTR
(0-47,0-47). TXTPTR when entered, points to the first number of the formula.
PLOTFNS puts the first number in FIRST and the second number in H2 and V2.

HFNS F6B9

HGNS gets HIRES plotting coordinates (0-279,0-191) from TXTPTR. TXTPTR
points to the first character of the formula for the first number upon entry.
HFNS leaves the 6502 registers set up for HPOSN. When exiting:

A = vertical coordinate
X = lsb of horizontal coordinate
Y = msb of vertical coordinate

Apple Tech Notes

Keywords:
The following list combines all the routines in the INTERNALS series of Apple Tech Notes with the title of the AppleLink article where the routine description appears. The list is arranged alphabetically by the name of the routine.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Applesoft: Internals--Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>EBAF</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>ADDON</td>
<td>D998</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>ARG</td>
<td>A5-AA</td>
<td>Introduction (1 of 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating Point Math Package (1 of 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>ATN</td>
<td>F09E</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>AYINT</td>
<td>E10C</td>
<td>Floating Point Math Package (3 of 3)</td>
</tr>
<tr>
<td>BKGD</td>
<td>F3F6</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>BLTU</td>
<td>D393</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>CHKCLS</td>
<td>DEB8</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>CHKCOM</td>
<td>DEBE</td>
<td>Floating Point Math Package (3 of 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>CHKNUM</td>
<td>DD6A</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>CHKOPN</td>
<td>DEBB</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>CHKSTR</td>
<td>DD6C</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>CHKVAL</td>
<td>DD6D</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>CHRGET</td>
<td>00B1</td>
<td>TXTPTR Routines (2 of 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating Point Math Package (3 of 3)</td>
</tr>
<tr>
<td>CHRGOT</td>
<td>00B7</td>
<td>TXTPTR Routines (2 of 3)</td>
</tr>
<tr>
<td>CLEARC</td>
<td>D66C</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>COMBYTE</td>
<td>E74C</td>
<td>Floating Point Math Package (3 of 3)</td>
</tr>
<tr>
<td>CONINT</td>
<td>E6FB</td>
<td>Floating Point Math Package (3 of 3)</td>
</tr>
<tr>
<td>CONT</td>
<td>D898</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>CONUPK</td>
<td>E9E3</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>COS</td>
<td>EFEA</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
</tbody>
</table>
APPLE II COMPUTER TECHNICAL INFORMATION

CRDO DAFB Device I/O Routines
DATA D995 Miscellaneous Routines
DATAN D9A3 Miscellaneous Routines
DIV10 EA55 Floating Point Math Package (2 of 3)
DRAW F601 High Resolution Graphics Routines
ERRDIR E306 Error Processor Routines
ERROR D412 Error Processor Routines
EXP EF09 Floating Point Math Package (2 of 3)
FAC 9D-A2 Introduction (1 of 2)
 Floating Point Math Package (1 of 3)
 Floating Point Math Package (2 of 3)
 Floating Point Math Package (3 of 3)
FADD E7BE Floating Point Math Package (2 of 3)
FADDH E7A0 Floating Point Math Package (2 of 3)
FADDT E7C1 Floating Point Math Package (2 of 3)
FCOMP EBB2 Floating Point Math Package (2 of 3)
FDIV EA66 Floating Point Math Package (2 of 3)
FIDVT EA69 Floating Point Math Package (2 of 3)
FIN EC4A Floating Point Math Package (3 of 3)
FLOAT EB93 Floating Point Math Package (3 of 3)
FMULT E97F Floating Point Math Package (2 of 3)
FMULTT E982 Floating Point Math Package (2 of 3)
FN LIN D61A Miscellaneous Routines
FOUT ED34 Floating Point Math Package (3 of 3)
FPWRT EE97 Floating Point Math Package (2 of 3)
FREFAC E600 String Utilities (2 of 2)
FRESTR E5FD String Utilities (2 of 2)
FRE TMP E604 String Utilities (2 of 2)
FRETMS E635 String Utilities (2 of 2)
FRMEVL DD7B Floating Point Math Package (3 of 3)
FSUB E7A7 Floating Point Math Package (2 of 3)
FSUBT E7AA Floating Point Math Package (2 of 3)
GARBAG E484 Miscellaneous Routines
GDBUFS D539 Device I/O Routines
GETADR E752 Floating Point Math Package (3 of 3)
GETARYPT F7D9 Miscellaneous Routines
GETBYT E6F8 TXTPTR Routines (2 of 3)
GETNUM E746 Floating Point Math Package (3 of 3)
GETSPA E452 String Utilities (2 of 2)
GETSPT DA7B String Utilities (1 of 2)
GIVAYF E2F2 Floating Point Math Package (3 of 3)

Apple Technical Communications

Keywords:

END OF FILE A2TIL246.TXT
Description: Applesoft: Internals--Where to find routines (2 of 2)

Header: Applesoft: Internals--Where to find routines (2 of 2)

The following is a continuation of the list combining all the routines in the
INTERNALS series of Apple Tech Notes with the title of the AppleLink article
where the routine description appears. The list is arranged alphabetically by
the name of the routine.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Applesoft: Internals--Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOTO</td>
<td>D93E</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>GTBYTC</td>
<td>E6F5</td>
<td>TXTPTR Routines (2 of 3)</td>
</tr>
<tr>
<td>HANDLRR</td>
<td>F2E9</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>HCLR</td>
<td>F3F2</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>HFIND</td>
<td>F5CB</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>HFNS</td>
<td>F6B9</td>
<td>TXTPTR Routines (2 of 3)</td>
</tr>
<tr>
<td>HGR</td>
<td>F3E2</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>HGR2</td>
<td>F3D8</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>HLIN</td>
<td>F53A</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>HPLT</td>
<td>F457</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>HPOSN</td>
<td>F411</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>INCHR</td>
<td>D553</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>INLIN</td>
<td>D52C</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>INLIN+2</td>
<td>D52E</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>INPRT</td>
<td>ED19</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>INT</td>
<td>EC23</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>ISCNTC</td>
<td>D858</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>ISLET</td>
<td>E07D</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>LET</td>
<td>DA46</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>LINGET</td>
<td>DA0C</td>
<td>TXTPTR Routines (2 of 3)</td>
</tr>
<tr>
<td>LINPRT</td>
<td>ED24</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>LOG</td>
<td>E941</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>MOV1F</td>
<td>EB21</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>MOV2F</td>
<td>EB1E</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>MOVAF</td>
<td>EB63</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>Instruction</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>MOVFA</td>
<td>EB53</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>MOVFM</td>
<td>EAF9</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>MOVINS</td>
<td>E5D4</td>
<td>String Utilities (1 of 2)</td>
</tr>
<tr>
<td>MOVMF</td>
<td>EB2B</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>MOVML</td>
<td>EB23</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>MOVSTR</td>
<td>E5E2</td>
<td>String Utilities (1 of 2)</td>
</tr>
<tr>
<td>MUL10</td>
<td>EA39</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>NEGOP</td>
<td>EED0</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>NEWSTT</td>
<td>D7D2</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>OUTDO</td>
<td>DB5C</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>OUTQST</td>
<td>DB5A</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>OUTSPC</td>
<td>DB57</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>PARCHK</td>
<td>DEB2</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>PLOTFNS</td>
<td>F1EC</td>
<td>TXTPTR Routines (2 of 3)</td>
</tr>
<tr>
<td>PRNTFAC</td>
<td>ED2E</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>PTRGET</td>
<td>DFE3</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>PUTNEW</td>
<td>E42A</td>
<td>String Utilities (2 of 2)</td>
</tr>
<tr>
<td>QINT</td>
<td>EBF2</td>
<td>Floating Point Math Package (3 of 3)</td>
</tr>
<tr>
<td>REASON</td>
<td>D3E3</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>REMN</td>
<td>D9A6</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>RESTOR</td>
<td>D849</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>RESUME</td>
<td>F317</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>RND</td>
<td>C9-CD</td>
<td>Floating Point Math Package (1 of 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>RND</td>
<td>EFAE</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>RUN</td>
<td>D566</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>SCRTCH</td>
<td>D64B</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>SETHCOL</td>
<td>F6EC</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>SGN</td>
<td>EB90</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>SHLOAD</td>
<td>F775</td>
<td>High Resolution Graphics Routines</td>
</tr>
<tr>
<td>SIGN</td>
<td>EB82</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>SIN</td>
<td>EFF1</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>SNGFLT</td>
<td>E301</td>
<td>Floating Point Math Package (3 of 3)</td>
</tr>
</tbody>
</table>
APPLE II COMPUTER TECHNICAL INFORMATION

<table>
<thead>
<tr>
<th>Command</th>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQR</td>
<td>EE8D</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>STKINI</td>
<td>D683</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>STRINI</td>
<td>E3D5</td>
<td>String Utilities (1 of 2)</td>
</tr>
<tr>
<td>STRLIT</td>
<td>E3E7</td>
<td>String Utilities (2 of 2)</td>
</tr>
<tr>
<td>STRLT2</td>
<td>E3ED</td>
<td>String Utilities (2 of 2)</td>
</tr>
<tr>
<td>STROUT</td>
<td>DB3A</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>STRPRT</td>
<td>DB3D</td>
<td>Device I/O Routines</td>
</tr>
<tr>
<td>STRSPA</td>
<td>E3DD</td>
<td>String Utilities (1 of 2)</td>
</tr>
<tr>
<td>STRTXT</td>
<td>DE81</td>
<td>String Utilities (2 of 2)</td>
</tr>
<tr>
<td>STXTPT</td>
<td>D697</td>
<td>Miscellaneous Routines</td>
</tr>
<tr>
<td>SYNCHR</td>
<td>DEC0</td>
<td>Error Processor Routines</td>
</tr>
<tr>
<td>TAN</td>
<td>F03A</td>
<td>Floating Point Math Package (2 of 3)</td>
</tr>
<tr>
<td>TEMP1</td>
<td>93-97</td>
<td>Floating Point Math Package (1 of 3)</td>
</tr>
<tr>
<td>TEMP2</td>
<td>98-9C</td>
<td>Floating Point Math Package (1 of 3)</td>
</tr>
<tr>
<td>TEMP3</td>
<td>8A-8E</td>
<td>Floating Point Math Package (1 of 3)</td>
</tr>
<tr>
<td>XDRAW</td>
<td>F65D</td>
<td>High Resolution Graphics Routines</td>
</tr>
</tbody>
</table>

Apple Technical Communications

Keywords:

END OF FILE A2TIL247.TXT
To make Applesoft programs read data from memory, write data to memory, or pass control to machine language programs, programmers use Applesoft's PEEK, POKE, and CALL statements. Here is an explanation of each statement's function.

PEEK makes a program read a memory location. The format of the statement is PEEK (<memory location>) where <memory location> is a positive integer from 0 to 65535. Programmers use PEEK most commonly with a variable: X% = PEEK(2048) assigns the value located at 2048 to the integer variable X%.

POKE makes a program write a value to a memory location. The format of the statement is POKE <memory location>,<value> where <memory location> is a positive integer from 0 to 65535 and <value> is a positive integer from 0 to 255. Programmers use POKE most commonly to write data directly to memory: POKE 2048,128 assigns the value 128 to the memory location 2048.

CALL makes a program pass control to a machine language routine at some memory location. The format of the statement is CALL <memory location> where <memory location> is a positive or negative integer from -32768 to 32767 or a positive integer from 0 to 65535 (note that the signed integers from -32768 to 32767 represent exactly the same memory locations as the positive integers from 0 to 65535). Programmers use CALL most commonly used to invoke routines built into the Apple II's ROM. For example, the statement CALL -936 invokes the routine which clears the screen and homes the cursor (just like using Applesoft's HOME statement).

To change the screen display or make sounds and other special effects on the Apple II, Apple II Plus, Apple IIe, Apple IIc and Apple IIGS, Applesoft accesses various memory locations. Each particular CPU's reference manual includes a memory map where you can find the segments of memory used by text, graphics, Applesoft, the monitor and peripheral cards.

Apple-published memory locations remain the same for most members of the Apple II family; other internal locations may change. Therefore, to assure that your programs will work properly on all Apple II family computers, do not use entry points other than those printed in the Apple manuals.

Locations used to communicate with interface cards may be found in the manuals for those devices. For example, memory locations used by the Apple 80-column card are found in the 80-Column Text Card Manual and the Extended 80-Column Text Card Supplement.

Many computer and book stores sell books with listings of Applesoft, monitor ROM, DOS 3.3 and ProDOS memory locations. You may find the following publications useful:

--What's Where in the Apple by William Luebbert; Micro Ink.
--Beneath Apple DOS by Don Wirth and Pieter Lechner; Quality Software.
--Beneath Apple ProDOS by Don Wirth and Pieter Lechner; Quality Software.
--The Apple Almanac by Eric Goez and Williams Sanders; Datamost, Inc.

Keywords:

END OF FILE A2TIL248.TXT
Description: Applesoft: Stopping the Apple IIe cursor from blinking

You prefer a solid non-flashing cursor over the flashing "checkerboard" that the Apple IIe normally provides? If you have Apple's 80-column Text Card just type PR#3, then ESC-4. The system will have the eighty column cursor (a solid non-flashing blank) and will be in 40-column mode.

If you do not have a Text Card, fear not; just type

POKE 49162,0: PRINT CHR$(4);"PR#3"

and you can get the same effect.

You can use this next sample routine as the startup program on a diskette or the startup routine in an Applesoft program. Line 14 determines whether it is on an Apple IIe or an Apple II. If, by the time Line 16 executes, no Apple Text Card is detected in the system, then Line 18 enables the 80-column firmware.

[NOTE: The firmware is enabled by the monitor during Cold Boot (i.e., power-on startup or OPEN-APPLE-CTRL-RESET) if there is a Text Card installed].

Line 18 activates the firmware now that it is enabled. The 80-column firmware maintains a mode status byte in RAM at location 1275 ($04FB). Bit 7 of this byte determines whether Lowercase Restrict mode is active or not. Line 28 guarantees that this bit is set to enable the mode. Lowercase Restrict mode is normally only available in direct mode typing Escape-R and cannot be done otherwise in a program.

10 TEXT : SPEED= 255
12 D$ = CHR$(4): REM CTRL-D
14 IF NOT (PEEK (64435) = 6) GOTO 30: REM NOT APPLE IIIE
16 IF NOT (PEEK (49162) < 128) GOTO 20: REM TEXT CARD INSTALLED
18 POKE 49162,0: REM ENABLE 80-COLUMN FIRMWARE
20 PRINT D$;"PR#3": PRINT : REM ACTIVATE FIRMWARE
22 PRINT CHR$(17): REM SWITCH TO 40-COLUMN MODE
24 MB = 1275: REM 80-COLUMN FIRMWARE MODE BYTE ($04FB)
26 MS = PEEK (MB): REM READ CURRENT MODE STATUS
28 IF (MS < 128) THEN POKE MB,MS + 128: REM SET BIT-7 TO ENABLE LOWER CASE RESTRICT MODE
30 NORMAL : HOME

Keywords:

END OF FILE A2TIL249.TXT
I want to connect a Macintosh II and an Apple IIe to an ImageWriter II over AppleTalk.

A Workstation card was installed in the Apple IIe, the necessary LocalTalk cables were used, SW-4 was switched for AppleTalk, and AppleTalk was selected in the Chooser. This did not work.

I then installed AppleShare into the Macintosh II. The Macintosh now prints, but the Apple IIe does not. Instead, it gives the message "No boot server -- trying other slots".

What am I doing wrong?

DISCUSSION

The Workstation card must be installed in a higher-numbered slot than the disk interface card, otherwise the Apple IIe will try to start up over the network.

* If you WANT the Apple IIe to start up over the network, you must also install the Apple II Setup on the Macintosh II file server. This is a separate disk (AppleShare File Server Apple II Setup Disk). You would also need to copy Chooser.II to the server.

* If you DON'T want the Apple IIe to start up from the server, but rather to print to the ImageWriter II, then move the workstation card to a lower-numbered slot than the disk interface card and boot your workstation disk and run Chooser.II.

One other problem might be that you are running Chooser.II, getting a connection, and then inserting your application disk and restarting. This doesn't work. You have to run Chooser.II from the application disk or launch the application by pathname after running Chooser.II from the workstation disk.

Copyright 1991, Apple Computer, Inc.

Keywords:
Can I use AppleTalk Remote Access (ARA) in Apple II emulation mode on a Macintosh LC with an Apple IIe Card?

Yes. You must establish the connection before going into emulation mode. Once established, you can access network services via the Apple II control panel.

Article Change History:
28 November 1994 - Updated and reviewed

Support Information Services
Copyright 1991–94, Apple Computer, Inc.
Keywords:
Can AppleTalk operate over cable TV wires? If so, how?

Since cable TV mainly uses coax-type cable, how do I make the connection? If it needs to be done serially (connection to the cable), would a Hayes InterBridge-type product be able to do this?

For home use, the only thing I can think of is using Liaison (if asynchronous is still the way to go) in the Macintosh.

Can any of the solutions work with Apple II computers? This is needed for home use to connect to an ANS network to a school.

DISCUSSION

It is possible to have Ethernet channels running on a broadband network, which is typically used in cable TV installations. It is important that the group responsible for the cable be intimately involved in this process since this is not a plug-and-play situation. There are a number of different alternatives possible once you have the hardware and software support for Ethernet in place on the cable network.

Usually, you would connect routers, such as the AppleTalk Internet Router, to the Ethernet drops from the broadband, and all of the other Macintoshes are connected to the Internet via routers. The routers then would be the only Macintoshes required to have Ethernet boards. You also could use FastPaths, GatorBoxes, or Macintoshes running Liaison as the routers.

Network Resources also offers several products that allow Macintosh users to connect to broadband. Their MultiGate 2000 hardware router connects LocalTalk to broadband, as if connecting a LocalTalk network to Ethernet via a router. Their MultiGate Bridge connects any combination of broadband, Ethernet, and fiber optics. These solutions do not require running Ethernet on broadband. For more information on their products, search on "Network Resources and broadband" in the Technical Info Library.

A Hayes InterBridge would not be a solution because it is a LocalTalk-to-LocalTalk bridge, and you need an Ethernet connection.

For the asynchronous connection, Liaison definitely seems a good choice since it also has the other capabilities mentioned above.

On the Apple II front, we are not aware of anything that will provide remote, serial AppleTalk access similar to what is available for the Macintosh.

We strongly suggest that you get assistance from a network consultant capable of assisting you in all phases of this type of setup. You should also be aware that anyone doing this will need full approval from whomever owns and operates the cable system.

Copyright 1989, 1990 Apple Computer, Inc.

Keywords:

END OF FILE A2TIL252.TXT
The designers of AppleWorks have changed features in version 1.3 with AppleWorks 2.0:

1. File size limits

When a one megabyte Apple Memory Expansion card (or its Apple IIGS or IIc equivalent) is installed, AppleWorks 2.0 has the capacity for the following file sizes:

 -- Database records: 6350 (instead of 1350)

 6350 is the maximum number of records that can be placed in the AppleWorks data base with only 1 field identified with 1 character and having entries of only 1 character. Using an Apple II with a 1 megabyte memory board, you can add 6350 records. You will find there is still plenty of memory available, but AppleWorks will tell you the data base has reached the maximum number of records permitted.

 On the other hand, on a data base pushed to the maximum of 30 fields, each with a length of 20 characters and filled by 17, you will find that you will run out of desktop memory before the data base reaches the maximum record count.

 -- Word processor lines: 7250 (instead of 2250)

 -- Spread sheet rows:10K (instead of 1.55K)

2. Automatic RAMDisk pre-load

When an Apple Memory Expansion card (or its Apple IIGS or IIc equivalent) is installed, AppleWorks 2.0 will automatically pre-load into the RAMDisk as a part of the boot process. This pre-loading takes only about 30 seconds and may be halted by pressing the ESC key.

 All AppleWorks files except the SEG.PR file are loaded into the RAM card on startup. The SEG.PR file contains only printer data, and, because of its small size, it would be one of the first files to be removed from memory if a file needed that space.

 One possible way around this is from the Control Panel:

 Set aside 192K for a RAMDisk in the memory expansion area. Copy AppleWorks into the RAMDisk with System Utilities. Then go into BASIC, and run APLWORKS.SYSTEM from the RAMDisk. Appleworks will load itself into memory while recognizing the RAMDisk. Now, when the program requires the SEG.PR file, the program, retaining the fact that it started up from the RAMDisk, goes there to find the SEG.PR file.

3. New Spreadsheet feature: Cut/Copy & Paste:

After a cell has been cut or copied to the clipboard, the user will be able to paste from the clipboard either the value, the formula, or both.

4. New file save feature:

If there is not enough room on a disk to save a file that already exists on the disk, then AppleWorks first allows the user to delete the original file from the disk. With AppleWorks' capability to create larger files, this
feature will become important.

5. Enhancements and fixes:

a. Word Processor:

- Removed code that made the word processor take 13 seconds to process a carriage return in the middle of the first paragraph of a 2000 line document.

- Inserted extra code to make ESC and some OPEN-APPLE keystrokes work faster on large documents.

b. Spreadsheet:

- The routine to display spreadsheet rows was changed; it should now work faster on rows that have lots of filled cells.

Keywords:

END OF FILE A2TIL253.TXT
I have an AppleShare network, including Apple IIe, Apple II GS, and Macintosh systems, with AppleWorks 2.0 running from the server. I cannot print to the LocalTalk ImageWriter II using AppleWorks, but can print to it from a Macintosh.

DISCUSSION---

The difficulty in printing concerns the version of AppleWorks being run from the server. The ability to print from Applesoft indicates that the hardware is properly configured. AppleWorks 2.0 is not licensed for, nor designed for, running from an AppleShare server. For a version of AppleWorks licensed and designed for running from a server, use AppleWorks version 2.1N. Be sure, in AppleShare Admin under the Apple II menu, to set the user's account to the desired printer. The alternative would be to run AppleWorks 2.0 from a local disk.

Copyright 1989 Apple Computer, Inc.

Keywords:
This article describes how to put together three 5.25-inch disks for printing to a LaserWriter from an Apple II with AppleWorks (releases 2.0 and later). This makes the AppleWorks-LaserWriter connection available when only one or two 5.25-inch disk drives reside on the Apple II system.

Overview

The process requires these three disks:

- The IWEM.BOOT Disk
- The APPLEWORKS Startup Disk
- The APPLEWORKS Program Disk

Have these disks handy to go through the process described below. The rest of the article describes what to do with each disk, beginning with the IWEM.BOOT disk. The article concludes with listings of the catalogs of the three disks.

The IWEM.BOOT Disk

For AppleWorks to print to a LaserWriter, you need to download the ImageWriter Emulator (IWEM) to the LaserWriter. To do this, you need the disk labeled: IWEM.BOOT. Follow these steps:

1) Start up the Apple II with the IWEM.BOOT disk. This leaves the user at the Applesoft BASIC prompt.

2) At the prompt, type:

 -CHOOSER.II

3) Select "LaserWriter" in the top left scroll box.

4) In the lower left scroll box, select the zone of the desired LaserWriter.

5) In the top right scroll box, select the name of the desired LaserWriter. Once you select the LaserWriter in the third box, CHOOSER.II checks for the presence of IWEM. If not already downloaded, it will be downloaded.

6) Quit from CHOOSER.II.

This procedure needs to be used each time the LaserWriter is powered off and back on. The power cycle causes IWEM to be purged. Occasionally, the IWEM may be corrupted by other printing sessions, like a Macintosh printing session. If an Apple II workstation attempts to print to the IWEM with no results, try downloading the IWEM again.

The APPLEWORKS Startup Disk

With the IWEM downloaded, the next step is to start up with the APPLEWORKS startup disk and set the desired printer as the default printer for the user. With the disk configured as below, on startup, the Applesoft prompt
appears. Follow these steps:

1) At the prompt, type:

 -CHOOSER.II

 This time, CHOOSER.II is used only to select the printer for use by AppleWorks. The APPLEWORKS startup disk assumes the IWEM is downloaded.

2) Select the same choices that were selected in the IWEM.BOOT section. The selection is written to the APPLEWORKS startup disk. Unless the printer is moved, renamed, or an alternate printer is desired, you do not need to run CHOOSER.II again during future AppleWorks sessions.

3) Quit CHOOSER.II.

 This presents the following request:

 ENTER PREFIX (PRESS "RETURN" TO ACCEPT) 4) In response, type:

 /APPLEWORKS/

 and press RETURN. This displays the request:

 ENTER PATHNAME OF NEXT APPLICATION

5) In response, type:

 APLWORKS

 and press RETURN. This runs the AppleWorks application. AppleWorks requests the APPLEWORKS program disk.

The APPLEWORKS Program Disk

Continue the process by following these instructions:

1) Insert the APPLEWORKS program disk. Then press the space bar and RETURN.

2) Once in AppleWorks, select:

 #5: Other Activities.

3) Then select:

 #7: Specify information about your printer(s)

4) Then select:

 #2: Add a printer (maximum of 3)

5) Next select:

 #2: Apple ImageWriter

6) Give this ImageWriter driver a name to represent it as the LaserWriter on the network (like "Network LaserWriter").

7) Designate the correct slot -- the slot the Workstation Card is in on an Apple IIe or slot 7 on an Apple IIGS.

8) The default settings on the next screen are correct, therefore, ESCAPE back to the Main Menu. From this point, everything (including control codes for underlining, bold-facing, and so on) functions as though AppleWorks is printing to an ImageWriter.
Changes To Be Made

Beyond configuring the disks with the following files, one filename needs to be changed. On the APPLEWORKS startup disk, APLWORKS.SYSTEM needs to be changed to APLWORKS. Leaving the .SYSTEM off allows BASIC.SYSTEM to be the startup application, thus, allowing CHOOSER.II to be run, following startup with the APPLEWORKS startup disk and before running APLWORKS.

There are 21 blocks available on the APPLEWORKS startup disk. It may be possible to create a small menu program to "front end" the APPLEWORKS disk. The menu program is not covered in this document.

The three disk configurations follow:

IWEM.BOOT

PRODOS
CHOOSER.II
CHOOSER5.OVR
IWEM
CHOOSER4.OVR
CHOOSER3.OVR
MTXABS.0
CHOOSER2.OVR
CHOOSER1.OVR
CHOOSER.0
ATINIT
BASIC.SYSTEM

12 Files Listed, 262 Blocks Used, 18 Available

APPLEWORKS (startup disk)

PRODOS
APLWORKS
SEG.00
SEG.RM
SEG.XM
SEG.EL
CHOOSER.II
CHOOSER5.OVR
CHOOSER4.OVR
CHOOSER3.OVR
CHOOSER2.OVR
CHOOSER1.OVR
CHOOSER.0
MTXABS.0
ATINIT
BASIC.SYSTEM

16 Files Listed, 259 Blocks Used, 21 Available

APPLEWORKS (program disk)

SEG.M0
SEG.M1
SEG.PR

3 Files Listed, 279 Blocks Used, 1 Available

Copyright 1989 Apple Computer, Inc.

Keywords:

END OF FILE A2TIL255.TXT
Some users have complained of an inability to print either from an Apple IIe or from an Apple IIGS across an LocalTalk network to an ImageWriter II when using AppleWorks. All reported being able to print from BASIC using PR#7. Although the networks could have rather different configurations and software, these facts were the same.

The difficulty in printing concerns the version of AppleWorks being run from the server. The ability to print from Applesoft indicates that the hardware is properly configured. AppleWorks 2.0 is not licensed for, nor designed for, running from an AppleShare server. For a version of AppleWorks licensed and designed for running from a server, use AppleWorks version 2.1N. Be sure, in AppleShare Admin under the Apple II menu, to set the user’s account to the desired printer. The alternative would be to run AppleWorks 2.0 from a local disk.

The printing procedure is the same whether you start across the network or you startup locally. However, the network version of AppleWorks is required, if it is to be run from the server. Here is some background information, relative to this inquiry.

- Aristotle has no effect on the ability to print from AppleWorks.
- The location of ATINIT differs when on a server (as compared to a local disk). On the server, ATINIT should be in the folder assigned to the user. For example: ProDOS.SERVER/USERS/(user’s name)/SETUP/ATINIT.
- The name of the System.APPS subdirectory is not critical, as long as a consistent name is used throughout the network.
- The WWSS file is not necessary for the operation of AppleWorks.

Copyright 1989 Apple Computer, Inc.

Keywords:
Description: AppleWorks: Creating database documents from text with tabs

Some database programs export text files that have fields separated by tabs and records by carriage returns. AppleWorks imports a database file from a text file when all fields and records are separated by carriage returns. To convert the tabbed export format to the format AppleWorks imports, you must use a word processing application or a programming language, such as BASIC or Pascal, whether or not you have to transfer the data from the Macintosh.

Using a word processing application, open the document and change the tabs to carriage returns with a replace command. Most applications have special codes for the tab and carriage return, such as ^t and ^p in MicroSoft Word. Save the changes as a text file, which AppleWorks should accept.

For using a programming language, take this example in Applesoft BASIC under ProDOS.

```basic
10 ONERR GOTO 130
20 O$="<OLD FILE NAME>"
30 N$="<NEW NAME>"
40 D$=CHR$(4)
50 PRINT D$"OPEN"O$
60 PRINT D$"OPEN"N$
70 PRINT D$"READ"O$
80 GET A$
90 PRINT D$"WRITE"N$
100 IF A$=CHR$(9) THEN A$=CHR$(13)
110 PRINT A$;   {echo to screen}
120 GOTO 70
130 PRINT D$"CLOSE"
140 END
```

This program should be saved, along with the exported text file, to a ProDOS disk; save the program with a name such as "TAB2CR". After substituting appropriate names in lines 20 and 30, run the program. AppleWorks should accept the output file.

Here is a MacPascal program that could convert the export file of a Macintosh application such as MacWorks.

```pascal
program Convert;
type
  text = file of char;
var
  infile, outfile : text;
  c : char;
begin
{an example pathname could be 'HD:MS Works:ExportFile'}
open(infile, 'export file pathname');
open(outfile, 'AppleWorks format file pathname');
while not (eof(infile)) do
begin
  read(infile, c);
  if ord(c) = 9 then
  begin
    c := chr(13);
  end;
  write(c);   {echo to screen}
```


write(outfile, c);
end;
close(infile);
close(outfile);
end.

Substitute appropriate names for "export file pathname" and "AppleWorks format file pathname". After transferring the output file to the Apple II (with MS Works or MacTerminal), save the captured file as a text file. AppleWorks should accept the captured file.

Apple Technical Communications

Keywords:

END OF FILE A2TIL257.TXT
APPLE II COMPUTER TECHNICAL INFORMATION

###
FILE: A2TIL258.TXT
###

Description: AppleWorks: Desktop size on the Apple IIGS
Header: AppleWorks: Desktop size on the Apple IIGS

For desktop storage, AppleWorks 2.0 on an Apple IIGS will only use memory
found on the Apple IIGS logic board and Memory Expansion Card. When this card
is not present and AppleWorks 2.0 is booted from the Apple IIGS System Disk,
the Apple IIGS Tools, using a large portion of available logic board RAM,
leave only 13K for the AppleWorks desktop. The message "WARNING! Desktop is
full. Action not completed. Press space bar to continue." appears when the
user attempts to create a word processor file from scratch. If you make a
second attempt to create a word processor file, AppleWorks will complete the
task.

AppleWorks' users should be aware of this situation before using AppleWorks
2.0 and the Apple IIGS System Disk files on an Apple IIGS without an Apple
IIGS Memory Expansion Card installed.

If AppleWorks 2.0 is booted from the AppleWorks Startup Disk, an Apple IIGS
1M Expansion Card will permit up to 1149K on AppleWorks' desktop. Factors
that affect the size of AppleWorks' desktop are:

- memory available on the Apple IIGS Memory Expansion Card
- memory occupied by the Apple IIGS RAM disk
- the availability of the Apple IIGS desktop
- other AppleWorks auxiliary programs that are loaded into the Apple IIGS
- the method used to start up AppleWorks.

You may create a disk that will allow AppleWorks and the Apple IIGS Desktop
to be used effectively on the same disk:

1. Make a new copy of your AppleWorks 2.0 master disk.

2. Remove the file "PRODOS" from the new AppleWorks disk.

3. Copy the file called "P8" from the System folder on the Apple IIGS
 System Disk onto the new AppleWorks disk. Rename the copied file
 "PRODOS". The disk is now bootable for starting up the Apple IIGS.

If you wish to add the desktop:

1. Locate the folder "DESKTOP" on the Apple IIGS System Disk.
 Copy the contents of this folder onto the root directory of the new
 AppleWorks disk.

2. On new the AppleWorks disk, rename the file "APPLEWORKS.SYSTEM"
 "APLWORKS" and "DESK1.SYSTEM".

3. Start your Apple IIGS with the modified AppleWorks disk.
 Once the desktop appears, double click on the "APPLEWORKS" icon
to run the AppleWorks program. Using this disk on an Apple IIGS
 with 256K memory provides 124K of AppleWorks' desktop space.

AppleWorks versions 1.1, 1.2 and 1.3 can be used on an Apple IIGS, an Apple
IIc, or an Apple IIe with either 64K or 128K memory. AppleWorks' desktop size
on an Apple IIGS will vary with the version of AppleWorks in use. Because
AppleWorks 1.3 and earlier versions do not recognize the newer features of
the Apple IIGS, the user can obtain only a 55K AppleWorks desktop, even
though the computer may have from 256K to 1.25M of memory on the logic board
and in the Memory Expansion Slot. However, if the Apple IIGS has an Apple II
Memory Expansion Card in one of its seven slots, AppleWorks 1.3 does
recognize it and uses the Memory Expansion Card to increase the desktop.
Briefly, these procedures require you to:

1. Install PRODOS and BASIC.SYSTEM on the ProFile or UniDisk 3.5.

 This can be done using the ProDOS User's Disk and instructions in the ProDOS User's Manual.

2. Copy all the files on the AppleWorks Startup and Program disk into a subdirectory named AppleWorks on the ProFile or UniDisk 3.5.

 After this you will be able to boot and run AppleWorks from the ProFile or UniDisk 3.5.

I. Equipment Needed:

 A. Apple IIe or Enhanced IIe

 B. ProFile Hard Disk (5 or 10 Meg) with Apple II ProFile interface card or UniDisk 3.5 with UniDisk 3.5 interface card

 -- Put the ProFile or UniDisk 3.5 interface card in slot 7 of an Enhanced IIe if, when you turn on the Enhanced IIe, you want it to boot from the ProFile or UniDisk 3.5 instead of the floppy disk drive

 C. ProDOS User's Disk

 D. AppleWorks Startup and Program disk

II. Installation Procedure:

 A. Boot the ProDOS User's Disk.

 B. Format the ProFile with the volume name /PROFILE or Format the UniDisk 3.5 with the volume name /UNI.

 C. Use the File handling commands on the ProDOS User's disk to:

 1. Copy the files PRODOS and BASICSYSTEM to the ProFile or UniDisk 3.5.

 2. Create a subdirectory called APPLEWORKS on the ProFile or UniDisk 3.5

 3. Copy all the files on the AppleWorks Startup and Program disks into the APPLEWORKS subdirectory you just created.

 4. Remove the files PRODOS and BASIC.SYSTEM only from the subdirectory named APPLEWORKS.

 -- You already put PRODOS and BASIC.SYSTEM on the root directory of the ProFile or UniDisk 3.5 in step C1.

 D. Exit the ProDOS User's disk into Applesoft BASIC.

You need to create a program called STARTUP on the ProFile or UniDisk 3.5. This program will command AppleWorks to run from the ProFile or UniDisk 3.5 when you boot from the ProFile or UniDisk.
E. Type PR#n, where n is the number of the slot of the ProFile or UniDisk 3.5 interface card, e.g., PR#7 in the case of the Enhanced IIe in item IB above.

F. You should now have the] symbol on the screen. Type in the following program for the ProFile:

```
10 TEXT : HOME
20 PRINT CHR$(4);"PREFIX /PROFILE/APPLEWORKS"
30 PRINT CHR$(4);"-APL.WORKS.SYSTEM"
40 END
```

For a UniDisk 3.5, type in the following program:

```
10 TEXT : HOME
20 PRINT CHR$(4);"PREFIX /UNI/APPLEWORKS"
30 PRINT CHR$(4);"-APL.WORKS.SYSTEM"
40 END
```

G. Save this program on the ProFile or UniDisk 3.5 as STARTUP, i.e. SAVE /PROFILE/STARTUP or SAVE /UNI/STARTUP.

H. Type PR#n using the same number for n as you did in step E above.

```
-- AppleWorks should now boot from the ProFile or UniDisk 3.5.
```

I. To set up AppleWorks for use with the ProFile or UniDisk 3.5:

1. In AppleWorks, choose 5. "Other Activities."
2. Then choose 1. "Select standard location of data disk."
3. Type /PROFILE/APPLEWORKS or /UNI/APPLEWORKS.

Apple Technical Communications

Keywords:

END OF FILE A2TIL259.TXT
Description: AppleWorks: Problems Printing to LocalTalk ImageWriter
Header: AppleWorks: Problems Printing to LocalTalk ImageWriter

This article last reviewed: 29 August 1989

TOPIC

AppleShare was recently installed at a client school. I am having problems printing from AppleWorks on the Apple IIe’s to a LocalTalk ImageWriter. Here is some background:

- There are no problems accessing the file server.
- The LocalTalk ImageWriter was set as the default printer for Apple II users.
- The AppleShare Print Spooler is NOT on the file server.
- LocalTalk Cards were placed in Slot 7 of the IIe’s.
- I added a printer in AppleWorks configured to print to Slot 7.
- If I run CHOOSER.II the printer shows up. If I reselect the printer I still have the same problems.

When I print from AppleWorks I get NOTHING. If I go to BASIC I can type PR#7 and talk to the printer. How can I print to the LocalTalk’d ImageWriter from AppleWorks?

DISCUSSION

We cannot get the results you describe. With the Workstation card in slot 7, a networked ImageWriter, a slot 7 ImageWriter selected in AppleWorks, and AppleWorks 2.0 running, we can print across the network with no difficulties.

Our configurations have included all combinations of:

- AppleWorks version 2.0, with an ImageWriter assigned to slot 7
- ProDOS 8 versions 1.4 and 1.6
- Apple IIe, enhanced, with the Workstation card in slot 7
- ImageWriter II with AppleTalk option
- Chooser II version 1.2
- AppleShare II Workstation versions 1.0 and 1.1

In all cases the document printed without need for special actions.

Our boot disk contained

- ProDOS
- ATINIT
- Selector.System
- Sys.Apps (a sub-directory containing:)
 - Basic.System
 - Logoff
 - Logon
Our procedure followed these steps:

1) Boot with the above configured disk.

2) The selector window will be displayed; select and run Chooser II.

3) Press the Down cursor key to highlight "AppleTalk ImageWriter II".

4) Press Return to select. The name of the networked ImageWriter should appear in the to right scroll box. If the name does not appear:

 a) Press the Tab key three times. You are now in the scroll box allowing you to chose between LocalTalk and Serial. Highlight LocalTalk and press Return.

 b) Press Tab twice. You are now in the top left window. Highlight 'AppleTalk ImageWriter II'. Press Return. The name of the networked ImageWriter should now appear.

5) Press Tab twice. Use the Down cursor key to highlight the name of the networked ImageWriter. Press Return to select.

6) Press Open-Apple-Q to exit Chooser II.

7) Run AppleWorks.

8) Select Other Activities, Printer Information.

9) Verify a printer is designated as an ImageWriter in Slot 7. If no ImageWriter is set for slot 7, then do these three steps:

 a) Delete a printer if all three printers are currently defined
b) Add a printer. Use ImageWriter. Set for Slot 7.
c) Give a name that indicates it is a network printer, i.e., "Network IW II".

10) Return to your document. Press Open-Apple-P to access the printer routines.

11) Answer the "Print from?" question. (In our test, we answered from beginning)

12) Answer "Where...to print the file?" question with the network printer.

13) Answer "How many copies?" question.

14) On pressing Return after answering the last question, AppleWorks will send the document over the network to the ImageWriter. There was a slight delay between the screen refresh and the printing.

If you have any further questions about this sequence of events please Link TECH.COMM with details of what is taking place.

Copyright 1989 Apple Computer, Inc.

Keywords:

END OF FILE A2TIL260.TXT
This article describes how to interface Catalyst With An Apple II, AppleWorks & RamWorks IIe 80-column Card.

DISCUSSION

This technical note describes the procedure to correctly interface the above products to allow larger memory capacities with the AppleWorks application.

What You Need

Before you begin, be sure you have the following:

1. ProDOS users disk.
2. Desktop Expander disk from Applied Engineering.
3. AppleWorks startup and program disks.
4. Catalyst disk.

Procedure

Step 1

Boot the Desktop Expander disk and follow the instructions. This will modify your AppleWorks disk so that it can use the additional memory of the Ramworks IIe card.

Step 2

Create a subdirectory on your hard disk using Apple's ProDOS Users disk called "/PROFILE/AW"

Step 3

Copy all of the files from the AppleWorks Startup and Program disks to the subdirectory you just created.

Step 4

Once the files have been copied, start up your Catalyst disk and select the Catalyst Editor.

Step 5

Move the cursor to the point where you wish to add your AppleWorks program and press "A".

Step 6

Type "APPLEWORKS" for the program name.

Step 7
Type "AW/APLWORKS.SYSTEM" for the interpreter pathname.

Step 8
Type "AW" for the initial prefix.

Step 9
Press RETURN for the program path.

Step 10
You will be asked if all items are correct. Answer "Y" and press ESCAPE to exit to the main menu.

Step 11
Enter "U" to update the INTERPS2E file.

Step 12
Exit to the Catalyst main menu by entering "Q".

When you select the AppleWorks program from the main menu you will notice that you now have 101K available for data storage.

NOTE: Apple Computer Inc. is not responsible for the contents of this article.

Article Change History:
19 Sep 1995 - Reformatted to meet current standards.

Support Information Services
Quark Tech Support

Keywords:

END OF FILE A2TIL261.TXT
Description: AppleWorks: Standard and Custom Printer Interfaces (1 of 2)

Header: AppleWorks: Standard and Custom Printer Interfaces (1 of 2)

Versions of AppleWorks earlier than version 1.2 don't allow you to run AppleWorks using any other interface card but the Apple Super Serial card. If you wish to use a different interface card, you must upgrade to 1.2 or later versions.

For a new owner of an Apple IIe with AppleWorks, dealers should include only those interface cards that work. The Silentype has its own interface card. Aside from that, there are two interface cards, the Apple II Parallel Interface Card (A2B0021) and the Apple Super Serial Card (A2B0044), that work correctly with all of the printers on AppleWorks' Add a Printer list:

1. Apple Printers
 a. Dot Matrix Printer (DMP). AppleWorks is set up for the Apple DMP. If you have any other printer, you must set up AppleWorks for it.
 b. Daisy Wheel Printer (DWP)
 c. Imagewriter
 d. Scribe
2. Epson (tm) Printer Series: MX, MX with Graftrax+, RX, and FX
3. Qume (r) Sprint 5 and Sprint 11

For new owners of a IIc, dealers should make sure that the customer's printer is compatible with a IIc running AppleWorks.

For a IIe owner considering AppleWorks, make sure the owner has a configuration compatible with AppleWorks. If the owner doesn't have such a configuration, the owner's only recourse to buy an interface card that is compatible.

--> Using AppleWorks with cards and printers not on the standard list

If you're using a card or a printer not on AppleWorks' standard list, you must add a custom printer to your AppleWorks configuration and specify the characteristics of the card or printer.

To choose the following options, type the number and press the RETURN key.

1. From AppleWorks' main menu, choose "5. Other Activities".

2. From the "Other Activities" menu, choose "7. Specify information about your printer(s)".

3. From the "Printer Information" menu, choose "2. Add a printer".

4. From the "Add a Printer" menu, choose "12. Custom printer".
 a. Enter the name you wish to use for the printer.
 b. Press RETURN.
 c. Apple IIe: Choose the slot of the printer's interface card.
 Apple IIc: Choose the port of the printer.
 d. Press RETURN.

5. Press the ESC key: now the printer has been added to AppleWorks.

6. Now you must give AppleWorks what the printer needs to perform, specifying requirements for:
 1. a line feed after each carriage return,
 2. a top-of-page command,
3. stopping at the end of each page,
4. platen width,
5. interface card settings, and
6. codes for special functions of the printer.

Items 1 to 4 are self-explanatory and can readily be changed to meet the requirements of different jobs. You can do this from the "Printer Information" menu, choosing the printer you named under "Add a Printer".

7. With the Apple IIe, choose "5. Interface Cards". Now AppleWorks asks for a code to send to the printer interface card to prepare the card for sending data to the printer. Consult the table below for the appropriate keystrokes. (Note that [CTRL-] and the character in the bracket means that you must hold the CTRL key down while you type the character; do not type the brackets.)

<table>
<thead>
<tr>
<th>Interface card</th>
<th>Code string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Parallel Card (2PIC)</td>
<td>[CTRL-I]80N</td>
</tr>
<tr>
<td>Apple Super Serial Card</td>
<td>[CTRL-I]80N</td>
</tr>
<tr>
<td>Apple Centronix Parallel Card</td>
<td>[CTRL-I]255N</td>
</tr>
<tr>
<td>Grappler Plus</td>
<td>[CTRL-I]0N</td>
</tr>
<tr>
<td>Microtek RV-611C</td>
<td>[CTRL-I]255N</td>
</tr>
<tr>
<td>Pkaso</td>
<td>[CTRL-I]0N</td>
</tr>
<tr>
<td>MPC AP Graph and Graphwriter</td>
<td>[CTRL-I]255N</td>
</tr>
</tbody>
</table>

If your card isn't on this chart, look in the card manual; it should have the code string.

It's important to note that, although some printer manuals give code strings in the form of keystrokes, some other manuals give code strings in numerical form, either decimal (0 to 9) or hexadecimal (0 to F). AppleWorks won't accept a code string simply typed in as one of these numbers; you must use a keystroke or combination of keystrokes to send the number from the keyboard to AppleWorks. Look up the decimal or hexadecimal form of the number in an Apple II ASCII chart; the appropriate keystrokes are on the right.

Suppose, for example, the manual states that the decimal code string 09464878 initializes the card. On an Apple II ASCII chart, 09 is [CTRL-I], 46 is the eight key, 48 is the zero key, and 78 is capital N; altogether, that's [CTRL-I]80N. To put this into AppleWorks you would:

1. Choose "5. Interface Card"
2. Hold down the CTRL key and type I,
3. Type 80
4. Hold down the SHIFT key and type N
5. Hold down the SHIFT key and type 6; this ends the string with the carat or '^' AppleWorks requires.

Keywords:

END OF FILE A2TIL262.TXT
To catalog a disk in a Unidisk 3.5 on an Apple IIc with system utilities 2.1, you may choose 4 options on the menu screen:

1. built-in drive
2. external disk 3.5 #1
3. external disk IIc
4. Prodos Pathname

When choosing to format a disk, of course, the first 3 options are present.

Users of AppleWorks versions previous to version 1.3 may be confused by the menu screen shown when they choose to catalog a disk or change current disk:

1. Drive 1
2. Drive 2
3. Profile or other ProDOS directory

Choose option 3 to use the Unidisk 3.5 with AppleWorks before version 1.3. In these earlier versions, you can refer to the UniDisk 3.5 only by its pathname, such as /appleworks/business.

Refer to page 9 the pamphlet "Using AppleWorks on the Apple II Unidisk 3.5" for further explanations of how to load, save and list data files with Appleworks and the 3.5 disk.

Apple Technical Communications

Keywords:
Videx makes 80-column boards and patch program disks that allow AppleWorks to operate on an Apple II or II Plus.

A Videx card gives a normal Apple II or Apple II Plus the ability to run AppleWorks. The AppleWorks diskettes must also be modified with a special patch program in order to run on the Apple II or II Plus.

There are some technical considerations, though:

a. The user must have purchased the Videx Ultraterm Card or the Videoterm Card with the Inverse Option chip.

b. The shift key modification must also be in place; if it isn't, you can perform the modification yourself by referring to the manual.

c. The program requires AppleWorks 1.3 to utilize the Apple RAM card. Titan and Legend RAM cards are supported with AppleWorks versions 1.1 and 1.2.

Videx Inc.
1105 NE Circle Blvd.
Corvallis, OR 97330
503 / 758-0521

Applied Engineering, best known for its RamWorks board for the Apple IIe, also makes "RamFactor", a memory board for the Apple II, Apple II Plus, IIe, and Apple IIGS.

RamFactor comes with a set of patch disks for AppleWorks versions 1.2 and 1.3 and another set for 2.0. Patch disks from Videx are not required.

Technical requirements for an Apple II Plus are:

a. 64K main memory in either:
 1. 48K + 16K language card
 or
 2. Applied Engineering Transwarp Accelerator

b. 80 column card with inverse video capability

c. Shift key wire from keyboard to main board (a common modification)

d. RamFactor board with at least 256K (minimum configuration)

e. One or more disk drives.

Such an Apple II Plus system has no trouble running AppleWorks 1.3.

The following key substitutions apply:

<table>
<thead>
<tr>
<th>Apple II Plus</th>
<th>AppleWorks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escape</td>
<td>Open Apple</td>
</tr>
<tr>
<td>Control-J</td>
<td>Up</td>
</tr>
<tr>
<td>Control-K</td>
<td>Down</td>
</tr>
</tbody>
</table>

Apple Technical Communications
Company Profile:
Applied Engineering went out of business in May 1994. They made hardware, specializing in Apple II & Macintosh peripheral boards. Tech support for some of their products is now being handled by a few separate companies.

Accelerators
============

Brainstorm Products
Provides support for Applied Engineering accelerators and related software only.

Apple II Related Products
==========================

ABC Direct
** FOR SCHOOLS OR BUSINESSES ONLY. NO INDIVIDUALS PLEASE **
Provides support for the Applied Engineering products for the Apple II series (including the DOS compatibility card). Also has a repair service available for any Applied Engineering product based on an hourly fee.

Parallel Printer Interface Cards
================================

Orange Micro, Inc.
Offer solutions to many problems with Applied Engineering parallel printer interface cards (similar to their own Grappler boards).

The Tech Info Library article titled "Locating Vendor Information" can help you search for a particular vendor's address and phone number.

Article Change History:
06 Jun 1995 – Added information about Orange Micro, Inc.
10 Feb 1995 – Added reference to Locating Vendor Info article.

Support Information Services
Copyright 1989–95, Apple Computer, Inc.
Keywords: 3pty
Description: Beagle Brothers Inc.
Header: Beagle Brothers Inc.

Article Created: 02/12/88
Article Reviewed: 07/06/93
Article Updated: 07/06/93

Wordperfect Corp

1555 N. Technology Wy.
Orem, UT 84057
800-321-4566
801-228-5377 Fax

Company Profile:
Formerly Beagle Brothers Inc., Macintosh software, includes
products such as Flash Escape and Beagle Works. Quality Computers (formerly
Beagle Bros. Inc.), Apple II software, specializing primarily in Apple II
tools.

Quality Computers
20200 9 Mile Rd.
P.O. Box 665
St. Clair Shores, MI 48080
313-774-7200
800-443-6697
800-777-3642
Fax: 313-774-2698

Article Change History: 07/06/93 Phone number added
Copyright 1988-93, Apple Computer, Inc.
Keywords: 3PTY

END OF FILE A2TIL266.TXT
Description: Business Technology Manufacturing, Inc.
Header: Business Technology Manufacturing, Inc.

Article Created: 03/27/90
Article Reviewed: 07/06/93
Article Updated: 11/09/92

Business Technology Manufacturing, Inc.

42-20 235th St.
Douglaston, NY 11363
718-229-8080

Company Profile:
Hardware, specializing in a hands-free phone dialer system that directly
connects the "real world" of telephones and telemarketing to the Macintosh and
programs used with a telephone or headset. Enlarging monitors for Mac Classic
(B&W) and Apple II (color), custom videowork, rack mount cases for all
machines
Copyright 1990-93, Apple Computer, Inc.
Keywords: 3PTY

END OF FILE A2TIL268.TXT
Description: Changes in Word Juggler for the Apple II (vers. 2.7 or greater)
Header: Changes in Word Juggler for the Apple II (vers. 2.7 or greater)

Word Juggler for the Apple II (version 2.7 or greater) differs from the older versions in two primary ways; by the elimination of the hardware modification and the addition of a number of enhancements to the program. The following list is a summary of all of the changes.

Enhancements to the program

New HELP feature
While editing a document, Open-Apple "?" will display a list of topics that, when selected, explain the various features of Word Juggler. Note that this replaces the old HELP command key (CONTROL V).

40 / 80 column support
Word Juggler for the Apple II will work in 40 columns on both the Apple IIe and the Apple IIc. When used on the Apple IIe, Word Juggler will use the 80 column card in the auxiliary slot if it is available. When used on the Apple IIc, Word Juggler checks the 40/80 column switch when the program is booted, and then reacts accordingly.

When used in the 40 column mode, Word Juggler changes in a few minor ways:

- The main menu changes slightly.
- The file name does not appear on the status line.

Main menu changes
- Purge is now Delete.
- Define Prefix is now Prefix.

Printer cards
- When used on the Apple IIc, the printer card is permanently set to Super Serial to accommodate the two ports on the Apple IIc.
- When used on the Apple IIc, the printer card must be used in Slot 1 or 2.

MOVE and COPY commands
Word Juggler now allows you to use the FIND and ^ FIND commands when prompted to "Move cursor to start (or end) of block and press space", in addition to the normal cursor movement keys.

FIND and ^ FIND commands
Hitting RETURN when prompted with "Find what?" will find the next occurrence of the string that was last searched for.

Titles and Page variables
The TEXT LINE/COL command now allows greater flexibility in choosing where on the page a title or page number can appear. In addition to specifying the absolute column number, titles or page numbers may appear on the left or right margin, centered between the margins, or alternating between the margins (which is useful when printing manuals)

Changes in the keystrokes
Because there is no keyboard enhancer included with Word Juggler version 2.7, some of the keystrokes had to be altered.

- The Open Apple key is used to access the editing commands (instead of the CONTROL key used in the older versions).
The "overstrike" feature is no longer available.

Cursor Movement

<table>
<thead>
<tr>
<th>Used to be</th>
<th>Now is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Page</td>
<td>SHIFT Up-Arrow</td>
</tr>
<tr>
<td>Previous Word</td>
<td>SHIFT Left-Arrow</td>
</tr>
<tr>
<td>Next Word</td>
<td>SHIFT Right-Arrow</td>
</tr>
<tr>
<td>Next Page</td>
<td>SHIFT Down-Arrow</td>
</tr>
<tr>
<td>Beginning of Document</td>
<td>CONTROL SHIFT Up-Arrow</td>
</tr>
<tr>
<td>Beginning of Line</td>
<td>CONTROL SHIFT Left-Arrow</td>
</tr>
<tr>
<td>End of Line</td>
<td>CONTROL SHIFT Right-Arrow</td>
</tr>
<tr>
<td>End of Document</td>
<td>CONTROL SHIFT Down-Arrow</td>
</tr>
<tr>
<td>Straight Up</td>
<td>CONTROL Up-Arrow</td>
</tr>
<tr>
<td>Straight Left</td>
<td>CONTROL Left-Arrow</td>
</tr>
<tr>
<td>Straight Right</td>
<td>CONTROL Right-Arrow</td>
</tr>
<tr>
<td>Straight Down</td>
<td>CONTROL Down-Arrow</td>
</tr>
<tr>
<td>Start of next line</td>
<td>CONTROL RETURN</td>
</tr>
<tr>
<td>Tab Set (and Clear)</td>
<td>SHIFT (and CONTROL) TAB</td>
</tr>
<tr>
<td>Tab Inserting Spaces</td>
<td>SHIFT CONTROL TAB</td>
</tr>
</tbody>
</table>

Printout Formatting Commands

The following commands not labeled on the command strip are now different:

<table>
<thead>
<tr>
<th>Used to be</th>
<th>Now is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Else</td>
<td>ESCAPE CONTROL =</td>
</tr>
<tr>
<td>15 Pitch</td>
<td>ESCAPE CONTROL 4</td>
</tr>
<tr>
<td>Ragged Left</td>
<td>ESCAPE CONTROL 2</td>
</tr>
<tr>
<td>Triple Space</td>
<td>ESCAPE CONTROL 7</td>
</tr>
</tbody>
</table>

Margin Settings
Both the Top Margin and the Left Margin commands are now counted from "0" instead of "1".

Printout Enhancement Commands and Special Functions
Printout enhancements (such as bold and underline) and special functions (such as Lexicheck and Terminus) are now accessed with the Solid-Apple key instead of the Open-Apple key. Additionally, Print Form has changed from Open-Apple "." to Solid-Apple "2".

Variables are also entered with the Solid-Apple key.

Using Word Juggler with the Keyboard Enhancer
If you have a keyboard enhancer already installed and prefer to use the old commands, simply create a document called "OLD.COMMANDS" on the Word Juggler diskette and reboot. (It doesn't matter what is in this document, it just needs to be on the diskette.) This will allow Word Juggler to function almost the same as the earlier versions, while still having access to all of the program enhancements.

The functions that will behave differently are:

- Help will still be accessed as Open-Apple "?".
- Margins are still counted from "0" instead of from "1".
- Print Form will change from Open-Apple "." to Open-Apple "2".

New features of Word Juggler 2.8

- Print to Disk option - Allows incorporation of Word Juggler files with
other program applications including terminal communications while retaining the original format of the document. This feature may be accessed by pressing Closed-Apple "9".

- Built in Terminal Program - A scaled down telecommunication package based on Quark's TERMINUS program. This option is able to transmit and receive documents with as much ease as you would expect from a true telecommunications product. It will not, however, support any of TERMINUS' advanced transmission modes such as binary or compressed options.

The package allows you to define 4 Protocols, as opposed to Terminus' 16 Protocols. Furthermore, the Protocols support only two macros each, (the autodial and logon macros) while Terminus' Protocols can support up to 28 user-definable macros each.

NOTE: Apple Computer Inc. is not responsible for the contents of this article.

Quark Technical Support

Keywords:

END OF FILE A2TIL269.TXT
I. Technical Specifications

1. Pens:
 a. Maximum active: 4 in head, software selectable
 b. Tips:
 1. Porous plastic for paper
 2. Fiber for transparency
 c. 8 colors: black, red, green, blue, violet, orange, gold, brown
 d. Liquid ink
 e. Velocity:
 1. Each axis: Pen up or down, max. 10 cm/sec (3.94 in./sec)
 2. Programmable: 1 to 10 cm/sec in 1 cm/sec increments
 3. Both axes driven to 45 degree line: Max. 14.12 cm/sec (5.56 in./sec)

2. Plot:
 a. Maximum: X axis: 391.8 mm (15.4 in.); X axis: 257 mm (10.1)
 b. Minimum width: 115 mm (4.6 in.)
 c. Resolution: Smallest addressable step size: 0.1 mm (0.004 in.)
 d. Repeatability:
 1. With one pen: 0.2 mm (0.008 in.)
 2. Between pens: 0.4 mm (0.016 in.)
 e. Method: X-axis paper motion with Y-axis pen motion
 f. Driving method: Stepper motors
 g. Relative position accuracy: + 1% + 0.3 mm

3. Media:
 a. Paper or Apple Plotter Transparency Film
 b. 9 software-selectable sizes:
 a. Vertical
 ---Inches
 1. 8.5 x 11 ANSI Size A
 2. 11 x 17 ANSI Size B
 ---Millimeters
 3. 297 x 420 DIN/JIS A3
 4. 210 x 297 DIN/JIS A4
 5. 250 x 353 DIN/JIS B4
 6. 176 x 250 DIN/JIS B5
 b. Horizontal
 ---Inches
 1. 11 x 8.5 ANSI Size A
 ---Millimeters
2. 297 x 210 DIN/JIS A4
3. 250 x 176 DIN/JIS B5

c. Thickness:

\[
\begin{array}{ll}
\text{mm} & \text{in.} \\
1. \text{Maximum: } & 0.05 \quad 0.002 \\
2. \text{Minimum: } & 0.8 \quad 0.031 \\
\end{array}
\]

4. Seven Language font sets
 a. English (U.S.)
 b. English (U.K.)
 c. German
 d. French
 e. Italian
 f. Swedish
 g. Spanish

5. Front panel controls:
 a. Operate/Free (LED and switch)
 b. Remote/Local (LED and switch)
 c. Pen Select (switch - local mode only)
 d. Pen Up/Down (switch - local mode only)
 e. Pen Movement (switches - up, down, left, right)
 f. Clear (switch - Free mode only)
 g. Self test (switch - Free mode only)

6. Power requirements:
 a. 103.5–126.5 V 57–63 Hz
 b. 200–250 V 48–52 Hz
 -- 33 watts maximum consumption

7. Interface:
 a. RS-232C asynchronous serial ASCII
 b. Hardware handshaking
 c. Switch-selectable baud rates:
 75, 150, 300, 600, 1200, 4800, or 9600
 d. Data format: 7 or 8 bit (switch selectable)
 e. Stop Bit: None, 1 1.5 or 2 (switch selectable)
 f. Parity: None, odd, or even

8. FCC Certification: Class B computing device

9. Physical

\[
\begin{array}{ll}
\text{mm} & \text{in.} \\
\text{Height: } & 122 \quad 4.8 \\
\end{array}
\]
Width: 412 16.2
Depth: 300 11.8

kg lb.

Net: 6 13.2
Shipping: 10 22

10. Environmental requirements

a. Temperature

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Fahrenheit</th>
<th>Celsius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating:</td>
<td>41 to 104</td>
<td>5 to 40</td>
</tr>
<tr>
<td>Storage:</td>
<td>-4 to 149</td>
<td>-20 to 65</td>
</tr>
</tbody>
</table>

b. Humidity: 20 to 80% relative humidity at 40 degrees Celsius

II. System Configuration

1. Computer: Apple II Plus, Apple IIe, Apple IIc, Apple III

 a. For Apple II Plus and IIe:
 --disk drive
 --Super Serial Card

2. Video display

3. Apple Business Graphics users must have a driver installed with a PIK (Printer Interface Kit) disk.

Copyright 1986, 1992, Apple Computer, Inc.
Keywords: SPECSHT

END OF FILE A2TIL270.TXT
I. Technical Specifications

A. Picture Tube

1. 14-inch diagonal (13 inch view)
2. Dot pitch: 0.52mm
3. High contrast (black matrix)

B. Input Signal:

1. Composite (NTSC) only
2. Synchronous negative
 -- 1.0 +/- 0.5-volts peak to peak
 -- internally terminated with 75 ohm resistor.
3. Input connector: RCA (phono) jack

C. User Controls:

1. Front:
 -- Power switch
 -- High resolution (white only) button
 -- Brightness
 -- Contrast
 -- Color (hue intensity)
 -- Tint
2. Rear:
 -- Vertical size
 -- Vertical hold
 -- Horizontal hold
3. Side: Power switch of ColorMonitor IIc

D. Scanning Frequencies

<table>
<thead>
<tr>
<th>Horizontal Scan</th>
<th>Vertical Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NTSC/60</td>
<td>15.734 kHz</td>
</tr>
<tr>
<td>2. NTSC/50-PAL/50</td>
<td>15.659 kHz</td>
</tr>
</tbody>
</table>

E. Color Reference Frequency

1. NTSC/60 Hz: 3.579545 MHz
2. NTSC/50 Hz: 3.562456 MHz
3. PAL/50 Hz: 4.433618 MHz

F. Video Bandwidth

<table>
<thead>
<tr>
<th>Text Video Mono</th>
<th>Graphics Video Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NTSC</td>
<td>8.0 MHz</td>
</tr>
<tr>
<td>2. PAL</td>
<td>8.0 MHz</td>
</tr>
</tbody>
</table>

G. Physical Dimensions:

1. Weight: 27.56 lbs (12.5kg) maximum

<table>
<thead>
<tr>
<th>IIc/IIf</th>
<th></th>
<th>IIe/IIf</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>centimeters</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Width: 14.4/13.4 36.7/34.0
3. Height: 12.4 31.5
4. Depth: 14.4 36.5

H. Power Consumption:

1. 50 watts normal at 120VAC
2. 75 watts maximum
3. Fuse Protection:

 -- The monitor contains internal power line fuse protection. This fuse should be replaced with the same type by a qualified service technician.

I. Input Voltage

<table>
<thead>
<tr>
<th>Model</th>
<th>Operating Range</th>
<th>Power Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 120v</td>
<td>108-132</td>
<td>50-60 Hz</td>
</tr>
<tr>
<td>2. 220v</td>
<td>198-242</td>
<td>50-60 Hz</td>
</tr>
<tr>
<td>3. 240v</td>
<td>216-264</td>
<td>50-60 Hz</td>
</tr>
</tbody>
</table>

NOTE: Input voltage is not adjustable within the monitor.

J. Environment:

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Fahrenheit</th>
<th>Celsius</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Operating</td>
<td>41 to 86</td>
<td>5 to 30</td>
</tr>
<tr>
<td>2. Storage</td>
<td>-31 to 140</td>
<td>-35 to 60</td>
</tr>
</tbody>
</table>

II. System Configuration

A. ColorMonitor IIe:

1. Apple II
2. Apple II Plus
3. Apple IIe

B. ColorMonitor IIc: Apple IIc

Copyright 1989 Apple Computer, Inc.

Keywords: SPECSHT

END OF FILE A2TIL271.TXT
COMMAND.COM is a command interpreter for the ProDOS operating system. When used in place of BASIC.SYSTEM, it gives an Enhanced Apple IIe, Apple IIc, or Apple IIgs some of the power of the MS-DOS operating system.

- You can refer to disks by simple abbreviations such as A: or B:, rather than having to use ProDOS pathnames (you can still use pathnames if you prefer).

- You can run application software by simply typing the name of the program, without using RUN, BRUN, or "-" (you can still use "-" if you like). To change directories (setting the PREFIX under BASIC.SYSTEM), you can type PREFIX pathname, PRE pathname, CHDIR pathname, CD pathname, or just the pathname.

- COMMAND.COM adds the MS-DOS pathing concept to ProDOS. A path is the name of a directory that COMMAND.COM will search when you type the command to run a file. Normally, only the PREFIX directory is searched, but with COMMAND.COM, you can specify up to four additional directories. This allows you to run programs stored on other directories, such as a general utility directory.

COMMAND.COM lets you set up four environments: CP/M, MS-DOS, ProDOS, and UNIX. You can configure for the environment that you are most comfortable with.

COMMAND.COM includes 100 commands. Some are internal, such as the DELETE and COPY commands. Others are external files that are read in from disk before execution. COMMAND.COM, like MS-DOS allows a virtually unlimited number of commands stored as files on disk.

You can use wild cards with commands: for example, typing Copy * B: would copy all files on the current directory to disk B:. You don't need to know the name of the current disk or the disk to be copied to; COMMAND.COM handles that automatically.

COMMAND.COM supports both I/O re-direction and piping. I/O re-direction sends the output of a command to a device other than the one normally used. The TYPE command normally displays the contents of a text file on the screen. With I/O re-direction, the text could be sent to a printer or to another file.

Piping is used to make the output of one command the input to another. For example, the CATALOG command could 'pipe' the catalog of disk files to the SORT command, which would alphabetize the catalog before displaying it.

COMMAND.COM even lets you create commands that don't exist in your operating system -- for example, a command that MOVES a file from one location to another: not just copying it, but also deleting the original. The MOVE command would be created by combining the COPY, UNLOCK, and DELETE commands. Variables can also be used to assign short (one or two character) names that when typed will run an application program. An example might be typing AW to prefix to the AppleWorks directory and run the file APLWORKS.SYSTEM.

COMMAND.COM includes the following commands:

- Convert any type of file, including AppleWorks Word Processor files,
into plain text files.
- Search all directories on a 3.5" disk or hard disk for any file.
- Display all files on a specific disk.
- Search and replace in a variety of formats.
- A picture display command that automatically recognizes all Apple II picture types, including GS pictures.

COMMAND.COM also supports MS-DOS-style BATCH files. BATCH files are the perfect solution for handling many complex tasks easily and automatically. Running a system application does not effect the BATCH file. One example cited in the manual: a BATCH file can be used to run an application and track elapsed time. At the end of the month, the user can print the text file created by this BATCH file to generate billing information for work done for clients.

COMMAND.COM also includes a full-featured line-oriented text editor.

COMMAND.COM will be available in September 1987 from PinPoint Publishing.

Copyright Apple Computer, Inc. 1987

Keywords: specsht

END OF FILE A2TIL272.TXT
Description: Communications Interface: Directly controlling the 6850 ACIA
Header: Communications Interface: Directly controlling the 6850 ACIA

This applies to the Apple II, II+, and IIe.

The Communications Interface Card uses an ACIA (Asynchronous Communications Interface Adapter) to automatically perform the serial transfers with an external device. The ACIA contains 4 registers that control data flow between the Apple and the external device. There are two pairs of registers and each pair has a single address in the Apple. In the following discussion, all addresses will be calculated for slot 2. The addresses can be converted to another slot with the following formula.

New Address = Old Address + (New Slot - 2) * 16

So, $C0AE in slot 2 becomes $C09E for slot 1.

The status/control register is at $C0AE. Reading from $C0AE yields the status of the ACIA, and writing to $C0AE modifies the Operation of the ACIA (baud rate, data bits, stop bits, parity). The tables below are a summary of what the registers control. Refer to the Motorola Semiconductors Data Sheet for the MC6850 for complete details.

READ FROM STATUS REGISTER ($C0AE)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Receive Data Register Full</td>
</tr>
<tr>
<td>1</td>
<td>Transmit Data Register Empty</td>
</tr>
<tr>
<td>2</td>
<td>-Data Carrier Detect</td>
</tr>
<tr>
<td>3</td>
<td>-Clear to Send</td>
</tr>
<tr>
<td>4</td>
<td>Framing Error</td>
</tr>
<tr>
<td>5</td>
<td>Receiver Overrun</td>
</tr>
<tr>
<td>6</td>
<td>Parity Error</td>
</tr>
<tr>
<td>7</td>
<td>Interrupt Request</td>
</tr>
</tbody>
</table>

WRITE TO CONTROL REGISTER ($C0AE)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Baud Rate</td>
</tr>
<tr>
<td>0</td>
<td>- Unstable at about 1200 baud</td>
</tr>
<tr>
<td>1</td>
<td>- 300 baud</td>
</tr>
<tr>
<td>2</td>
<td>- 110 baud</td>
</tr>
<tr>
<td>3</td>
<td>- Reset the ACIA</td>
</tr>
<tr>
<td>2-4</td>
<td>Word Control Bits</td>
</tr>
<tr>
<td>0</td>
<td>- 7 bits + Even Parity + 2 Stop Bits</td>
</tr>
<tr>
<td>1</td>
<td>- 7 bits + Odd Parity + 2 Stop Bits</td>
</tr>
<tr>
<td>2</td>
<td>- 7 bits + Even Parity + 1 Stop Bit</td>
</tr>
<tr>
<td>3</td>
<td>- 7 bits + Odd Parity + 1 Stop Bit</td>
</tr>
<tr>
<td>4</td>
<td>- 8 bits + 2 Stop Bits</td>
</tr>
<tr>
<td>5</td>
<td>- 8 bits + 1 Stop Bit</td>
</tr>
<tr>
<td>6</td>
<td>- 8 bits + Even Parity + 1 Stop Bits</td>
</tr>
<tr>
<td>7</td>
<td>- 8 bits + Odd Parity + 1 Stop Bits</td>
</tr>
<tr>
<td>5-6</td>
<td>Transmitter Control Bits</td>
</tr>
<tr>
<td>0</td>
<td>-RTS = low, Transmitting Interrupt Disabled</td>
</tr>
<tr>
<td>1</td>
<td>-RTS = low, Transmitting Interrupt Enabled</td>
</tr>
<tr>
<td>2</td>
<td>-RTS = high, Transmitting Interrupt Disabled</td>
</tr>
<tr>
<td>3</td>
<td>-RTS = low, Transmits a Break level on the Transmit Data Output. Transmitting Interrupt Disabled</td>
</tr>
</tbody>
</table>
Receive Interrupt Enable Bit
0 - No interrupts from receiver section of ACIA
1 - Interrupt on:
 Receive Data Register Full,
 Overrun, or
 A low to high transition on Data Carrier Detect

The data register is located at $C0AF. A read from $C0AF yields the data that
has been received from the external device. A write to $C0AF buffers the data
and initiates its transmission. Writing or reading to the data register
automatically resets the ACIA status.

An Apple II will lose data whenever it is forced to ignore the Communications
Interface to either process the incoming data or write it to an I/O device like
a disk drive or printer.

This problem is solved by buffering the incoming data. You can do this by:

1) Requesting fixed size blocks of data from the remote machine - Reading in
 all of one block and processing it before requesting the next one.

2) Writing a program to control the data flow from the remote device with XON
 (control S) and XOFF (control Q). The strategy is to receive data until
 the program's memory buffer is almost full and transmit an XOFF to halt
 the data flow. Process the data and transmit an XON to resume the
 transfer. Not all external devices understand XON/XOFF handshaking.
 Be sure to check your device.

When attempting to use a remote terminal from Applesoft, the output appear on
one line of the terminal's screen. To avoid this problem, use the
Communications Card Print routine on page 28 of the Communications Interface
Card manual. If you are using DOS 3.2 or later you must modify this routine
with a POKE 845,110 before saving it to disk.

Modifying the default parameter settings on the Communications card is
described on page 27 of the Communications Interface Manual. But please note
that the PR#s and IN#s commands do not initialize the interface, they only
reset the I/O vectors. It's the first character through the interface that
loads the default parameters. So be sure to PRINT or INPUT at least one
character before doing the POKEs.

Apple Tech Notes

Keywords:

END OF FILE A2TIL273.TXT
Description: Daisy Wheel Printer: Specifications (Discontinued)
Header: Daisy Wheel Printer: Specifications (Discontinued)

Article Created: 20 February 1986

I. Technical Specifications

A. Print Speed: 40 characters per second (average)

B. Interface: Asynchronous Serial (RS-232C) OCITT-V-24

C. Forms: Single sheet or continuous forms
 -- Maximum width: 15 inches (38.1 cm)

D. Fonts: 130-character "daisy" print wheels in various alphanumeric type
 styles, including: Courier 10 pitch, Prestige Elite 12 pitch,
 Gothic 15 pitch, and Executive/Boldface in English, French,
 German, and many other languages.

E. Character Spacing in characters per inch (CPI):
 1. 10
 2. 12
 3. 15
 4. Proportional spacing
 -- Maximum 198 characters per line

F. Command set:
 -- ASCII
 -- space, backspace, carriage return, line feed, horizontal tab,
 form feed, end-of-text, acknowledge, XON/XOFF

G. Special Mode Commands:
 -- Graphics mode, forward and backward print mode, program mode
 for hammer intensity and ribbon movement

H. Weight and Dimensions:
 pounds kilograms
 1. Weight: 37.0 16.8

 inches centimeters
 2. Width: 23.22 59.0
 3. Height: 6.87 17.5
 4. Depth: 14.84 37.7

II. System Configuration

A. Lisa system

B. Apple III system

C. Apple IIe or Apple II Plus system
 -- with Apple II Super Serial Interface Card installed
III. Features

A. Snap-in ribbon cartridge

B. Switch-selectable features:

-- horizontal and vertical formatting
-- forms length selection
-- automatic form feed

Apple Technical Communications

Keywords: SPECSHT

END OF FILE A2TIL274.TXT
NOTE: The DAP (Drive Acceptance Program) is an obsolete diagnostic. It has been replaced with the Apple 5.25 Inch Drive Diagnostic. Refer to the Disk Drives Technical Procedures for complete information on the current Apple 5.25 Inch Drive Diagnostic.

The following article describes how the DAP works and what it is designed to do. For a description of how to run the DAP test or what to replace if a failure occurs, search on "HTS and GTS and the disk drive product name".

TEST SEQUENCE AND DESCRIPTION

1. WRITE PROTECT TEST (the digit 1 appears above the selected drive) -

When the right arrow key is detected, several things happen on the screen. The diskette icon is erased, the drive door icon flashes to a closed position, and the IN.USE lamp icon lights as the first test begins. The digit "1" appears above the drive to indicate the test step.

The write protect test reads and saves a copy of sector 5 on track 16 of the test diskette. This helps prevent accidental data loss if the wrong diskette is accidentally inserted. The write-protect test does not bother with the write-protect switch since this may differ in various drives and controllers. Rather, it attempts to write a sector and then reads the sector back. If the read detects the data pattern written, the drive is failed in step one. In the case of failure (i.e. the write is successful) the original sector is re-written to the diskette. If writing does occur, the big "X" fail sign is overlayed on the drive image. This same indication is used for failure of any of the remaining tests.

2. WRITE AND READ TEST -

A. SPEED (The digit 2 appears): The first write test makes 16 D-SPEED passes over track 30. The test is self-adjusting, allowing a variance of ± 26 WOZ counts for Apple II+, IIe and IIC systems, and ± 10 WOZ counts for the Apple III in emulation mode. (If the test fails at the beginning of the test, the drive circuitry may be unable to read/write.)

B. WRITE AND VERIFY TRACKS 31,32,33 (The digit 3 appears): The write test writes patterns to all sectors of tracks 31,32,33 and then attempts to read the track. After each read it compares the read data pattern to the pattern written to verify a good write and read.

3. DYSAN DDD DISKETTE TESTS -

A. SPIN ECCENTRICITY (spindle wobble, collet problems; displays digit 4): Tests tracks 21 and 24. An even amount of error has been encoded on each of these DDD tracks. A properly centered head should read each sector with equal ease or difficulty. Irregularity here generally indicates collet problems or possibly spindle wobble. The program allows for some errors. If the test shows more failures than the limit allows, the user will be prompted to re-insert the DDD. On Disk II and Disk III drives it is best if the DDD is "double clamped". Failure here can also indicate excess noise.
from nearby equipment or a worn DDD diskette.

B. RADIAL ALIGNMENT (head properly centers on track; displays digit 5):
This test reads tracks 0, 5, 16, 19, 30 and 32. Each of these tracks has been encoded with errors which are progressively further from the center track (by one mil) with each sector. A properly aligned drive will have a diminishing ability to read sectors and a perfectly positioned head will be unable to read the sectors furthest away from the center of the track.
(Since the Digital Diagnostic Diskette checks alignment at six locations, it is possible that the error will not be detected with the Disk Alignment Aid.)

C. HYSTERESIS (physical slope in arm motion; displays digit 6): This test calibrates the drive, reads tracks 5 and 30, goes to track 34 and then reads tracks 30 and 5. A properly adjusted and functioning drive will not develop more than ± 2 mils of error on reads when the head moves from the opposite direction. Errors discovered here are due to physical slop or wear in the hardware. Failure of this test can often indicate that the guide rails need cleaning.

D. AZIMUTH (ability of head to detect data with 21-42 minutes of error in the angle of data placement; displays digit 7): This test calibrates and moves to track 34. This track has been encoded with data written with angular error which alternates direction with each sector and increases from 21 to 42 minutes of error. The inability to read this data indicates a faulty head. In most cases all sectors are read easily by the heads in Apple drives.

Copyright 1988 Apple Computer, Inc.

Keywords: hts

END OF FILE A2TIL275.TXT
This article details the version change history for last three versions of DART, as well to where to locate a copy of DART.

DISCUSSION

What Is DART?

DART (Disk Archive/Retrieval Tool) is an application that enables you to duplicate Macintosh, Lisa, Apple II, or MS-DOS disks, save disk images, and create disks from image files. DART 1.5 can read disk image files in DART, DiskMaker, or Disk Copy format. DART 1.5 image files are compressed, approaching a reduction in size comparable to that obtained by using a commercial compression utility. DART 1.5 is System 7.0 "savvy", and implements a custom Apple event mechanism to automate the conversion of older DART or Disk Copy files to 1.5 format. The conversion process can be run by "remote control" (even across a network!) using the accompanying HyperCard stack. (For more information, please refer to the DART User Manual.)

What's New in version 1.5.3

* Compatibility with Centris 660AV, Quadra 660AV, and Quadra 840AV.

* Compatibility with Apple Event Manager 1.0.1 (a component of AppleScript).

Note: A -64 error occurs launching DART 1.5.3 on a Power Macintosh, but if you click OK, DART continues and everything works as expected.

What's New in version 1.5.2

* Compatibility with new Macintosh Quadra 800 and Centris machines.

* Under certain circumstances, it was possible for DART to open a corrupted Disk Copy file and create an identically corrupted disk (or image file) from it. Checksums on source disk images are now verified correctly, and DART will always display a warning message if the expected and actual checksum values don't match. (Note that while a damaged Disk Copy file can no longer be converted to DART format, it's still possible to make a disk from it and potentially salvage the data on that disk.)

* Fixed a minor (but annoying) display glitch in "Multiple Copies" mode where a portion of the Status message would sometimes be "hidden" underneath the progress bar.

What’s New in version 1.5.1

* Compatibility with A/UX 3.0.

* Under System 7, you can now drop a floppy disk onto DART to create an image file.

* The default filename in Save dialogs is now filled in with the volume
name of the source disk (if a source has been selected.)

* Volumes can now be mounted in the Finder when DART is running in the background.

* Fixed a bug which could occasionally cause a bus error on certain machines. The error would occur either immediately on launch, or after the about box was dismissed.

* Fixed a bug which could cause DART to refuse to format a blank 1.4M floppy disk (or a 1.4M floppy formatted as 800K) when "Format Disk" was checked.

Where To Locate DART

These articles can help you locate the software update mentioned here:

* "Where To Find Apple Software Updates"
 Lists online services for "free" Apple software updates.

* "Obtaining Apple Product Support in the USA"
 Lists 800 numbers and online services for software updates, Apple support information, and a subset of the Apple Tech. Info. Library.

Article Change History:
27 Sep 1994 - Reviewed.
06 Oct 1993 - Updated with info on DART 1.5.3, and revised title.

Support Information Services
Copyright 1993-94, Apple Computer, Inc.
Keywords: ksts

END OF FILE A2TIL276.TXT
Is there a Macintosh utility program for duplicating Macintosh, Lisa, Apple II or MS-DOS 3.5-inch floppy disks?

DART (Disk Archive/Retrieval Tool) is an application that enables you to duplicate Macintosh, Lisa, Apple II, or MS-DOS disks, save disk images, and create disks from image files. DART 1.5 can read disk image files in DART, DiskMaker, or Disk Copy format. DART 1.5 image files are compressed, approaching a reduction in size comparable to that obtained by using a commercial compression utility. DART 1.5 is System 7.0 "savvy", and implements a custom Apple event mechanism to automate the conversion of older DART or Disk Copy files to 1.5 format. The conversion process can be run by "remote control" (even across a network!) using an accompanying HyperCard stack. (For more information, please refer to the DART User Manual.)

Features of DART 1.5

* Data compression: more disk images can be archived in the same amount of space.
* Data checksumming for reliable disk duplication.
* Can read Disk Copy image files.
* Requires only 224K of RAM to run.
* Stack utility enables you to batch-convert DART 1.4 or Disk Copy files.
* Apple events support ("required" AE suite and custom 'cnvt' event.)
* System 7 "drag-and-drop" disk image creation.
* 32-bit clean.
* A/UX compatible.
* Color icons and balloon help.

Where to Obtain DART

The current version of DART may be downloaded from two locations on AppleLink:

1) The Apple SW Updates board. Use the following AppleLink path:
 Software Sampler
 Apple SW Updates
 Macintosh
 Utilities

2) On the AppleLink version of the Tech Info Library, posted as an enclosure to the article: "DART 1.5.3: Version Change History (10/93)"

Article Change History:
6 October 1993 - Added new description and features information.
Copyright 199193, Apple Computer, Inc.
Keywords:
I. Technical Specifications

A. Format

1. Sectoring: Soft (hard-sectored disks may be used)
2. Recording Surfaces: 1
3. Tracks per surface: 35
4. Sectors per track: 16
5. Bytes per sector: 256

B. Capacity

1. Formatted data capacity: 140K
 a. 16 sector
5. Under: Pascal, DOS 3.3, and ProDOS
2. Available data capacity:
 a. 16 sector
 b. 137K under Pascal
 c. 124K under DOS 3.3 and ProDOS

C. Characteristics

1. Head movement time:
 a. 25 milliseconds track to track
 b. 600 milliseconds across all tracks
2. Head load time: 50 milliseconds
3. Average rotational delay: 100 milliseconds

D. Packaging

1. Controller: Printed circuit board that plugs into one of the expansion slots.
 a. Drives per controller: 2
2. Drive dimensions:
 inches centimeters
 a. Height: 3.25 8.3
 b. Width: 5.75 14.6
 d. Depth: 8.00 20.3
 pounds kilograms
 e. Weight: 3.00 1.36
3. Power source for drives: Apple system power supply

II. System Configuration

A. Apple II, II Plus, IIe, or Enhanced IIe
1. Recommended minimum memory: 32K

2. Controller card

Copyright 1988 Apple Computer, Inc.
Keywords: SPECSHT

END OF FILE A2TIL278.TXT
Description: DOS 3.3 6502 editor assembler: PR slot command
Header: DOS 3.3 6502 editor assembler: PR slot command

There is a .PR# slot# command in the DOS 3.3 6502 editor assembler of the DOS tool kit. If you use this command you get not a file listing, but a dump of the buffer that starts with data entered by the user or LOADed from a text file. After this part of the buffer has been printed, the dump continues with the garbage in the buffer beyond the last intelligible character to the end of the allowable buffer. This produces numerous @ signs or other characters depending on the contents of buffer memory after power-up and is a normal part of a Print or List of the assembly program to a printer using .PR# slot# from the editor.

Try it yourself.

1. Boot the DOS 3.3 6502 editor/assembler
2. LOAD a large source code file
3. List it to see what it looks like
4. Type NEW to clear the buffer
5. LOAD a smaller source code file
6. Type .PR#1 to send the DOS command to activate the printer
7. Type L to list the buffer to the printer

Notice that the last part of the first file follows the last line of the second file. Also notice that such a listing does not match the screen output when using the List or Print commands but instead follows the input format.

To obtain a listing with the same format as displayed on the screen using Print or List commands you must append ',@' to the ASM command. This assembles the file without generating an OBJect code file (see page 56 of the editor/assembler manual). To speed this process when using an Imagewriter and Super Serial Card on an Apple II+ or Apple IIe, do the following.

1. Set the Imagewriter print style to ultracondensed (17cpi)
2. Set the baud rate of printer and card to 9600
3. Send the output of the assembly to the printer using PR#

Notice that there is no period (.) preceding the PR# command in this case. This is because you are not using the DOS command version but rather the editor/assembler PR# command. See the editor/assembler manual for the format of the PR# command on page 60 and a discussion on pages 60 and 61.

With an Imagewriter at 9600 baud, the above three steps reduce the listing time by 41% when comparing the default type style to the ultracondensed style.

Apple Technical Communications

Keywords:
Description: DOS 3.3: INTBASIC and FPBASIC on the master diskette
Header: DOS 3.3: INTBASIC and FPBASIC on the master diskette

The INTBASIC and FPBASIC files on the master diskette load automatically into your Language Card if you have one. Since these files are written to operate specifically in the memory space of the Language Card, they don't work anywhere else.

To use Applesoft with your Apple II (which has Integer BASIC built in), you need either the Applesoft Firmware Card or the Language Card installed into your system.

Apple II+s have Applesoft built in; therefore, your system needs the Integer BASIC firmware card or a language card to use Integer BASIC.

Apple Tech Notes

Keywords:

END OF FILE A2TIL280.TXT
Description: Dot Matrix Printer (DMP): Printer codes

The following are the printer codes used by the Apple Dot Matrix Printer (DMP).

<table>
<thead>
<tr>
<th>Ascii</th>
<th>Hex</th>
<th>Decimal</th>
<th>Resulting Printer Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esc n</td>
<td>1B 6E</td>
<td>27 110</td>
<td>9 Characters Per Inch (cpi)</td>
</tr>
<tr>
<td>Esc N</td>
<td>1B 4E</td>
<td>27 78</td>
<td>10 cpi</td>
</tr>
<tr>
<td>Esc E</td>
<td>1B 45</td>
<td>27 69</td>
<td>12 cpi</td>
</tr>
<tr>
<td>Esc q</td>
<td>1B 71</td>
<td>27 113</td>
<td>15 cpi</td>
</tr>
<tr>
<td>Esc Q</td>
<td>1B 51</td>
<td>27 81</td>
<td>17 cpi</td>
</tr>
<tr>
<td>Esc P</td>
<td>1B 50</td>
<td>27 80</td>
<td>Proportional-1</td>
</tr>
<tr>
<td>Esc p</td>
<td>1B 70</td>
<td>27 112</td>
<td>Proportional-2</td>
</tr>
<tr>
<td>Esc A</td>
<td>1B 41</td>
<td>27 65</td>
<td>6 Lines per inch (1/6-inch Line Feed)</td>
</tr>
<tr>
<td>Esc B</td>
<td>1B 42</td>
<td>27 66</td>
<td>8 Lines per inch (1/8-inch Line Feed)</td>
</tr>
<tr>
<td>DC1</td>
<td>11</td>
<td>17</td>
<td>Select printer (online)</td>
</tr>
<tr>
<td>DC3</td>
<td>13</td>
<td>19</td>
<td>Deselect printer (offline)</td>
</tr>
<tr>
<td>Esc ></td>
<td>1B 3E</td>
<td>27 62</td>
<td>UniDirectional print</td>
</tr>
<tr>
<td>Esc <</td>
<td>1B 3C</td>
<td>27 60</td>
<td>Bidirectional print</td>
</tr>
<tr>
<td>Esc !</td>
<td>1B 21</td>
<td>27 33</td>
<td>Bold print</td>
</tr>
<tr>
<td>Esc "</td>
<td>1B 22</td>
<td>27 34</td>
<td>Deselect Bold print</td>
</tr>
<tr>
<td>SO</td>
<td>0E</td>
<td>14</td>
<td>Select Elongated characters (Headline mode)</td>
</tr>
<tr>
<td>SI</td>
<td>0F</td>
<td>15</td>
<td>Deselect Elongated characters</td>
</tr>
<tr>
<td>Esc X</td>
<td>1B 58</td>
<td>27 88</td>
<td>Start Underline</td>
</tr>
<tr>
<td>Esc Y</td>
<td>1B 59</td>
<td>27 89</td>
<td>Stop underline</td>
</tr>
</tbody>
</table>

For additional information or information on graphics, please see the Apple Dot Matrix Printer manual, Apple service part number 030-0607, and see the media exchange listing for price.

Apple II Keystrokes:

- DC1: Control-Q
- DC3: Control-S
- SO: Control-N
- SI: Control-O
- Esc: Escape key

Apple Technical Communications
FILE: A2TIL282.TXT

TOPIC

This article gives the specifications for the 800K floppy disks and the 1.4MB floppy disks. It also describes why you should not drill a hole in a double-density disk and format it as a high-density disk.

DISCUSSION

The table below compares the formatted capacity of the different media:

<table>
<thead>
<tr>
<th></th>
<th>800K Disk</th>
<th>1.4MB Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes/Sector</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Sectors/Track</td>
<td>8-12</td>
<td>18</td>
</tr>
<tr>
<td>Tracks/Side</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Bytes/Side</td>
<td>409,600</td>
<td>737,280</td>
</tr>
<tr>
<td>Bytes/Disk</td>
<td>819,200</td>
<td>1,474,560</td>
</tr>
</tbody>
</table>

The Apple SuperDrive (formerly Apple FDHD) can read and write to any of the major 3.5-inch disk formats, including Macintosh (GCR 400K, 800K, and MFM 1.44MB), Apple II (800K), and MS-DOS and OS/2 (MFM 720 and 1.44MB). GCR stands for "Group Code Recording" and MFM stands for "Modified Frequency Modulation".

When the SuperDrive writes 400K/800K disks in GCR mode, the motor speed is variable, and the disk surface is divided into five zones to allow a constant recording density as the head moves from the outer edge to the center. When using high-density media, data is written in MFM mode, and the drive speed is constant for each track.

The table that follows compares the speed of the different disk structures:

<table>
<thead>
<tr>
<th>Tracks</th>
<th>800K Disk</th>
<th>1.4MB Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-15</td>
<td>394/12</td>
<td>300/18</td>
</tr>
<tr>
<td>16-31</td>
<td>429/11</td>
<td>300/18</td>
</tr>
<tr>
<td>32-47</td>
<td>472/10</td>
<td>300/18</td>
</tr>
<tr>
<td>48-63</td>
<td>525/9</td>
<td>300/18</td>
</tr>
<tr>
<td>64-79</td>
<td>590/8</td>
<td>300/18</td>
</tr>
</tbody>
</table>

Revolutions Per Minute/Sectors Per Track

GCR and MFM only affect how the data is written to the disk. GCR and MFM do not care how the tracks and sectors are laid out on the disk. They also have no effect on the directory structure. GCR and MFM deal with how the bits are recorded on the surface of the media.

The MFM Method

MFM was originally recommended by Shugart Associates for double-density, floppy drives and was used in a small number of systems. IBM was the first major vendor to use MFM, and now Apple also provides MFM support for the
Apple SuperDrive. MFM uses a transition pulse to write data to drive media. There are two locations for the transition pulse: the data boundary or the cell boundary. A transition occurs at a cell boundary only when two zero bits occur next to each other. This encoding method guarantees that no more than two-bit cells can occur without a transition and is, thus, self-clocking.

The GCR Method

GCR is a method that Apple has used to record information since the Apple II Disk Controller. Each group of four bits is translated into a 5-bit code (the Run-Length code). A translation table is used to find this 5-bit code. This 5-bit code seems to increase data bits by 20%. However, the 5-bit codes never contain more than two consecutive zeros, and GCR writes the data in NRZI format. When a 1 occurs in the data stream, a transition occurs on the data boundary. Thus, GCR is guaranteed to be self-clocking. You also save the cell boundary transitions required for MFM. Thus, GCR is more efficient than MFM and is widely used in high-density disks and tape recordings. The disadvantage of GCR is the relatively high complexity of the encoding and decoding logic.

High-Density vs Double-Density Disks

High-density disks are physically different and tested to a different specification than double-density disks. In this case, high-density disks are of higher quality than double-density disks. The high-density disks have a special, thin, recording surface that allows the higher data rates used in MFM. The 800K or 400K disk may not be sensitive enough to properly pick up and align the magnetic particles when the SuperDrive writes in MFM. This could cause corruption of the stored data and may result in errors. Thus, it is unreliable, unsupported, and not suggested.

Copyright 1990, 1991 Apple Computer, Inc.
Keywords:
Description: Dow Jones News & Quotes Reporter: Specifications
Header: Dow Jones News & Quotes Reporter: Specifications

Order #: A2D0030

--Technical Specifications

--Format: 16-sector disks.
--Language: Written in Pascal.
--Dow Jones Access: Minimum 15-minute tape delay; exchanges include NYSE, AMEX, Midwest, Pacific, Composite, and OTC NASDAQ.
--Dow Jones Toll-Free Information: (800) 257-5114; in New Jersey, call (609) 452-1511.

--Package

1. Dow Jones News & Quotes Reporter master disk;
2. Dow Jones News & Quotes Reporter backup disk;
3. instruction manual;
4. Dow Jones News/Retrieval operating guide and symbol directory.
5. Dow Jones News/Retrieval contract and password information sheet.
6. One free hour of connect time, to be used during nonprime-time hours, within 30 days of the date of purchase of the Dow Jones News & Quotes Reporter package.

--System Configuration

1. Apple II or Apple II Plus, with a minimum of 48K of memory, or Apple IIe
2. disk drive, such as Apple Disk II
3. video display device, such as Monitor II
4. a recommended modem, either a D.C. Hayes MicroModem or a Novation Apple Cat modem
 NOTE: The Apple modems, in conjunction with the Super Serial Card, will not support the Auto-dial necessary for the Auto-Log-on feature of the Dow Jones Reporter. One of the recommended modems must be used for this feature.
5. standard working telephone;
6. printer with appropriate interface card (optional).

NOTE: This product is no longer supported by Apple Computer, Inc.

Apple Technical Communications

Keywords: SPECSHT

END OF FILE A2TIL283.TXT
Description: DuoDisk Problem/Cure: Copy Protected Disk Damaged During Boot

This article last reviewed: 24 February 1988

PROBLEM DESCRIPTION: When inserting a copy protected application or game into the DuoDisk and starting up the Apple II, II+, or IIe system, the disk fails to boot. The disk may be damaged in the process.

CAUSE: If capacitors C29 and C30 are present on the analog PCB, they can allow unintentional writing to the disk. This problem can be triggered by certain copy protection schemes.

CURE: Clip off the capacitors C29 and C30 at locations B1 and A1 on the Dubodisk Analog PCB.

If the above cure doesn't solve the problem, search on HTS and GTS and the product name to obtain the general troubleshooting procedure for the product.

Copyright 1988, Apple Computer, Inc.
Keywords: hts

END OF FILE A2TIL284.TXT
Educational Resources

1550 Executive Drive
Elgin, IL 60123

800-624-2926
708-888-8499 Fax

Company Profile:
Specializing in software and hardware for the Apple II.

Copyright 1993, Apple Computer, Inc

Keywords: 3PTY

END OF FILE A2TIL285.TXT
This article provides the electrical specifications for Apple peripherals, including printers, monitors, scanners, drives, modems, and so on. For information about other Apple hardware, see the Tech Info Library article, "Electrical Specifications: Apple Computers (1 of 2)".

DISCUSSION

The following Apple products are manufactured for use in the USA. In determining whether a particular product can be used internationally, there are three classes, depending on whether a product accepts a range in voltage, frequency or both (for more specific information, see the article, "Using U.S. Apple Equipment Internationally"):

1) **Universal**
 These products can be used internationally out of the box. Some of Apple's products are self-configuring devices or "universal" within a certain range. They can accept a range in both voltage and frequency, and only require a plug adapter for the specific locale.

 Example: The Quadra 800 accepts between 100-125 and 200-240 volts, 47-63 Hz.

2) **Frequency Independent**
 These products can be used internationally with a voltage transformer. Generally they are geared for U.S. 120 volt current, but are flexible as to the frequency they accept (for example, 47-63 Hz), and are known as "frequency independent." These products need a stepdown isolation transformer to adapt the voltage, and will handle the different frequency on their own.

 Example: The U.S. Performa 200 accepts 120 volts, 47-63 Hz.

3) **Frequency Dependent**
 These products generally cannot be used internationally. These are products that can work only within a narrow range in frequency; they are "frequency dependent." Transformers only transform voltage, so if the product requires a certain frequency, there's no practical way to convert both voltage and frequency.

 These products can ONLY be used internationally in countries with the same frequency as the country for which the product was manufactured. Further, a voltage transformer will be required if the destination country has a voltage different from the home country.

 Example: The U.S. Apple Color OneScanner accepts 108-132 volts, 58-62 Hz.

NOTE:
Computers with power outlets for peripherals do not condition the current as it passes through. So, for example, a monitor requiring 120v-60Hz current could not be used in a 220v-50Hz environment even if the computer from which it gets its power is able to accept the local current.

The AC output of a Macintosh II is as follows: the monitor receptacle is
rated for 3 amps steady state, 40 amps peak power. The power supply is fused for 6 amps to include the Macintosh II and monitor.

The amperage on the back of the computer is what should be used to calculate load on a circuit. Typical circuits in businesses and houses are 15 Amps (some are 20, but rarer, and an electric dryer is usually 30, an electric range may have DUAL 30 Amp circuits wired together). With that capacity, you could have the following configuration (from the back of the CPU):

CPU 5 Amps Monitor 3 Amps LaserWriter 7 Amps Total: 15 Amps

Most of the time, the CPU will draw only 1-1.5 Amps, the Monitor about .5-1 Amp, and the LaserWriter about 2 Amps. The difference is sometimes referred to as Nominal (high) versus Actual draw.

These following values are accurate regardless of peripherals used with each device. For example, a Macintosh II with an EtherTalk NB Card, an 8-bit video card, and HD40 SC draws a maximum of 230 watts and 6 amps from the power outlet it is plugged into.

PRINTERS

<table>
<thead>
<tr>
<th>PRINTERS</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaserWriter Printers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaserWriter IIC</td>
<td>760</td>
<td>6.3</td>
<td>2599.2</td>
<td>115</td>
<td>60</td>
</tr>
<tr>
<td>LaserWriter II</td>
<td>900</td>
<td>7.5</td>
<td>3078</td>
<td>90-126</td>
<td>50-60</td>
</tr>
<tr>
<td>LaserWriter IISC</td>
<td>900</td>
<td>7.5</td>
<td>3078</td>
<td>90-126</td>
<td>50-60</td>
</tr>
<tr>
<td>LaserWriter IINT/NTX</td>
<td>900</td>
<td>7.5</td>
<td>3078</td>
<td>90-126</td>
<td>50-60</td>
</tr>
<tr>
<td>LaserWriter IIf</td>
<td>900</td>
<td>7.5</td>
<td>3078</td>
<td>90-126</td>
<td>50-60</td>
</tr>
<tr>
<td>Personal LaserWriter SC</td>
<td>600</td>
<td>5</td>
<td>2052</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>Personal LaserWriter LS</td>
<td>600</td>
<td>5</td>
<td>2052</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>Personal LaserWriter NT</td>
<td>600</td>
<td>5</td>
<td>2052</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>Personal LaserWriter NTR</td>
<td>600</td>
<td>5</td>
<td>2052</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>Personal LaserWriter 300</td>
<td>360</td>
<td>3.00</td>
<td>1231</td>
<td>100-115</td>
<td>50-60</td>
</tr>
<tr>
<td>Personal LaserWriter 320</td>
<td>120</td>
<td>1.0</td>
<td>410.4</td>
<td>100-115</td>
<td>50-60</td>
</tr>
<tr>
<td>LaserWriter Pro 600</td>
<td>560</td>
<td>4.67</td>
<td>1915</td>
<td>90-110</td>
<td>58-62</td>
</tr>
<tr>
<td>LaserWriter Pro 630</td>
<td>560</td>
<td>4.67</td>
<td>1915</td>
<td>90-110</td>
<td>58-62</td>
</tr>
<tr>
<td>LaserWriter Pro 810</td>
<td>560</td>
<td>4.67</td>
<td>1915</td>
<td>90-110</td>
<td>58-62</td>
</tr>
<tr>
<td>LaserWriter Select 300</td>
<td>450</td>
<td>3.75</td>
<td>1539</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>LaserWriter Select 310</td>
<td>450</td>
<td>3.75</td>
<td>1539</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>LaserWriter Select 360</td>
<td>450</td>
<td>3.75</td>
<td>1539</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>Printer Type</td>
<td>Watts*</td>
<td>Amps**</td>
<td>BTU/hr**</td>
<td>Volts</td>
<td>Hertz</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>LaserWriter 4/600</td>
<td>450</td>
<td>3.75</td>
<td>1539</td>
<td>110-115</td>
<td>50-60</td>
</tr>
<tr>
<td>LaserWriter 16/600 PS</td>
<td>790</td>
<td>6.8</td>
<td>2701</td>
<td>100-120</td>
<td>58-62</td>
</tr>
<tr>
<td>Clr LaserWriter 12/600 PS</td>
<td>1100</td>
<td>9.2</td>
<td>3762</td>
<td>100-120</td>
<td>50-60</td>
</tr>
<tr>
<td>Other Printers</td>
<td>Watts*</td>
<td>Amps**</td>
<td>BTU/hr**</td>
<td>Volts</td>
<td>Hertz</td>
</tr>
<tr>
<td>Dot Matrix Printer</td>
<td>180</td>
<td>1.5</td>
<td>615.6</td>
<td>100-115</td>
<td>60</td>
</tr>
<tr>
<td>Daisy Wheel Printer</td>
<td>150</td>
<td>1.25</td>
<td>513</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Color Plotter</td>
<td>33</td>
<td>.28</td>
<td>112.9</td>
<td>120</td>
<td>48-63</td>
</tr>
<tr>
<td>Scribe</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>ImageWriter</td>
<td>180</td>
<td>1.5</td>
<td>615.6</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>ImageWriter II</td>
<td>180</td>
<td>1.5</td>
<td>615.6</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>ImageWriter LQ</td>
<td>180</td>
<td>1.5</td>
<td>615.6</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>StyleWriter</td>
<td>23</td>
<td>.19</td>
<td>78.7</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>StyleWriter II</td>
<td>19.5</td>
<td>.16</td>
<td>67</td>
<td>100-120</td>
<td>48-62</td>
</tr>
<tr>
<td>StyleWriter 1200</td>
<td>19.5</td>
<td>.16</td>
<td>67</td>
<td>100-120</td>
<td>48-62</td>
</tr>
<tr>
<td>StyleWriter 1500</td>
<td>19.5</td>
<td>.16</td>
<td>67</td>
<td>100-120</td>
<td>48-62</td>
</tr>
<tr>
<td>Portable StyleWriter</td>
<td>23</td>
<td>0.19</td>
<td>79</td>
<td>100-115</td>
<td>50-60</td>
</tr>
<tr>
<td>Color StyleWriter 2200</td>
<td>31.5</td>
<td>1.0</td>
<td>107</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Color StyleWriter 2400</td>
<td>45</td>
<td>.38</td>
<td>154</td>
<td>100-120</td>
<td>50-60</td>
</tr>
<tr>
<td>Color StyleWriter 2500</td>
<td>45</td>
<td>.38</td>
<td>154</td>
<td>100-120</td>
<td>50-60</td>
</tr>
<tr>
<td>Color StyleWriter Pro</td>
<td>28</td>
<td>.23</td>
<td>95.8</td>
<td>90-132</td>
<td>50-60</td>
</tr>
<tr>
<td>Apple Color Printer</td>
<td>30</td>
<td>.25</td>
<td>103</td>
<td>120</td>
<td>60</td>
</tr>
</tbody>
</table>

OTHER PERIPHERALS

<table>
<thead>
<tr>
<th>Printer Type</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Drives</td>
<td>Watts*</td>
<td>Amps**</td>
<td>BTU/hr**</td>
<td>Volts</td>
<td>Hertz</td>
</tr>
<tr>
<td>ProFile</td>
<td>120</td>
<td>1</td>
<td>410.4</td>
<td>110</td>
<td>50-60</td>
</tr>
<tr>
<td>Hard Disk 20</td>
<td>30</td>
<td>.25</td>
<td>102.6</td>
<td>85-125/200-240</td>
<td>47-64</td>
</tr>
<tr>
<td>Apple HD20/40/80/160 SC</td>
<td>30</td>
<td>.25</td>
<td>102.6</td>
<td>85-125/200-240</td>
<td>47-64</td>
</tr>
<tr>
<td>Apple External 160/230/500</td>
<td>40</td>
<td>.33</td>
<td>136.8</td>
<td>85-125/200-240</td>
<td>47-64</td>
</tr>
<tr>
<td>HD40 SC Tape Backup</td>
<td>15</td>
<td>.125</td>
<td>51.3</td>
<td>85-125/200-240</td>
<td>47-64</td>
</tr>
<tr>
<td>AppleCD SC</td>
<td>40</td>
<td>.33</td>
<td>136.8</td>
<td>120</td>
<td>47-64</td>
</tr>
</tbody>
</table>
Apple II Computer Technical Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts</th>
<th>Amps</th>
<th>BTU/hr</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple CD SC Plus</td>
<td>40</td>
<td>.33</td>
<td>136.8</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Apple CD 150</td>
<td>30</td>
<td>.25</td>
<td>102.6</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Apple CD 300</td>
<td>33</td>
<td>.28</td>
<td>112.9</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Apple CD 600e</td>
<td>33</td>
<td>.28</td>
<td>112.9</td>
<td>100-125/200-240</td>
<td>50/60</td>
</tr>
<tr>
<td>Apple PowerCD</td>
<td>15</td>
<td>.125</td>
<td>51.3</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Scanners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple Scanner</td>
<td>65</td>
<td>.54</td>
<td>222.3</td>
<td>120</td>
<td>58-62</td>
</tr>
<tr>
<td>Apple OneScanner</td>
<td>45</td>
<td>.38</td>
<td>153.9</td>
<td>120</td>
<td>58-62</td>
</tr>
<tr>
<td>Apple Color OneScanner</td>
<td>45</td>
<td>.38</td>
<td>153.9</td>
<td>120</td>
<td>58-62</td>
</tr>
<tr>
<td>Modems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AppleFax Modem</td>
<td>10</td>
<td>.08</td>
<td>34.2</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Apple DataModem 2400</td>
<td>7</td>
<td>.06</td>
<td>23.9</td>
<td>110</td>
<td>60</td>
</tr>
<tr>
<td>Monitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple II Monitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Monitor 100</td>
<td>70</td>
<td>.58</td>
<td>239.4</td>
<td>117</td>
<td>50-60</td>
</tr>
<tr>
<td>Color Monitor IIe</td>
<td>48</td>
<td>.4</td>
<td>164.2</td>
<td>108-132</td>
<td>50-60</td>
</tr>
<tr>
<td>Color Monitor IIc</td>
<td>48</td>
<td>.4</td>
<td>164.2</td>
<td>108-132</td>
<td>50-60</td>
</tr>
<tr>
<td>Monitor II</td>
<td>45</td>
<td>.38</td>
<td>153.9</td>
<td>115</td>
<td>50-60</td>
</tr>
<tr>
<td>Monitor IIc</td>
<td>35</td>
<td>.29</td>
<td>119.7</td>
<td>115</td>
<td>50-60</td>
</tr>
<tr>
<td>Monitor III</td>
<td>30</td>
<td>.25</td>
<td>102.6</td>
<td>115</td>
<td>50-60</td>
</tr>
<tr>
<td>AppleColor RGB</td>
<td>90</td>
<td>.75</td>
<td>307.8</td>
<td>108-132</td>
<td>50-60</td>
</tr>
<tr>
<td>AppleColor Monitor</td>
<td>75</td>
<td>.6</td>
<td>256.5</td>
<td>108-132</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh Monitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-Inch Monochrome Display</td>
<td>30</td>
<td>.25</td>
<td>102.6</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>12-Inch RGB Display</td>
<td>90</td>
<td>.75</td>
<td>307.8</td>
<td>110</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa Display</td>
<td>85</td>
<td>.71</td>
<td>290.7</td>
<td>100-125</td>
<td>57-63</td>
</tr>
<tr>
<td>Performa Plus Display</td>
<td>85</td>
<td>.71</td>
<td>290.7</td>
<td>100-125</td>
<td>57-63</td>
</tr>
<tr>
<td>Model</td>
<td>Resolution</td>
<td>Refresh Rate</td>
<td>Current Leakage</td>
<td>Voltage Range</td>
<td>Frequency</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Apple Hi-Res Monochrome</td>
<td>40</td>
<td>.33</td>
<td>136.8</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>AppleColor Hi-Res RGB</td>
<td>160</td>
<td>1.3</td>
<td>547.2</td>
<td>85-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>14-Inch Color Display</td>
<td>55</td>
<td>.46</td>
<td>188.1</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Portrait Display</td>
<td>75</td>
<td>.6</td>
<td>256.5</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>16-Inch Color Display</td>
<td>130</td>
<td>1.18</td>
<td>445</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Two-Page Mono. Monitor</td>
<td>95</td>
<td>.8</td>
<td>324.9</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>21-Inch Color Display</td>
<td>165</td>
<td>1.38</td>
<td>564.3</td>
<td>120</td>
<td>47-63</td>
</tr>
<tr>
<td>Apple Basic Color Monitor</td>
<td>70</td>
<td>.58</td>
<td>240</td>
<td>100-125</td>
<td>50-60</td>
</tr>
<tr>
<td>AudioVision 14 Display (US)</td>
<td>55</td>
<td>.46</td>
<td>188.1</td>
<td>100-125</td>
<td>47-63</td>
</tr>
<tr>
<td>AudioVision 14 Display (INT)</td>
<td>101</td>
<td>.46</td>
<td>350.1</td>
<td>200-240</td>
<td>50</td>
</tr>
<tr>
<td>Apple Color Plus Display</td>
<td>70</td>
<td>.58</td>
<td>240</td>
<td>100-125</td>
<td>50-60</td>
</tr>
<tr>
<td>Multiple Scan 14 Dis. (US)</td>
<td>80</td>
<td>.66</td>
<td>273.6</td>
<td>100-125</td>
<td>57-63</td>
</tr>
<tr>
<td>Multiple Scan 14 Dis. (INT)</td>
<td>80</td>
<td>.33</td>
<td>1.14</td>
<td>200-240</td>
<td>43-53</td>
</tr>
<tr>
<td>Multiple Scan 15 Display</td>
<td>90</td>
<td>.75</td>
<td>307.8</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Multiple Scan 17 Display</td>
<td>150</td>
<td>1.25</td>
<td>513</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Multiple Scan 20 Display (Rev A)</td>
<td>180</td>
<td>1.38</td>
<td>615.6</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Multiple Scan 20 Display (Rev B)</td>
<td>165</td>
<td>1.38</td>
<td>564.3</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>AppleVision 1710AV</td>
<td>130</td>
<td>1.8/</td>
<td>445</td>
<td>100-120/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>AppleVision 1710</td>
<td>130</td>
<td>1.8/</td>
<td>445</td>
<td>100-120/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Multiple Scan 1705 Display</td>
<td>100</td>
<td>n/a</td>
<td>342</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
</tbody>
</table>

End_Table

Additional Information

"Current leakage" is the amount of current that is passed to earth ground. The current leakage of all Apple equipment meets the following specifications:

- As specified by the UL standard for Apple equipment distributed in the United States, the current leakage will be less than 5.0 milliamperes.
- As specified by the IEC 380 & 950 standards for Apple equipment distributed in France and most of Europe, the current leakage will be less than 3.5
The PowerBook 500 series AC adapter has two separate outputs, VBatt and VMain. The VBatt supply is used for charging the batteries while the VMain supply provides power for the PowerBook. Power from VBatt is automatically diverted to power the PowerBook if additional power is needed.

* Amps calculated based on efficiency of power supply, except for Macintosh PowerBooks (amps calculated at 7.5 volts) and Macintosh Duos (amps calculated at 24 volts).

** The BTU calculation is Watts X 3.42 = BTU/hour.

The BTU ratings for the Macintosh systems take into account any hard disk or expansion card(s) that may be installed internally.

Copyright 1996, Apple Computer, Inc.
Keywords: supt, hts, cnfg

END OF FILE A2TIL286.TXT
This article provides the electrical specifications for Apple computers. For information about other Apple hardware, see the Tech Info Library article, "Electrical Specifications: Apple Peripherals (2 of 2)".

NOTE: This article has been revised and combines two previous articles titled, "Electrical Specifications of Most Apple Hardware" and "BTU Ratings for Most Apple Hardware".

DISCUSSION

The following Apple products are manufactured for use in the USA. In determining whether a particular product can be used internationally, there are three classes, depending on whether a product accepts a range in voltage, frequency or both (for more specific information, see the article, "Using U.S. Apple Equipment Internationally"):

1) Universal

These products can be used internationally out of the box. Some of Apple's products are self-configuring devices or "universal" within a certain range. They can accept a range in both voltage and frequency, and only require a plug adapter for the specific locale.

Example: The Quadra 800 accepts between 100-125 and 200-240 volts, 47-63 Hz.

2) Frequency Independent

These products can be used internationally with a voltage transformer. Generally they are geared for U.S. 120 volt current, but are flexible as to the frequency they accept (for example, 47-63 Hz), and are known as "frequency independent." These products need a stepdown isolation transformer to adapt the voltage, and will handle the different frequency on their own.

Example: The U.S. Performa 200 accepts 120 volts, 47-63 Hz.

3) Frequency Dependent

These products generally cannot be used internationally. These are products that can work only within a narrow range in frequency; they are "frequency dependent." Transformers only transform voltage, so if the product requires a certain frequency, there's no practical way to convert both voltage and frequency.

These products can ONLY be used internationally in countries with the same frequency as the country for which the product was manufactured. Further, a voltage transformer will be required if the destination country has a voltage different from the home country.

NOTE:
Computers with power outlets for peripherals do not condition the current as it passes through. So, for example, a monitor requiring 120v-60Hz current
could not be used in a 220v-50Hz environment even if the computer from which it gets its power is able to accept the local current.

The AC output of a Macintosh II is as follows: the monitor receptacle is rated for 3 amps steady state, 40 amps peak power. The power supply is fused for 6 amps to include the Macintosh II and monitor.

The amperage on the back of the computer is what should be used to calculate load on a circuit. Typical circuits in businesses and houses are 15 Amps (some are 20, but rarer, and an electric dryer is usually 30, an electric range may have DUAL 30 Amp circuits wired together). With that capacity, you could have the following configuration (from the back of the CPU):

- CPU: 5 Amps
- Monitor: 3 Amps
- LaserWriter: 7 Amps
- Total: 15 Amps

Most of the time, the CPU will draw only 1-1.5 Amps, the Monitor about .5-1 Amp, and the LaserWriter about 2 Amps. The difference is sometimes referred to as Nominal (high) versus Actual draw.

These following values are accurate regardless of peripherals used with each device. For example, a Macintosh II with an EtherTalk NB Card, an 8-bit video card, and HD40 SC draws a maximum of 230 watts and 6 amps from the power outlet it is plugged into.

```
Begin_Table

<table>
<thead>
<tr>
<th>COMPUTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>-----------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTERS</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple II and Apple III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple II</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>107-132</td>
<td>50-60</td>
</tr>
<tr>
<td>Apple II Plus</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>107-132</td>
<td>50-60</td>
</tr>
<tr>
<td>Apple III</td>
<td>100</td>
<td>.83</td>
<td>342</td>
<td>107-132</td>
<td>60</td>
</tr>
<tr>
<td>Apple III Plus</td>
<td>100</td>
<td>.83</td>
<td>342</td>
<td>107-132</td>
<td>60</td>
</tr>
<tr>
<td>Apple IIe</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>95-127</td>
<td>60</td>
</tr>
<tr>
<td>Apple IIc</td>
<td>25</td>
<td>.2</td>
<td>85.5</td>
<td>105-129</td>
<td>60</td>
</tr>
<tr>
<td>Apple IIc Plus</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>90-130</td>
<td>50-60</td>
</tr>
<tr>
<td>Apple IIGS</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>107-132</td>
<td>50-60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compact Macintosh &amp; XL</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisa (Macintosh XL)</td>
<td>150</td>
<td>1.25</td>
<td>513</td>
<td>120</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh 128K</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>105-125</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh 512K, 512Ke</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>105-125</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh Plus</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>105-125</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh SE</td>
<td>100</td>
<td>.83</td>
<td>342</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
</tbody>
</table>
```
Apple II Computer Technical Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macintosh SE/30</td>
<td>75</td>
<td>.63</td>
<td>256.5</td>
<td>120-125/200-240</td>
<td>48-62</td>
</tr>
<tr>
<td>Macintosh Classic</td>
<td>76</td>
<td>.63</td>
<td>260</td>
<td>120</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh Classic II</td>
<td>76</td>
<td>.63</td>
<td>260</td>
<td>120</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh Color Classic</td>
<td>100</td>
<td>.83</td>
<td>342</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macintosh II Computers</td>
<td></td>
<td></td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Macintosh II</td>
<td>230</td>
<td>1.9</td>
<td>786.6</td>
<td>90-125/200-240</td>
<td>48-62</td>
</tr>
<tr>
<td>Macintosh IIx</td>
<td>230</td>
<td>1.9</td>
<td>786.6</td>
<td>90-125/200-240</td>
<td>48-62</td>
</tr>
<tr>
<td>Macintosh IIcx</td>
<td>159</td>
<td>1.3</td>
<td>543.8</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh IIci</td>
<td>159</td>
<td>1.3</td>
<td>543.8</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh IIfx</td>
<td>230</td>
<td>1.9</td>
<td>786.6</td>
<td>100-125/200-240</td>
<td>48-62</td>
</tr>
<tr>
<td>Macintosh IIIsi</td>
<td>160</td>
<td>1.33</td>
<td>547.2</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh IIivx</td>
<td>230</td>
<td>1.9</td>
<td>786.6</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macintosh LC Computers</td>
<td></td>
<td></td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Macintosh LC</td>
<td>50</td>
<td>.42</td>
<td>171</td>
<td>90-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh LC II</td>
<td>50</td>
<td>.42</td>
<td>171</td>
<td>90-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh LC III</td>
<td>50</td>
<td>.42</td>
<td>171</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh LC 475</td>
<td>30</td>
<td>.25</td>
<td>102.6</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh LC 520</td>
<td>40</td>
<td>.5</td>
<td>136.80</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh LC 550</td>
<td>40</td>
<td>.5</td>
<td>136.80</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh LC 575</td>
<td>40</td>
<td>.5</td>
<td>136.80</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh LC 580</td>
<td>40</td>
<td>.5</td>
<td>136.80</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Macintosh LC 630 family</td>
<td>45</td>
<td>1.25</td>
<td>153.9</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Macintosh TV</td>
<td>60</td>
<td>.5</td>
<td>205.2</td>
<td>90-125/200-240</td>
<td>47-63</td>
</tr>
</tbody>
</table>
Apple II Computer Technical Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performa 200</td>
<td>76</td>
<td>.63</td>
<td>260</td>
<td>120</td>
<td>47-63</td>
</tr>
<tr>
<td>Performa 400, 405, 430, 450</td>
<td>50</td>
<td>.42</td>
<td>171</td>
<td>90–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 460, 466, 467</td>
<td>50</td>
<td>.42</td>
<td>171</td>
<td>90–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 475 & 476</td>
<td>50</td>
<td>.25</td>
<td>171</td>
<td>100–125/200–240</td>
<td>47-63</td>
</tr>
<tr>
<td>Performa 550 & 560</td>
<td>40</td>
<td>.5</td>
<td>136.8</td>
<td>90–125/200–240</td>
<td>47-63</td>
</tr>
<tr>
<td>Performa 575, 577, 578, 580</td>
<td>40</td>
<td>.5</td>
<td>136.8</td>
<td>90–125/200–240</td>
<td>47-63</td>
</tr>
<tr>
<td>Performa 600</td>
<td>230</td>
<td>1.9</td>
<td>786.6</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 630 Series</td>
<td>45</td>
<td>1.25</td>
<td>153.9</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 6100 Series</td>
<td>210</td>
<td>1.7</td>
<td>718.2</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 5200 Series</td>
<td>125</td>
<td>4.0</td>
<td>427.5</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 5300 Series</td>
<td>125</td>
<td>4.0</td>
<td>427.5</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 6200 Series</td>
<td>55</td>
<td>1.25</td>
<td>188.1</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 6300 Series</td>
<td>55</td>
<td>1.25</td>
<td>188.1</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Performa 6400 Series</td>
<td>220</td>
<td>3.00</td>
<td>752.40</td>
<td>100–125/200–240</td>
<td>47-63</td>
</tr>
<tr>
<td>Performa 6360 Series</td>
<td>150</td>
<td>5.00</td>
<td>513.00</td>
<td>100–125/200–240</td>
<td>47-63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadra 605</td>
<td>30</td>
<td>.44</td>
<td>102.6</td>
<td>100–125/200–240</td>
<td>47-63</td>
</tr>
<tr>
<td>Centris 610</td>
<td>86</td>
<td>1.70</td>
<td>294.12</td>
<td>100–125/200–240</td>
<td>47-63</td>
</tr>
<tr>
<td>Quadra 610</td>
<td>210</td>
<td>1.70</td>
<td>718.20</td>
<td>100–125/200–240</td>
<td>47-63</td>
</tr>
<tr>
<td>Quadra 630 family</td>
<td>45</td>
<td>1.25</td>
<td>153.9</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Quadra/Centris 650</td>
<td>230</td>
<td>1.9</td>
<td>787</td>
<td>100–125/200–240</td>
<td>50-60</td>
</tr>
<tr>
<td>Model</td>
<td>Watts*</td>
<td>Amps**</td>
<td>BTU/hr**</td>
<td>Volts</td>
<td>Hertz</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Quadra/Centris 660AV</td>
<td>86</td>
<td>1.70</td>
<td>294.12</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Quadra 700</td>
<td>50</td>
<td>1.9</td>
<td>171</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Quadra 800</td>
<td>200</td>
<td>9</td>
<td>684</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Quadra 840AV</td>
<td>200</td>
<td>9</td>
<td>684</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Quadra 900</td>
<td>303</td>
<td>10</td>
<td>1036.26</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Quadra 950</td>
<td>303</td>
<td>10</td>
<td>1036.26</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 4400/200</td>
<td>150</td>
<td>3.0</td>
<td>513</td>
<td>110/220</td>
<td>47-63</td>
</tr>
<tr>
<td>Power Macintosh 5200/75</td>
<td>125</td>
<td>4.0</td>
<td>427.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 5260/100</td>
<td>125</td>
<td>4.0</td>
<td>427.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 5300/100</td>
<td>125</td>
<td>4.0</td>
<td>427.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 5400 Series</td>
<td>220</td>
<td>4.0</td>
<td>752.40</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 5500 Series</td>
<td>220</td>
<td>4.0</td>
<td>752.40</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 6400 Series</td>
<td>220</td>
<td>3.00</td>
<td>752.40</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Power Macintosh 6500 Series</td>
<td>220</td>
<td>3.0</td>
<td>752.40</td>
<td>100-125/200-240</td>
<td>47-63</td>
</tr>
<tr>
<td>Power Macintosh 6100 Series</td>
<td>210</td>
<td>1.7</td>
<td>718.20</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 7100 Series</td>
<td>230</td>
<td>1.9</td>
<td>786.60</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 8100 Series</td>
<td>200</td>
<td>9.0</td>
<td>684</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 7200 Series</td>
<td>150</td>
<td>3.0</td>
<td>513</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 7300 Series</td>
<td>150</td>
<td>3.0</td>
<td>513</td>
<td>100-130/200-270</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 7500 Series</td>
<td>150</td>
<td>3.0</td>
<td>513</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 7600 Series</td>
<td>150</td>
<td>3.0</td>
<td>513</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Model</td>
<td>Watts*</td>
<td>Amps**</td>
<td>BTU/hr**</td>
<td>Volts</td>
<td>Hertz</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Power Macintosh 8500 Series</td>
<td>225</td>
<td>9.0</td>
<td>769.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 8600 Series</td>
<td>560</td>
<td>n/a</td>
<td>1915.2</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 9500 Series</td>
<td>225</td>
<td>9.0</td>
<td>769.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Power Macintosh 9600 Series</td>
<td>560</td>
<td>n/a</td>
<td>1915.2</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
</tbody>
</table>

Apple Workgroup Servers

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workgroup Server 60</td>
<td>86</td>
<td>1.70</td>
<td>294.12</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Workgroup Server 80</td>
<td>200</td>
<td>9.00</td>
<td>684</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Workgroup Server 95</td>
<td>303</td>
<td>10.00</td>
<td>1036.26</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Workgroup Server 6150</td>
<td>210</td>
<td>1.7</td>
<td>718.20</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Workgroup Server 8150</td>
<td>200</td>
<td>9.0</td>
<td>684</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Workgroup Server 9150</td>
<td>303</td>
<td>10</td>
<td>1036.26</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Workgroup Server 7250</td>
<td>150</td>
<td>3.0</td>
<td>513</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Workgroup Server 8550</td>
<td>225</td>
<td>9.0</td>
<td>769.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Network Server 500</td>
<td>325</td>
<td>7.0</td>
<td>1111.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>Network Server 700</td>
<td>425</td>
<td>7.0</td>
<td>1453.50</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
</tbody>
</table>

Portable Macintosh

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts*</th>
<th>Amps**</th>
<th>BTU/hr**</th>
<th>Volts</th>
<th>Hertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macintosh Portable</td>
<td>5</td>
<td>.125</td>
<td>.3</td>
<td>70-125/200-240</td>
<td>48-62</td>
</tr>
<tr>
<td>PowerBook 100</td>
<td>17</td>
<td>2</td>
<td>58.14</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>PowerBook 140</td>
<td>17</td>
<td>2</td>
<td>58.14</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>PowerBook 145,145B</td>
<td>17</td>
<td>2</td>
<td>58.14</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>PowerBook 150</td>
<td>17</td>
<td>2</td>
<td>58.14</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
<tr>
<td>PowerBook 160</td>
<td>17</td>
<td>2</td>
<td>58.14</td>
<td>100-125/200-240</td>
<td>50-60</td>
</tr>
</tbody>
</table>
Additional Information

"Current leakage" is the amount of current that is passed to earth ground. The current leakage of all Apple equipment meets the following specifications:

- As specified by the UL standard for Apple equipment distributed in the United States, the current leakage will be less than 5.0 milliamperes.
- As specified by the IEC 380 & 950 standards for Apple equipment distributed in France and most of Europe, the current leakage will be less than 3.5 milliamperes.

The PowerBook 500 series AC adapter has two separate outputs, VBatt and Vmain. The VBatt supply is used for charging the batteries while the VMain supply provides power for the PowerBook. Power from VBatt is automatically diverted to power the PowerBook if additional power is needed.

* Amps calculated based on efficiency of power supply, except for Macintosh PowerBooks (amps calculated at 7.5 volts) and Macintosh Duos (amps calculated at 24 volts).

** The BTU calculation is Watts X 3.42 = BTU/hour.

The BTU ratings for the Macintosh systems take into account any hard disk or expansion card(s) that may be installed internally.

Article Change History:
24 Feb 1997 - Added new computers.
05 Dec 1996 - Added 6360.
05 Sep 1996 - Updated, re-formatted, split into separate articles.

Copyright 1984-97, Apple Computer, Inc.
Keywords: review,ktable,ktop20

END OF FILE A2TIL287.TXT
This article discusses the problem of the European Apple II not producing color when used with a U.S. Apple Color Monitor.

A European Apple II produces either PAL or SECAM video output, both of which are compatible with European television standards. However, these signals are incompatible with the NTSC signal required for U.S. monitors. The signal is close enough in video content to be resolved in black and white, but the frequency of the color burst is incorrect for an NTSC monitor.

Using a European Apple II system in North America, you can get an acceptable color display from your European monitor, although there may be some problems due to the different line frequency in North America.
TOPIC ---

Does the Extended 80-column card work in the Apple II or Apple II Plus? If
not, is there any way to upgrade an Apple II or Apple II Plus to 80-Column?

DISCUSSION --

The 80-Column Card and Extended 80-Column Card work only in the Apple IIe;
they cannot be used in any other computer.

Our databases do not show an 80-column interface for the Apple II or Apple II
Plus. There were once several on the market, but the demand for this type of
card has almost disappeared. You might still be able to find these 80-column
cards through some of the computer remarketing companies, or where use
computer equipment is sold.

An alternative is to purchase an Apple IIe or Apple IIGS computer. You need
to contact computer remarketing companies, or look where use computer
equipment is sold.

Article Change History:
14 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1986-95, Apple Computer, Inc.
Keywords:

END OF FILE A2TIL290.TXT
Description: FORTRAN Language Reference Manual: Errata

This applies to the Apple II, Apple II+, Apple IIe, and Apple IIc.

Page inside cover
The number A2D0032 is for the diskette, not the manual. The correct number for the manual is A2L0032 030-0118-00.

Page ix
The page number for the Appendices should be 135 instead of 134.

Page xi
The top paragraph should be deleted because the information is presented on page x.

Page 156
In a multi-drive system, it isn't necessary to duplicate the system files on FORT2:. Here is a configuration for Apple FORTRAN diskettes that leaves you with over 130 blocks of storage on FORT1:, which remains the boot diskette, and allows you to write-protect FORT2: to prevent you from accidentally crashing the diskette that has the uncopyable FORTRAN SYSTEM.COMPILER.

FORT1: FORT2:
-------- --------
SYSTEM.APPLE SYSTEM.COMPILER
SYSTEM.PASCAL SYSTEM.FILER
SYSTEM.MISCINFO SYSTEM.EDITOR
SYSTEM.LIBRARY SYSTEM.LINKER
SYSTEM.STARTUP SYSTEM.CHARSET
 FORTMOD.CODE
 FORTLIB.CODE
 SYSTEM.LIBRARY

The copy of SYSTEM.LIBRARY on FORT2: is a copy of the original that came on FORT1:. There is a little room left on FORT2: which makes a good place to archive it. The SYSTEM.STARTUP program is generated from Pascal and contains the following commands:

PROGRAM LIBLINK;
USES APPLESTUFF;
BEGIN
END.

After compiling the program in Pascal, use the Filer to Transfer the codefile to FORT1: with the file name SYSTEM.STARTUP

Keywords:
Description: FORTRAN: FORT2 Copy protection

This applies to the Apple II, Apple II+, Apple IIe, and Apple IIc.

The Apple FORTRAN compiler is protected and cannot be copied. A Bad Block scan of the FORT2: diskette will show blocks 30, 31, and 32 as bad. Any attempt to "fix" these blocks will ruin the FORT2: diskette. See your local service center if your FORT2: diskette doesn't work.

Keywords:
Many Apple II FORTRAN programers have purchased or upgraded their operating system. They have discovered that the new system, the current version of Pascal 1.2, rejects the FORTRAN compiler because it has the wrong version number.

Change the version ID in the FORTRAN Compiler the easy way. Use this program, FORTRANFIX, to modify an Apple II FORTRAN Compiler so that it can be run under Apple II Pascal 1.2 without getting a version error.

Load this entire file into the Pascal Editor. These paragraphs will substitute for the 1K header the editor expects to see at the beginning of a text file. Make NO changes. Quit the editor by choosing "U(pdate the work file and leave". Select "R(un" from the main command line. FORTRAN users, be sure to do this using your Pascal system and not your FORTRAN system.

When the program prompts you, place your FORT2: diskette in drive 1. Upon completion, the FORTRAN compiler will be accepted by the Pascal 1.2 system.

```pascal
program FORTRAN_FIX;
type
  Byte = 0..255;
  Seg_Info = packed record
    Mach_Type: 0..9;
    Filler: 0..1;
    Major_Revision: 0..7;
  end;
var
  Num   : integer;
  ch    : char;
  Buffer: packed array [0..511] of byte;
  F     : file;
  Trix  : record case boolean of
    true : (Temp: packed array [0..0] of Byte);
    false: (SI  : Seg_Info);
end;
procedure RESET_FILE (File_Name: string);
begin
  {$I-}
  reset (F, File_Name);
  {$I+}
  if (IORESULT <> 0) then begin
    Num:= IORESULT;
    writeln (chr (7));
    writeln ('I/O ERROR #', Num, ' in opening ', File_Name);
    exit (program)
  end;
end; {Reset_File}
procedure READ_BLOCK (Block_Num: integer);
var
  Block_Xfer: integer;
begin
  {$I-}
  Block_Xfer:= BLOCKREAD (F, Buffer, 1, Block_Num);
  {$I+}
  if (IORESULT <> 0) then begin
    Num:= IORESULT;
    writeln (chr (7));
    writeln ('I/O ERROR #', Num, ' in reading from file.');
  end;
end;}
procedure WRITE_BLOCK (Block_Num: integer);
var Block_Xfer: integer;
begnin
{$I-}
Block_Xfer:= BLOCKWRITE (F, Buffer, 1, Block_Num);
{$I+}
if (IORESULT <> 0) then begin
    Num:= IORESULT;
    writeln (chr (7));
    writeln ('I/O ERROR #', Num, ' in writing to file.');
    exit (program)
end
end; {Write_Block}

begin {Main Program}
  writeln (chr(12)); {Erase screen}
  writeln ('FORTRANFIX');
  writeln;
  writeln ('Copyright 1984 Apple Computer, Inc.');
  writeln;
  writeln ('This program will modify an Apple II');
  writeln (' FORTRAN compiler so that it can');
  writeln ('be run under Apple II Pascal 1.2');
  writeln (' without getting a version error.');
  writeln ('This program expects the FORTRAN compiler');
  writeln (' to be named SYSTEM.COMPILER.');
  repeat
    gotoxy (0,10);
    write (chr(11)); {Erase to end of screen}
    writeln ('Put the disk with SYSTEM.COMPILER in drive 1.');
    write ('Press RETURN when ready, ESC to exit program. ');
    read (ch);
    if (ch = chr(27)) then begin
        write (chr(12)); {Erase screen}
        exit (program)
    end;
    readln;
    RESET_FILE ('#4:SYSTEM.COMPILER');
    READ_BLOCK (0);

    Trix.Temp [0]:= Buffer [259];
    Trix.SI.Major_Revision:= 5;
    Buffer [259]:= Trix.Temp [0];

    WRITE_BLOCK (0);
    close (F, lock);
    writeln;
    writeln;
    writeln ('MODIFICATION COMPLETE - Press RETURN to continue.');
    readln
  until false
end. {FORTRAN_Fix}

Apple Technical Communications

Keywords:

### END OF FILE A2TIL293.TXT
Description: FORTRAN: Using WCHAR from FORTRAN

This applies to the Apple II, Apple II+, Apple IIe, and Apple IIc. The Turtlegraphics WCHAR procedure, which writes a single character on the high-res screen, will often give a "Value Range Error" (S#20, P#17, I#11) when called from FORTRAN. WCHAR does not check the high byte of the character word passed before calling the DRAWBLOCK routine, so if the high byte contains a value, WCHAR will choke by trying to access an index beyond the end of SYSTEM.CHARSET.

This error will occur when passing a single character from a character array, but not from a single character "string". For example,

CHARACTER CH(10)
READ (*,100) CH(1)
CALL WCHAR (CH(1))

will result in a "Value Range Error". However,

CHARACTER*1 CH
READ (*,100) CH
CALL WCHAR (CH)

will work correctly. To prevent the error in the first example, replace the call statement with

CALL WCHAR (CHAR (ICHAR ( CH(1))))

which will convert the character to a integer, and then back to a character before calling WCHAR.

Apple Tech Notes

Keywords:
ToolBox Primitives

GS BASIC includes primitives (built-in, low-level commands) that let the user interact with the ToolBox routines. Whereas most other ToolBox routines are implemented in external libraries that need to be explicitly called up, these commands -- Eventdef, Menudef, and Taskpoll -- are included in GS BASIC itself because they bind the ToolBox and BASIC line numbers.

Eventdef. The structure of Macintosh-like programs, as implemented by the Apple II GS and its ToolBox routines, requires that programs be event-driven. This means that the heart of a program is a main loop that constantly monitors what events -- mouse clicks, keyboard presses, window update events, network activity, and so on -- have taken place. Eventdef associates BASIC line numbers with these events: whenever one of these events occurs, GS BASIC starts running the instructions specified in a table set up by the programmer and maintained by Eventdef.

Menudef. One of the places a mouse click can occur is in the menu bar. When this happens, a menu is displayed, letting the user select a menu item. The user specifies that a certain function is to be performed. Like Eventdef, Menudef associates BASIC line numbers with menu items, so that when a menu item is selected, GS BASIC can easily determine what statements to run, and run them.

Taskpoll. Programs shouldn't start fielding events and responding to them until all the ToolBox libraries are loaded and the tables that Menudef and Eventdef maintain are initialized. The Taskpoll command lets the programmer turn off the interrupting feature of GS BASIC and turn them on when ready for them.

Procedures and Functions

The most convenient structure of any program is a procedure, function, or subroutine. In most BASICS, including Applesoft, subroutines are implemented in a very straightforward fashion. GS BASIC provides a more powerful way to specify and call procedures.

Applesoft lets programmers call subroutines with the GOSUB xxx command, where xxx is the line number to which control branches. Statements are then executed until a RETURN command is executed, at which time the program returns to the line that called the subroutines, and continues from there.

GS BASIC allows programmers to define specific procedures that are called with the PROC command. The PROC command performs the same functions as Applesoft's GOSUB, and lets the programmer pass local parameters as well.

Editing Commands

GS BASIC has a more powerful line editor than Applesoft's. Access it by typing EDIT linnum[-linnum]

- CONTROL-D delete character to the left of cursor; moves line to left
- CONTROL-F delete character under the cursor; moves line left
- CONTROL-X delete entire line
- CONTROL-Y delete line to left and under cursor
CONTROL-E   toggle insert mode
RETURN      accept entire line (even characters to right of cursor)
DELETE      same as CONTROL-D

GS BASIC Commands

_ (underscore)  ERLIN  LOG(    SCALB(
ABS(          ERROR  LOG1(    SCALE(
AND            ERRTOOL LOG2(    SECONDS$
ANU(            ERRTXT$ LOGB%    SET
APPEND         EVENTDEF MENUNEF SGN(
AS              EXCEPTION MID$(    SHOWDIGITS
ASC(            EXEC MOD      SIN(
ASSIGN         EKEVENT@ NEGATE(  SPACE$(
ATN(            EXFN NEW      SRC(
AUTO            EXP( NEXT      SQR(
AUXID@          EXP1( NORMAL    SRC
BASIC@(         EXP2( NOT      STEP
BDF(            FILE( NOTRACE  STOP
BREAK           FILTYP( OFF      STR$(
BTN(            FILTYP= ON       SUB$(
CALL            FIX( OPEN      SWAP
CALL%           FN OR       TAB(
CAT             FOR OOUTPUT  TAN(
CATALOG         FRE OUTREC  TASKPOL
CHAIN           FREMEM( PDLY    TASKREC$
CHR$(           GET PEEK(    TASKREC$
CLOSE           GOSUB PERFORM  TEN(
COMP1(          GRAF PI      TEXTPORT
CONT            HEX$( POKE      THEN
CONV(           HLIST PREFIX  TIME$
CONV@()         HOME PREFIX$  TIME(
CONV%(()        HPOS PRINT    TIMER
CONV$(()        IF  PROC TO
CONV%(()        IMAGE PROGAM$  TRACE
CONV%(()        INDENT PUT      TXT
COPY            INIT QUIT TYPE
COS(            INPUT R.STACK% TYP(
CREATE          INSTR R.STACK$ UBOUND(
DATA            INT( R.STACK% UCASE$
DATE$           INVERSE RANDOMIZE UIR(
DATE()          INVOKE READ UNLOCK
DEF             JOYX( REC(   UNTIL
DEL             JOYY( RELATION UPDATE
DELETE          KBD REM USING
DIM             LEFT$( REMDR VAL(
DIR             LEN( RENAME VAR(
DIV             LET REP$    VAR$(
DO              LIBFIND RESTORE VARPTR(
EDIT            LIBRARY RESUME VARPTR$
ELSE             LIST RETURN VOLUMES
END             LISTTAB RIGHT$ VPOS
EOF             LOAD RND( WHILE
EOFMARK()       LOCAL ROUND( WRITE
ERASE           LOCATE RUN XOR
ERR             LOCK SAVE

Toolbox Definition Files (TDFs)

QuickDraw     ADB    Desk    Dialog
Event         Font   Intmath LineEdit
List          Loader Locater Memory
Menu          MiscTool NoteSyn Print
QDAux         Scheduler Scrap StdFile
Text          Window Control

Apple II Computer Family Articles -- Apple Technical Info Library (TIL)
March 1997 -- Page 489 of 649
Built-in Constants and Reserved Variables
-----------------------------------------
PI          to 20 digits
LISTTAB     number of spaces between line number and first statement
INDENT      controls indenting of FOR...NEXT and WHILE...UNTIL loops
OUTREC      maximum line length
VPOS        vertical cursor position
HPOS        horizontal cursor position
FRE         amount of memory available
SHOWDIGITS  specifies the number of digits to display for REAL numbers
KBD         holds value of last key pressed
ERR         contains error number
ERRLIN      contains line where error occurred

Variable Specifications
-----------------------
Real:           (+ or - 1.7E38) (less than 1.5E-45 equals 0)
Double real:    (+ or - 1.7E308) (less than 5.0E-324 equals 0)
Integer:        (%) (2 bytes) (-32768 to 32767)
Double integer: (@) (4 bytes) (-2147483648 to 2147483647)
Long integer:   (&) (8 bytes) (-9223372036854775808 to 9223372036854775807)
String:         ($) 255 characters
Arrays:         (!)

Keywords:

### END OF FILE A2TIL295.TXT
Description: GS/OS 5.0: "No Finder" Printing Fix
Header: GS/OS 5.0: "No Finder" Printing Fix

This article last reviewed: 12 December 1989

TOPIC ---------------------------------------------

This article discusses a workaround for the problem of a GS/OS 5.0 startup disk without Finder, and its inability to retain default printer information.

DISCUSSION ----------------------------------------

The GS/OS 5.0 AppleShare startup disk without Finder is not capable of retaining default printer information. The startup printer selection made in the Apple II menu of AppleShare Administration is not used. Thus, if the disk is created as described in the manuals, the user must run the Chooser each time they restart the system to set a default printer.

Here is a workaround for this problem:

1) Copy the entire Chooser folder from the Apple IIGS workstation disk (or from the server) onto the startup disk. The file IWEM is not required if you are not printing to a LaserWriter.

2) Copy the file called ATINIT from the server onto the startup disk.

3) Set the Control Panel to either Scan or Startup Slot 5, then restart using this new disk.

4) Go into BASIC on the server, launch Chooser.II, and set the default printer settings. That printer will remain "selected" until someone runs Chooser.II to change it.

5) If you want the Chooser to be accessed from Aristotle, create an application that accesses the floppy disk copy of the Chooser, rather than the server-based version. The floppy disks must have a common volume name as well as pathname if this method is to be used.

Copyright 1989 Apple Computer, Inc.

Keywords:
Description: GS/OS 5.0.2: "File Not Found" Error
Header: GS/OS 5.0.2: "File Not Found" Error

This article last reviewed: 7 March 1990

TOPIC -----------------------------------------------------------

I work at an Apple IIGS (1MB RAM) that is on a network with Macintosh SE/30 with 4MB RAM and HD80 SC File Server.

After updating the GS/OS system files on the server via the Apple IIGS Installer, updating Aristotle likewise, and reinstalling the Apple II Setup disk, I received the following error message:

Sorry, system error $0046 occurred while loading the start FST file.

I checked all access privileges, and they are not a problem. Can you help?

DISCUSSION -----------------------------------------------------------

The $0046 error is a "file not found" error. There are two ways this can happen when starting up from the network.

1) The Icons folder and the System folder need privileges set to the Bulletin Board item found in the GS/OS Icon Info menu item. If these folders are set otherwise, GS/OS cannot "find" the files inside these two folders.

2) There is a file missing or misplaced on the server volume that the Apple IIGS requires for startup. Usually reinstalling GS/OS onto the server resolves the problem.

Copyright 1990 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL297.TXT
I have a problem on my Apple IIGS lab (LocalTalk and GS/OS 5.0 with the current version of Aristotle) when I start from Aristotle on disk, bypassing the Finder. I log on and run Chooser.II from Aristotle to choose an ImageWriter. When I try to print from AppleWorks or various MECC applications nothing happens.

For the lab to function in an orderly manner, students need to start from disk and be able to choose a printer. Do you have a workaround? Also, just what file is it that holds the name of the chosen printer?

Upgrading to GS/OS 5.0.2 resolves this issue. This version of GS/OS, when used with the "No Finder" startup disk, defaults to the user's assigned printer set in the AppleShare Admin program.

When using GS/OS 5.0.2, you needn't use Chooser.II to make network printer choices. If you use a Finder startup disk, the Control Panel provides the printer choice via the various printer Control Panel devices. With a "No Finder" startup disk, the printer choice is made in AppleShare Admin's Apple II menu. When starting up across the network, the printer choice is also made in the AppleShare Admin program.

However, if students must dynamically change the printer they use, Chooser.II is required in the "No Finder" and network startup procedures. When running Chooser.II from the server, the printer selection is stored in the ATINIT file located in "USERS/(user's logon name)/ATINIT" on the server. This overrides the choice in the AppleShare Admin setup during this signon. After the user signs off and back on in these two startup procedures, the default printer will be the one set in the AppleShare Admin setup.

Should the desired results be "one student assigned to one printer," then GS/OS 5.0.2 smoothly handles this situation by using the AppleShare Admin setup during a "No Finder" startup.

Copyright 1990 Apple Computer, Inc.

Keywords:
TOPIC

This is a summary of the visible changes in GS/OS 6.0.1 compared to 6.0. There have been many bugs fixed and many features added that aren’t immediately visible. This document helps identify those features or changes.

DISCUSSION

FINDER (SEE ALSO FINDER HELP)

You can now click in Name, Size, Kind, or Last Modified at the top of a list-view window to change the view.

To rename an icon, you must now click on its name rather than the icon.

The File Copy Alternatives dialog has been removed. Holding down the Option key now forces a copy rather than a move.

Dragging certain system-related files to the System folder icon on the boot volume now does "magic routing" much like the Macintosh Finder. Note that this only works when using the folder icon; dragging into a window works as before. The kinds of files that are properly placed in their own folders within the System folder are: Control Panels, Desk Accessories, Drivers, FSTs, Tools, Fonts, Sounds, INITs, and Finder Extensions. Other files are just placed in the System folder.

The Finder now creates the FinderExtras folder for you.

If you open the Icon Info window on an Apple SCSI device, the SCSI ID number appears on the Where card.

The Finder’s Clipboard window handles text, pictures, and sounds. If you copy a sound to the Clipboard (using the Sound control panel, for example), you can click on the Speaker icon on the Clipboard to hear the sound. Teach has the same Clipboard window.

EXTENSIONS

EasyMount isn’t just for servers anymore. It now handles aliases to any disk, folder, or application. In other words, you don’t need to drag the icon onto the desktop anymore -- just keep an alias of it on the desktop. Select the icon of the item you want to alias and choose "Make Alias " from the Extras menu. EasyMount will ask you where to save the alias. Later, double-clicking the alias opens the real item, disks and folders are opened, and applications (ProDOS 8 or GS/OS) are launched. The Installer automatically installs EasyMount in your System.Setup folder.

CONTROL PANELS

DC Printer Control Panel

This was a change in System 6.0 but not documented: The DC Printer will let you choose LaserWriter, which is potentially useful for "printing" to
PostScript files.

Monitor Control Panel
-----------------------
The new checkbox "Smoother Mouse Cursor" sets a new Battery RAM location. It kills the cursor flicker that's especially noticeable with a Video Overlay card or an accelerator.

SetStart Control Panel
----------------------
The new checkbox "Show icons during startup" provides a way to set the Battery RAM location that disables the display of the startup icons. The Battery RAM location has been there since System 6.0, but there was no Apple-provided way to change it.

The new checkbox "Enable programmer CDAs" provides a way to set the Battery RAM location that allows Visit Monitor and Memory Peeker to show up in the CDA menu. Both ROM 1 and ROM 3 Apple IIGS computers now check this location. This checkbox doesn't show up if the ROM 3 Control Panel disable jumper is present.

STARTUP
-------
During startup, if you have a lot of icons, they no longer keep recycling the bottom row of the screen. They now "wrap up" to the row above.

If you use a Vulcan internal hard drive, you no longer need to copy the Vulcan driver onto the Install disk when installing new system software. You can still use the Vulcan driver for enhanced performance, but you can successfully install without it.

If your ROM 3 Apple IIGS has 8 Megabytes of RAM, the computer fails to create a RAM disk (RAM5) of any size. In this case, System 6.0.1 creates RAM5 and then restarts the system. When you turn on the computer, you will hear an extra beep at the "Apple IIGS ... ROM Version 3" screen.

DRIVERS
-------
The RAM5 RAM disk has a new driver. The Installer automatically installs it if you have the RAM disk enabled when you do an Easy Update. The driver greatly enhances the disk's performance. It also allows you to have a RAM5 disk in GS/OS (but not in ProDOS 8) even when slot 5 is switched to "Your card." On a ROM 1, you must have the Minimum and Maximum sizes set to the same value; otherwise you'll see a message during startup and it won't use the new driver.

The Apple II Memory Expansion Card has a new optional format. If you have a full megabyte of memory on the card, it lets you format it as either 1,024K or 800K. The 800K option blocks out the remaining 224K, but allows faster block copies to and from other 800K disks.

FILE SYSTEM TRANSLATORS (FSTs)
-------------------------------
The MS-DOS FST is new. To use it, you need a drive that can read MFM disks, such as the Apple SuperDrive with an Apple II SuperDrive Controller Card.

This version is read-only -- it doesn't let you make changes to MS-DOS disks.

PRODOS 8
--------
The Thunderclock year table in ProDOS 8 has been updated for the years 1993–1998. There's also a Clock.Patch file on the SystemTools2 disk that may be used to update ProDOS 8 (renamed to ProDOS) to include future year groups.

Copyright 1993, Apple Computer, Inc.
I have a lab of 16 Apple IIGS systems, running AppleShare 2.0.1 and the GS/OS 5.0 software with the Apple II setup from the GS/OS 5.0 disks. They are exhibiting some strange behavior when starting up over the network. When about half of the systems are started up, they get a list-type screen that says:

Welcome to the World of the Apple IIGS

and then a list of the network program segments that are loading. They get this instead of the Welcome to the Apple IIGS GRAPHIC SCREEN and the "thermometer". DISCUSSION

The purpose of this screen is to provide operating system information to the operator. A list of installed GS/OS drivers is displayed as they are loaded.

This alternate screen is normal and is generated by pressing the space bar as GS/OS begins to load—whether starting up from a local disk or over the network. The screen will not appear unless someone presses the space bar sometime during the initial stages of booting the Apple IIGS.

If an Apple IIGS displays the alternate screen even when the space bar hasn't been pressed, there may be a hardware malfunction, and the unit should be serviced.

Copyright 1989 Apple Computer, Inc.

Keywords:
This article shows you how to use GS/OS with a ProFile hard disk drive. Before beginning, make sure that:

- The ProFile Interface Card has the 341-0299 ROM. (See Tech Info Library article "GS/OS: Needs Latest ROM Revision To Work With ProFile" for further information.)

- The ProFile Interface Card has been modified for use with the Apple IIGS. (See Tech Info Library article "Apple II ProFile Interface Card Modification for the Apple IIGS" for further information.)

NOTE: The Partition and Zero option of the Advance Disk Utility does not work with the ProFile; it works with SCSI drives only.

Procedure for Using GS/OS With a ProFile

Follow these steps:

1. Select a slot for the ProFile Interface Card (this procedure uses slot 7).

2. Install the ProFile Interface Card and turn on the Apple IIGS.

3. Press Apple-Control-Esc to enter the Control Panel. In the Control Panel, under the SLOTS item:
   a. Set SLOT 7 to "Your Card".
   b. Set STARTUP SLOT to "5".
   c. Press Return, Esc, Return to exit from the Control Panel.

4. Turn the computer off.

5. Insert the Apple IIGS System Disk in the first 3.5-inch drive and the System Tools disk in the second 3.5-inch drive (if available).

6. Turn the computer on.

7. After the system starts up, the SYSTEM.DISK, SYSTEM.TOOLS, and ProFile appear on the desktop.

   NOTE: If the ProFile was not formatted for ProDOS, GS/OS asks if the volume should be initialized.

   To initialize:
   a. Select "Initialize".
   b. Name the volume.

   This should take only a few seconds.

8. Open the System Tools disk and run the Installer program.

   NOTE for single-drive systems: Eject the System Disk and insert the System Tools disk. The Installer program prompts you with
Eject/Insert dialog boxes.

a. A list of items to install appears.
b. Select "Install System Files".
c. Use the "Volume" button to bring the ProFile disk name to the top right of the screen.
d. Select "Install".

The Installer program copies the System files from SYSTEM.DISK and SYSTEM.TOOLS disks to the ProFile. Old System files are replaced, but Desk Accessories, Fonts, and other files in "SYSTEM FOLDER" are not deleted.

9. To add other items, such as the SCSI card or 5.25-inch drive:

   a. Select the item.
   b. Click Install.

10. Install a printer driver:

    a. Select the item.
    b. Click Install.

11. Set the Control Panel to start up from slot 7.

12. Restart the system using the ProFile.

The ProFile is now set up for use with GS/OS.

NOTE: If you copy applications to the ProFile, copy only the program and data files. Do NOT copy the System Folder from the application disks.

Copyright 1989 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL301.TXT
When using GS/OS under Apple IIGS System Disk 4.0 with a 5MB ProFile, be sure you are using the latest ProFile ROM revision.

A 5MB ProFile needs the 341-0299 ROM revision to work correctly with GS/OS.

If you have problems formatting, or receive a message stating that your drive appears to be damaged, you need the new ROM.

(Note: This ROM is a service part, and is located on the Apple II price pages.)

Copyright 1988 Apple Computer, Inc.

Keywords:
If you are using GS/OS version 4.0, you must have the latest versions of
the ProFile and SCSI Interface Cards as well. Recent testing results show
that GS/OS version 4.0 is compatible with revision C of the SCSI and
ProFile cards.

You can determine if you have the required version of these cards by the
ROM part number that is installed in the card.

SCSI Interface Card
-------------------
ROM part number 341-0437 rev. A is the latest ROM for the SCSI Interface
Card. When this ROM is installed, it brings the revision of the card up to
rev. C. This configuration is compatible with version 4.0 of GS/OS.

ProFile Interface Card
----------------------
ROM part number 341-0299 rev. B is the latest ROM for the ProFile Interface
Card. When this ROM is installed, it brings the revision of the card up to
rev. C. This configuration is compatible with version 4.0 of GS/OS.

As of the date of this article, all service ROM inventory is the latest
version, and all ProFile and SCSI Interface Cards shipped by service are
the rev. C configuration, which is compatible with all Apple II computers.

Apple II GS
------------
The Apple II GS requires ROM version 01 to run GS/OS 4.0. To determine if you
have the correct version boot the Apple II GS, at the bottom of the screen
should be displayed a copyright line and "ROM Version 01". Contact your dealer
for the free upgrade.

Copyright 1989 Apple Computer, Inc.
Keywords:
What do I need to connect an Apple HD20 SC to an Apple IIe or Apple IIGS?

Apple sells a High-Speed SCSI Card for the Apple II to use a SCSI hard drive. The part number for the card is A0220LL/A. You also need SCSI cables.

Copyright 1991 Apple Computer, Inc.

Keywords:
To format an HD-20SC drive using an Apple II, it's usually best to use System Disk 3.0. System Utilities 2.1.1 can be used for this purpose only with some versions of the Apple IIe, as described below.

- Apple IIGS: requires System Disk 3.0. (System Utilities 2.1.1 won't do it.)

- Unenhanced Apple IIe: is not compatible with System Disk 3.0. (Use System Utilities 2.1.1.)

- Apple IIe (Platinum) with Rev C logic board: use System Disk 3.0 to format an HD-20SC. (System Utilities 2.1.1 won't do it.)

- Apple IIe (Platinum) with Rev E logic board: it's advisable to use System Disk 3.0. System Utilities 2.1.1 can be used, but you'll see flashing garbage on the screen that will make it look like the system has crashed.

Copyright 1990 Apple Computer, Inc.

Keywords:
Description: Hearlihy and Co. (USA)
Header: Hearlihy and Co. (USA)

Article Created: 08/09/91
Article Reviewed: 07/09/93
Article Updated: 04/03/92

Hearlihy and Co. (USA)
------------------------

714 W. Columbia Street
Springfield, OH 45504

800-622-1000

513-324-2260 Fax

Company Profile:
Hardware and software, including drafting and plotter supplies, and software
for the Macintosh, Apple II, and IBM PC computers, specializing in integrating
technology into industrial education.

Mailing Address
P.O. Box 8690
Springfield, OH 45501
Copyright 1991-93, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL306.TXT
The Apple II Serial Interface Card (A2B0008), also known as the High Speed Serial Interface Card, is primarily used with serial letter-quality printers like the Qume, Diablo, and NEC Spinwriter series.

The following explains the functions of the various DIP switches and PROMs on the High Speed Serial Interface Card. This card has been discontinued and is no longer available from Apple.

**DISCUSSION**

**Baud Rate - Switches 1,2 and 3**

<table>
<thead>
<tr>
<th>DIP Switch</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>ON ON ON</td>
<td>110</td>
</tr>
<tr>
<td>OFF ON ON</td>
<td>134.5</td>
</tr>
<tr>
<td>ON OFF ON</td>
<td>300</td>
</tr>
<tr>
<td>OFF OFF ON</td>
<td>1200</td>
</tr>
<tr>
<td>ON ON OFF</td>
<td>2400</td>
</tr>
<tr>
<td>OFF ON OFF</td>
<td>4800</td>
</tr>
<tr>
<td>ON OFF OFF</td>
<td>9600</td>
</tr>
<tr>
<td>OFF OFF OFF</td>
<td>19200</td>
</tr>
</tbody>
</table>

The settings of DIP switch levers 1, 2, and 3 determine the rate at which bits may be transmitted to the external device: 300 baud is 300 bits per second.

**Carriage Return Delay - Switch 4**

<table>
<thead>
<tr>
<th>DIP Switch</th>
<th>Carriage Return Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>Enabled</td>
</tr>
<tr>
<td>OFF</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

If switch 4 is Off (Delay Enabled), the Serial Interface waits briefly (approximately 1/4 second) after transmitting a carriage return before resuming transmission of further characters, allowing the printer's carriage to return. If you are transmitting to an external TV screen, this delay is probably unnecessary, so lever 4 may be turned On (Delay Disabled).

**Line Width plus Apple Video - Switches 5 and 6**

<table>
<thead>
<tr>
<th>DIP Switch</th>
<th>Line Width (characters per Line)</th>
<th>Apple Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 6</td>
<td>40</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
After a carriage return, the settings of switches 5 and 6 determine the maximum number of characters that can be transmitted before the Serial Interface forces another carriage return to be sent. Characters are displayed on the screen only if line width is set to 40 characters per line (levers 5 and 6 On). After initialization, the line width can be changed from 40 characters per line, but the display on the screen will not correspond to the display on the external device, since transmitted carriage returns are not accompanied on the screen by line feeds.

Line Feed - Switch 7

<table>
<thead>
<tr>
<th>DIP Switch</th>
<th>Line Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Disabled</td>
</tr>
<tr>
<td>OFF</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

If switch 7 is Off (Line Feed Enabled), the Serial Interface transmits a line feed after each carriage return. If the external device automatically supplies its own line feed after each carriage return received, you can set lever seven to On (Line Feed Disabled) to avoid unwanted double-spacing.

Important Information

Permanent Defaults

During each initialization, five remaining operating parameters are set to permanent default values:

1. Parity defaults to disabled (no parity bit).
2. Checksum defaults to disabled (no checksum character).
3. Lower-Case defaults to disabled (converts all incoming lower-case characters to upper-case).
4. Number of Data Bits defaults to 9 (8 data bits plus one start bit).
5. Number of Stop Bits defaults to 2.

After initialization, these five parameters can only be changed by software commands.

Hardware Handshaking Flow Control

This card does not have any hardware handshaking flow control. It can therefore only be used at slow baud rates. Additional information on flow control can be found in the Tech Info Library article titled "Flow Control Protocols (XOn/XOff or DTR)".

P7-04 PROM

Early versions of the High Speed Serial Card would not work with certain cards in the next higher numbered peripheral slot. The P7-04 PROM solves this problem.
P8A PROM
--------

After a program sends output to a printer, and before the P8A PROM allows the Apple to continue executing the program, the P8A sends an ASCII ETX (CTRL-C) to the printer at the end of each line and waits for the printer to send back an ASCII ACK (CTRL-F). So the P8A can send the ASCII ETX, make sure pins 2 & 3 on the interface connector are connected straight across; also make sure the printer can send the ACK. If the pins and the printer do not meet these conditions, then the computer stops running the program after the first line sent to the printer. Neither the original PROM, called the P8 (Apple part# 341-0018), or the basic card provided handshaking capabilities.

The PROM P8A should be installed in place of the existing PROM P8 when using Qume compatible printers. Be aware that switch 4 has a different function with this setup and must be in the OFF position.

The P8A prom uses location $3C as a temporary memory register. Many of the monitor commands cannot be used with any printer because of this conflict.

PROM 8A Printer Support
------------------------

Printers that support the P8A are:

Anderson Jacobson 832 (send <ESC>!W to set the AJ’s mode, page 3-30)
Qume Sprint 5
NEC Spinwriter

DB-25 Connector Pinout
-----------------------

<table>
<thead>
<tr>
<th>DB-25 Connector</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2................</td>
<td>Receive Data (Rx)</td>
</tr>
<tr>
<td>3................</td>
<td>Transmit Data (Tx)</td>
</tr>
<tr>
<td>7................</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>12..............</td>
<td>Current Loop Data In (Return)</td>
</tr>
<tr>
<td>13..............</td>
<td>Current Loop Data In</td>
</tr>
<tr>
<td>23..............</td>
<td>Current Loop Data Out</td>
</tr>
</tbody>
</table>

Current Loop
-------------

The High Speed Serial Interface has a 20ma current loop. It has an active send loop and a passive receive loop.

Page 8 of the card’s manual tells how to connect to an 33ASR teletype. This may not work with other 20ma devices. It assumes that the device has a passive send and receive loop.

If the other device has its own active send loop then connect it as follows:

Connect pin 23 to Printer +
Connect pin 7 to Printer -
Connect pin 12 to Keyboard +
Connect pin 13 to Keyboard -

Article Change History:
19 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1984-96, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL307.TXT
In what Apple floppy disk drives can I use high-density diskettes?

High-density diskettes (1.44MB only) are suitable for use in Apple SuperDrive (formerly Apple FDHD).

High-density diskettes are NOT suitable for use with:
- Macintosh 400K drives
- Macintosh 800K drives
- Apple II 3.5-inch drives

High-density diskettes are physically different from double-density diskettes and are tested to a different specification. The coating on a high-density diskette is thinner for higher data-packing density. Use in 400K or 800K drives is unreliable and can cause data loss.

Article Change History:
18 Oct 1994 - Reviewed for technical accuracy, revised formatting.

Support Information Services
Copyright 1988-94, Apple Computer, Inc.
Keywords:
This article describes the Apple IEEE-488 Interface Card. This card has been discontinued and is no longer available from Apple.

Technical Specifications

As a Listener/Talker/Controller, the Apple IEEE-488 Interface card provides a fully compatible subset of the IEEE-488 standard. (Its only limitation is that it cannot pass control to another IEEE-488 controller.)

The interface card can also function as a device on the IEEE-488 bus. With a user-defined program, the card can be used to attach non-IEEE-488-compatible instruments to the bus.

General Purpose Instrument Bus Commands

WRITE    Write Data Out
WRITECNT Write Data Out with Count
READ     Read Data In
READCNT Read Data In with Count
XFER     Transfer Data
TRIGR    Group Execute Trigger
CLRAL    Clear All Devices
CLEAR    Clear Selected Devices
REMAL    Remote Enable All
LLKAL    Local Lockout All Devices
LOCAL    Local Mode All Devices
LOCDV    Local Mode Selected Devices
SRQD     Service Requested
SPOOL    Serial Poll
PPOLL    Parallel Poll
PPENB    Parallel Poll Enable
PPDIS    Parallel Poll Disable
PPUAL    Parallel Poll Unconfigure All Devices
DEVICE   Controller Device Number
LINEFEED Line Feed Control
EOS      End of String Character
SCREEN   Screen Control
ABORT    Clear All Interfaces
UNTALK   Universal Untalk

Device Capabilitie

SH1, AH1, T3, L1, DC1, DT1, C1, C2, C3, C4, C25.

Operating Life
To increase operating life, devices on the bus not in use should be turned off. However, proper operation of the bus requires some of the devices be turned on. The rule of thumb is the computer plus at least half of the devices connected to it must be powered on.

Software
--------
The following software is supported by on-board, ROM-based firmware and signal protocol on the bus is handled by the resident software. 1. BASIC 2. Assembly macro commands 3. Pascal and FORTRAN through assembly language routines

Maximum Devices
----------------
Per card: 14

Maximum cards
---------------
Per computer: 7

Package
=======
Back-panel bracket connects to Apple case ground (for low RFI systems)
Instruction manual includes GPIB connections, listener addresses, talker addresses, secondary addresses, and control codes.

System Configuration
====================
Apple II or Apple II Plus with a minimum of 32K RAM and available expansion slot.
Apple IIe system with an available expansion slot.

Article Change History:
14 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1985-96, Apple Computer, Inc.
Keywords: SPECSHT

### END OF FILE A2TIL309.TXT
This article describes the Apple IIGS Memory Expansion Card.

## Overview

The Apple IIGS Memory Expansion Card gives your computer the internal memory needed to run sophisticated applications, and gives complete access to the advanced capabilities of the Apple IIGS.

Although the 256K of RAM resident in the computer already lets you keep large documents and many applications close at hand, the Memory Expansion Card will hold even larger files and programs, further reducing time-consuming disk access.

The Apple IIGS Memory Expansion Card adds up to a full megabyte (1MB) of RAM to the computer, in 256K increments. This means the total RAM in your system can be as high as 1.25MB with ROM 01, or 2MB with ROM 03. You can configure and install the card yourself, and increase its capacity at any time.

## System Requirements

To use the Apple IIGS Memory Expansion Card, you need an Apple IIGS or an Apple IIe with the Apple IIGS Upgrade installed. (This card is not compatible with other computers in the Apple II family.)

## Technical Specifications

### Electrical:

Voltage requirements: 4.75 to 5.25 volts DC

Power consumption:

- Operation: 200 milliamps in 256K configuration
- Operation: 600 milliamps in 1MB configuration

- Standby: 140 milliamps in 256K configuration
- Standby: 370 milliamps in 1MB configuration.

### Environmental requirements

- Ambient temperature: 50 to 104 degrees F (10 to 40 degrees C)
- Relative humidity: 10% to 95% (non condensing)

---

Article Change History:
19 Nov 1996 - Reviewed for technical accuracy, revised formatting.

Copyright 1991-96, Apple Computer, Inc.

Keywords: specsht
Description: ImageWriter Carriage Assembly stops or vibrates
Header: ImageWriter Carriage Assembly stops or vibrates

This article last reviewed: 28 March 1988

PROBLEM DESCRIPTION #1: The ImageWriter printer carriage assembly freezes or grinds when connected to a Macintosh or Apple II Super Serial card.

BEFORE YOU START: Familiarize yourself with the ImageWriter Technical Procedures.

CAUSE: One or more of the carriage drive transistors is defective or one or more of the insulators is cracked or broken.

CURE: Remove the string of carriage transistors from the ImageWriter referencing the technical procedures if needed. Check to make sure that none of the insulators is missing. Each transistor should have a mylar insulator between it and the printer chassis. An insulator for the screw should also be present. Install new insulators if any are missing or cracked. Reassemble the printer and run the printer self-test.

In the event that all insulators are in good condition then replace the string of carriage transistors. ALWAYS REMEMBER TO REINSTALL ALL INSULATORS WHEN THE CARRIAGE TRANSISTORS ARE REPLACED. REMEMBER THAT THE PRINTER WILL EXHIBIT THE SAME SYMPTOMS IF THE INSULATORS ARE MISSING. (A TRANSISTOR SHORTED TO GROUND.)

Run an extensive self test on the printer. Sometimes the CPU board will cause transistor(s) to fail again. In the event that this occurs, replace the CPU board and the transistor assembly.

PROBLEM DESCRIPTION #2: The Carriage Assembly stops or vibrates when powered on and the printer IS NOT connected to a computer.

CAUSE: Occasionally, one of the transistor wires is cold-soldered to the transistor itself.

CURE: Replace the string of carriage transistors.

Copyright 1988, Apple Computer, Inc.
Keywords: hts

### END OF FILE A2TIL311.TXT
This article gives the proper settings for all Apple computers connected to an ImageWriter I printer.

**Apple II Family with Super Serial Card:**

**Interface:**

The Super Serial Card

```
 1 2 3 4 5 6 7 1 2 3 4 5 6 7
ON X X X ON X X
SW1
OFF X X X OFF X X X X
 1 2 3 4 5 6 7 1 2 3 4 5 6 7
```

Jumper block points to terminal.

**Cables:**

- Internal cable from Super Serial Card to back of machine: 590-0021
- Serial Cable from back of machine to printer: 590-0037

**Printer Settings:**

```
 8 7 6 5 4 3 2 1
SW 1: X X X X X X
X X X X X X
OPEN

SW 2: 4 3 2 1
X X
X X
OPEN
```

**Apple III and III+:**

**Interface:**

Use .Printer Driver and set first byte in Device Configuration Block to OE and use printer switch settings A. (9600 Baud) Or leave the settings in the Device Configuration Block at the Default values and use printer settings B. (1200 Baud)

**Cables:**

- Modem Eliminator 590-0029
- Straight Through Cable 590-0037

**Printer Settings:**
APPLE II COMPUTER TECHNICAL INFORMATION

A & B SETTING

8 7 6 5 4 3 2 1
SW 1:       X X
X X X X X X
OPEN

A SETTING

SW 2:  4 3 2 1
X X
X X
OPEN

B SETTING:

SW 2:  4 3 2 1
X X X
OPEN

Macintosh:

Cables:

Accessory Kit Cable 590-0169

Printer Settings*:

8 7 6 5 4 3 2 1
SW 1: X X
X X X X X X
OPEN

SW 2:  4 3 2 1
X X
X X
OPEN

To Build your own cable:

Mac      1 3 5 7 9
|     |     |     |
Printer 1 7 3 20 2

Lisa:

Cables:

Modem Eliminator 590-0029
Straight Through Cable 590-0037

Printer Settings*:

8 7 6 5 4 3 2 1
SW 1: X X
X X X X X
OPEN

SW 2:  4 3 2 1
X X
X X
OPEN

Make sure the preferences are set. Power off the Lisa so they are saved.

* The diagrams of these switches are presented as seen from the front of the Imagewriter I printer. The switches are toggle switches; X marks the toggle.
Article Change History:

Support Information Services
Copyright 1987-1994, Apple Computer, Inc
Keywords:

### END OF FILE A2TIL312.TXT
Description: ImageWriter II: Connector cables for all Apples

Header: ImageWriter II: Connector cables for all Apples

With certain adjustments in software, the cable with order number A2C0311 can perform the same function as the cable with order number A9C0313.

But the cables themselves are different, with different pinouts, and the A2C0311 cable has about eleven intended functions while the A9C0313 cable has three. To keep the differences clear, keep this in mind:

1. The A2C0311 cable is primarily intended to connect the Apple II family to a Personal Modem.

2. The A9C0313 cable is only intended to connect the Apple II family to an ImageWriter II.

You can avoid confusing these cables by using them only for the primary intended functions specified below.

I. Apple IIe Modem-8 Cable

A. Number:
   1. Order: A2C0311
   2. Part: 590-0331-B

B. Configurations:

   1. Primary - from Personal Modem to:
      a. Apple II
      b. Apple II Plus
      c. Apple IIe
   2. Secondary - from ImageWriter II or Personal Modem to:
      a. Apple III
      b. Macintosh XL
      c. Lisa
   3. Switching:
      a. From Apple Super Serial Card to ImageWriter II -- SSC jumper block pointing to "TERMINAL"
      b. From Apple Super Serial Card to Personal Modem -- SSC jumper block pointing to "MODEM"

II. Apple IIe Printer-8 Cable

A. Number:
   1. Order: A9C0313
   2. Part: 590-0335-A

B. Configurations:

   1. From ImageWriter II to:
      a. Apple II
      b. Apple II Plus
      c. Apple IIe

III. Macintosh Peripheral-8 Cable

A. Number:
   1. Order: M0185
APPLE II COMPUTER TECHNICAL INFORMATION

2. Part: 590-0332-B

B. Configurations:

1. From Macintosh to ImageWriter II or Personal Modem.

IV. Apple IIc Peripheral-8 Cable

A. Number:
   1. Order: A2C4312
   2. Part: 590-0333-B

B. Configurations:

1. From Apple IIc to ImageWriter II or Personal Modem.

Apple Technical Communications

Keywords:

### END OF FILE A2TIL313.TXT
This article describes the ImageWriter II printer.

DISCUSSION ------------------------------------------------------

The ImageWriter II printer is an entry-level, dot-matrix printer. It offers fast drafts, sharp graphics, near-letter-quality output, easy paper handling, and color printing.

Features
--------
* Three printing speeds
* Fast draft
* Mid-speed correspondence mode
* Near-letter-quality mode
* Color printing in six colors with one change of ribbon
* Printing on cut-sheet or continuous paper, including labels
* Push-button paper loading for single sheets

The ImageWriter II can be expanded by these options:
* Sheet feeder option
* 32K Memory option increases buffer space so that you can use Apple IIe, IIc, or IIGS computer while the ImageWriter II prints
* LocalTalk option allows sharing the printer on any AppleTalk network.

The mini circular-8 connector and cable, available as a separate item, connects the ImageWriter II to Apple CPUs. The Apple II, II Plus, and IIe require a Super Serial Card to connect with an ImageWriter II. The ImageWriter II color printing feature requires an ImageWriter II Color Ribbon and color-compatible software.

Order Number
-------------
ImageWriter II Printer C0090LL/A

Copyright 1992, Apple Computer, Inc.
Keywords: specsh"
Description: ImageWriter II: IBM 3287 printer emulation
Header: ImageWriter II: IBM 3287 printer emulation

This article last reviewed: 4 June 1986

ImageWriter II's make good replacements for the IBM 3287 dot matrix printers commonly used with the IBM 3270 family of terminal devices. The IBM 3278 terminals can be replaced with an AppleLine-Macintosh-MacTerminal combination, and you can replace the IBM 3287 printers with this simple and cost effective configuration:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Vendor</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRMAprint</td>
<td>DCA *</td>
<td>PC3287-S</td>
</tr>
<tr>
<td>ImageWriter II Printer</td>
<td>Apple</td>
<td>A9M0310</td>
</tr>
<tr>
<td>Apple II Printer 8 cable</td>
<td>Apple</td>
<td>A9C0313</td>
</tr>
</tbody>
</table>

--> Installation Diagram

IBM 3274/6 --> Coax cable --> IRMAprint --> Printer 8 cable --> ImageWriter II

This solution proves to be a good value because it provides better print quality and speed than the IBM 3287 or similar printers such as Telex.

* DCA is a registered trademark of Digital Communications Association, Inc.

Copyright 1989 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL315.TXT
Description: Imagewriter LQ: Connector Cables for Apple Computers (3/95)
Header: Imagewriter LQ: Connector Cables for Apple Computers (3/95)

Article Created: 16 April 1993
Article Reviewed/Updated: 14 March 1995

TOPIC -----------------------------------------------------------

What cables does the ImageWriter LQ use to connect to all Apple computers?

DISCUSSION ------------------------------------------------------

The ImageWriter LQ connects to Apple computers with the following cables:

Note that the cables are listed with their Finished Goods part number followed by their Apple Service part number, where available, in parentheses.

<table>
<thead>
<tr>
<th>Apple Cable P/N</th>
<th>Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0196 (590-0551)</td>
<td>Macintosh 512 and 512K (Macintosh 128K is not compatible with the ImageWriter LQ printer driver)</td>
</tr>
<tr>
<td>M0197 (590-0552)</td>
<td>All other Macintosh computers, PowerBook MiniDock, or M2068 - LocalTalk PowerBook Duo Dock, and Apple IIGS connector</td>
</tr>
<tr>
<td>A9C0314 (590-0556)</td>
<td>Apple II, Apple II Plus, and Apple IIe (w/Super Serial Card jumper set to Terminal) or A2C0312 (590-0555) (w/Super Serial Card jumper set to Modem)</td>
</tr>
<tr>
<td>A2C4313 (590-0554)</td>
<td>Apple IIc</td>
</tr>
<tr>
<td>M0197 (590-0552)</td>
<td>Apple IIc Plus</td>
</tr>
</tbody>
</table>

Article Change History:

Support Information Services
Copyright 1993-95, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL316.TXT
Description: ImageWriter: Guide to Apple II Errata
Header: ImageWriter: Guide to Apple II Errata

Page 21 of the Imagemwriter User's Manual, Guide to the Apple II, has an error. The end of line 340 of the program listing is

    PRINT CHR$ B$;

it should be:

    PRINT B$;

Keywords:

### END OF FILE A2TIL317.TXT
Description: Innovative Systems
Header: Innovative Systems

Article Created: 22 July 1993
Article Reviewed/Updated: 22 July 1993

Innovative Systems

------------------

P.O. Box 444
Severn, MD  21144-0444

301-987-8688

AppleLink: D2695

Company Profile:
Hardware, specializing in an arithmetic co-processor card for the Apple II.
Copyright 1988-93, Apple Computer, Inc.
Keywords:  3PTY

### END OF FILE A2TIL318.TXT
Description: Instant Pascal is Compatible with Apple IIe Card
Header: Instant Pascal is Compatible with Apple IIe Card

Article Created: 13 August 1991
Article Last Reviewed: 3 June 1992
Article Last Updated:

TOPIC ---------------------------------------------

Can you use Instant Pascal on the Apple IIe Card and Macintosh LC?

DISCUSSION ---------------------------------------------

We tested Instant Pascal and found it was compatible with the Apple IIe Card in the Macintosh LC. Even on the Apple II, Instant Pascal displays poorly on RGB monitors. This condition also appears on the Apple IIe Card/Macintosh LC combination. We suggest black-and-white display for best results.

Copyright 1991 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL319.TXT
Description: Instant Pascal: Transferring files to and from Apple II Pascal

Header: Instant Pascal: Transferring files to and from Apple II Pascal

To transfer source code files from Instant Pascal (IP) to Apple II Pascal, you can make use of AppleWorks to massage the IP file type. Follow these steps:

1. Boot AppleWorks and load the IP source file into the word processor as an ASCII file from disk.
2. Still using AppleWorks, print the file back to disk as an ASCII file.
3. Boot System Utilities 2.1 and copy the "printed" file from the ProDOS disk to an Apple II Pascal disk.

To transfer source code from Apple II Pascal to Instant Pascal, follow these steps:

2. Put the Apple II Pascal disk in one drive.
3. Put a ProDOS formatted disk in a second drive.
4. Select the Copy Files option from the System Utilities menu and copy the source code files from the Pascal disk to the ProDOS disk.

      -- Note that System Utilities 2.1 supports file copying between two differently formatted disks.

5. The source file on the ProDOS disk will be recognized by Instant Pascal as a "Text" file, but you can open it into the Program window. If you save the file under Instant Pascal, it becomes an "IP" type file.

Apple Technical Communications

Keywords:

### END OF FILE A2TIL320.TXT
If the Apple II is equipped with an Apple Parallel Interface card, printing text to a DMP will work fine. Graphic output requires an Imagewriter, Imagewriter II, or Scribe Printer. Text output is also supported on Okidata and Epson printers.

Apple Technical Communications

Keywords:

### END OF FILE A2TIL321.TXT
Description: Integer BASIC Firmware Card: Switch Options (2/97)

Header: Integer BASIC Firmware Card: Switch Options (2/97)

Listed below are the two options the user may select when using the Integer BASIC firmware card.

DISCUSSION ------------------------------------------------------

The Integer BASIC firmware card was designed to supply Integer BASIC to Apple II+ owners. Both hardware and software can be used to supply Integer BASIC to the Apple II+.

Hardware

@L --------
The position of the switch on the rear of the card is used immediately after a system reset to force the selection of one of two banks of ROMs: the firmware card or the motherboard. If the switch is up then the system will default to Integer BASIC, otherwise the system will default to Applesoft.

Software

--------

By accessing address $C080, can select Integer BASIC, or, by accessing address $C081, Applesoft.

NOTE: For systems with Auto Start ROM, every time DOS gets control immediately after a reset, DOS forces a load of the version of BASIC DOS last used, regardless of the position of the switch.

Article Change History:
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.
Copyright 1984-97, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL322.TXT
Description: Inter%Poll: How to Identify Active Apple II Systems
Header: Inter%Poll: How to Identify Active Apple II Systems

This article last reviewed: 17 March 1989

Certain requirements must be met before Inter*Poll can identify an Apple II on a network:

Apple IIGS
---------

For an Apple IIGS to appear in the "Device List" window of Inter*Poll, you must:

1. Select "Built-in AppleTalk" from the Control Panel. At the same time, set that port that the network is connected to, generally the Printer port, to "Your Card".
2. Shut down and restart the system.
3. Run Inter*Poll on the Macintosh, or have it running and checking the network. The Apple IIGS should show up in the Device List window.

Apple IIe
---------

1. Install Apple II WorkStation card in slot 7 of Apple IIe and connect LocalTalk port to network.
2. Start up system and log into a ProDOS server on the network. Once the system gets past the Password screen, the device shows up in the Device List window of Inter-Poll.

The important requirements are:

- Having Built-in AppleTalk selected in the Control Panel of the Apple IIGS
- Having the proper port set to "Your Card" on the Apple IIGS
- Being past the Password screen on an Apple IIe with WorkStation Card.

Copyright 1989 Apple Computer, Inc.

Keywords:
Description: Joystick: You'll Need an Adapter for Use with the Apple II

This article last reviewed: 19 January 1988

The packaging for the Apple Joystick (part number A2M2012) states that the Joystick works on the Apple II Plus. In fact, it will not without an adapter plug. Apple no longer supplies that adapter, but there is one available from Southern California Research Group.

Southern California Research Group also supplies adaptors that let you simultaneously connect two joysticks to an Apple II+, Apple IIe, or Apple IIGS (but not to an Apple IIc). If a given software package is specifically written for two Joysticks, it will say so on the box.

For more information, search the library under Southern California Research Group.

Copyright 1988 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL324.TXT
This article describes how Integer BASIC is loaded into the Language card.

DISCUSSION ------------------------------------------------------

When you boot an Apple II with the BASICS diskette or the DOS 3.3 System Master Diskette, Integer BASIC and the Programmer's Aid #1 are loaded into the Language Card. The code between Integer BASIC and the Programmer's Aid #1 ($D800 - $DFFF) is loaded with a completely useless part of Applesoft. This applies to the Apple II and Apple II+.

Article Change History:
12 Feb 1997 - Reviewed for technical accuracy, revised formatting.

Copyright 1984-97, Apple Computer, Inc.

Keywords:
A LaserWriter, mode switch set to Special (Diablo 630 emulation), can be connected to an Apple III or to an Apple II with Super Serial Card (SSC).

<table>
<thead>
<tr>
<th>from Apple III or SSC</th>
<th>to LaserWriter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-25 connector</td>
<td>DB-25 connector</td>
</tr>
<tr>
<td>signal</td>
<td>-  pin</td>
</tr>
<tr>
<td>Tx</td>
<td>2</td>
</tr>
<tr>
<td>Rx</td>
<td>3</td>
</tr>
<tr>
<td>Signal Ground</td>
<td>7</td>
</tr>
</tbody>
</table>

Apple II DIP Switch Settings (with SSC in DTE)

<table>
<thead>
<tr>
<th>Switch block 1</th>
<th>Switch block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 off</td>
<td>1 on</td>
</tr>
<tr>
<td>2 off</td>
<td>2 off</td>
</tr>
<tr>
<td>3 off</td>
<td>3 off</td>
</tr>
<tr>
<td>4 on</td>
<td>4 off</td>
</tr>
<tr>
<td>5 off</td>
<td>5 off</td>
</tr>
<tr>
<td>6 on</td>
<td>6 off</td>
</tr>
<tr>
<td>7 on</td>
<td>7 off</td>
</tr>
</tbody>
</table>

The above setting result in:
- 9600 baud, printer mode
- normal CTS
- 8 data bits, 1 stop bit
- no delay after CR
- 132 characters/line
- no line feed after CR
- interrupts off
- normal CTS

Apple III Driver

Use the standard .PRINTER driver, which uses the built-in serial (RS-232C) port. The five parameters to set in the driver configuration block are:
- byte 1 (data rate) 0E = 9600 baud
- byte 2 (data format) 00 = 8 bit, no parity
- byte 3 (CR delay) 00 = no delay
- byte 4 (LF delay) 00 = no delay
- byte 5 (FF delay) 00 = no delay

Keywords:

### END OF FILE A2TIL326.TXT
Description: LaserWriter: Shared by Macintosh, Apple IIe, and IBM PC
Header: LaserWriter: Shared by Macintosh, Apple IIe, and IBM PC

Article Created: 4 April 1991
Article Last Reviewed:
Article Last Updated:

TOPIC  -----------------------------------------------

I want to connect Macintosh, Apple IIe, and IBM PC, so they can share a LaserWriter IINT. Can this be done?  (No file sharing is required.)

DISCUSSION  -----------------------------------------------

The AppleTalk LaserWriters were designed to be shared.

* Any Macintosh has AppleTalk built in.

* An Apple II needs the Apple II Workstation card and software to enable access to a networked printer.

* An IBM PC needs a LocalTalk PC Card and AppleShare PC to get onto the LocalTalk network to communicate with the LaserWriter.

Copyright 1991 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL327.TXT
To print procedures using Apple Logo II (128K), type

```
DRIBBLE 1
```

which enables the system to print procedures/variables after you type one of the following commands:

```
PO (name)
POALL
PON (name)
PONS
POPS
POT (name)
POTS
```

(For information on the above commands, see the Logo II reference manual.)

To disable this printing, type:

```
NODRIBBLE
```

Apple Technical Communications

Keywords:
This article provides cable compatibility information for Apple computer systems and a variety of Apple peripherals.

The left column lists the peripherals, the right column lists the cable required to connect one of the following computers to it; Macintosh 512K and the 512Ke.

Part numbers which begin with a letter are the finished goods part number, the seven digit numbers are the service part numbers.

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>Cable part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AppleFax Modem</td>
<td>N/A</td>
</tr>
<tr>
<td>Apple Personal Modem</td>
<td>M0196/590-0551</td>
</tr>
<tr>
<td>Apple Data Modem 2400</td>
<td></td>
</tr>
<tr>
<td>Apple Modem 300</td>
<td>M0170/590-0197</td>
</tr>
<tr>
<td>Apple Modem 1200</td>
<td></td>
</tr>
<tr>
<td>Apple ImageWriter II or II/L</td>
<td>M0196/590-0551 (smoke), LocalTalk</td>
</tr>
<tr>
<td>Apple ImageWriter LQ</td>
<td>optional</td>
</tr>
<tr>
<td>Apple ImageWriter Printer</td>
<td>590-0169</td>
</tr>
<tr>
<td>Apple ImageWriter 15&quot;</td>
<td></td>
</tr>
<tr>
<td>LaserWriter, Plus, IIInt, IIIntx, IIf, IIG</td>
<td>LocalTalk</td>
</tr>
<tr>
<td>LaserWriter Pro 600/630/810</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter NT, NTR</td>
<td></td>
</tr>
<tr>
<td>Personal LaserWriter LS</td>
<td>N/A</td>
</tr>
<tr>
<td>StyleWriter &amp; StyleWriter II</td>
<td></td>
</tr>
<tr>
<td>Color StyleWriter/Color StyleWriter Pro</td>
<td></td>
</tr>
<tr>
<td>Apple LaserWriter IIsc</td>
<td>N/A</td>
</tr>
<tr>
<td>Personal LaserWriter SC</td>
<td></td>
</tr>
<tr>
<td>AppleCD SC</td>
<td></td>
</tr>
<tr>
<td>Apple Hard Disk 20/40/80</td>
<td></td>
</tr>
<tr>
<td>Apple Tape Backup 40SC</td>
<td></td>
</tr>
<tr>
<td>Apple Scanner</td>
<td></td>
</tr>
<tr>
<td>Apple Scanner</td>
<td></td>
</tr>
<tr>
<td>Apple Color OneScanner</td>
<td></td>
</tr>
<tr>
<td>Apple Color Printer</td>
<td></td>
</tr>
</tbody>
</table>
TOPIC

Macintosh PC Exchange is a control panel that lets you format, read, or write DOS-format floppy disks in a Macintosh computer.

Formatting a disk prepares the disk to receive data. PC and Macintosh computers format disks differently. The term "DOS" describes disks formatted using DOS, Windows, or OS/2. Macintosh PC Exchange doesn't provide data translation.

DISCUSSION

REQUIREMENTS

Be sure you have the proper software and hardware to use Macintosh PC Exchange:

* System software version 7.0 or later
* An Apple SuperDrive (formerly called FDHD), or equivalent third-party drive that reads DOS high-density disks
* At least 3 MB of random access memory (RAM)

WORKING WITH DOS DISKS

After you install Macintosh PC Exchange in your Control Panels folder and restart your computer, DOS-format disks appear directly on your Macintosh desktop when you insert them into the floppy disk drive.

Formatting Disks

Formatting erases all data on a disk. Be sure the disk you want to format doesn't contain information you need. Click on the disk icon once to select it, and then choose Erase Disk from the Special menu. A format pop-up menu includes these options:

* Standard Macintosh format
  Formats high-density disks at 1440K, and low-density disks at 800K.
* PC-DOS format
  Formats high-density disks at 1440K, and low-density disks at 720K.
* Apple II ProDOS disks
  Formats 400K, 800K, or 1.4MB 3.5 inch Apple II ProDOS disks.

Unreadable Disks

When you insert a floppy disk into a Macintosh, you may see a message saying the disk isn't readable, and asking whether to initialize it. This might
happen for the following reasons:

* In the past, many DOS users formatted low-density disks for use as high-density disks. On a DOS computer, always format standard double-sided disks in the 720K capacity, and high-density disks in the 1440K capacity. The Macintosh doesn’t recognize an improperly formatted disk.

* An unreadable disk might be damaged. Don’t try to repair a DOS-format disk with a Macintosh repair utility program. This may destroy information on the disk. If the disk requires repair, use a disk repair utility on a DOS computer.

* If a disk has never been used, you just need to initialize it.

* If you don’t see more than one disk format choice, your computer needs an Apple SuperDrive. You can’t use Macintosh PC Exchange in a Macintosh SE or a Macintosh II computer without a SuperDrive upgrade. You can’t use Macintosh PC Exchange on a Macintosh Plus computer.

* Macintosh PC Exchange might not be properly installed. The PC Exchange icon must be in the Control Panels folder, and you must restart the computer after installation. Read the installation instructions in the Macintosh PC Exchange User’s Guide.

**Extension (INIT) Conflicts**

The Macintosh loads system extensions, often called INITs, into system memory when the computer starts up. When they aren’t compatible with other software on your computer, you have an INIT conflict. Here are some typical symptoms of INIT conflicts:

* System won’t accept a correctly formatted DOS disk.

* System freezes when you insert a correctly formatted DOS disk.

* You can’t open the Macintosh PC Exchange control panel to make changes.

If you suspect an INIT conflict, call the Apple Fax Info System at 1-800-505-0171 and order fax document number 20242 for instructions.

**WORKING WITH DOS DOCUMENTS**

**DOS Documents Won’t Open**

Sometimes you might double-click a document’s icon, and see a message saying that the application program couldn’t be found. An MS-DOS or Windows document may not open when you double-click the icon for the following reasons:

* The Macintosh doesn’t know which application program to launch. You can follow the steps in the "Opening a Document from within a Program" section. You can also follow the instructions under "Assigning Document Type."

* You may be trying to access the document over a network. PC Exchange assignments don’t work for documents over a network. Assignments work only for documents on DOS-format floppy disks and documents copied from DOS-format floppy disks.

* The disks currently available on your computer don’t have the application. Find the disk that contains the application, and copy it to your hard disk.

Sometimes the application program launches, but the document doesn’t open. Here are some reasons this may happen:
* The application program may not be able to open DOS documents when you double-click the icon. Follow the instructions in the "Opening a Document from within a Program" section.

* The document may have been assigned a document type that the program can't open. Follow the instructions in the "Assigning Document Type" section to change the document type. Refer to the table in the "Assigning Macintosh Programs to DOS Documents" section of the "Macintosh PC Exchange User's Guide" to find types that a program can open.

Incorrect Document Format

Sometimes you can open a document, but find the format is wrong. It may contain incorrect characters and strange codes. This can happen when an application program recognizes the document's type, but doesn't interpret the document's file format (the way the information in the document is encoded).

Check the application's documentation for document opening and saving procedures with different file formats, or open the document with another program.

You can also try assigning a different document type. Follow the instructions "Assigning Document Type" section of this article. Refer to "the table in the "Assigning Macintosh Programs to DOS Documents" section of the Macintosh PC Exchange User's Guide" to find types that a program can open.

Opening a Document from within a Program

To open a document using an application program, follow these steps:

1) Launch a Macintosh application.

2) Choose the Open command from the File menu.

3) In the dialog scroll box, select the DOS document and click Open.

Here's why the document you want may not be listed in the directory dialog box when you choose Open in an application program:

* The program can't recognize the document type assigned to the document. Try to open the document with another application program. Or reassign a document type following the instructions in the "Assigning Document Type" section to change the document type. Refer to the table in the "Assigning Macintosh Programs to DOS Documents" section of the "Macintosh PC Exchange User's Guide" to find types that a program can open.

* You may be trying to access the document over a network. PC Exchange assignments don't work for documents over a network. Assignments work only for documents on DOS-format floppy disks and documents copied from DOS-format floppy disks.

Assigning Document Type

The Macintosh PC Exchange control panel lets you map file types. A three-letter DOS suffix maps to a corresponding document type on the Macintosh. Here's how to designate a specific Macintosh application for opening MS-DOS documents:

1) Choose Control Panels from the Apple menu.

2) Double-click the PC Exchange control panel to open it.

3) Click on Add.
4) In the DOS Suffix box, type a period and the three-letter DOS suffix (for example, .TXT). The suffix is required. There is an error in the manual which states that a suffix is NOT required. This is incorrect.

5) In the lower part of the dialog box, select the Macintosh application.

6) Choose a document type from the Document Type pop-up menu (for example, TEXT).

7) Click OK.

Once you make this assignment, you can double-click the icon of the DOS document to open it.

When assigning document types, you must specify the type of document the application supports. If you’re unsure of which document type to use, TEXT is the safest.

Once you’ve made assignments, documents appear on the disk with the icon representing application and document type. Documents with an unassigned DOS suffix appear as generic DOS documents.

So that all network users are consistent, make a master list of assignments on one Macintosh. Also, place a copy of the PC Exchange Preferences file in the Preferences folder, within the System Folder, of each licensed user’s Macintosh.

WORKING WITH MACINTOSH DOCUMENTS
=================================

Document Types
---------------

Choose Save from the File menu to save documents onto a DOS-format disk. When saving documents created or modified on the Macintosh, be sure to save the document in a file format that the DOS application can read. Refer to the application’s documentation to find out what file formats the program can open, import, and save.

The Macintosh also creates two new files for each document, to keep track of such things as the location of icons and windows. You’ll need to leave about 5K of extra disk space for each document to accommodate these files.

Document Name Length
---------------------

While the Macintosh supports document names up to 31 characters long, DOS supports up to eight characters plus a three-character suffix. Macintosh PC Exchange truncates a longer name used on the Macintosh when saved to a DOS disk. To preview what the shorter name looks like:

1) Click on the file to highlight it.

2) Choose Get Info from the File menu.

3) Click on the document name in the Info dialog box. This switches between the Macintosh and DOS (truncated) version of the name.

If this procedure doesn’t work, make sure the File Sharing Extension is in the Extensions folder.

Non-English Word Processors
---------------------------

When you create a document with a non-English word processor on the Macintosh, the special accent characters (diacritical marks) may change when you open the document on a DOS computer. DOS computers may not support all
characters displayed on a Macintosh.

This article is one of many available through the Apple Fax center. For a complete list of available fax documents, search the Tech Info Library for Apple Fax Document Index or call the Apple Fax line at 1-800-505-0171 and select document number 20000 (Apple Fax - Document Index - Product Support Literature). The Apple Fax center is available free of charge 24 hours a day, 7 days a week.

Article Change History:
01 Jul 1996 - Added Fax Doc Word
13 Oct 1994 - Added keyword; made several technical corrections.
28 Sep 1994 - Reviewed for technical accuracy.
29 Apr 1994 - Indicated that a suffix is required for DOS files.
09 Feb 1994 - Added more troubleshooting information and retitled.

Support Information Services
Copyright 1993-96, Apple Computer, Inc.
Keywords: supt,kfax, kalley

### END OF FILE A2TIL330.TXT
What kind of materials are the plastic enclosures for Macintosh computers made of?

Macintosh cases, mouse devices, and keyboard enclosures through the Macintosh SE are made of Cycolac ABS grade KJC plastic.

Macintosh plastic cases, mouse devices, and keyboard enclosures after the Macintosh SE are made of either:
* Cycolac ABS grade KJC plastic, rated at 94V-2, or
* Cycolac ABS grade KJW plastic, rated at 94V-0.

The keyboards listed below use unreinforced polyester for the keycaps. The polyester makes the sublimation printing of the legends possible.

There is more than one vendor of polyester: the Apple Standard and Extended keyboards use Celanese Celanex 2000-2 resin.

Vendor information on Asian manufacturers' plastic is not available.

* the Apple Standard and Extended Keyboards
* the Macintosh Plus keyboard
* some Apple IIGS keyboards
* all Apple IIc keyboards
* possibly some Apple IIe keyboards

Other keyboards have ABS keycaps; these keycaps are double-shot to put the legends in a different color plastic.

Information on the plastic used in later keyboards is not available at this time.

Article Change History
----------------------
1 April 1994 - Reviewed for technical accuracy.
8 July 1992 - Reviewed and retitled for accuracy.
Copyright 1989-94, Apple Computer, Inc.
Keywords: specsht
Some people have had problems formatting a MacPeak external SCSI drive (normally for the Macintosh) from an Apple IIGS. One user, who had this problem, was working with an Apple IIGS with 1MB RAM, 3.5-inch and 5.25-inch floppy disk drives, and an Apple II SCSI card in slot 5.

The Apple IIGS recognizes the drive, but the format routine quits after running for about the same time it takes to format a ProDOS floppy and then crashes. A conflict between the SCSI card and the 3.5-inch drive causes this problem.

The 3.5-inch drive plugs into the SmartPort. The SmartPort is slot 5. To use the SCSI card in slot 5, you need to set slot 5 in the Control Panel to "Your Card". When the Control Panel is set in this way, the SmartPort is disabled, and the 3.5-inch drive is also disabled.

To use both the 3.5-inch drive and the SCSI drive on the Apple IIGS, place the SCSI card in a slot other than slot 3 (the 80-column display), slot 4 (the mouse connection), slot 5 (the SmartPort), or slot 6 (the 5.25-inch drive location). This leaves slots 1, 2, and 7 available. Slot 1 is often used for a printer, slot 2 is often used for a modem, and slot 7 is used for AppleTalk. Choose slot 1 if no printer is attached, slot 2 if no modem is attached, or slot 7 if AppleTalk is not in use. No matter which slot you choose, you must set the Control Panel to "Your Card" for that slot.

If, after reassigning slots, there is still difficulty formatting the MacPeak drive, there would appear to be an incompatibility between the SCSI card and the MacPeak drive. (MacPeak indicated that they do not support the use of their drives on the Apple II SCSI card.)

Copyright 1989 Apple Computer, Inc.

Keywords: MacPeak SCSI Drive: How to Use with an Apple IIGS
Description: Manx Software Systems
Header: Manx Software Systems

Article Created: 02/13/88
Article Reviewed: 07/13/93
Article Updated: 07/13/93

Manx Software Systems

P.O. Box 980
Freehold, NJ 07728

800-221-0440

908-308-3322 Fax

AppleLink: D0545

Company Profile:
Software, specializing primarily in Apple II and Macintosh development systems.
Copyright 1989-93, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL333.TXT
A typical problem reported on the Monitor III is "no video". In these cases, adjusting either the contrast or brightness controls on the monitor solves the problem. With an Apple II or II+, the problem lies in the computer's video adjustment potentiometer, K14 on the main logic board. It is often adjusted too low.

Before you send a Monitor III in for exchange, make sure that the monitor has the problem and not:
1. the video cable or
2. too low of an adjustment of the video signal by the video adjustment potentiometer, K14 on the main logic board.

Copyright 1988 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL334.TXT
Description: Motorola CDX268: Terminal Emulation for Macintosh or Apple II
Header: Motorola CDX268: Terminal Emulation for Macintosh or Apple II

This article last reviewed: 26 May 1989

Emulating a Motorola CDX268 terminal on a Macintosh or Apple II is easy. The CDX286 is what was once, affectionately, called a "glass TTY". It's a very basic terminal that you can configure for baud rate, data and stop bits, and parity. The port can be configured for either RS-232 or RS-422. It requires no strange or out-of-the-ordinary protocols. All of this means that almost any terminal emulation program for the Macintosh or Apple II can be set up to act like a CDX268.

To do the emulation, set it up CDX286 in TTy mode and connect the appropriate cable to the built-in serial port. The cable, like your configuration, depends on what you're connecting to.

Copyright 1989 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL35.TXT
Description: Mouse Compatibility: Macintosh Plus and Apple II Computers
Header: Mouse Compatibility: Macintosh Plus and Apple II Computers

Article Created: 19 November 1990
Article Last Reviewed: 27 July 1992
Article Last Updated:

TOPIC -----------------------------------------------------------

My official Apple mouse works on my Macintosh Plus, but not on my Apple II computer. What does this mean?

DISCUSSION ------------------------------------------------------

There are two vendors for the mouse that works with the Macintosh Plus and Apple II line. If you switch mice between systems, the mouse may not work.

One vendor’s mouse works with both lines, and the other works only with the Macintosh Plus:

- The mouse identified as "Made in the US" works on both computers.
- The other is identified as "Made in Japan".

All service stock is of the compatible version (P/N 661-0400).
Copyright 1990 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL336.TXT
MousePaint was designed as a black and white program, not a color program. While MousePaint will output to the Scribe in color, the quality is poor. The current version of MousePaint prints directly to Apple dot matrix printers only.

Meanwhile, for printing to third party printers such as Epson or Okidata, here are some indirect methods.

NOTE: All procedures reviewed here use the ProDOS /USERS.DISK that comes with the ProDOS supplied with Disk II's or with the ProDOS User's Kit.

1. Using an intelligent graphics interface: Grappler, Pkaso, or other.
   A. Save the picture by selecting the "Put a copy in..." command from the MousePaint File menu. This will create a standard binary picture file on a ProDOS-formatted data disk.
   B. Leave Paint.
   C. Start up Applesoft BASIC using the ProDOS /USERS.DISK. BASIC is an option on the main ProDOS menu.
   D. Now you must instruct your Apple to load the graphics image and to tell the interface to dump it to the printer. Most graphics interfaces come with examples of programs that do this. Enter and save one of these on your ProDOS data disk.
   Sales Tip: Enter the programs for the intelligent interfaces you support. Make sure they run under ProDOS and give them to your customers.

2. Using a "snapshot" interface.
   Some cards, e.g., the "PRINT IT" interface, will print the screen when a button is pressed. Because you would print the Paint palette if you did a MousePaint screen dump, you should save the graphic as above and start up BASIC from the ProDOS /USERS.DISK. Then give these direct commands to your Apple:

   HGR:POKE -16302,0
   BLOAD picturename, A$2000

   Then press the interface's button to dump the picture.

3. Making your Apple do the work.
   This works if you have a graphics printing program that works with your printer, e.g., Printographer, Zoom Grafix, Apple LOGO Tool Kit and so on. Most of these programs run under DOS 3.3.
   A. Follow the instructions above to store a binary file on your ProDOS data disk.
   B. Start up the ProDOS /USERS.DISK.
   C. Now you must convert the binary file over to DOS 3.3 format using the CONVERT option on the ProDOS menu. Follow the instructions in the ProDOS manual for doing this conversion. (See our article on using the ProDOS CONVERT program for more information).
   D. After the file is converted to DOS 3.3, it may be loaded and dumped by
your DOS 3.3 graphics program.

Of course, once these programs are published under ProDOS, you will not need to convert the binary file before using the graphics program.

To dump graphics, Apple IIc users can also employ the Imagewriter Tool Kit, Revision B, which works under ProDOS.

Copyright 1984, 1991 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL337.TXT
Description: MouseText: Display for Characters "F" and "G"

Header: MouseText: Display for Characters "F" and "G"

Article Created: 29 April 1991
Article Last Reviewed: 
Article Last Updated: 

TOPIC ---------------------------------------------

What should the MouseText ROM display for characters "F" and "G"?

DISCUSSION ----------------------------------------

The "F" in MouseText is the character used to represent a carriage return, sort of like this:

```
|<----
```

The "G" displays four horizontal bars, an Apple II representation of an active (or foremost) window. It looks like this:

```



```

(this space is intentional)

You'll find a list of MouseText characters in the Apple IIe Owner's Manual (platinum), page 133.

Copyright 1991, Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL338.TXT
Description: Moving Apple II DOS 3.3 Data to Macintosh

Header: Moving Apple II DOS 3.3 Data to Macintosh

This article last reviewed: 21 April 1988

If you wish to run Apple II DOS 3.3 files on a Macintosh (512Ke or newer), you must do the following:

1. If the Apple II Plus is the only Apple II available (NOTE: if an Apple IIe is available, see below), then you need:
   - a minimum of 64K in the Apple II Plus
   - one 5.25" drive
   - one 3.5" drive
   - the program "Convert" from a ProDOS System Disk, V1.0, on a bootable 3.5" disk
   - the collected data on a 5.25" disk

   and

   - one Macintosh (512Ke, Plus, SE, or II)
   - two disk drives (two 800K floppies or one 800K floppy and a hard drive)
   - Apple File Exchange (on one of the floppies or on the the hard drive).

Once these items are together, follow these steps:

a. Insert the ProDOS disk in the 3.5" drive and the data disk in the 5.25" drive.

b. Run "Convert".

c. Transfer the data ("Convert" defaults to 5.25" --> 3.5").

d. Eject the 3.5" disk, which now has the data converted to ProDOS format.

e. Launch Apple File Exchange on the Macintosh.

f. Insert the ProDOS 3.5" disk in the Macintosh drive. (AFE displays its disk in one window and the ProDOS disk in another.)

g. Select the data file from the ProDOS disk, and click the transfer button.

2. If there is an Apple IIe available, you need:

   - a minimum of 128K in the Apple IIe
   - one 5.25" drive
   - one 3.5" drive
   - System Utilities 3.0 on a bootable 3.5" disk
   - the collected data on a 5.25" disk

   and

   - one Macintosh (512Ke, Plus, SE, or II)
   - two disk drives (two 800K floppies or one 800K floppy and a hard drive)
- Apple File Exchange (on one of the floppies or on the the hard drive).

Once these items are together, follow these steps:

a. Insert the ProDOS disk in the 3.5" drive and the data disk in the 5.25" drive.

b. Run System Utilities (labeled SYSUTIL.SYSTEM).

c. Copy the data file from the 5.25" disk to the 3.5" disk using "Copy Files".

d. Eject the 3.5" disk, which now has the data converted to ProDOS format.

e. Launch Apple File Exchange on the Macintosh.

f. Insert the ProDOS 3.5" disk in the Macintosh drive. (AFE displays its disk in one window and the ProDOS disk in another.)

g. Select the data file from the ProDOS disk, and click the transfer button.

Using either method, the data from the test instrument is now a Macintosh text file. Once in the Macintosh text file format, it can be loaded into a variety of Macintosh applications.

Keywords:

### END OF FILE A2TIL339.TXT
Nite Owl Productions

5734 Lamar Street
Mission, KS 66202

913-362-9898
913-362-5798 Fax

Company Profile:
Specializing in software, shareware, accessories for the Apple II, and
Macintosh and GS batteries
Copyright 1993, Apple Computer, Inc
Keywords: 3PTY

### END OF FILE A2TIL340.TXT
This article discusses connecting the Parallel Interface card to different 3rd party printers.

**Epson FX 80**

**General Settings**

**Parallel Interface**

*8 Data Bits*

*Linefeeds required*

**Epson DIP switches**

<table>
<thead>
<tr>
<th>Switch Bank 1</th>
<th>Switch bank 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OFF</td>
<td>1 ON</td>
</tr>
<tr>
<td>2 OFF (see notes)</td>
<td>2 ON</td>
</tr>
<tr>
<td>3 OFF (see notes)</td>
<td>3 OFF</td>
</tr>
<tr>
<td>4 OFF</td>
<td>4 OFF (see notes)</td>
</tr>
<tr>
<td>5 OFF (see notes)</td>
<td>5 OFF</td>
</tr>
<tr>
<td>6 ON</td>
<td>6 ON</td>
</tr>
<tr>
<td>7 ON</td>
<td>7 ON</td>
</tr>
<tr>
<td>8 ON</td>
<td>8 ON</td>
</tr>
</tbody>
</table>

**Bank 1**

Switch 2 is set for open zero character; for slashed zero, turn switch 2 on.
Switch 3 is set for continuous paper; for cut sheet, turn switch 3 on.
Switch 5 is set for normal density printing at power on; for emphasized printing, turn switch 5 on.

**Bank 2**

Switch 4 is set for computer generated carriage return linefeed; for carriage return only, turn switch 4 on.

**Parallel Interface**

All switches on the Apple interface card need to be set to factory default settings.

**Cable Pinouts**

<table>
<thead>
<tr>
<th>Apple II Parallel</th>
<th>Epson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CABLE SHIELD</td>
<td>---</td>
</tr>
<tr>
<td>5 ----------------</td>
<td>14</td>
</tr>
</tbody>
</table>
Centronics 702 or 703

The Centronics printer interface was originally designed to be used with the Centronics microP-1 printer. That printer required a control character to set it into 80-column mode. The firmware on the Centronics printer interface, PROM P9-00, sends a $1D when ever it receives the <CTRL-I>80N command. This control character is part of a VFU command on a Centronics 702 or 703 and usually deselects the printer. The fix is to send a re-select code, but since the deselected printer doesn't return the Apple's handshake, the reselect will have to be POKEd to the interface, as follows:

100 FOR J = 1 TO 5
110 POKE -16256 + 16 * SL, 17
120 NEXT

Comrex CR-1 P

Card        COMREX CR-1 P

5------------- DB0------2
6------------- DB1------3
8------------- DB2------4
11------------ DB5------7
12------------ DB6------8
13------------ DB7------9
15------------ STB------1
16------------ ACK------10
22------------ DB3------5
23------------ DB4------6
24------------ SG------ 16

Dip Switch settings

For Parallel card: All down except 4,5
For Comrex: all down except 8

Article Change History:
19 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1986-96, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL341.TXT
This article describes the Apple II Parallel Interface card and includes other related information.

DB-25 Connector Pinout

---

**DB-25**

**Connector**  **Signal Name**

1. Data In, Bit 0  
2. Signal Ground  
3. Data In, Bit 2  
4. Signal Ground  
5. Data Out, Bit 0  
6. Data Out, Bit 1  
7. Blocked  
8. Data Out, Bit 2  
9. Data Out, Bit 5  
10. Data Out, Bit 6  
11. Data Out, Bit 7  
12. Data In, Bit 4  
13. Strobe Out  
14. Acknowledge In  
15. Data In, Bit 1  
16. Data In, Bit 7  
17. Data In, Bit 5  
18. Signal Ground  
19. Data In, Bit 6  
20. Data Out, Bit 3  
21. Data Out, Bit 4  
22. Signal Ground  
23. Data In, Bit 3  
24. Data In, Bit 2  
25. Data In, Bit 3

Switch Settings

---

**Strobe Length**

```
1 microsecond -> SW1-1:Off, SW1-2:Off, SW1-3:Off
3 microseconds -> SW1-1:On, SW1-2:Off, SW1-3:Off
5 microseconds -> SW1-1:Off, SW1-2:On, SW1-3:Off
7 microseconds -> SW1-1:On, SW1-2:On, SW1-3:Off
9 microseconds -> SW1-1:Off, SW1-2:Off, SW1-3:On
11 microseconds -> SW1-1:On, SW1-2:Off, SW1-3:On
13 microseconds -> SW1-1:Off, SW1-2:On, SW1-3:On
15 microseconds -> SW1-1:On, SW1-2:On, SW1-3:On
```
Positive -> SW1-4:Off
Negative -> SW1-4:On

Ack Polarity

Positive -> SW1-5:Off
Negative -> SW1-5:On

Firmware Select

Parallel (LF) -> SW1-6:Off
Centronics (No LF) -> SW1-6:On

Interrupts

Disable -> SW1-7:Off
Enable -> SW1-7:On

Interrupts should be enabled for the Apple III and disabled for the Apple II.

Switch Setting Explanations

Different peripherals (non-Apple printers, etc.) may use I/O signals that have different duration and polarity. The STROBE LENGTH, STROBE POLARITY, and ACK POLARITY switch settings on the Parallel Interface Card (2PIC) give you the flexibility to communicate with these other devices. For the I/O signal characteristics of the device you are connecting with, read its manual.

Controlling Bit 8

The following program enables you to control bit 8, used by some printers to select expanded or normal print mode or to enable alternate or graphics character sets. DOS 3.2 or DOS 3.3 is required to use this routine, which also works in the Apple III in Emulation mode.

Determine which slot your interface card is in and the corresponding slot code from the table. Replace "<slot>" with the slot number and "<code>" with the code when typing in the program.

<table>
<thead>
<tr>
<th>slot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
</tr>
</tbody>
</table>

Enter the monitor with Call -155 and type:

```
3B0:A9 <slot>
:20 95 FE
:A9 80
:20 ED FD
:A9 C5
:85 36
:A9 03
:85 37
:4C EA 03
:29 7F
:0D CD 03
:4C 02 <code>
:80
```

To check your typing, type: 3B0L
Compare your listing to the one below configured for slot 1.

```
03B0- A9 01 LDA #$01
03B2- 20 95 FE JSR $FE95
```
Enter 3D0G to return to Basic.

Save the driver to disk by typing: BSAVE CEN 730, A$3B0, L$1E

Load the driver and initialize the interface before using the printer. From command mode, type:

BLOAD CEN 730
Call 944

Or from a program: 100 Print D$;"BLOAD CEN 730" : Call 944, assuming that D$ is a CTRL-D.

To switch back to the video monitor for output type: PR#0
or in a program enter: 200 Print D$;"PR#0"

To reconnect the printer, all that is required is: Call 954, or from a program: 300 Call 954

To set normal print mode, type POKE 973,0; type POKE 973,128 to set the expanded print mode POKE.

Cable Pinouts
-------------
Here is a sample pinout for an Apple II parallel card to a parallel printer.

| 20-Pin | Amphenol |
| DIL Connector | Connector |
| (Female) | (Male) |
| 1        | 14       |
| 2        | 10       |
| 8        | 1        |
| 10       | 2        |
| 11       | 3        |
| 12       | 4        |
| 13       | 5        |
| 14       | 6        |
| 15       | 7        |
| 16       | 8        |
| 17       | 9        |
| 20       | 16       |

Article Change History:
19 Nov 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1988-96, Apple Computer, Inc.
Keywords: HTS,CNFG

### END OF FILE A2TIL342.TXT
If you are fortunate enough to own the Pascal 1.2 development system you can access all features of it from your QC hard disk. The 128K development version is REQUIRED.

It is assumed that you are familiar with the Pascal development system and the workings of the Apple II Pascal Software supplied with your QC hard disk.

PROCEDURE

1. Create a development version of the Apple Pascal II software disk using the procedure on page 1-4 of the Quark Hard Disk Drive Pascal II Users Manual. In addition to these steps, it is necessary to convert the software from a 64K development version to a 128K development version. To do this place the APPLE3 Pascal disk in the disk drive and T(ransfer "APPLE3:128K.APPLE" and "APPLE3:128K.PASCAL" to "QUARK:SYSTEM.APPLE" and "QUARK:SYSTEM.PASCAL" on the Apple II Pascal software disk. When asked to remove old files, answer "Y".

2. Make a copy of the APPLE1 disk and convert this disk to a 128K development version by T(ransfering APPLE3:128K.APPLE and APPLE3:128K.PASCAL to APPLE1:SYSTEM.APPLE and APPLE1:SYSTEM.PASCAL. When asked to remove old files answer "Y".

3. Boot the newly modified Apple II Pascal Software disk.

4. From the main menu select the VOLUME MANAGER.

5. Select CREATE VOLUMES and make a PASCAL II volume on your QC hard disk that is 800 blocks in size. Mount this volume with Read/Write access by pressing RETURN at the prompt "OK to allow unrestricted access to this volume?".

6. Return to the VOLUME MANAGER main menu and select EDIT CURRENT MOUNTS.

7. Set up the newly created Pascal II volume to currently mount on unit #5. Mount this volume with Read/Write access by pressing RETURN at the prompt "Mount with Read/Write access?".

8. Return to the VOLUME MANAGER main menu and select QUIT.

9. Select RENAME VOLUME and change the volume name to anything you wish.

10. Return to the Pascal QC Hard Disk Utilities menu and select QUIT TO PASCAL.

11. Insert the 128K APPLE1 in the disk drive and select F(iler.

12. Select T(ransfer. Copy the entire contents of APPLE0, APPLE1, APPLE2, and APPLE3 to "#5:=". Certain files, particularly SYSTEM.APPLE and SYSTEM.PASCAL and SYSTEM.COMPILER are duplicated throughout these disks. When asked to remove old files, answer "N".

13. Place the APPLE3 disk in the disk drive. T(ransfer the files "APPLE3:128K.APPLE" and APPLE3:128K.PASCAL" to "#5:SYSTEM.APPLE" and #5:SYSTEM.PASCAL". When asked to remove old files, answer "Y".

14. Insert the Apple II Pascal Software disk in the disk drive and T(ransfer "QUARK:=" to "#5:=". When asked to remove old files answer "N".

FINISHING UP

1. Boot the Apple II Pascal Software disk and select VOLUME MANAGER.

2. Select EDIT CURRENT MOUNTS. Mount your Pascal II volume on unit #4 by selecting "I" and pressing RETURN. Respond to the prompt "Mount which volume?" by typing the name of your Pascal II volume and pressing RETURN. Mount this volume with Read/Write access by pressing RETURN at the prompt "Mount with Read/Write access?".

3. Return to the VOLUME MANAGER main menu and select EDIT AUTOMATIC MOUNTS.

4. Auto mount your Pascal II volume on unit #4 by selecting "I". Respond to the prompt "Mount which volume?" by typing the name of your Pascal II volume.
and pressing RETURN. Mount this volume with Read/Write access by pressing
RETURN at the prompt "Mount with Read/Write access?".

5. Reboot the Apple II Pascal Software disk. You will notice that after the
initial boot, all files are being accessed from the QC hard disk. Surprise....
You will be able to access both Apple II Pascal Software files from your hard
disk and by quitting to Pascal, will be able to access all Pascal development
tools without rebooting.

NOTE: Apple Computer Inc. is not responsible for the contents of this
article.

Quark Tech Support

Keywords:

### END OF FILE A2TIL343.TXT
Description: Pascal 1.3: Compatible With IIGS RAM Disk, 3.5" Disk
Header: Pascal 1.3: Compatible With IIGS RAM Disk, 3.5" Disk

This article last reviewed: 1 December 1987

Pascal 1.3 for the Apple II can be loaded into the RAM disk of an Apple IIGS. Set your RAM size, and it will be formatted when you start up Pascal.

Pascal 1.3 supports 3.5" disk drives. (In fact, it's now distributed on a 3.5" disk in addition to the 5.25" disks.)

Keywords:

### END OF FILE A2TIL344.TXT
Description: Pascal 1.3: Using it on a Hard Disk 20SC
Header: Pascal 1.3: Using it on a Hard Disk 20SC

When using Apple Pascal 1.3 (as well as versions 1.0, 1.1, and 1.2) on an Apple II, you cannot use the Hard Disk 20SC as a volume: since Pascal stores the volume size as a signed integer, it cannot work with volumes larger than 32767 blocks. (The HD 20SC has 39165.) The Hard Disk 20SC can be formatted from Apple Pascal, but when you attempt to use the Pascal FILER to copy files to the drive, you get a "NO ROOM ON VOLUME" message. Furthermore, Apple Pascal only supports 77 files per directory, so even if you could use the Hard Disk 20SC, you would run out of directory space before you could even come close to running out of disk space.

The directory limitation applies to 5 meg and 10 meg ProFile drives as well. You can use a ProFile hard drive with Pascal 1.3, but you cannot "share" the drive with ProDos: you must dedicate the entire hard drive to a maximum of 77 Pascal files.

Apple Technical Communications

Keywords:

### END OF FILE A2TIL345.TXT
The Pascal 1.3 operating system on all Apple systems does not detect characters with the device REMIN:. For example, when an Apple IIc with the 3.5" ROM runs the sample program from volume III, page 191 of the Apple II Pascal 1.3 Workbench Manual, the characters from the modem port (i.e. REMIN:) are not detected.

In previous versions of Pascal, the programmer was requested to use the Applestuff function RemStatus instead of UNITSTATUS when he wanted to use REMIN: and REMOUT:. RemStatus was not included with Pascal 1.3.

To employ REMIN: and REMOUT: with Pascal 1.3, use the Library program to replace the 1.3 APPLESTUFF with the 1.2 APPLESTUFF, following the procedure on pages 216-222 of chapter 8 of the Pascal 1.3 manual, volume II.

After that procedure, the following function and types will be available:

```pascal
TYPE RStatus = (RStatBusy, RStatReady, RStatOffline);
RSChannel = (RSOutput, RSInput);

FUNCTION RemStatus (channel: RSChannel): RstatType;

Use this function instead of UNITSTATUS.
```

Apple Technical Communications

Keywords:
Many people have trouble using Library Name Files in Apple II Pascal (v.1.2 and 1.3). Here is a short explanation on what library name files are, and how they are used in Pascal.

Library Name files, which contain the names of libraries to be used when running a program, are designed for very large applications, or for multiple program applications that need to use the same libraries.

With small applications, when you want to use a library other than the system library, you can link your libraries (as regular units) directly into your program. For larger applications, however, this is impracticable, since each re-compilation makes linking more difficult and cumbersome. The solution for larger applications is to create Program Libraries which allow you to build your own set of intrinsic units without having to place them in the system library. (Intrinsic units have the same root name as the program, but have the suffix '.LIB' on the end; e.g., a program named TRYIT.CODE becomes TRYIT.LIB). What Library Name files do is allow you to handle up to five Program Library files for each program.

To use Library Name files, write your library code and program code in the standard way. Each library unit MUST be an intrinsic unit. When writing your program you must remember to use the "$U ..." option to tell the compiler where to find your libraries interface (program library names are used only at execution time). After compiling your library units, don't forget to use the LIBRARY program to place a library header in the file. Now, just compile your program and create your library name file. When you execute, your program will find its units even though you did not have to link them in.

Here are three sample files that illustrate the process:

Main program source code [TRYIT.TEXT]:

PROGRAM USEWALLY;
USES {$U WALLY.LIB} WALLY;
BEGIN
  DOWALLY;
END.

Wally, library unit source code [WALLY.TEXT]:

UNIT WALLY;
INTRINSIC CODE 17 DATA 18
INTERFACE
VAR WALLSTR:STRING[80];
PROCEDURE DOWALLY;
IMPLEMENTATION

PROCEDURE DOWALLY;

BEGIN
    WRITELN('WELL WALLY WORKS WELL I THINK');
END;

BEGIN
END.

Library name file [TRYIT.LIB]:

LIBRARY FILES:

WALLY.LIB

$$

To build this program, you must compile the library unit first, then use LIBRARY to turn it into a library (with the proper header). Finally, compile the main program (TRYIT.TEXT) and then run it to be sure that it works.

Keywords:

### END OF FILE A2TIL347.TXT
Description: PC Transporter: IIGS Driver Not Available For AppleShare
Header: PC Transporter: IIGS Driver Not Available For AppleShare

Article Created: 16 September 1988
Article Last Reviewed: 27 January 1992
Article Last Updated: 27 January 1992

TOPIC -----------------------------------------------------------

Can I use PC Transporter with an AppleShare File Server?

DISCUSSION ------------------------------------------------------

Applied Engineering's PC Transporter, the MS-DOS card for the Apple II family, can theoretically work with the AppleShare File Server. Specifically, you can use the server as drive "D" when using the MS-DOS software, as well as Apple IIGS mode.

However, such a driver that can access the AppleTalk resources of the Apple IIGS doesn't currently exist. Development of the driver is typically the responsibility of the card's manufacturer.

On AppleLink, you can find contact information for the various vendors by clicking the Library Index button to view the folder structure in the Tech Info Library. An alphabetic listing of vendors is in the Third Party Company Directory folder.


Keywords:

### END OF FILE A2TIL348.TXT
I would like information on running Apple II software on my Performa 430. Do I need a card? Where do I install it? Where do I get it, and the necessary supporting software?

DISCUSSION

The Apple IIe Card is an accessory card that lets you run Apple IIe programs on several Macintosh models. At this writing, those models were Performa 400, 405, 430, and 450; Macintosh LC, LC II, and LC III; and Macintosh Color Classic. When the Macintosh is in the Apple IIe mode, it performs just like an Apple IIe Computer. You can start up and use Apple IIe software applications just as you would on an Apple IIe.

Features of the Apple IIe Card:

* Runs virtually all Apple IIe applications -- more than 10,000 programs.

* Applesoft BASIC programming language is built in. The Apple IIe Card supports ProDOS, DOS 3.3, and Apple II Pascal operating systems.

* The Macintosh hard drive may be partitioned for the ProDOS operating system to allow mass storage of Apple IIe programs and files.

* The Macintosh's internal SuperDrive can be used with ProDOS-formatted disks. ProDOS disks appear on the Macintosh desktop to allow easy transfer of files to the hard drive.

* Allows connection of one UniDisk 3.5 disk drive and two Apple 5.25 disk drives through the Apple IIe Card's connection cable. This cable also allows the attachment of an Apple IIe joystick.

* Can print from Apple IIe applications to any printer that the Macintosh can select.

You can purchase the Apple IIe Card at your Local Apple Dealer. Also, the Local Apple Service Provider can install the card. You can find the Local Apple Dealer/Service Provider by calling (800) 538-9696. You can also purchase the Apple IIe Card from the Apple Catalog (800) 795-1000.

If you need help with the Apple IIe Card, then you can call the Apple Assistance Center at (800) SOS-APPL Extension 555.

Here is what you need to order:

* Apple IIe Card (Product Number M0444/D, Catalog Number B1043)

Optional Items:
* Apple 5.25 Drive (Product Number A9M0107, Catalog Number B1024)
* Joystick II (Product Number A2M2012, Catalog Number B1360)
Copyright 1993, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL349.TXT
Company Profile:
Specializing in consignment and resale of a wide assortment of Macintosh and Apple II software and hardware.

Copyright 1993, Apple Computer, Inc

Keywords: 3PTY

### END OF FILE A2TIL350.TXT
Description: Preowned Electronics
Header: Preowned Electronics

Article Created: 3 June 91
Article Reviewed: 15 July 1993

Preowned Electronics

205 Burlington Road
Bedford, MA 01730

800-274-5343

617-275-4600

617-275-4848 Fax

Company Profile:
Hardware, specializing in used Apple II equipment and discontinued Macintosh equipment
Copyright 1991-93, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL351.TXT
Description: Problem using Apple II parallel cable with UPIC
Header: Problem using Apple II parallel cable with UPIC

You may have problems using Pascal III with the Apple II Parallel Printer Interface cable, since Pascal requires different error handshaking than the cable is able to support. Rewire the cable to the pin specifications on page 16 of the Universal Parallel Interface Card manual.

Apple Tech Notes

Keywords:

### END OF FILE A2TIL352.TXT
You can determine the number of blocks on a ProDOS-compatible device from assembly language.

On a ProDOS volume, the total number of blocks available is stored on block 2, bytes $29 and $2A. The number is in low byte/high byte format: for example, an 800K floppy will have $40 at byte $29 and $06 at byte $2A.

Byte $2A contains the first two digits and byte $29 contains the last two digits. $0640 is equal to 1600 decimal, which is the total number of blocks on an 800K ProDOS disk.

If you need to determine the number of blocks on a device from the hardware, that information can be obtained regardless of whether or not block 2 is intact.

Check memory locations $Cs01, $Cs03, $Cs05 (s = slot number) for $20, $00, and $03, respectively. If these values are found, then the card in the slot is a disk controller.

Check memory location $CsFF. If the value is $00 or $FF, assume that an Apple Disk II disk controller card is installed ($00 is 16-sector, $FF is 13-sector).

Otherwise, check memory location $Cs07. If the value does not equal $00, the device is not a SmartPort device, and the total number of blocks for the drive are stored at memory locations $CsFC and $CsFD in low-byte/high-byte order.

If the total number of blocks is 0, contact the card manufacturer for details on how to determine the number of blocks.

(NOTE: We do not know of any disk controller that does not store the total number of blocks at memory locations $CsFC and $CsFD.)

If the value at memory location $Cs07 is $00, the drive is a SmartPort device. To find the number of blocks on the drive, you must make SmartPort status call $03 (get DIB). This call is documented in the "Apple IIGS Firmware Reference Manual" (Apple # 030-3121-A) on pages 114 through 125, with the most specific information starting on page 121.

Copyright 1989 Apple Computer, Inc.

Keywords:
This article describes how to find disk information, by making calls to significant memory locations.

Is the Card a Disk Controller?
-------------------------------
Check memory locations $Cs01, $Cs03, $Cs05 (s = slot number) for $20, $00, and $03, respectively. If these values are found, then the card in the slot is a disk controller.

Apple Disk II Disk Controller and Disk Capacity?
------------------------------------------------
Check memory location $CsFF. If the value is $00 or $FF, assume that an Apple Disk II disk controller card is installed ($00 is 16-sector, $FF is 13-sector).

SmartPort Device and Number of Blocks?
--------------------------------------
If the device is not an Apple Disk II disk controller card, check memory location $Cs07. If the value does not equal $00, the device is not a SmartPort device, and the total number of blocks for the drive are stored at memory locations $CsFC and $CsFD in low-byte/high-byte order.

If the total number of blocks is 0, contact the card manufacturer for details on how to determine the number of blocks. (Note: We do not know of any disk controller that does not store the total number of blocks at memory locations $CsFC and $CsFD.)

If the value at memory location $Cs07 is $00, the drive is a SmartPort device. To find the number of blocks on the drive, you must make SmartPort status call $03 (get DIB). This call is documented in the "Apple IIGS Firmware Reference Manual" on pages 114 through 125 with the most specific information starting on page 121.

Copyright 1989 Apple Computer, Inc.

Keywords:
Description: ProDOS Applications Need "Chooser II" To Select A Printer
Header: ProDOS Applications Need "Chooser II" To Select A Printer

This article last reviewed: 13 September 1988

Some users running AppleShare networks have had problems getting the ProDOS applications to print.

To get a ProDOS application to print correctly, you need to run the "Chooser II" program, which is in the AppleTalk folder on Apple II Workstation disk. This program allows you to select a printer.

(NOTE: If the printer selected is a LaserWriter, the ImageWriter emulator is downloaded immediately. "Chooser II" can run from either the server or the work-station. Ensure that the application is printing to slot 7. If printing to a LaserWriter, set up the program for printing to an ImageWriter.)

Copyright 1988 Apple Computer, Inc.

Keywords:

### END OF FILE A2TIL355.TXT
This article last reviewed: 22 October 1987

The ProDOS Assembler Tools disk doesn’t start up exactly as described on page 15 of the manual. When an Apple II starts up, it looks for a file named PRODOS. After it finds and loads PRODOS, it runs the first file on the disk that has the suffix .SYSTEM in its name. On the ProDOS Assembler Tools disk, the first such file is BASIC.SYSTEM, but the one needed is EDASM.SYSTEM. Here’s how to change the name of BASIC.SYSTEM so that EDASM.SYSTEM gets loaded first:

1. Make a copy of the ProDOS Assembler Tools disk.

2. Start up from the new disk.

3. When the Applesoft ] prompt appears, type the following, pressing Return after each line:

   ] UNLOCK BASIC.SYSTEM
   ] RENAME BASIC.SYSTEM,BASIC.SYS

4. Either restart the system, or type the following to start the assembler:

   ] -EDASM.SYSTEM

This tells BASIC.SYSTEM to load and run EDASM.SYSTEM. ProDOS Assembler Tools now starts up, as described in the manual.
The ProDOS Assembler Tools is designed for programmers who want to write assembly-language programs for the Apple II, II+, IIc, IIe or IIe enhanced. All five of these computers are based on the 6502 microprocessor, whose command set is supported by the Assembler Tools. Before you attempt using the Tools, we recommend that you be fairly familiar with BASIC or Pascal on the Apple computer system and that you read one or more books on 6502 assembly-language programming.

The ProDOS Assembler Tools include four programming tools that will help you create and execute assembly-language programs to run on any Apple II computer. These tools are the Editor, the Assembler, the Bugbyter debugger, and the Relocating Loader:

--Use the EDITOR to create and modify program source files and to store them on disk. You can also use the Editor to edit ProDOS EXEC files and BASIC program source files.

--Use the ASSEMBLER to generate an executable program.

--Use the BUGBYTE debugger to test and verify the execution of your programs. Also use the Bugbyter to help you locate and fix any errors that might creep into your programs.

Further details can be found in the ProDOS Assembler Tools User's Manual. Apple Technical Communications

Keywords: specsht

### END OF FILE A2TIL357.TXT
Description: ProDOS Can't Handle Disk Volumes Larger Than 32MB
Header: ProDOS Can't Handle Disk Volumes Larger Than 32MB

This article last reviewed: 5 February 1988

Current versions of ProDOS can't handle more than 32MB of storage on a hard disk volume.

If you connect a Hard Disk 40SC or Hard Disk 80SC to an Apple II, you must partition the hard disk -- that is, divide it into separate volumes. Each volume is then counted as one SCSI device.

Apple does not supply the software that does the partitioning and currently does not know of any other source for such software.

Keywords:

### END OF FILE A2TIL358.TXT
We have an AppleTalk network system and have discovered some strange behavior with certain applications on the Apple II.

Using current software, there are three shell programs (besides BASIC) available for AppleTalk network system users. They are Aristotle, the Finder, and Let's Share. We have found that some applications work perfectly when launched from one of the shells, but not when launched from another. Also, when quitting, some return to the shell from which they were launched, while others return directly to the File Server Log-On screen.

Here are some examples:

- Mavis Beacon Teaches Typing (Software Toolworks) works fine when launched from Aristotle or the Finder, but not from Let's Share.

- Medley (Milliken) always returns the user to the Log-On screen on quitting.

Some applications seem to return the user to the shell from which they were launched, while others return the user to the server-defined startup application. (I have no concrete examples of this, but here's an illustration)

- The user logs on and goes to Aristotle, his startup application. He launches the Finder from Aristotle and from there launches "Application X". On quitting Application X, he is returned to the Finder, and on quitting the Finder (Special Menu, Shut Down, Return to Launching Application), he is returned to Aristotle.

- The user repeats the above process to get to the Finder, but this time launches "Application Y". On quitting Application Y, he is returned directly to Aristotle, even though he launched Application Y from the Finder.

Do you have any clues about these differences? Do some of these shells leave memory in a different state than others when they launch applications? Are there any standards for this sort of thing? Is Let's Share a known offender, or does it follow whatever rules there are? Is there a standard GS/OS or ProDOS 16 Quit call? Is everyone not implementing it correctly?

Here's a related question:

I have tried putting ProDOS applications that reside on floppy disks into Aristotle menus. If I put the disk in the drive and choose the menu item, the application launches properly and, on quitting, seems to return the user to Aristotle without a hitch. However, a colleague reports that when doing this with Instant Pascal, the server connection is dropped somewhere, so quitting fails. Do some applications disable network listeners or trash the memory where network files resides? Is there any way to tell what might work in this fashion and what might not?
The behavior is determined by which operating system the application is written under: GS/OS or ProDOS 8.

The ProDOS 8 quit command is quite simple and does not have the ability to put the name of the application to return to on the return stack. ProDOS applications "quit to" the program named Start in the GS/OS volume. As shipped, this is the Finder. However, if the startup program has been set in the AppleShare Admin application, the Finder may not be the "start" program any longer. Whatever is set in Admin is the application to which the ProDOS 8 programs return.

GS/OS applications have the ability to put the name of the program to which one returns onto the return stack. If properly written, quitting a GS/OS application returns the user to the same application that launched the GS/OS program just quit.

For your examples:

- We defer to Russ Systems about all Let's Share issues.

- We are still trying to work a variety of issues out with Medley. We will add this one to the list to investigate.

- With Aristotle (ProDOS 8) as the Admin set startup application, launching the Finder (GS/OS), then launching "Application X" (apparently, a GS/OS application from the behavior described), and quitting "Application X", it would be correct to finish at the Finder, if "Application X" is, indeed, a GS/OS application. Quitting the Finder (GS/OS) would then return to the application that launched it, Aristotle.

- In the next example, instead of launching "Application X", the user launches "Application Y" (apparently, a ProDOS 8 application from the behavior described), then quits "Application Y", and finishes in Aristotle. This would be the correct behavior for a ProDOS 8 "Application Y".

Instant Pascal has several issues associated with it. The primary issue is that it is neither a ProDOS nor a GS/OS application. Instant Pascal has its own operating system with its own input/output routines. These I/O routines know nothing about the network. It is, thus, totally logical that Instant Pascal disregards all network activities. The only solution is to rewrite the Instant Pascal operating system. It is unlikely that this solution will ever be considered.

Copyright 1990 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL359.TXT
I'm trying to transfer files from 5.25-inch ProDOS disk to Macintosh SE 3.5-inch disks using a 5.25 drive with a Macintosh SE Bus Controller Card. This works fine with IBM disks, but AFE won't read ProDOS disks (or even give me the option select to select a ProDOS driver).

The Apple PC 5.25 Drive for the Macintosh SE can see MS-DOS files, but not ProDOS files.

Use the utilities on the Apple II to do a file copy from a 5.25-inch to 3.5-inch, then open the file in the Macintosh SE and convert it using Apple File Exchange with your Apple SuperDrive (formerly Apple FDHD).

Copyright 1991 Apple Computer, Inc.

Keywords:
A limitation of ProDOS prevents the Apple II from accessing more than 32 megabytes of storage space on an Apple Hard Disk 40SC or Apple Hard Disk 80SC. Those drives can be connected to an Apple II with an Apple II SCSI card.

Keywords:
ProDOS is Apple's new disk operating system for the Apple IIe and II+. It is now included with Apple's Disk II drives with controller and the DuoDisk.

Apple designed ProDOS as a transition from DOS 3.3 and for the greater sophistication and enhanced capabilities demanded by more professional applications. ProDOS provides compatibility between the Apple III and the Apple II line of computers, since ProDOS and SOS share similar file naming conventions and file formats.

ProDOS requires a 64K Apple II+ or IIe, with Applesoft in ROM. Integer BASIC is not supported. Listed below are some of the features of ProDOS.

--Hierarchical file system similar to SOS.

--Up to 51 files in a volume directory; the number of files in subdirectories is limited only by the space on the disk.

--20 different file types; 10 are user-defineable.

--Up to 8 files may be open at one time.

--A defined, usable machine language interface.

--Interrupts up to 4 levels are supported and processed sequentially.

--Compatibility between files created on an Apple III.

--Fast transfer speed to and from disk; about 8K per second from Disk II.

--All disk devices supported by Apple will work automatically.

--Direct block access.

--Enhanced BASIC command structure.

--Easier Assembly Language program development and maintenance.

--Up to 32 megabytes per volume, 16 megabytes per file.

--Multiple logical volumes per physical volume.

--Pseudo disk emulator using the Apple Extended Text Card, enabling fast file access and graphics screen switching.

Apple Technical Communications

Keywords:
Whenever ProDOS is booted, it checks the environment; if ProDOS finds a 128K Apple II system, it configures the auxiliary 64K memory bank as a RAM disk named /RAM. This "disk" is catalogued as slot 3, drive 2, since it's comprised of memory on the 80-column card in slot 3.

If you plan to use this auxiliary memory for high-res graphics, you must protect yourself from /RAM. To construct a space for protecting high-res pages in auxiliary memory while maintaining /RAM as an online storage device, perform the following two steps:

1. Save a "dummy" 8K file as the first entry in /RAM; this file will always be saved at $2000 to $3FFF.

2. Immediately afterwards, save a second "dummy" 8K file to /RAM; this file will be saved at $4000 to $5FFF.

--- IMPORTANT NOTES:

1. There is no formula for determining where the blocks of /RAM physically reside in memory.

2. The logical blocks in /RAM are not physically contiguous.

3. There is no guaranteed way to protect any other fixed portions of auxiliary memory by means of the "dummy" file method.

If you wish to protect all auxiliary memory not reserved for use by Apple, you must disconnect /RAM. The following three areas of the system global page are of interest to anyone who wishes to disconnect /RAM:

- $BF10-$BF2F contains the disk device driver addresses.
- $BF31 contains the number of devices minus one.
- $BF32-$BF3F contains the list of disk device numbers.

Apple Technical Communications
Description: ProFile Formatting Error #21
Header: ProFile Formatting Error #21

This article last reviewed: 29 March 1988

PROBLEM DESCRIPTION: Error #21 is generated when the ProFile is formatted using the Apple III System Utilities.


CAUSE: Software damage has occurred.

CURE: Use the following procedure:

1. Format the ProFile using the Apple III Systems Utilities and define the volume name as HVRMHGL. Another volume name can be defined once the ProFile has been formatted.

Proceed to Step 2 if you again receive the error #21.

2. Format the ProFile using an Apple II/IIe with the ProDos utilities. Reconnect the ProFile to the Apple III once the ProFile has been successfully formatted and perform Step 1.

Use the ProFile troubleshooting procedure (documented in ProFile Technical Procedures) if both Steps 1 and 2 fail to produce satisfactory results.

Copyright 1988, Apple Computer, Inc.

Keywords: hts

### END OF FILE A2TIL364.TXT
Description: ProFile Hard Drive: Specifications (Discontinued)
Header: ProFile Hard Drive: Specifications (Discontinued)

This article last reviewed: 10 May 1985

Model A9M0005 5 Megabyte (Discontinued)
A9M0100 10 Megabyte (Discontinued)

I. Technical Specifications

1. Data Storage Characteristics:

<table>
<thead>
<tr>
<th></th>
<th>A9M0100</th>
<th>A9M0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Capacity (formatted) in megabytes:</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Data Surfaces:</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Heads per Surface:</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Track Spacing per inch:</td>
<td>345</td>
<td>254</td>
</tr>
<tr>
<td>Tracks per Surface:</td>
<td>306</td>
<td>152</td>
</tr>
<tr>
<td>Sectors per Track:</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Sectors per Surface:</td>
<td>4896</td>
<td>2432</td>
</tr>
<tr>
<td>Block Size in bytes:</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>5.25&quot; Floppy Equivalence:</td>
<td>70</td>
<td>35</td>
</tr>
</tbody>
</table>

2. Drive Characteristics:

<table>
<thead>
<tr>
<th></th>
<th>A9M0100</th>
<th>A9M0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Seek Time in milliseconds:</td>
<td>85</td>
<td>180</td>
</tr>
<tr>
<td>Data Transfer Rate in megabits/sec:</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Rotational Start-up Time in seconds:</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Drive Ready to Operate in seconds:</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Rotational Speed in RPMs +/- 1%:</td>
<td>3600</td>
<td>3600</td>
</tr>
<tr>
<td>Mean Time Between Failure in hours:</td>
<td>10,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>

--Winchester technology

3. Interface:

a. Type: 8-bit parallel
b. Connector: DB-25
c. Drives per Interface: 1

4. Power Requirements:

a. U.S.: 110 VAC, 35 Watts
b. Europe: 230 VAC
c. Drive power source internal to the ProFile.

5. Environmental Requirements

a. Temperature
   --Operating: 50 to 104 degrees F (10 to 40 degrees C)
   --Storage: -7.6 to 176 degrees F (-22 to 80 degrees C)
b. Humidity
   --Operating: 20 to 80% noncondensing.
   --Storage: 1 to 95%

6. Physical Characteristics

<table>
<thead>
<tr>
<th>inches</th>
<th>centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>4.39</td>
</tr>
<tr>
<td>Width</td>
<td>17.28</td>
</tr>
<tr>
<td>Depth</td>
<td>8.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pounds</th>
<th>kilograms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>11</td>
</tr>
</tbody>
</table>

II. Package

With the 5 Megabyte or 10 Megabyte ProFile package:
1. Apple ProFile hard-disk drive
2. Apple ProFile Accessory Kit including:
   a. ProFile interface cable
   b. System-specific ProFile owner's manual
   c. Warranty and product registration
   d. User Input Report
3. Included in the Apple II Accessory Kit:
   a. Catalyst II software
   b. Apple II SOS Driver and Utilities software
   c. Backup II software
   d. Apple II ProFile Interface Card
4. Included in the Apple III Accessory Kit:
   a. Catalyst 2.0 software
   b. Pascal ProFile Manager software
   c. Backup III software
   d. Apple III ProFile Interface Card

III. System Configuration

   --Either ProFile may be used the following Apple personal computers:

1. IIe
   a. RAM: Minimum of 64 kilobytes
   b. Operating System: ProDOS Pascal 1.2
   c. Interface Cards:
      -- The difference between the 5Mb and 10Mb ProFile
      Interface cards is the ROM at location C6. The ROM is
      341-027 for the 5Mb Card and 341-0299-B for the 10 Mb.

2. Apple III
3. Macintosh XL

NOTE: The Macintosh XL containing a built-in 10-megabyte hard disk requires a
Parallel Interface Card (Order A6BB101, obsolete).

Features

Controller automatically scans for error conditions, relocating marginal data
blocks elsewhere on the hard disk, if necessary.

Copyright 1988 Apple Computer, Inc.
Keywords: SPECSHT

### END OF FILE A2TIL365.TXT
For what operating systems is the Apple ProFile compatible?

ProFiles can be formatted for two main types of operating systems:

1. the Lisa Operating System for the Lisa

or

2. ProDOS for the Apple II, and SOS for the Apple III.

ProFiles are formatted at the factory with the Apple III SOS format and contain the Apple III System Utilities program. This format is completely compatible with the Apple II ProDOS format, and so can be used on either the Apple II or Apple III; additionally, these ProFiles can be used without difficulty on the Macintosh XL (running Lisa or Macintosh software).

Once a ProFile has been formatted by Lisa software, it will not be able to work any longer on an Apple II or III.

ProFiles don’t need any special software to function with these systems other than the respective system formatters which accompany each system’s operating system utilities, regardless of what system it was used on previously.

NOTES:

1. The Pascal ProFile Manager will not format a ProFile; the ProFile must already be formatted with ProDOS.

2. If you’re unable to initialize a Profile for use with an Apple II or Apple III after it’s been used with a Macintosh XL, check with a Level II service center: the ProFile may need reformatting.

Article Change History:
18 Oct 1994 - Reviewed for technical accuracy, revised formatting.

Support Information Services
Copyright 1988-94, Apple Computer, Inc.
Keywords:
Quality Computers

P.O. Box 665
St. Clair Shores, MI 48080-0665

Phone: 800-890-8263
       313-774-7740

Fax: 313-774-2698

Company Profile:

Specializing in software, accessories, and support for the Apple II family. Publications include "II alive", a magazine devoted to the Apple II, and a magazine and catalog for educators, called "Enhance".

Copyright 1993-94, Apple Computer, Inc

Keywords:  3pty
Description: Quark QC Hard Disk: Specifications (Discontinued)
Header: Quark QC Hard Disk: Specifications (Discontinued)

This article last reviewed: 15 January 1988

Performance
Capacity 10.3 & 21.0 Megabytes Formatted
Access Time
Track to Track 16.4 mSec
Average 85 mSec
maximum 175 mSec
Average Latency 8.37 mSec
Startup time (typical) 12 Sec

Functional
Rotational Speed 3600 RPM
Recording Density 9036 & 9827 BPI
Track Density 360 & 588 TPI
Cylinders 306
Read/Write Heads 4
Disks 2

Domestic Power Supply 115 VAC 60Hz 0.45 Amps.
European Power Supply 230 VAC 50Hz <0.25 Amps.

Environmental Limits
Ambient Temperature
Operating +50 to +115 Degrees F
+10 to +46 Degrees C
Non-Operating -40 to +140 Degrees F
-40 to +60 Degrees C
Relative Humidity
Operating 8% to 80% non-condensing
Non-Operating 1% to 95%
Altitude Limit 10,000 ft (3048m) above sea level.
Shock Non Operating 30g Maximum

Dimensions
Height 3.85 in (97.79mm)
Width 14.5 in (368.3mm)
Depth 8.5 in (215.9mm)
Weight 11.0 lbs (approx. 50 kg)

Performance Comparison
Data based on reading (2000 blocks QC, 200 blocks DiskII, 800 blocks Macintosh 400K internal drive) in sequence from the disks.
Apple IIc
Internal disk drive 16.4 blocks per second
QC hard disk 25.7 blocks per second
Apple II and III
Disk II, III and Duodisk 16.4 blocks per second
Profile 41.3 blocks per second
QC hard disk 55.6 blocks per second
Macintosh 2.0 System
Macintosh 400K 29 blocks per second
QC hard disk 45 blocks per second

NOTE: Apple Computer, Inc. is not responsible for the contents of this article.
Quark Technical Support
Description: Queue, Inc.
Header: Queue, Inc.

Article Created:
Article Reviewed/Updated: 16 July 1993

Queue, Inc.
-------------

338 Commerce Dr.
Fairfield, CT 06430

203-335-0908

800-232-2224

Fax: 203-336-2481

Company Profile:
Queue, Inc., software, specializing in educational programs for the Macintosh, Apple II and IBM PCs.
Copyright 1989-93, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL369.TXT
QuickFile III and QuickFile IIe can share the same files if you format your data diskettes with QuickFile IIe or the Apple II Pascal system. Both QuickFile IIe at home and QuickFile III at the office will recognize the disk.

Apple Technical Communications

Keywords:

## END OF FILE A2TIL370.TXT
I am trying to read ProDOS disks from my Apple II on my Power Macintosh, but I am getting the message, "This disk is Unreadable, do you want to initialize?". I thought that my Power Macintosh floppy drive is supposed to be able to read ProDOS disks. How can I read these disks?

Power Macintosh users that would like to read ProDOS disks have the following solutions:

1) Install Macintosh PC Exchange 2.0 or later.

Macintosh PC Exchange software version 1.0.4 or 1.0.5 was included with System Software 7.1.2 for Power Macintosh. Macintosh PC Exchange allows users to easily read, write, and format PC-compatible disks. However, these versions of Macintosh PC Exchange do NOT allow users to read, write, or format ProDOS disks. In June, 1994, Apple announced Macintosh PC Exchange 2.0. In addition to formatting, reading, and writing DOS, and OS/2 disks, Macintosh PC Exchange 2.0 can format and use DOS formatted SCSI hard disks and removable media, such as Bernoulli and SyQuest cartridges and floptical drives. It can also format and use Apple II ProDOS floppy disks.

2) Upgrade to Macintosh System Software 7.5.

When System Software 7.5 was announced in July, 1994, Macintosh PC Exchange 2.0 was integrated into the system software.

3) Apple File Exchange Utility version 7.0.

Macintosh users have been able to read DOS and ProDOS disks using the Apple File Exchange utility since Macintosh System Software 6.0 shipped in 1988. Apple File Exchange has been part of the Macintosh System Software through System 7 Pro. Since Macintosh PC Exchange 2.0 provides users the ability to read, write and format PC-compatible and ProDOS disks, Apple has discontinued development of Apple File Exchange. Although Apple File Exchange 7.0 may work with the Power Macintosh series, it was not fully tested by Apple and is therefore not supported on PowerPC processor based Macintosh systems.
### FILE: A2TIL372.TXT

Description: Redmond Cable Corporation (5/93)
Header: Redmond Cable Corporation (5/93)

Article Created: 6 May 1993
Article Reviewed/Updated: 16 July 1993

Redmond Cable Corporation

17371 NE 67th Ct Ste 81
Suite A1
Redmond, WA 98052

206-882-2009
206- 883-1430 Fax

Company Profile:
Specializing in Apple II, Macintosh, and custom cables.

Copyright 1993, Apple Computer, Inc
Keywords: 3PTY

### END OF FILE A2TIL372.TXT
Description: Roger Wagner Publishing, Inc.
Header: Roger Wagner Publishing, Inc.

Article Created: 27 March 1990
Article Reviewed/Updated: 26 February 1996

Roger Wagner Publishing, Inc.

1050 Pioneer Way
Suite P
El Cajon, CA 92020

Technical Support: 619-442-0522
Sales & General Information: 800-HYPERSTUDIO
Fax: 619-442-0525

Internet Address: RWAGNERINC@AOL.COM

Special Information for Schools: 800-448-4797

Company Profile:
Software, specializing in Apple II family products and hypermedia.
Copyright 1990-96, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL374.TXT
School Office Software Systems, hardware and software, specializing in phone-dialing products for the Apple II family.

School Office Software Systems
3408 Dover Road
Durham, NC 27707
919-493-3366
800-368-4162
Keywords: 3PTY
I. Technical Specifications

A. Print Speed:
1. Letter mode: 50 cps at 10 cpi
2. Draft mode: 80 cps at 10 cpi
3. Speed selection
   a. front-panel switch
   b. software command

B. Print Method: Non-impact matrix printer

C. Character Format:
1. Letter Mode: 12(H) x 15(V) matrix alphanumerics and symbols
2. Draft Mode: 9(H) x 14(V) matrix alphanumerics and symbols
3. Superscripts/Subscripts: 9(H) x 14(V) matrix

D. Character Set:
1. 96 ASCII characters
2. 24 European characters

E. Character Pitch:
1. Letter mode: 10 cpi
2. Draft mode:
   a. 10 cpi
   b. 17 cpi

F. Line Spacing: 6 lpi (line per inch) plus n/144 in.

G. Line-Feed Rate:
1. 100 msec (at 6 lpi)
2. 180 msec for manual line feed

H. Graphics Densities: Variable
   -- Maximum dots Per Lines: 1280

I. Resolution: Up to 160 by 144 dots per inch

J. Paper:
1. Width: 3.5 in. to 10 in. max
2. Thickness: .003 in. to .07 in. (equivalent to 15 to 25 bond)
3. Formats:
   a. single cut sheet
   b. fanfold continuous
   c. paperback transparencies
   d. mailing labels
      -- adjustable pin-feed tractors for labels
4. Supply: Compact paper supply tray fits under printer

K. Ribbon:
1. Type: single-pass, disposable cassette
2. Colors: black or three color
3. Life: 85,000 characters (average 40-50 pages)

L. Interface:
1. Type: RS-232-C (serial)
2. Buffer: 1 line, current print mode
3. Baud Rate: 1200 or 9600
4. Apple systems:
   a. Apple II
   b. Apple II Plus
   c. Apple IIe
   d. Apple IIc

M. Electrical:
1. Input Power:
   a. 115 V 60 Hz
   b. 230 V 50 Hz
2. Power Consumption:
   a. Standby: 20 Watts maximum
   b. Printing: 60 Watts maximum

N. Physical Dimensions
1. Width: 14.5 in.
2. Height: 6.12 in. (with paper tray)
3. Depth: 12.4 in.

O. Environmental:
1. Storage Temperatures: -4 to 104 degrees F (-20 to 40 degrees C)
2. Storage Humidity: 20 to 80%

II. Features:
A. Cable and power cord connect to the side of the Scribe, well out of the paper path.

Copyright 1986, 1992, Apple Computer, Inc.
Keywords: SPECSHT

### END OF FILE A2TIL376.TXT
This article pertains to the interleave of Apple external SCSI hard drives of all sizes.

To initialize a SCSI hard disk drive you want to use on a Macintosh:

1. Always use Apple HD SC Setup.

2. Always initialize from the type of Macintosh the drive will be connected to. For example, if you wish to connect a Apple HD40 SC to a Macintosh Plus, initialize that hard disk with a Macintosh Plus.

If you want more than one type of Macintosh to access the SCSI hard disk, always initialize it from the slowest system for the best average performance. You must do this because, with Apple HD SC Setup, different types of Macintosh computers require a SCSI hard disk with a different interleave.

<table>
<thead>
<tr>
<th>Computer</th>
<th>Interleave</th>
<th>relative speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macintosh II and later</td>
<td>1:1</td>
<td>fast</td>
</tr>
<tr>
<td>Macintosh SE</td>
<td>2:1</td>
<td>medium</td>
</tr>
<tr>
<td>Macintosh Plus</td>
<td>3:1</td>
<td>slow</td>
</tr>
<tr>
<td>Apple II</td>
<td>3:1</td>
<td>slow</td>
</tr>
</tbody>
</table>

Interleave is the ratio of consecutive sectors a CPU can read from or write to. This means that a Macintosh II is fast enough to read from or write to every consecutive sector, a Macintosh SE can only read every other sector, and the Macintosh Plus is only fast enough to read one in every three sectors. An Apple II also has an interleave of 3:1. The Apple II can support a 3:1 interleave because the SCSI card has a 8K RAM buffer enabling it to buffer data until the CPU is ready for it.

Delays occur when you connect a "slower" Macintosh to a hard disk initialized on a "faster" Macintosh. For example, a hard disk initialized from a Macintosh II has more data on every consecutive sector than a Macintosh Plus can consecutively read, necessitating a full revolution of the platter before the Macintosh Plus can access the sectors it knows it missed. There's a delay of the revolution of only one or two sectors when a "fast" Macintosh accesses a hard disk initialized from a "slower" Macintosh.

For the change in interleave ratio between the Macintosh Plus and the Macintosh SE, there are three reasons: improved performance, hardware handshaking, and changes in SCSI firmware. First, the Macintosh SE performs more quickly, even though it uses the Macintosh Plus' 68000 processor running at the same speed. The Macintosh SE has a change in hardware design that allows the video circuitry 1 long word access to the RAM for every 3 made by the processor, as opposed to the 1 video access for every 1 made by the processor on previous Macintoshes. Next, hardware handshaking was implemented, allowing cleaner and faster communication between the Macintosh.
SE and the drive. Finally, the SCSI firmware was cleaned up and optimized for the SE. Previous bugs and patches caused the SCSI driver to not perform as quickly as it should.

Article Change History:
09 Nov 1994 — Reviewed for technical accuracy, revised formatting.

Support Information Services
Copyright 1990–94 Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL377.TXT
Shreve Systems
1200 Marshall Street
Shreveport, LA 71101

318-424-9791

800-227-3971

Fax: 318-424-9771

Company Profile:
Specializing in Apple II hardware such as power supplies, logic boards, and cases.

Copyright 1993, Apple Computer, Inc

Keywords: 3PTY
So What Software

10211 Slater Ave.
Suite 102
Fountain Valley, CA 92708

714-963-3392
714-964-4298 Fax

AppleLink: D1462

Company Profile:
Software, specializing in tools for the Apple II familyline.
Copyright 1989-93, Apple Computer, Inc.
Keywords: 3PTY
Description: SoftCard III (CP/M): Moving Files from Apple II CP/M

Application software often uses direct cursor addressing, enabling you to access specific portions of your display screen. Since a variety of computers use CP/M software, the program diskette itself, or an accompanying utility diskette, often contains a menu allowing you to conveniently configure the software for your system. The item you select from the menu informs the system to send the appropriate command to your system to achieve the desired screen effect.

Many CP/M programs for sale work with the Apple II CP/M systems; however, since the Apple III is a relative newcomer to the CP/M world, applications may have to be formatted to operate with it. To format an Apple II CP/M program onto an Apple III diskette:

1. Boot with the Apple III "CP/M Master" Diskette.
2. When you see the prompt A>: type "COPY".
3. When the copy program prompts you with a "*": remove the Master Diskette from your disk drive: insert the Apple II diskette.
4. Place a blank diskette into drive 2.
5. Next type: "B:=A:/S/V".
6. When advised that the operation is complete, and asked if you want another operation: insert the Apple III CP/M Master Diskette into drive 1: type "N".
7. When you see the input prompt A>: type "PIP".
8. Upon prompted with a "*": type "B:DRIVER.SOS=A:". (This will transfer a copy of the driver file to the new diskette).

The resultant copy will be an Apple III system diskette containing all the Apple II files.

Keywords:

### END OF FILE A2TIL380.TXT
Description: Softcard III: Diskette compatibility with Apple II CP/M

The diskette organization used in the Apple II Softcard CP/M and the Apple III Softcard CP/M are identical. This means that files generated on either system is readable by the other. However, the Softcard III CP/M System File does not work correctly on an Apple II, and visa-versa.

Some programs were designed with specific hardware in mind and may not work correctly on the Apple III. Several examples are MBASIC, GBASIC, and FORTRAN supplied by Microsoft.

Apple Tech Notes

Keywords:

### END OF FILE A2TIL381.TXT
Description: Southern California Research Group
Header: Southern California Research Group

Article Created: 26 January 1988
Article Reviewed/Updated: 19 July 1993

Southern California Research Group
----------------------------------

P. O. Box 593
Moorpark, CA  93020

805-529-2082

Company Profile:
Hardware, specializing primarily in Apple II adapters and connectors.
Copyright 1988-93, Apple Computer, Inc.
Keywords:  3PTY

### END OF FILE A2TIL383.TXT
Description: Sun Remarketing, Inc. (11/96)
Header: Sun Remarketing, Inc. (11/96)

Article Created: 29 September 1987
Article Reviewed/Updated: 15 November 1996

Sun Remarketing
---------------
P.O. Box 4059
Logan, UT 84323-4059
801-755-3300
800-821-3221 (Sales, Ordering & Product Info)
1-900-SUN-SRVC (Out of warranty technical support)
Fax: 801-755-3360
AppleLink: SUNREM

Internet: WWW URL: http://www.sunrem.com

Company Profile:
Hardware, software, and manuals. Sun Remarketing specializes in the sale,
service, and support of current and obsolete Apple* and Macintosh products.
Sun Remarketing sales and support many third-party software and hardware
solutions for the Apple* and Macintosh products.

*Apple products include Apple ///, Apple II, Apple IIe, and Apple IIc.
Copyright 1990-96, Apple Computer, Inc.
Keywords: 3pty

### END OF FILE A2TIL384.TXT
Description: Super Serial Card: Accessing it through Machine Language
Header: Super Serial Card: Accessing it through Machine Language

Although Apple's Super Serial Card can be used from Applesoft Basic, it is often desirable to use machine language to increase the speed with which characters are sent and received. The assembler program below illustrates a method of communicating with another Apple computer through the Super Serial Card. You may use this routine as a starting point for your own program.

On page 291 of the Apple IIe Reference manual and on pages 261 to 265 of the Apple IIc Reference Manual there are lists of the registers and entry points used by routines resident in the Super Serial Card. The equates in the program below use these locations, as well as input/output hooks found in the Apple II family of computers.

The initialization routine (INIT) stores the address of the Super Serial Card's initialization routine in CSW (the Apple II monitor character output hook). This activates the card for output by jumping to COUT. Following this, DOS or Prodos hooks are reinstalled.

The OUTPUT routine checks the 6551 status port bit 4. If this is equal to zero, the previous character has not yet been sent, so we must check the status byte again until that register is clear. When the value in bit 4 becomes one, the 6551 is ready to send another character. To accomplish this, simply store the data in the transmit register (TDREG) of the chip.

Bit 3 of the status port is checked by the INPUT routine. If this bit is zero, the program either loops continuously or returns to the calling program, depending on the state of the return flag found in location $FF. If bit 3 is one, a character is waiting at the input port, and the character is then read from the read register (RDREG) of the 6551.

The DEMO portion of this program calls the INIT routine, and sends each letter of the alphabet to the connected device. After each character is sent, the program waits to see if a response has been received from the external device. If a character is waiting, the program ends.

```asm
11 ORG $2000
12 COUT EQU $FDED ; CHARACTER OUT IN MONITOR
13 CSWL EQU $36 ; OUTPUT HOOK
14 CSWH EQU $37
15 WAIT EQU $FCA8 ; MONITOR ROUTINE TO WAIT
16 ;
17 ; SSC EQUATES
18 ;
19 DIPSW1 EQU $C081 ; +NO DIPSWITCH BLOCK 1
20 DIPSW2 EQU $C082 ; +NO DIPSWITCH BLOCK 2
21 TDREG EQU $C088 ; +NO 6551 DATA REGISTER
22 RDREG EQU $C088 ; +NO 6551 DATA REGISTER
23 STATUS EQU $C089 ; +NO 6551 STATUS REGISTER
24 RESET EQU $C089 ; +NO 6551 SOFTWARE RESET
25 COMMAND EQU $C08A ; +NO 6551 COMMAND REG
26 CONTROL EQU $C08B ; +NO 6551 CONTROL REG
27 ;
28 START JMP DEMO ; SKIP AROUND ALL THE SUBROUTINES
29 ;
```
APPLE II COMPUTER TECHNICAL INFORMATION

; USE THE SSC FIRMWARE TO INITIALIZE THE 6551.

; INIT
30 LDA CSWL ; STORE THE CURRENT CSW
31 PHA ; SO THAT WE DO NOT DISCONNECT
32 LDA CSWH ; DOS OR PRODOS
33 PHA
34 LDA #$00 ; STORE $Cs00 IN CSW
35 STA CSWL
36 STX CSWH ; THIS ALREADY CONTAINS $Cs
37 LDA #$00
38 JSR COUT ; JUMP TO COUT TO INIT THE CARD
39 PLA
40 STA CSWH ; RESTORE THE DOS OR PRODOS
41 PLA ; HOOKS AND THEN RETURN
42 STA CSWL
43 RTS
44
45 ; OUTPUT A CHARACTER TO 6551
46
47 OUT PHA ; STORE DATA ON STACK
48 ;
49 OLP LDA STATUS,Y ; CHECK BIT 4 OF STATUS BYTE
50 AND #$10 ; TO SEE IF IT'S OK TO SEND
51 BEQ OLP ; CHARACTER WAITING TO GO OUT
52 PLA
53 STA RDREG,Y
54 RTS
55
56 ; INPUT A CHARACTER FROM 6551
57 ;
58 IN LDA STATUS,Y
59 AND #$08 ; BIT 3 OF STATUS
60 BEQ INTST ; NO CHAR WAITING TO BE RECEIVED
61 LDA RDREG,Y ; GET THE INPUT FROM 6551
62 RTS
63
64 INTST LDA $FF ; CHECK RETURN FLAG
65 BNE IN ; IF NOT 0 THEN WAIT FOR INPUT
66 RTS ; IF ZERO, DON'T WAIT
67
68 ; BEGIN THE DEMO PROGRAM
69 ;
70 DEMO LDY #$10 ; Y CONTAINS $s0 - DEMO USES SLOT 1
71 LDX #$c1 ; LOAD X WITH $Cs
72 JSR INIT ; INIT THE CARD
73 LDA #$ff ; SET RETURN FLAG FOR INPUT
74 STA $ff ; FF MEANS WAIT FOR CHAR
75 JSR IN ; INPUT A CHARACTER - SEE ABOVE
76 OLOOP LDX #$41 ; OUTPUT THE ASCII CODES
77 OLP1 TXA ; FROM A-Z TO THE SSC. IT WILL STOP
78 JSR OUT ; WHEN THE SSC RECEIVES A CHAR.
79 LDA #$80 ; DELAY BETWEEN CHARACTERS
80 JSR WAIT ; TO ALLOW TIME FOR INPUT.
81 LDA #$00
82 STA $ff ; RETURN IF NO CHAR WAITING
83 JSR IN ; CHECK FOR A CHARACTER
84 BNE ALLDONE ; THEY SENT SOMETHING - WE END
85 INX
86 CPX #$5b ; THE LETTER 'Z'
87 BNE OLP1
88 LDA #$0d
89 JSR OUT ; SEND A CARRIAGE RETURN
90 JMP OLOOP ; BEGIN THE ALPHABET AGAIN
91 ALLDONE RTS ; END ROUTINE

Keywords:
This article describes the Super Serial Interface Card.

Overview
--------
The Apple II Super Serial Card provides a configurable RS 232 interface, allowing an Apple II, Apple II Plus, or Apple IIe computer to exchange data with other computers, modems, printers, terminals, and accessories employing a bidirectional RS-232-C interface in serial format (one bit at a time).

The Super Serial Card features an on-board switch allowing the operation of a printer, modem, or other serial device. This switch also eliminates the need for special connection cables such as modem eliminators.

System Requirements
-------------------
To use the Apple II Super Serial Card, you need:
* an Apple II, Apple II Plus, or Apple IIe computer system with an available expansion slot; and
* a printer, modem, or other serial device.

Technical Specifications
------------------------
* Single Level: EIA RS-232-C
* Connector Type: DB-25 socket
* On-Board ROM: 2K x 8 bit (2316 or equivalent)
* ACIA: 6551 or equivalent
* Baud Rate Selection: via on-board DIP switches (default) or via software commands
* Data word format: 1 start bit, 1 or 2 stop bits, 7 or 8 data bits; odd, even, or no parity
* Available baud rates: 50, 79, 110, 134.6, 150, 300, 600, 1200, 1800, 2400, 3400, 9600, 19200
* RS-232-C Signals Supported: RTS (Request to Send), CTS (Clear to Send), DTR (Data Terminal Ready), DSR (Data Set Ready), DCD (Data Carrier Detect), RXD (Receive Data), TXD (Transmit Data), (SG) Signal Ground.

Internal Cable Pinout
---------------------
<table>
<thead>
<tr>
<th>10 Pin</th>
<th>25 Pin</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>pin 1</td>
<td>pin 1</td>
<td>Frame Ground</td>
</tr>
<tr>
<td>pin 2</td>
<td>pin 2</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>pin 3</td>
<td>pin 3</td>
<td>Receive Data</td>
</tr>
<tr>
<td>pin 4</td>
<td>pin 4</td>
<td>Request to Send (RTS)</td>
</tr>
<tr>
<td>pin 5</td>
<td>pin 5</td>
<td>Clear to Send (CTS)</td>
</tr>
<tr>
<td>pin 6</td>
<td>pin 6</td>
<td>Data Set Ready (DSR)</td>
</tr>
<tr>
<td>pin 7</td>
<td>pin 19</td>
<td>Secondary CTS</td>
</tr>
</tbody>
</table>
APPLE II COMPUTER TECHNICAL INFORMATION

pin 8     pin 7     Signal Ground
pin 9     pin 20    Data Terminal Ready
pin 10    pin 8     Data Carrier Detect

Pin Explanation
---------------
FRAME GROUND: Provides electrical connection to give both devices connected a common frame ground. Usually tied to Signal Ground inside the cabinet of one of the devices.

TRANSMIT DATA: This pin conveys serial data sent from the Super Serial card. This is one of the pins that may need to be crossed over if the peripheral device is a DTE. The MODEM/TERM plug can perform this crossover.

RECEIVE DATA: This pin receives serial data sent from the device the Super Serial card connects the computer to. This is one of the pins that may need to be crossed over if the peripheral device is a DTE. The MODEM/TERM plug can perform this crossover.

REQUEST TO SEND (RTS): This signal is used by the computer to ask the peripheral device if it is ready to receive computer data. Often a device such as a printer will ignore this signal (will not have a pin connected to it) because the signals primary use is to control half duplex modems.

CLEAR TO SEND (CTS): This pin receives the peripheral's ready to receive data response to an RTS from the computer. Again this pin is used most often by modems.

DATA SET READY (DSR): This pin receives the signal generated by the peripheral that indicates that the peripheral is turned on and ready to communicate. This is one of the pins that may need to be crossed over if the peripheral device is a DTE. The MODEM/TERM plug can perform this crossover.

SECONDARY CTS: Some modems can transmit and receive on two channels (that is two separate communications on the same line). The Secondary CTS pin would be used to receive the peripheral’s ready to receive data response to an RTS for the second channel from the computer.

SIGNAL GROUND: When this pin is connected between two RS232 devices it provides a common electrical level that the devices can reference the RS232 signals to.

DATA TERMINAL READY: This pin becomes active when the computer and SSC are ready to go on line. This is one of the pins that may need to be crossed over if the peripheral device is a DTE. The MODEM/TERM plug can perform this crossover. Also this pin can be used for flow control protocol handshaking.

DATA CARRIER DETECT: This pin receives the signal generated by a modem when it senses a carrier on the telephone line. The SSC would then respond by telling the computer that data was going to be coming from the modem.

Jumper Block
------------
The jumper block has two positions, Terminal and Modem. The jumper block eliminates the need for special connection cables such as modem eliminators.

Switches
--------
The fourteen switches, split into two banks named SW1 and SW2, are diagonally opposite the slot contacts. Holding the card so that the switches are at the top left, the two banks are arranged like this:

SW1 1 2 3 4 5 6 7    SW2 1 2 3 4 5 6 7
The markings SW1, SW2, ON, and OFF may not appear exactly as shown. If the lever on a switch is pointing towards the top of the card, the switch's contact is closed and the switch is ON. Use a sharp but soft point, like a pencil point, to move the levers.

Switch 1

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>SW1</th>
<th>SW2</th>
<th>SW3</th>
<th>SW4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>75</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>110</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>135</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>150</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>300</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>600</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>1200</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>1800</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2400</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>3600</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>4800</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>7200</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>9600</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>19200</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

Switch 2

<table>
<thead>
<tr>
<th>Auto linefeed after CR:</th>
<th>5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>On</td>
</tr>
<tr>
<td>Disabled</td>
<td>Off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passage of interrupts from ACIA to CPU:</th>
<th>5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>On</td>
</tr>
<tr>
<td>Disabled</td>
<td>Off</td>
</tr>
</tbody>
</table>

Mode Switches
-------------

The setting of the Mode switches (SW1 5 and 6) determines the function of the remaining switches in one of two modes, Communications mode or Printer Mode. Printer Mode includes two modes for printer PROM emulation.

Switch 1

<table>
<thead>
<tr>
<th>Mode:</th>
<th>5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Communications Mode
-------------------

The remaining switches have the following functions:

Switches SW1-7 and SW2-7

<table>
<thead>
<tr>
<th>Protocol:</th>
<th>SW1 7</th>
<th>SW2 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232C</td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

Switches SW2-1, SW2-2, SW2-3, SW2-4

<table>
<thead>
<tr>
<th>Data format:</th>
<th>SW2 1 2 3 4</th>
</tr>
</thead>
</table>
APPLE II COMPUTER TECHNICAL INFORMATION

8 data/1 stop  On  On
7 data/1 stop  On  Off
8 data/2 stop  Off  On
7 data/2 stop  Off  Off

Parity:
None  N/A  On
Odd   On  Off
Even  Off  Off

Printer and Printer PROM Emulation Mode
---------------------------------------------------------------
The remaining switches have the following functions:

Switches SW1-7 and SW2-7

<table>
<thead>
<tr>
<th>Protocol:</th>
<th>SW1</th>
<th>7</th>
<th>SW2</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Clear to Send (RS-232C)</td>
<td>On</td>
<td></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Secondary Clear to Send</td>
<td>Off</td>
<td></td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

Switches SW2-1, SW2-2, SW2-3, SW2-4

<table>
<thead>
<tr>
<th>SW2 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data format:

<table>
<thead>
<tr>
<th>8 data/1 stop</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 data/2 stop</td>
<td>Off</td>
</tr>
</tbody>
</table>

Delay after carriage return:

<table>
<thead>
<tr>
<th>32 milliseconds</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Off</td>
</tr>
</tbody>
</table>

Line Width (Printer mode has no parity):

<table>
<thead>
<tr>
<th>40</th>
<th>On</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>80</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>132</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

Important Information

There is a problem with using the Super Serial Card (SSC) terminal firmware at 1200 baud on an unenhanced IIe. The IIe 80-column card can't keep up with the data stream and eventually loses characters. Avoid this problem with faster, more sophisticated programs that can handle interrupts, such as Access II or third party terminal software. The proper terminal software also will allow use of the Extended Text Card with a modem at 1200 baud.

Article Change History:
16 Dec 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1991-96, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL386.TXT
This article describes assembly language addressing methods for the 6502 and 6551 microprocessors through the Super Serial Card.

DISCUSSION

The 6502 does a false read to the current page. This is inherent in the 6502 design. A false read occurs during a read to memory. The 6502 will hold the target address + 1 line open after it accesses the target address. This does not alter the contents of the address but can affect a memory-mapped I/O device that is toggled by the address line.

The false read does not affect the Super Serial Card as none of the card’s functions are set when the address line is held open by the false read. However, for good programming to an I/O device, where false reads could toggle a function, you should use the indirect indexed-addressing mode with the address for your indirect accesses in the zero page.

The following example is available in the Tech Info Library and uses the absolute, indirect-addressing method; it has been modified here as an example of indirect, indexed-addressing. The program uses zero-page addresses $FA and $FB, because these are generally unused by both DOS and BASIC. See pages 74 and 75 of the "Apple II Reference Manual" for a map of the zero-page locations.

Super Serial Card: Accessing It Through Machine Language

Although Apple's Super Serial Card can be used from Applesoft BASIC, it is often desirable to use machine language to increase the speed with which characters are sent and received. The assembler program below illustrates a method of communicating with another computer through the Super Serial Card. You may use this routine as a starting point for your own program.

On page 291 of the "Apple IIe Reference Manual" and on pages 261 to 265 of the Apple IIc Reference Manual, there are lists of the registers and entry points used by routines resident in the Super Serial Card. The equates in the program below use these locations, as well as input/output hooks found in the Apple II family of computers.

The initialization routine (INIT) stores the address of the Super Serial Card’s initialization routine in CSW (the Apple II monitor character output hook). This activates the card for output by jumping to COUT. Following this, DOS or ProDOS hooks are reinstalled.

The OUTput routine checks the 6551 status port bit 4. If this is equal to zero, the previous character has not yet been sent, so we must check the status byte again until that register is clear. When the value in bit 4 becomes one, the 6551 is ready to send another character. To do this, store the data in the transmit register (TDREG) of the chip.

Bit 3 of the status port is checked by the INput routine. If this bit is zero, the program either loops continuously or returns to the calling program, depending on the state of the return flag found in location $FF. If bit 3 is one, a character is waiting at the input port, and the character is
then read from the read register (RDREG) of the 6551.

The DEMO portion of this program calls the INIT routine, and sends each letter of the alphabet to the connected device. After each character is sent, the program waits to see if a response has been received from the external device. If a character is waiting, the program ends.

Assembly Language Source Code Demo

Here is a demo of accessing the Super Serial Card with Assembly Language.

```
ORG $2000
COUT EQU $FDED ; CHARACTER OUT IN MONITOR
CSWL EQU $36 ; OUTPUT HOOK
CSWH EQU $37
WAIT EQU $FCA8 ; MONITOR ROUTINE TO WAIT
BASELO EQU $FA ; ZERO PAGE INDEX ADDRESS FOR INDIRECT ADDRESSING
BASEHI EQU $FB ; THE TARGET ADDRESS IS STORED IN FA AND FB
IO EQU $C0 ; IO PAGE HIBYTE ADDRESS THIS GOES IN BASEHI
;
; SSC EQUATES
;
DIPSW1 EQU $81 ; +N0 DIPSWITCH BLOCK 1
DIPSW2 EQU $82 ; +N0 DIPSWITCH BLOCK 2
TDREG EQU $88 ; +N0 6551 DATA REGISTER
RDREG EQU $88 ; +N0 6551 DATA REGISTER
STATUS EQU $89 ; +N0 6551 STATUS REGISTER
RESET EQU $89 ; +N0 6551 SOFTWARE RESET
COMMAND EQU $8A ; +N0 6551 COMMAND REG
CONTROL EQU $8B ; +N0 6551 CONTROL REG
;
START JMP DEMO ; SKIP AROUND ALL THE SUBROUTINES
;
; USE THE SSC FIRMWARE TO INITIALIZE THE 6551.
;
INIT LDA CSWL ; STORE THE CURRENT CSW
PHA ; SO THAT WE DO NOT DISCONNECT
LDA CSWH ; DOS OR ProDOS
PHA
LDA #$00 ; STORE $Cs00 IN CSW
STA CSWL
STX CSWH ; THIS ALREADY CONTAINS $Cs
LDA #$00
JSR COUT ; JUMP TO COUT TO INIT THE CARD
PLA
STA CSWH ; RESTORE THE DOS OR ProDOS
PLA ; HOOKS AND THEN RETURN
STA CSWL
RTS
;
; OUTPUT A CHARACTER TO 6551
;
OUT PHA ; STORE DATA ON STACK
LDA #STATUS ; GET THE STATUS ADDRESS
STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
OLP LDA (BASELO),Y ; CHECK BIT 4 OF STATUS BYTE
AND #$10 ; TO SEE IF IT'S OK TO SEND
BEQ OLP ; CHARACTER WAITING TO GO OUT
LDA #TDREG ; ADDRESS FOR TRANSMIT
STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
PLA ; GET DATA BACK FROM STACK
STA (BASELO),Y ; AND OUTPUT THE CHARACTER
```
APPLE II COMPUTER TECHNICAL INFORMATION

RTS

; INPUT A CHARACTER FROM 6551

IN LDA #STATUS ; GET THE STATUS ADDRESS
STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
LDA (BASELO),Y ; CHECK STATUS
AND #$08 ; BIT 3 OF STATUS
BEQ INTST ; NO CHAR WAITING TO BE RECEIVED
LDA #RDREG ; GET THE READ ADDRESS
STA BASELO ; SET UP THE INDIRECT INDEXED ACCESS
LDA (BASELO),Y ; GET THE INPUT FROM 6551
RTS

INTST LDA $FF ; CHECK RETURN FLAG
BNE IN ; IF NOT 0 THEN WAIT FOR INPUT
RTS ; IF ZERO, DON'T WAIT

; BEGIN THE DEMO PROGRAM

DEMO LDY #$10 ; Y CONTAINS $a0 - DEMO USES SLOT 1
LDX #$C1 ; LOAD X WITH $Cs
JSR INIT ; INIT THE CARD
LDA #IO ; HIBYTE ADDRESS C0 FOR IO ACCESS
STA BASEHI ; STORE IT IN ZERO PAGE AS HIBYTE OF ADDRESS
LDA #$FF ; SET RETURN FLAG FOR INPUT
STA #$FF ; FF MEANS WAIT FOR CHAR
JSR IN ; INPUT A CHARACTER - SEE ABOVE
OLoop LDX #$41 ; OUTPUT THE ASCII CODES
OLP1 TXA ; FROM A-Z TO THE SSC. IT WILL STOP
JSR OUT ; WHEN THE SSC RECEIVES A CHAR.
LDA #$80 ; DELAY BETWEEN CHARACTERS
JSR WAIT ; TO ALLOW TIME FOR INPUT.
LDA #$00
STA #$FF ; RETURN IF NO CHARS WAITING
JSR IN ; CHECK FOR A CHARACTER
BNE ALLDONE ; THEY SENT SOMETHING - WE END
INX
CPX #$5B ; THE LETTER 'Z'
BNE OLP1
LDA #$0D
JSR OUT ; SEND A CARRIAGE RETURN
JMP OLOOP ; BEGIN THE ALPHABET AGAIN
ALLDONE RTS ; END ROUTINE

Article Change History:
16 Dec 1996 - Reviewed for technical accuracy, revised formatting.
Copyright 1989-96, Apple Computer, Inc.
Keywords:

### END OF FILE A2TIL387.TXT
Description: System 7 Pro: Read Me Incorrect About Apple IIe Card SW (10/93)
Header: System 7 Pro: Read Me Incorrect About Apple IIe Card SW (10/93)

Article Created: 20 October 1993

TOPIC -----------------------------------------------------------

The information about how to obtain Apple IIe Card Software in the Read Me file for System 7 Pro is incorrect. This article explains the best ways to obtain this software.

DISCUSSION ------------------------------------------------------

The Read Me file that is installed when updating to System 7 Pro reads as follows:

"APPLE IIe CARD SOFTWARE FOR THE MACINTOSH LC II

To use the Apple IIe Card with System 7 Pro on a Macintosh LC II, you need version 2.2 of Apple IIe Card Software. You should upgrade to version 2.2 only if you are using your LC II with System 7 Pro. Apple IIe Card Software 2.2 may also be used with the original Macintosh LC, but it is not required.

You can obtain the upgrade package from an authorized Apple Reseller. In the United States, you can call the Apple Customer Assistance Center at 1-800-776-2333 to request Apple IIe Card Software version 2.2. The new software is also available on AppleLink (AppleLink path: Apple Products: Apple II: Apple II Product Information: Apple IIe Card)."

These instructions aren't correct.

Contact an Apple Reseller to purchase the IIe software update, or download it from AppleLink. You can call the Apple Referral Center at 1-800-538-9696 to locate a reseller near you to purchase Apple part M1222LL/C, Apple IIe card Software Update.

Apple IIe Card (2.2.1) software is available for customers on AppleLink using the following path:

Software Sampler
Apple SW Updates
    Macintosh
        Peripheral Software
            Apple IIe Card (2.2.1)

Copyright 1993, Apple Computer, Inc.
Keywords: SUPT

### END OF FILE A2TIL388.TXT
Temporal Acuity Products, Inc.

Article Created: 3 December 1988

Article Change History

11/30/92 - UPDATED
* To reflect changes in company information.

Temporal Acuity Products, Inc., software, music education: harmonic, melodic, rythmic dictation, and ear-training software for the Apple II product line.

Temporal Acuity Products, Inc.
Building 1
Suite 200
300 120th Ave. N.E.
Bellevue, WA 98005
206-462-1007
800-426-2673
Fax: 206-462-1057
AppleLink: D1089
Keywords: 3PTY
For reading data, the cassette recorder uses a more complicated input circuit consisting of a 741 operational amplifier configured as a zero crossing detector. Zero crossing detection means that whenever the voltage at the input jack goes from positive to negative (or negative to positive) the output of the amplifier switches from a 1 to a 0 (or 0 to 1). The detector is accessed by any read to address $C060. The sign bit (most significant bit) of the byte read reflects the detector status. The read routines continually EXCLUSIVE ORs this bit with the value most recently read to detect a change in state. The amount of time required to change state indicates the incoming frequency which then is used to determine if a one or a zero has been received. After detecting the first zero crossing at the start of the header, the read routine uses HEADR to generate a 3.5 delay, and then the read routine waits for the sync bit. After HEADR generates the synchronous bit, the read routine reads the data and puts it in the specified memory range.

In using the cassette interface to either read or write, all you need do is specify an address range and execute the read or write subroutine. The address range is stored in four bytes, two for the first address to be saved and two for the last to be saved. In both cases the least significant byte is first.

Commanding the cassette interface:

1. from the monitor:
   If the start is $800 and the end is $9FF, then 800.9FFW will write the data to the cassette and 800.9FFR will retrieve it.

2. from machine language:
   Again, if the start is $800 and the end is $9FF then store the address range,
   
   LDA #$00
   STA $3C starting address low
   LDA #$08
   STA $3D starting address high
   LDA #$FF
   STA $3E ending address low
   LDA #$09
   STA $3F ending address high
   JSR $FEDC write to block to tape

   The JSR $FEDC will write to the cassette; JSR $FEFD will read from the cassette.

3. from BASIC:
   First set up the address range. If S = the start and E = the end then from integer BASIC,
   
   POKE 60, S MOD 256
   POKE 61, S / 256
   POKE 62, E MOD 256
   POKE 63, E / 256

4. from APPLESOFT,
   
   POKE 60, S - INT(S / 256) * 256
   POKE 61, S / 256
POKE 62,E - INT(E / 256) * 256
POKE 63,E / 256

Then, to write out to cassette, use CALL -307; to read in from the cassette, use CALL -259.

Apple Tech Notes

Keywords:

### END OF FILE A2TIL390.TXT
Description: The Apple II Cassette Interface (1 of 2)

This note is about the cassette interface built into the Apple II and Apple II+, subroutines. An assumption made here is that the cassette recorder is in the proper mode, play or record, when the read and write routines are executed. Note also that the timing is approximate and may vary from one Apple to another.

A record is a block of binary data. This data may be a BASIC or APPLESOFT program, a machine language program, or just binary data. Records representing BASIC or APPLESOFT programs are really two records, the length of the program and the actual program. A record consists of a header, synchronous bit, the actual data, and a checksum byte for error detection.

Monitor record format

```
| HEADER | S | DATA | C |
```

BASIC program record format

```
| HEADER | S | LB | C | HEADER | S | PROGRAM | C |
```

Key:  
- S = SYNC bit
- C = CHECKSUM byte
- LB = BASIC program length

The header consists of 10 seconds of 770 Hz tone, (1 cycle equals 1300 microseconds). This gives enough time for the cassette motor to attain speed and the plastic tape leader to go by. A subroutine called HEADR generates a shortened header between the BASIC length bytes and the BASIC program itself. The length of the header tone is controlled by the value of the accumulator on entry to the subroutine. This can vary from 0.2 seconds to 40 seconds. On entry the X register should be 0 and the carry flag should be set. HEADR also generates a synchronous bit at the end of the tone. HEADR resides at hexadecimal address $FCC9, or decimal address -882.

The last cycle of header tone and SYNC bit

```
| ------ | +--------+ | ------ |
| ------ | +--------+ | ------ |
| ------ | +--------+ | ------ |
| 1300 microseconds | 200 | 250 |
| header tone | synchronous bit |
```

The synchronous bit, generated by HEADR, is one half cycle of 2500 Hz, (200 microseconds) and one half cycle of 2000 Hz, (250 microseconds). It is used to signal the end of the header tone and the start of the data.

The data is recorded on the tape with a low starting address and a high ending address. Each byte of data is shifted out most significant bit first, least significant bit last. A zero bit is made up of one cycle of 2 kHz, (250 microseconds per half cycle) and a one bit is one cycle of 1 kHz, (500 microseconds per half cycle). This works out to 2000 baud for zeros only and 1000 baud for ones, or an average of 1500 baud.
A zero bit and a one bit

+-----+     +----------+
|     |     |          |          |
|     |-----|          |----------|
+-----+-+----+----------+
 | 500 usec | 1000 usec |

The checksum byte is written on the tape at the end of the data block. All during reading or writing each data byte is EXCLUSIVE OR-ed with the checksum byte. If the checksum computed during a read agrees with the checksum that was written out, then the data is probably good. This method will detect an odd number of errors for any of the eight bits of the byte.

In writing data, the cassette output uses quite simple circuitry, a flip-flop connected through a voltage divider to the jack on the back panel of the Apple. Any time the address $C020 is accessed this flip-flop changes state. Accessing the flip-flop once every 500 microseconds generates a 1000 Hz tone.

Apple Tech Notes

Keywords:

### END OF FILE A2TIL391.TXT
Description: The ByteWorks, Inc.
Header: The ByteWorks, Inc.

Article Created: 11/06/92
Article Reviewed: 07/06/93
Article Updated:

The ByteWorks Inc.

----------------------
4700 Irving Blvd., NW, Suite 207
Albuquerque, NM 87114

(505) 898-8183

AppleLink: X0108

Company Profile:
Software, specializing in development tools for Apple II computers.
Copyright 1992-93, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL392.TXT
Description: Thirdware Computer Products
Header: Thirdware Computer Products

Article Created: 23 April 1991
Article Last Reviewed: 13 April 1992
Article Last Updated:

Thirdware Computer Products, hardware/software, specializing in Apple II graphics utility and printer interface products.

Thirdware Computer Products
3300 Corporate Ave., Building 116
Ft. Lauderdale, FL 33331
305-389-9009
800-446-5987
Fax: 305-389-9066
Copyright 1991, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL393.TXT
Description: ThunderWare
Header: ThunderWare

Article Created: 2 June 1987
Article Reviewed/Updated: 25 July 1994

ThunderWare, software and hardware, specializing in scanners and clock cards for Apple II and Macintosh.

ThunderWare
21 Orinda Way
Orinda, CA  94563
510-254-6581
800-628-0693 (Orders only)
Fax: 510-254-3047
AppleLink: D0079

Article Change History:
25 Jul 1994 - Updated order phone number.

Support Information Services
Copyright 1989-94 Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL394.TXT
Description: Tulin Technology
Header: Tulin Technology

  Article Created: 9 August 1991
  Article Reviewed/Updated: 20 July 1993

Tulin Technology

-----------------

2156H O'Toole Avenue
San Jose, CA 95131

408-432-9025
408-432-9057

Fax: 408-943-0782

Company Profile:
Hardware and software, specializing in storage subsystems for the Macintosh
and Apple II computers.
Copyright 1991-93, Apple Computer, Inc.
Keywords: 3PTY

### END OF FILE A2TIL395.TXT
I. Technical Specifications

1. Recording Media
   a. Disk diameter: 5.25 inches
   b. Recording surfaces: 1
   c. Tracks per surface: 35

2. Capacities
   a. Formatted data capacity: 140 kilobytes, 16 sectors
      1. ProDOS: 137 KB
      2. Pascal: 137 KB
      3. DOS 3.3: 124 KB

3. Characteristics
   a. Seek/settle time (track to track): 30 milliseconds maximum
   b. Drive-motor start time: 0.5 seconds maximum
   c. Mechanism same as drive for Duodisk, IIC drive, and Disk IIC

4. Power Consumption
   a. +12 VDC with a tolerance of 0.6 V (plus or minus)
      1. Maximum ripple 120mV peak to peak
      2. 0.8 A typical
      3. 1.6 A maximum
   b. -12 VDC with a tolerance of 0.6 V (plus or minus)
      1. Maximum ripple 120mV peak to peak
      2. 0.01 A typical
      3. 0.02 A maximum
   c. +5 VDC with a tolerance of 0.25 V (plus or minus)
      1. Maximum ripple 120mV peak to peak
      2. 0.2 A typical
      3. 0.4 A maximum

5. Head positioning: Adjusted to a tolerance of 0.002 inches (plus or minus) maximum deviation from ideal on track

6. Environmental Characteristics
   a. Operating temperature:
      1. 50 to 115 degrees Fahrenheit
      2. 10 to 46 degrees Celsius
   b. Operating humidity: 20% to 80% (noncondensing)
   c. Maximum wet bulb:
      1. 85 degrees Fahrenheit
      2. 29.4 degrees Celsius

7. Drive Dimensions
   
<table>
<thead>
<tr>
<th>inches</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Length</td>
<td>8.50</td>
</tr>
<tr>
<td>b. Width</td>
<td>6.37</td>
</tr>
<tr>
<td>c. Height</td>
<td>3.13</td>
</tr>
</tbody>
</table>
### CONNECTION

For each controller card connected to a Unidisk, a second Unidisk drive can be “daisy chained” or connected to the back of the first.

### II. SYSTEM CONFIGURATION

1. Controller Card and
   a. Apple II
   b. Apple II Plus
   c. Apple IIe
   d. Apple IIGS

### III. PACKAGE

1. Order number:
   a. A9M0104: Unidisk drive with controller card
   b. A9M0105: Unidisk drive

Copyright 1988 Apple Computer, Inc.
Keywords: SPECSHT

### END OF FILE A2TIL396.TXT
Description: UPIC: Interfacing the Epson MX-80 Printer

* Table 2-2, which was to appear on page 10 of the Universal Parallel Interface Card manual, was left out. Refer to the identical table 4-2 on page 19.

* The Epson printer does not work properly with an Apple II parallel interface cable. Wire the cable as specified in table 2-1 on page 8.

* The UPIC switch must be set to Auto.

* The SOS driver configuration block must be set to the values in table 4-2 on page 19 for the Epson MX-80.

Apple Tech Notes

Keywords:
Description: UPIC: Interfacing the OKIDATA 83A printer
Header: UPIC: Interfacing the OKIDATA 83A printer

To connect an Okidata 83A printer to an Apple III Universal Parallel Interface Card using an Apple II parallel cable, make the following adjustments:

DCB: 00 00 40 00 5A

Printer: All switches off
Jumper set to B

Apple Tech Notes

Keywords:
Description: US Apple SW Updates Available Online (03/97)
Header: US Apple SW Updates Available Online (03/97)

Article Created: 19 September 1994
Article Reviewed/Updated: 05 March 1997

TOPIC --------------------------------------------------------------

This document serves as an index to the Domestic Apple Software Updates areas located on AppleLink, America Online and the Internet. The first part of this article: Article Change History, lists the most recent changes to the Software Updates. The second part is an alphabetical list of the software updates, along with the current location.

Please search the Apple Tech Info Library using the string "Apple Software Updates" for a current list of online services to which Apple Software Updates are posted. (You can also use the special keyword: kol to search for this information and other on line related information in the Apple Tech Info Library.)

DISCUSSION ----------------------------------------------------------

- Article Change History:

3-Mar-97 - Add QTEASY16.EXE AND QTPLUG16.EXE (Quicktime for Win 3.1)
3-Mar-97 - Add QTEASY32.EXE AND QTPLUG32.EXE (Quicktime for Win 95)
28-Feb-97 - Add Macsbug 6.5.4 Info
28-Feb-97 - Add CD-ROM Software 5.3.2
28-Feb-97 - Add WBOFF.EXE
28-Feb-97 - Add Cyberdog 1.2.1 (3 disks/Net Install) Delete Cyberdog 1.2
25-Feb-97 - Add Fax Cover Pages 1.2.
23-Feb-97 - Add CFM-68k 4.0.b1.sea
13-Feb-97 - Add 7.5.5 SCSI Server Update
11-Feb-97 - Add MRJ 1.0 and NCI 1.0b5 (Mac and DOS-Win)
07-Feb-97 - Add PB 1400 PMU Updater 1.0.1
01-Feb-97 - Add QuickTime Plug-in 1.1

Key to Location Abbreviations:

-------------------------------
AIISP - Apple II Supplemental
ARA - Apple Remote Access
CTB - Comm Toolbox
D-P - Display-Peripheral
LWS - LaserWriter
MP - MessagePad
N-C - Networking-Communications
NCU - Newton Connection Utilities
NSU - Newton System Updates
ONC - Other Networking-Communications
ONU - Other Newton Updates
OPB - Other PowerBook Software
OPS - Other Printing Software
OSS - Other System Software
OLS - Older System Software
OT - Open Transport
PSU - PowerBook System Update
PSW - Printing Software for Windows
PTG - Printing
QTW - QuickTime for Windows
SYS - System
SPE - Speech

The Alphabetical List of USA Apple Software Updates:

040 VM Update 1.0 - Macintosh/SYS/Other System
32-Bit System Enabler 1.0.3 - Macintosh/SYS/Other System
5xxx-6xxx Tester 1.0 - Macintosh/Utilities
630 SCSI Update 1.0 - Macintosh/SYS/Other System
6360-64xx-54xx Update 1.0 - Macintosh/SYS/Other System

Apple II Computer Family Articles -- Apple Technical Info Library (TIL)
March 1997 -- Page 631 of 649
7.5.5 SCSI Server Update - Macintosh/N-C/Apple Share
8*24 GC Software 7.0.1 - Macintosh/D-P
950 Color Addition 1.0 - Macintosh/SYS/Other System
About PlainTalk 1.4.1 - Macintosh/SYS/Speech /PlainTalk 1.4.1
Adobe Acrobat Reader 2.1 - Macintosh Utilities
ADSP 1.5.1 - Macintosh/N-C/Comm Toolbox
AMK Spinning Cursor Bug Fix - Macintosh/Utilities
APD 1.1.3 Update - Macintosh/Utilities
Apple CD-ROM 5.0.4 - Macintosh/D-P
Apple Color Printer 1.0 - Macintosh/PTG/Other Printing
Apple Color SW Pro CMY 1.0 - Macintosh/PTG/Other Printing
Apple DocViewer 1.1.1 - Macintosh/Utilities
Apple Event Manager 1.0.3 - Macintosh/SYS/Other System
Apple Guide Authoring Kit Offer - Macintosh/Utilities
Apple HD SC Setup 7.3.5 - Macintosh/Utilities
Apple II SCSI Utilities - Apple II/Apple II Supplemental
Apple II Startup Disk 2.2 - Macintosh/N-C/AppleShare
Apple II System Disk 3.2 - Apple II/Apple II Supplemental
Apple II Video Overlay Card - Apple II/Apple II Supplemental
Apple IIIGS CD Setup 5.1 - Apple II/Apple II Supplemental
Apple IIIGS System 6.0.1 - Apple II/Apple IIIGS System 6.0.1
Apple Internet Router 3.0.1 Patch - Macintosh/N-C/Network Software Installer
Apple LAN Utility 1.0.b4 - Macintosh/Unsupported
Apple Memory Guide 1.3 - Macintosh/Utilities
Apple Menu Options 1.02 - Macintosh/SYS/Other System
Apple Modem Tool 1.5.3 - Macintosh/N-C/Comm Toolbox
Apple Printer Utility 2.1.1 - Macintosh/PTG/LaserWriter
Apple Remote Access 2.0.1 Info - Macintosh/N-C/ARA
Apple Spec 11-96 - Macintosh/Utilities
Apple Spec App - Macintosh/Utilities
Apple System Profiler 1.0.1 - Macintosh/Utilities
ApplePhone 1.0.1 - Macintosh/Unsupported
AppleScan 1.0.2 - Macintosh/D-P
AppleSearch 1.0.1 Patch - Macintosh/N-C/ONC
AppleShare 3.0.3 Patch - Macintosh/N-C/AppShare
AppleShare 4.2.1 to 4.2.2 - Macintosh/Updater NetComm/AppShare
AppleShare 4.2 Upgrade Info - Macintosh/N-C/AppShare
AppleShare Setup 1.0.1 - Macintosh/Utilities
AppleShare Tune-Up 4.0.1 - Macintosh/N-C/AppShare
AppleTalk ADSP Tool 1.0 - Macintosh/N-C/Comm Toolbox
AppleTalk Image Writer 7.0.1 - Macintosh/PTG/Other Printing
AppleVision Fix 1.1 - Macintosh/D-P
AppleVision Fix 1.1 - Macintosh/SYS/System 7.5 Update 2.0
AppleVision Fix 1.1 Info - Macintosh/SYS/Older SYS/For System 7.5.2 and 7.5.3
AppleVision Software 1.0.2 - Macintosh/D-P
ARA 1.0 Client Enabler - Macintosh/N-C/ARA/Other ARA Software
ARA 1.0 Original Scripts - Macintosh/N-C/ARA/ARA 1.0 Original Scripts
ARA 1.0 User Scripts - Macintosh/N-C/ARA/ARA 1.0 User Scripts
ARA 2.0 Original Scripts - Macintosh/N-C/ARA/ARA 2.0 Original Scripts
ARA 2.0 User Scripts - Macintosh/N-C/ARA/ARA 2.0 User Scripts
ARA Client 2.1 Updater - Macintosh/N-C/ARA/ARA Updates
ARA MP Server 2.1 Patches - Macintosh/N-C/ARA/ARA Updates
ARA PS 2.1 Updater - Macintosh/N-C/ARA/ARA Updates
AS Custom Settings 1.0 - Macintosh/Unsupported
ASFU Fixer 1.0.1 - Macintosh/PTG/Other Printing
Assistant Toolbox 1.0.1d1 - Macintosh/Unsupported
At Ease 2.0.3 Update - Macintosh/SYS/At Ease
At Ease 4.0.1 Updater - Macintosh/SYS/At Ease
At Ease Update 1.0 - Macintosh/SYS/At Ease
At Ease WG 3.0.3 Updater - Macintosh/SYS/At Ease
At Ease 3 CDROM Prefs Patch - Macintosh/SYS/At Ease
At Ease–IDE Utility Disk 1.0 - Macintosh/SYS/At Ease
Audio Volume 1.1 Installer - Macintosh/SYS/Other System
AudioVision Installer 1.0.2 - Macintosh/D-P
AV Serial Extension 1.0 - Macintosh/SYS/Other System
Avid Cinema 1.1 Update Macintosh - D-P
AWS Tune-Up 1.0 - Macintosh/N-C/ONC
AWS Tune-Up 2.0 - Macintosh/N-C/ONC
Backgrounder 1.3 - Macintosh/PTG/Other Printing
Backlight Control 1.0 - Macintosh/Utilities
Basic Color Monitor (1.0) - Macintosh/D-P
Basic Connectivity Set 1.1.1 - Macintosh/N-C/Comm Toolbox
Battery Tools 2.0 - Macintosh/PowerBook/Other PB SW
Cache Switch 7.0.1 - Macintosh/SYS/Other System
CD-ROM Software 5.1.7 - Macintosh/D-P
CD-ROM Software 5.3.2 - Macintosh/D-P
CFM-68k 4.0b1 - Macintosh/Unsupported
Chinese Lang. Kit Updater - Macintosh/SYS/Language Kits
Chooser 7.3 - Macintosh/PTG/Other Printing
CISMAIL.EXE - Newton/For DOS-Windows/ONU
CIS Mail 2.0 v.1.0.2 - Newton/For MacOS/ONU
Color Classic Update 1.0 - Macintosh/SYS/Other System
Color Laser Writer 8.3.2 - Macintosh/PTG/LaserWriter
Color SW Pro 1.5.2 - Macintosh/PTG/Other Printing
Color SW Pro GX 1.0 - Macintosh/SYS/QuickDraw GX
Color SW Pro GX `0 - Macintosh/PTG/OPS
Color SW 1500 2.2.1 (3.sea disks & NetInst.sea) - Macintosh/PTG/OPS
Color SW 2500 2.2.1 (4.sea disks & NetInst.sea) - Macintosh/PTG/OPS
ColorSync 2.0 Plug-ins - Macintosh/Utilities
ColorSync 2.1.1 - Macintosh/SYS/Other System
Compatibility Checker 2.0 - Macintosh/SYS/Older SYS/For System 7.1.x
Cyberdog 1.2.1 - Macintosh/SYS/Net-Comm/Cyberdog
CPU Energy Saver 1.0.6 - Macintosh/SYS/Other System
DART 1.5.2 - Macintosh/Utilities
Desktop Printing 2.0.1 - Macintosh/PTG/Other Printing
Direct Dialup 1.1.1 - Macintosh/SYS/Other System
Direct Dialup Mail 1.1.2 - Macintosh/SYS/PowerTalk
Disk Copy 4.2 - Macintosh/Utilities
Disk First Aid 7.2.2 - Macintosh/Utilities
Disk Image Mounter 1.0.1 - Macintosh/Utilities
Display Card 24AC 1.2 - Macintosh/D-P
Display Software 2.0.2 - Macintosh/D-P
Document Converter 1.0.4 - Macintosh/Utilities
DOS Compatibility 1.5 - DOS-Windows/DOS and PC Compatibility SW
Drive Firmware Update 1.2 - Macintosh/SYS/Other System
Drive Setup 1.0.5 - Macintosh/Utilities
Drive Setup 1.2 - Macintosh/Utilities
Duo Battery Patch 1.0 - Macintosh/PowerBook/Other PB SW
EM Sound Update 1.0 - Macintosh/SYS/Other System
English Speech Recognition - Macintosh/SYS/Speech/PlainTalk 1.4.1
English Text-to-Speech - Macintosh/SYS/Speech/PlainTalk 1.4.1
Ethernet Built-In 1.0.2 - Macintosh/N-C/ONC
Express Modem 1.5.5 - Macintosh/N-C/ONC
Finder Scripting Ext 1.2 - Macintosh/SYS/Other System
Font Extension 3 1.0.4 - Macintosh/SYS/Language Kits
Fontsize Patch 1.1 - Macintosh/SYS/Language Kits
Geoport-EM 3.1.1 Update/Macintosh/N-C/Apple Telecom
GeoPort/Express Modem 3.0 Updater/Macintosh/N-C/Apple Telecom
GlobalFax 2.5.2P Update - Macintosh/N-C/ONC
GrayShare Update 1.0 - Macintosh/PTG/Other Printing
Graphics Accelerator 1.0.7 - Macintosh/Unsupported
GX 1.1.3 Net Install - Macintosh/SYS/QuickDraw GX
HC 2.3 Color Stack Repair.sea - Macintosh/Utilities
HC 2.3.5 Stacks.sea - Macintosh/Utilities
HC 2.3.5 Update Installer - Macintosh/Utilities
HC 2.3.5 Updater - Macintosh/Utilities
HCIIGS 1.1 - Apple II/HyperCard IIGS 1.1
HideEworld - Newton/For MacOS/ONU
HyperCard Player 2.3.5 - Macintosh/Utilities
HyperMover.IIGS - Apple II/HyperCard IIGS
HyperMover.Mac - Apple II/HyperCard IIGS
APPLE II COMPUTER TECHNICAL INFORMATION

HyperScan 2.0.1 - Macintosh/D-P
Ignore Dialtone 1.0.fc1 - Macintosh/Unsupported
ImageWriter 7.0.1 - Macintosh/PTG/Other Printing
IMF & DT Disk Images - Macintosh/SYS/System Enablers
Intelligent Battery Update 1.0.3 - Macintosh/PowerBook/Other PB SW
Internal HD Format 1.3 - Macintosh/Utilities
Internet Router 3.0.1 Patch - Macintosh/N-C/ONC
Invisible AMS 95 Fix (elp) - Macintosh/N-C/ONC
IP Gateway 1.0.1 Patch - Macintosh/N-C
IP Gateway 1.0.1 Patch - Macintosh/N-C/ONC
ISO 9660 File Access 5.0.2 - Macintosh/D-P
ISO 9660 File Access 5.0.2 - Macintosh/SYS/Other System
JLK Info - Macintosh/SYS/Language Kits
LT & IW Bridge 2.1/Macintosh/N-C/Other N-C
Laser Prep 7.1.2 - Macintosh/PTG/LaserWriter
Laser Prep 7.2 - Macintosh/PTG/LaserWriter
LaserWriter 300 1.2 - Macintosh/PTG/LaserWriter
LaserWriter 8.2.3f - Macintosh/PTG/LaserWriter
LaserWriter 3.0.8 for Windows 3.1 (LW Win 3.1 3.0.8) - DOS & Windows/PTG
LaserWriter 4.1 for Windows 95 (LW Win 95 4.2) - DOS & Windows/PTG
LaserWriter 8.4.1 - Macintosh/PTG/LaserWriter
LaserWriter Fax Tuneup 1.0 - Macintosh/PTG/LaserWriter
LaserWriter Printing Software 8.3.2 - Macintosh/PTG/LaserWriter
LaserWriter Printing Software 8.3.4 - Macintosh/PTG/LaserWriter
LaserWriter Pro 810 For Windows - DOS & Windows/PTG
LaserWriter Pro Energy Star Software - Macintosh/PTG/LaserWriter
LaserWriter Select 310 7.0.1 - Macintosh/PTG/LaserWriter
LQ AppleTalk ImageWriter 7.0.1 - Macintosh/PTG/Other Printing
LaserWriter SW for Windows 1.0.2 - DOS & Windows/PTG (older version, .sea file)
Location Manager 1.0 Macintosh/PowerBook/Other PB SW
LW Select 310 For Windows - DOS & Windows/PTG (.sea and .exe file formats)
LWSWI02.zip (LW SW for Windows 1.0.2) - DOS & Windows/PTG (older version, zip file)
Mac Drag and Drop 1.1 - Macintosh/SYS/Other System
MacDNS 1.0.3 - Macintosh/N-C/ONC
Macintosh Basics 5.0.3 - Macintosh/Utilities
Macintosh Tutorial - Macintosh/Utilities
Macintosh Easy Open 1.1.1 - Macintosh/SYS/Other System
MacPPP 2.5 - Macintosh/N-C/ONC
MacBug 6.5.3 - Macintosh/Utilities
Macbug 6.5.4 Info - Macintosh/Utilities
MacTCP 2.0.4 Update - Macintosh/N-C/ONC
MacTCP 2.0.6 Update - Macintosh/N-C/ONC
MacTCP Ping 2.0.2 - Macintosh/Unsupported
MacTCP Token Ring Extension 1.0 - Macintosh/N-C/ONC
MacX25 1.2 Patch - Macintosh/N-C/ONC
MailLink for PowerTalk INET - Macintosh/SYS/PowerTalk
MailLink for PowerTalk MS - Macintosh/SYS/PowerTalk
MailLink for PowerTalk QM - Macintosh/SYS/PowerTalk
MANUAL.PDF - Newton/For DOS-Windows/ONU
MegaPhone 1.0.2 - Macintosh/N-C/Other N-C
MegaPhone 1.0.3P - Macintosh/N-C/ON-C
MegaPhone Manual 2.0 - Macintosh/N-C/Other N-C Mercury ATandT GW 1.0C - Macintosh/Unsupported
Mercury Envoy GW 1.0C - Macintosh/Unsupported
Mercury MCI Mail GW 1.0C - Macintosh/Unsupported
Mexican Spanish TTS - Macintosh/SYS/Speech/PlainTalk 1.4.1
MIDI Management Tools 2.0.2 - Macintosh/Unsupported
MODE32 7.5 - Macintosh/SYS/Other System
Modem Enabler 1.0 - Newton/For MacOS/Other Newton Updates
MODEMBLR.ZIP - Newton/For DOS-Windows/MP System Updates
Modem Script Generator 1.0a1 - Macintosh/Unsupported
Monitor Energy Saver 1.0 - Macintosh/D-P
Monitor Energy Saver 1.1 - Macintosh/D-P
Mount IDE Drive 1.0 - Macintosh/SYS/Other System
Mouse Basics 4.5 - Macintosh/Utilities
MoviePlayer 2.5 - Macintosh/Utilities

Apple II Computer Family Articles -- Apple Technical Info Library (TIL)
March 1997 -- Page 634 of 649
MovieShop 1.2.1 - Macintosh/Unsupported
MP 100 1.3.41533 - Newton/For MacOS/MP System Updates
MP 110 1.3.45333 - Newton/For MacOS/MP System Updates
MP 120 2.0.516263 - Newton/For MacOS/MP System Updates
MP 120 Tour and Handwriting - Newton/For MacOS/ONU
MP 130 2.0.526205 - Newton/For MacOS/MP System Updates
MP345333.EXE - Newton/For DOS-Windows/MP System Updates
MP415333.EXE - Newton/For DOS-Windows/MP System Updates
MP445333.EXE - Newton/For DOS-Windows/MP System Updates
MP516263.ZIP - Newton/For DOS-Windows/MP System Updates
MP526205.ZIP - Newton/For DOS-Windows/MP System Updates
MRJ 1.0 - Macintosh/System/Java
NBU101EN.ZIP - Newton/For DOS-Windows/ONU
NBU User’s Guide - Newton/For MacOS/ONU
Network Access Disk 7.5 - Macintosh/Utilities
Network Asst. 2.0.1 Updater - - Macintosh/SYS/At Ease
Network Launch Fix 1.0.2 - Macintosh/N-C/ONC
Network Software Installer 1.4.4 - Macintosh/N-C/Network Software Installer
Network Software Installer 1.4.5 - Macintosh/N-C/Network Software Installer
Network Software Installer 1.5 - Macintosh/N-C/Network Software Installer
Network Software Installer 1.5.1 - Macintosh/N-C/Network Software Installer
NCU 1.0b5 - Newton/For MacOS/Unsupported
NCU.10B5 - Newton/For DOS-Windows/Unsupported
Newton System Update 1.0.5 - Newton/For MacOS/MP System Updates
Newton System Update 1.1.1 - Newton/For MacOS/MP System Updates
NewtonMail Modules 1.0.1 - Newton/For MacOS/MP System Updates
Ofoto Update 2.0.2 Information - Macintosh/D-P
Open Transport 1.0.8 - Macintosh/N-C/OT
Open Transport Manual - Macintosh/N-C/OT
OpenDoc 1.1 - Macintosh/SYS/OpenDoc
OT 1.1 Manual - Macintosh/SYS/System 7.5 Update 2.0
OT 1.1.1 - Macintosh Macintosh - N-C/Open Transport
OT 1.1.1 Extras - Macintosh - N-C/Open Transport
OT 1.1.2 - Macintosh Macintosh - N-C/Open Transport
OT 1.1.2 Extras - Macintosh - N-C/Open Transport
OT PPP 1.0 Macintosh - N-C/Open Transport
OT PPP 1.0 Manual - Macintosh - N-C/Open Transport
OT PPP 1.0 Net Install - Macintosh - N-C/Open Transport
OPS Info (read me) - Macintosh/PTG/Other Printing
PANTONE for AppleVision - Macintosh/Unsupported
PANTONE for Color LW - Macintosh/PTG/LaserWriter
PANTONE for Color LW (12/600).exe - DOS & Windows - DOS & Windows/PTG
PB 1400 HD Updater 1.0 - Macintosh/PowerBook/PB 1400
PB 1400 DMU Update 1.0.1 - Macintosh/PowerBook/PB 1400
PB 1400 Floppy Update 1.0.2 - Macintosh/PowerBook/PB 1400
PB 2300c Update 1.0 - Macintosh/PowerBook/Other PB SW
PC Card Software 2.0 - Macintosh/PowerBook/Other PB SW
PC Net Exchange 1.0.1 - Macintosh/N-C/AppleShare
PC Setup 1.0.2 - DOS & Windows/DOS and PC Compatibility SW (For Quadra 610
DOS Compatible)
PC Setup DIMM Patch - Macintosh/Unsupported
PS Fax Cover Page Utilities - Macintosh/Unsupported
Personal LW NTR For Windows - DOS & Windows/PTG
Personal LW SC 7.0.1 - Macintosh/PTG/LaserWriter
PhotoFlash 2.0 to 2.0.1 Updater - Macintosh/D-P
PlainTalk 1.2.1 - Macintosh/SYS/Speech /PlainTalk 1.2.1
PlainTalk 1.3 - Macintosh/SYS/Speech /PlainTalk 1.3.1
PlainTalk User Guide 1.2.1 - Macintosh/SYS/Speech /PlainTalk 1.2.1
PlainTalk User Guide 1.3 - Macintosh/SYS/Speech /PlainTalk 1.3.1
Portable Control Panel 1.3 - Macintosh/SYS/Other System
Portable StyleWriter 1.0.1 - Macintosh/PTG/Other Printing
Power Macintosh 7500/8500 Disk Tools - Macintosh/SYS/Other System
Power Macintosh 7500/8500 Install 1 - Macintosh/SYS/Other System
Power Macintosh AV Update 1.0-Bootable Disk - Macintosh/SYS/Other System
Power Macintosh AV Update 1.0-Extension Only - Macintosh/SYS/Other System
PowerBook 150 Enabler 1.1 - Macintosh/SYS/System Enablers
PowerBook 500 Series 1.0.2 - Macintosh/SYS/System Enablers
PowerBook 5300 SW Update - Macintosh/PowerBook/PB 5300 SW Update
PowerBook Duo Enabler 1.0 - Macintosh/SYS/System Enablers
PowerBook Duo Enabler 2.0 - Macintosh/SYS/System Enablers
PowerCD Setup 1.0.1 - Macintosh/D-P
PowerPC Enabler 1.0.2 - Macintosh/SYS/System Enablers
PowerPC Enabler 1.1.1 - Macintosh/SYS/System Enablers
PowerPC Interrupt Extension - Macintosh/SYS/Other System
PowerTalk Gateways - Macintosh/SYS/PowerTalk
PowerTalk Guided Tour 1.1 - Macintosh/SYS/PowerTalk
PowerTalk Info - Macintosh/SYS/PowerTalk
PowerTalk Manager 1.5 - Macintosh/SYS/PowerTalk
PowerTalk PPC 1.0.2 - Macintosh/SYS/PowerTalk
PowerTalk PPC 1.0.2 France - Macintosh/SYS/PowerTalk
PowerTalk Solutions Guide - Macintosh/SYS/PowerTalk
PPC Upgrade Enabler 1.0.1 - Macintosh/SYS/System Enablers
Print Monitor 7.0.1 - Macintosh/PTG/LaserWriter
Printer Share 1.1.2 - Macintosh/PTG/Other Printing
PrintMonitor 7.1 - Macintosh/SYS/PowerTalk
PT 1.1.6 - Macintosh/SYS/PowerTalk
PT 1.2.3 - Macintosh/SYS/PowerTalk
PT Mail Folders 1.5 - Macintosh/Unsupported
PT Mail Reader 1.1 - Macintosh/SYS/PowerTalk
QDGX Spooler Patch 1.0.2 - Macintosh/Unsupported
QTEASY16.EXE - DOS-Windows/QT
QTPUGL16.EXE - DOS-Windows/QT
QTEASY32.EXE - DOS-Windows/QT
QP3D1523.ZIP - DOS-Windows/QuickDraw 3D
QuickDraw 3D 1.0.6 - Macintosh/SYS/QuickDraw GX
QuickDraw GX 1.1.3 - Macintosh/SYS/QuickDraw GX
QuickKeys Test Drive - Macintosh/SYS/Speech /PlainTalk 1.3.1
QuickKeys Test Drive 1.2.1 - Macintosh/SYS/Speech /PlainTalk 1.2.1
QuickTake for Power Mac 1.0 - Macintosh/Display-Peripheral
QuickTime 2.1 - Macintosh/SYS/QuickTime
QuickTime 2.1.1 for Windows 3.1 - DOS & Windows/QTW
QuickTime 2.1.1 for Windows 95 - DOS & Windows/QTW
QuickTime 2.5 - Macintosh/SYS/QuickTime
QuickTime 2.5 Extras - Macintosh/SYS/QuickTime
QuickTime MPEG 1.0 - Macintosh/SYS/QuickTime
QuickTime Plug-in 1.1 - Macintosh/SYS/QuickTime
QuickTime TV 1.0.4b19 - Macintosh/Unsupported
Rename Rescue 1.0 - Macintosh/SYS/Older SYS/For System 7.0.x
Scanner 2.0 (system extension) - Macintosh/D-P
Scanner 3.0 (system extension) - Macintosh/D-P
Screen 1.0.6 - Macintosh/SYS/Other System
Security Info - Macintosh/N-C/ARA/Other ARA Software
Serial Switch 1.1 - Macintosh/SYS/Other System
Serial Tool 1.0.2 - Macintosh/N-C/Comm Toolbox
SerialDMA 2.0.2 - Macintosh/N-C/ONC
Server Remote Control v1.0 - Macintosh/Utilities
Shrinkit 1.1 - Apple II/Apple II Supplemental
SimpleSound 1.0 - Macintosh/Utilities
SimpleText 1.3 - Macintosh/Utilities
Slow SCSI Extension - Macintosh/Unsupported
SNA*ps 3270 1.1.2 Patch - Macintosh/N-C/ONC
Sound Manager 3.1 - Macintosh/SYS/Other System
SpoolLauncher 2.1.1 - Macintosh/PTG/Other Printing
SpoolMaster 2.1.1a - Macintosh/PTG/Other Printing
SSW 6.0.3 - Macintosh/SYS/Older SYS/For System 6.0.x
SSW 6.0.5 - Macintosh/SYS/Older SYS/For System 6.0.x
SSW 6.0.8 - Macintosh/SYS/Older SYS/For System 6.0.x
SSW 7.0 - Macintosh/SYS/Older SYS/For System 7.0.x
SSW 7.0.1 - Macintosh/SYS/Older SYS/For System 7.0.x
System 7 Tune-up 1.1.1 - Macintosh/SYS/Old SYs/For System 7.0.x
System 7.5 Update 2.0 (14 Disks) - Macintosh/SYS/System 7.5 Update 2.0
Sys75 Upd2.0 Custom Install - Macintosh/Unsupported
System 7.5.3 Rev 2 - Macintosh/SYS/Old SYs/For System 7.5.2 and 7.5.3
System 7.5.5 Update - Macintosh/SYS/System 7.5.5 Update
System Enabler 001 (1.0.1) - Macintosh/SYS/System Enablers
System Enabler 003 (1.1) - Macintosh/SYS/System Enablers
System Enabler 040 (1.1) - Macintosh/SYS/System Enablers
System Enabler 065 (1.2) - Macintosh/SYS/System Enablers
System Enabler 088 (1.2) - Macintosh/SYS/System Enablers
System Enabler 131 (1.0.3) - Macintosh/SYS/System Enablers
System Enabler 401 (1.0.5) - Macintosh/SYS/System Enablers
System Enabler 403 (1.0.2) - Macintosh/SYS/System Enablers
System Enabler 404 (1.0) - Macintosh/SYS/System Enablers
System Enabler 405 (1.0) - Macintosh/SYS/System Enablers
System Enabler 406 1.0 - Macintosh/SYS/System Enablers
System Update 3.0 800K Disk - Macintosh/SYS/Old SYs/For System 7.1.x
System Update 3.0.1 1.4MB Disk - Macintosh/SYS/Old SYs/For System 7.1.x
Telecom 2.3.3 - Macintosh/N-C/Apple Telecom
Telecom 2.3.3 PC Card Modem - Macintosh/N-C/Apple Telecom
Telephone Manager (2.0) - Macintosh/N-C/ONC
Telephone Manager 1.1.1 - Macintosh/SYS/Other System
Text Tool (1.0.1) - Macintosh/N-C/Comm Toolbox
TextEditor (1.3a1) - Macintosh/N-C/ONC
The Namer (7.0) - Macintosh/PTG/Other Printing
Thread Manager 2.0.1 - Macintosh/SYS/Other System
TOUR_HWI.ZIP - Newton/For DOS-Windows/ONU
Trackpad Climate Control - Macintosh/PowerBook/Other PB SW
TTY Tool (1.0.1) - Macintosh/N-C/Comm Toolbox
TTYFont (1.0) - Macintosh/N-C/Comm Toolbox
TV Setup 1.0.2 - Macintosh/SYS/Other System
Update 2.0 Late Breaking Tips - Macintosh/SYS/System 7.5 Update 2.0
Video Monitor 1.0.1 - Macintosh/Unsupported
Video SW Install 1.5.1 - Macintosh/D-P
VideoSync 1.0 - Macintosh/Unsupported
VideoSyncII - Macintosh/Unsupported
VT102 Tool (1.0.2) - Macintosh/N-C/Comm Toolbox
VT102Font (1.0.1) - Macintosh/N-C/Comm Toolbox
Windows NPI 2.0 - Newton/For MacOS/ONU
WBOFF.EXE - Macintosh/Unsupported
WINNP12.EXE - Newton/For DOS-Windows/ONU
WGS Not Supported with System 7.5.5/Macintosh/SYS/System 7.5.5 Update
WorldScript Updater 1.1 - Macintosh/SYS/Language Kits
X11 Server Update For A/UX 3.0 - Macintosh/N-C/ONC
XMODEM Tool (1.1) - Macintosh/N-C/Comm Toolbox
ZM-AppleShare WS 3.6.5 - Macintosh/N-C/AppleShare
ZyXEL Modem Scripts - Macintosh/Unsupported/User Contributed CCLs
Copyright 1994-97, Apple Computer, Inc.
Keywords: kol,kinter,ktop20,kalley,ktoptil

### END OF FILE A2TIL399.TXT
CHAPTER 1
INTRODUCTION
OVERVIEW

DOS 3.3 BASIC and its associated Volume Manager (both supplied on your Catalyst diskette VERSION 2.1) may be used to access your DOS BASIC programs directly from your hard disk and have access to "DOS 3.3 volumes" on the hard disk.

The DOS 3.3 Volume Manager is used to create standard ProDOS files which appear as DOS 3.3 volumes to DOS 3.3 BASIC. To access these files, they must be "mounted" and formatted as a floppy diskette within your hard disk. All accesses to the hard disk on which you mounted the ProDOS file are then made to that file.

The Volume Manager also allows you to create a file (named MOUNTS3.3) which tells DOS 3.3 which slot/drive pair to run the startup program (HELLO) from, what ProDOS files to mount on selected slot/drive pairs, and whether or not to reserve room for DOS when you initialize a file or diskette.

When DOS 3.3 is selected from the Catalyst menu, it reads the MOUNTS3.3 file from the directory specified by the current ProDOS prefix. If no MOUNTS3.3 file is found, the following assumptions are made:

- DOS 3.3 will look for its startup program on slot 6, drive 1. If a HELLO program is not found there, you will receive an I/O error.
- No hard disk DOS volumes will be mounted for access.
- The INIT command will reserve room for DOS when you initialize a file or diskette.

The instructions below explain how to install DOS 3.3 BASIC and its associated Volume Manager on your hard disk through the Catalyst Editor program. The Volume Manager may then be used to create volumes on the hard disk for use by DOS 3.3, and to create the MOUNTS3.3 file to enable access to those volumes.

RESTRICTIONS:

1. Catalyst version 2.1 is necessary in order to use the DOS 3.3 option.
2. Copy protected DOS 3.3 programs cannot be used.
3. ProDOS files (disk volumes) no larger than 800 sectors (200K) can be created, thus DOS program applications requiring more than 800 sectors cannot be used.

INSTALLATION

To install DOS 3.3 BASIC and its associated Volume Manager under Catalyst, perform the following procedure:

1. Select the Catalyst Editor from the Catalyst menu.
2. When the Catalyst Editor main menu comes up, select the "Install program" option.
3. From the list of Program manufacturers, select the entry for "Apple Computer, Inc."
4. Select the entry for "DOS 3.3 BASIC" from the list of Apple programs.
5. You are then prompted to insert the boot diskette of the program to install in the disk drive. Insert the Catalyst PROGRAM diskette in the disk drive, and then press the space bar.
6. DOS 3.3 BASIC and its associated Volume Manager (MAKE.MOUNTS) will then be
copied from your Catalyst PROGRAM diskette to the CATALYST2E subdirectory on your hard disk. You are then returned to the Catalyst Editor main menu.

7. Enter "E" to Edit the Catalyst menu.

8. Using the up and down arrow keys, position the inverse bar over the "DOS 3.3 BASIC" entry which now appears on your menu. Type "A" to Add a program entry.

9. Enter "DOS Volume Manager" for the menu Display name.

10. Enter "CATALYST2E/BASIC." for the Interpreter path.

11. Press RETURN for the Initial prefix.

12. Enter "CATALYST2E/MAKE.MOUNTS" for the Program path.

13. If all the above has been entered correctly, press RETURN when asked "Is all this correct?". Otherwise, enter "NO" and fix the incorrect entry.

14. Press ESCAPE to return to the Catalyst Editor main menu. Enter "U" to Update the INTERPS2E file.

15. Enter "Q" to Quit from the Catalyst Editor.

NOTE: Since the ProDOS Prefix for the DOS 3.3 BASIC entry is automatically set to "CATALYST2E" by the above installation process, DOS will expect its MOUNTS3.3 file to be in that subdirectory.

NOTE: Apple Computer Inc. is not responsible for the contents of this article.

Quark Technical Support

Keywords:

### END OF FILE A2TIL400.TXT
## CHAPTER 2

### THE DOS 3.3 VOLUME MANAGER

If you have performed the above installation procedure, you may select the DOS 3.3 Volume Manager program directly from your Catalyst menu.

Alternatively, you may select ProDOS BASIC and execute the program named MAKE.MOUNTS on your Catalyst diskette by typing "RUN /volume name of your hard disk/CATALYST2E/MAKE.MOUNTS".

1. **Catalog**

   The first entry on the DOS Volume Manager main menu allows you to obtain a standard catalog of files on your hard disk or a floppy diskette. You are prompted to enter the pathname of the directory for which the catalog is to be displayed. In order to freeze the display, press CONTROL "S". Pressing CONTROL "S" again will allow the display to continue.

2. **Create DOS 3.3 Volume**

   The second entry on the DOS Volume Manager main menu allows you to create a ProDOS file which can be used as a DOS 3.3 volume. When you select the "Create DOS 3.3 Volume" option, you are asked to enter the pathname of the new DOS 3.3 volume. Any standard ProDOS pathname may be entered such as "/P/CATALYST2E/DOS".

   Next you are requested to enter the size of the volume. Volume size is specified in units of "sectors", where one sector is equivalent to 256 bytes or characters of storage.

   The size you specify will depend on what you intend to use the volume for and how much room is left on your hard disk. Volumes must be at least 288 sectors (72K) in size, and may be no larger than 800 sectors (200K). The size you specify will be automatically rounded up to the nearest multiple of 16 sectors (4K). A standard floppy diskette contains 560 sectors (140K).

3. **Delete DOS 3.3 Volume**

   The third entry on the DOS Volume Manager main menu allows you to selectively remove previously defined DOS 3.3 volumes from your hard disk. All storage associated with a DOS 3.3 volume is released when it is deleted. The freed storage is then available for use by any subsequent volume definitions.

   Actually, you may delete any ProDOS file, not just DOS 3.3 volumes. When you select the "Delete DOS 3.3 Volume" option, you are asked to enter the pathname of the volume to delete. Any standard ProDOS pathname may be entered.

   Note that deleting a DOS 3.3 volume does not remove it from anywhere where it may have been mounted. Your system may still contain a MOUNTS3.3 file with a reference to the deleted volume. Such a reference will be ignored, however.

4. **Edit Mount File for DOS 3.3 Application**
The fourth entry on the DOS Volume Manager main menu is used to create a new or edit an existing MOUNTS3.3 file for DOS 3.3 BASIC.

NOTE: Apple Computer Inc. is not responsible for the contents of this article.

Quark Technical Support

Keywords:

### END OF FILE A2TIL401.TXT
CHAPTER 2a

When DOS 3.3 BASIC is run, it reads the MOUNTS3.3 file from the directory specified by the current ProDOS prefix, and uses that information to determine on which slot/drive pair to look for its startup program (HELLO), what ProDOS files (DOS 3.3 volumes) to mount on selected slot/drive pairs, and whether or not to reserve room for DOS when you initialize a file or diskette.

When you select the "Edit Mount File for DOS 3.3 Application" option, you are asked to enter the name of the subdirectory containing your MOUNTS3.3 file. When you installed DOS 3.3 a MOUNTS3.3 file was created for you in the CATALYST2E subdirectory. If no MOUNTS3.3 file is found in another subdirectory you specify, you are asked if one should be created. If you enter a negative response, you are returned to the DOS Volume Manager main menu.

If the MOUNTS3.3 file is found (or if you request a new file should be created), you are presented with a display listing some of the file's attributes, including its location, the slot/drive which will be used to find the startup program (HELLO), and whether or not tracks will be reserved for DOS when you initialize diskettes or ProDOS volumes.

Also shown is a menu of options which allow you to set the HELLO program location, change the DOS track allocation for diskettes or DOS 3.3 volumes, and edit the mounts for your MOUNTS3.3 file. Pressing ESCAPE at this menu will return you to the DOS Volume Manager main menu.

If you select the "Edit mounts" option instead, you are presented with a list of all slot and drive combinations, and the DOS 3.3 volume currently associated with each pair. You may mount DOS 3.3 volumes in any location except those slot/drive pairs occupied by a floppy diskette controller card which are noted with a "Disk II" entry. NOTE: The MOUNTS3.3 file can only work with one startup program (HELLO) located on a slot/drive pair at a time. You may, however, mount up to 12 DOS 3.3 volumes under it for access. In order to run a HELLO program from another mounted DOS 3.3 volume, you must select the SET HELLO PROGRAM LOCATION from the EDIT MOUNTS FILE FOR DOS 3.3. APPLICATION menu.

To edit the entry for a particular slot/drive pair, simply select the desired entry when asked, "Edit which mount?". You will then be asked for the "New mount file path". If you don't want any DOS 3.3 volume mounted on the selected slot/drive pair, simply press RETURN. Otherwise, enter the pathname for the DOS 3.3 volume you wish to mount. You will be warned if the name of the DOS 3.3 volume you supply cannot be found.

When you are finished editing the mounts, press ESCAPE and you will be returned to the menu of options for editing your MOUNTS3.3 file. If no further changes are desired, press ESCAPE again, and you are returned to the DOS Volume Manager main menu.

5. Quit

The last entry on the DOS Volume Manager main menu is used to exit the program.

To return to the Catalyst menu, type "BYE".
NOTE: Apple Computer Inc. is not responsible for the contents of this article.
Quark Technical Support

Keywords:

### END OF FILE A2TIL402.TXT
CHAPTER 3
COPYING DOS 3.3 APPLICATIONS TO THE HARD DISK

Many DOS 3.3 applications can be used with this system provided that the entire application can be installed in 800 sectors or less and it is not copy protected. A quick and easy way to copy applications to the hard disk is to first copy the Apple II File Developer (FID) program to a DOS volume on the hard disk, and then execute the program. To do this, perform the following procedure.

1. Select the DOS 3.3 Volume Manager from the Catalyst menu.

2. Select Create DOS 3.3 Volume from the menu and create a DOS 3.3 volume under the CATALYST2E subdirectory that is 800 sectors in size. This will give you enough room to copy the rest of the Apple System Master files to the volume if you wish. For this example we will use a pathname of /P/CATALYST2E/DOS. Remember that the only MOUNTS3.3 file that exists at this time that can be associated with the new DOS 3.3 volume is located in the subdirectory CATALYST2E. If you wish to locate the DOS 3.3 volume elsewhere, you will have to create a MOUNTS3.3 file for that location by using the Edit Mount File for DOS 3.3 Application option.

3. Once the DOS 3.3 volume has been created, press ESCAPE to return to the DOS 3.3 Volume Manager menu. It is now necessary to edit the MOUNTS 3.3 file for the newly created volume. Select Edit Mount File for DOS 3.3 Application from the menu. You will be asked for the subdirectory containing the MOUNTS3.3 file. Type /P/CATALYST2E and press RETURN.

4. For this exercise, we will mount the DOS 3.3 volume on slot 5, drive 1. Select EDIT MOUNTS from the menu. A list of all slot/drive pairs will be displayed. Select number 9 (slot 5, drive 1) from the menu and enter /P/CATALYST2E/DOS which is the pathname of the DOS 3.3 volume you have created. The volume will be mounted.

5. Press ESCAPE to return to the Edit Mount File for DOS 3.3 Application menu. If you will notice, the BASIC startup program is being run from slot 6, drive 1. Since your newly created DOS 3.3 volume is mounted on slot 5, drive 1, you will have to change this. Select Set HELLO Program Location from the menu and change the slot/drive location to Slot 5, Drive 1.

6. Escape back to the DOS 3.3 Volume Manager menu and select QUIT.

7. At the "]\" prompt, type INIT HELLO. The DOS 3.3 volume that you created and mounted will now be formatted for DOS 3.3. To prove this, type CATALOG. A listing with the file HELLO will be displayed.

8. Place your Apple SYSTEM MASTER disk in drive 1. Type CATALOG S6,D1" and press RETURN. Press RETURN until you arrive at the bottom of the catalog. At the prompt"\]" type "BRUN FID" and press RETURN.

9. Select COPY FILES. At the prompt SOURCE SLOT? type "6", for DRIVE? type "1". For DESTINATION SLOT? type "5". For DRIVE? type "1". For FILENAME? type "FID".
10. The copy program FID will be copied to your hard disk. You may now access it from the hard disk by selecting DOS 3.3 from the Catalyst main menu and at the prompt "]" type "BRUN FID". You may now copy ANY non copy protected DOS 3.3 application to your DOS 3.3 volume.

In order to access DOS 3.3 applications from your hard disk, you may do one of two things:

A.  
1. Select DOS 3.3 BASIC from your Catalyst menu.
2. At the BASIC prompt "]" type CATALOG.
3. Run the application as you would from a floppy disk. ie."] RUN filename".

B. You may create a Catalyst menu entry for each DOS 3.3 application.

NOTE: Apple Computer Inc. is not responsible for the contents of this article.

Quark Technical Support

Keywords:

### END OF FILE A2TIL403.TXT
CHAPTER 4

MAKING CATALYST ENTRIES FOR DOS APPLICATIONS

You may now wish to make Catalyst menu entries for your individual DOS BASIC applications.

Each application which appears in your Catalyst menu must have an associated MOUNTS3.3 file describing the volumes to be mounted for that application (including the volume on which the application resides).

To make the Catalyst menu entry for your DOS BASIC application, perform the following procedure:

1. Select the Catalyst Editor from the Catalyst menu.
2. When the Catalyst Editor main menu comes up, select the "Edit Catalyst menu" option.
3. Using the up and down arrow keys, position the inverse bar over the menu entry you wish your program entry to precede. Type "A" to Add a program entry.
4. Enter the menu Display name for your application.
5. Enter "CATALYST2E/DOS3.3" for the Interpreter path.
6. Enter the prefix where the MOUNTS3.3 file for your application resides.
7. Press RETURN for Program path.
8. If all the above has been entered correctly, press RETURN when asked "Is all this correct?". Otherwise, enter "NO" and fix the incorrect entry.
9. Press ESCAPE to return to the Catalyst Editor main menu. Enter "U" to Update the INTERPS2E file.
10. Enter "Q" to Quit from the Catalyst Editor.

Note that the above Catalyst menu entry will simply execute the DOS 3.3 BASIC interpreter, passing it a specific prefix for a MOUNTS3.3 file.

The MOUNTS3.3 file referenced should be set up to mount the DOS 3.3 volume on which your application resides, and reference it as the startup volume. Since DOS always expects its startup program to be named HELLO, your application should have this name as well.

For example, if you wish to run the application CHECKBOOK from Catalyst, first copy the file to the DOS 3.3 volume you created using FID. From the BASIC prompt "]" type "RENAME CHECKBOOK,HELLO".

NOTE: Binary files are excluded from the above discussion. In order to run a binary application, boot DOS 3.3 from the Catalyst menu and at the BASIC prompt "]" type BRUN filename.

NOTE: Apple Computer Inc. is not responsible for the contents of this article.

Quark Technical Support

Keywords:
Description: Using the Old Monitor with the Apple Language Card

Header: Using the Old Monitor with the Apple Language Card

This applies to the Apple II and Apple II+.

The Apple Language Card gives you all the advantages of the Auto Start ROM whether you have an Apple II or Apple II+. This is because there is an Auto Start ROM on the Language Card that is used instead of the F8 ROM on the main board. There is no way to disable this ROM if you want to use the old monitor in an Apple II. However, there are still two ways to use the old monitor with the Language Card.

1. Replace the Auto Start ROM on the Language Card with an old monitor ROM. In this case, you lose the Auto Start ROM’s features when you are in the BASIC that is resident on the main board. The BASIC that is loaded into the Language Card will still be working out of an image of the Auto Start ROM that was loaded with the BASIC. For example, Applesoft would use the old monitor and Integer BASIC would use the Auto start ROM.

2. This method will give you the old monitor while in the BASIC that’s in the Language Card but the BASIC on the main board will still access the Auto Start ROM. All you need do is load an image of the old monitor into the Language Card yourself. This is a two step process.

The hard part is to get an image of the old monitor into a DOS binary file. First, boot DOS 3.3 on an Apple II without a Language Card. Then type:

```
INT BSAVE OLD MON, A$F800, L$800
```

Now all you need is a program or subroutine to load the monitor into the card. The following program fragment must be in Integer BASIC if you have an Apple II or Applesoft if you have an Apple II+. It can be added to the HELLO or APPLESOFT program on the DOS 3.3 Master diskette.

```
10 D$ = "": REM CONTROL D
20 A = PEEK (-16255): A = PEEK (-16255)
30 PRINT D$; "LOAD OLD MON"
40 A = PEEK (-16254)
```

The old monitor will stay there until you re-boot or reload the Language card.

Apple Tech Notes

Keywords:

### END OF FILE A2TIL405.TXT
Description: Word Juggler for the Apple II Print To Disk Option
Header: Word Juggler for the Apple II Print To Disk Option

The print to disk option in Word Juggler sends the formatted image of your document to a diskette file just as it would appear on your screen when you use the DISPLAY DOCUMENT feature. This print file is a standard ProDOS text file. Although the actual Word Juggler formatting commands (CENTER, JUSTIFY, etc.) are not written to this file, your text will appear formatted to their specifications.

This feature is accessed from the TEXT ENTRY MODE of Word Juggler with the command Solid-Apple "9". When selected, you will be presented with four prompts:

First page to print? - Enter the starting number to appear in your file. Press RETURN if you wish to start with page 1. Note that in this context, page number does not refer to the page numbers that appear on the output, but rather to the sequential number of the page.

Last page to print? - Enter the last page to appear in your file. Press RETURN if you wish to print to the end of the document.

Remove control codes from output? - If you answer "Y" (or press RETURN) to this question, the file sent to disk will not contain any printer escape code sequences. This is necessary if you wish to transmit the document using a telecommunications package. The escape codes may be interpreted by another computer in a variety of different ways causing errors in transmission or reception.

If you answer "N" to this question, all printer escape sequences will be saved to disk in addition to the text. This will allow you to print the file with all printer enhancements included, such as bold and underline.

Pathname? - Enter the name of the file to hold the format

NOTE: Apple Computer Inc. is not responsible for the contents of this article.
Quark Technical Support

Keywords:

### END OF FILE A2TIL406.TXT
Make these modifications to the WPL program Autoletter on page 96 of the AppleWriter III manual as follows:

BEFORE
-----
L .D1/ADDRS!<X>!<!N
PGO FOUND
PGO QUIT
FOUND   PLS .D1/ADDRS!<X>! !N=$A

AFTER
-----
L .D1/ADDRS!<X>!@!N
PGO FOUND
PGO QUIT
FOUND   PLS .D1/ADDRS!<X>!<N=$A

Then modify your address file as below:

BEFORE                          AFTER
------                          ----- 
<1>John Smith                   <1>John Smith
1234 Elm Street                 1234 Elm Street
Anytown, USA 12345             Anytown, USA 12345
<2>Jane Doe                     @1@Mr. Smith<2>Jane Doe
5678 Main Ave.                 5678 Main Ave.
Nowhere, Indiana 98765         Nowhere, Indiana 98765
<                               @2@Ms Doe<

There are other methods of achieving the desired result, but this one is easy and it affords the flexibility of using a different "dear" name than the first line of the address (i.e., Company Name on the first line of the address).

This method also works quite well with Apple Writer II & IIe. For the file name path .D1/ADDRS, substitute ADDRS,D1 for DOS or simply ADDRS for ProDOS.

Apple Technical Communications

Keywords:

### END OF FILE A2TIL407.TXT