
To: Cortland Software Group
Software ERS binder

From: Rich Williams

Subject: Indiana Jones and the Memory Manager of Doom
__________________________GillClt -.o_

Revision history

Rev 1 Nov. 5, 1985 First pass

Rev 2 Nov. 27, 1985

PurgeAII, Lockall, etc. added. Properties of blocks added.

Rev 3 Feb. 10, 1986

Copy commands added. Call numbers added. The order of parameters
changed. Error codes added. TotalMem call added.

Rev 4 Mar. 10,1986

'-"'. Standard calls added. Parameters added to Applnit and AppQuit.
\

SetPurgeAII parameters switched.

Rev 5 July 14, 1986

CheckHandle, CompactMem, PtrToHand, HandToPtr and HandToHand and
RestoreHandle calls added. Section 2, Design Philosophy, removed. New
section 2 added. Section 7 added.

Rev 6 July 29,1986

Locked handles can be disposed. PurgeAII only purges unlocked
handles. These were typos in earlier revisions. ReAllocHandle parameters
were in wrong order. Error codes for calls added. Section 2.5.1 added.
Warning added in section 5.1. NilErr .changed to EmptyErr, NotNilErr
changed to NotEmptyErr to avoid confusion between handles that are Nil
and handles containing Nil.

Table of Contents

1.0 Introduction

2.0 Fundamental concepts

2!1 Handles and master pointers

2.2 Fixed and relocatable blocks

2.3 Memory fragmentation

2.4 Compaction

2.5 Purging
2.5.1 Automatic purging

2.6 Special memory

-..
" 3.0 Differences from the Mac memory manager

4.0 Properties of memory blocks

4.1 Allocation attributes

4.2 Modifiable attributes

5.0 Memory manager calls

5.1 Data types

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

Standard Calls
MMBootinit
MMApplnit
MMAppQuit
MMGetVersion
MMReset
MMStatus

Memory Manager ERS Rev 6
~

2

5.3
5.3.1
5.3.2
5.3.3

5.4
5.4.1
5.4.2
5.4.3
5.4.4

Allocating memory
NewHandle
RealiocHandle
RestoreHandle

Freeing memory
DisposHandle
DisposAIi
PurgeHandle
Pur'geAIi

"\
" 'I

\
/

5.5 Information on blocks and memory
5.5.1 GetHandleSize
5.5.2 SetHandleSize
5.5.3 FindHandle
5.5.4 FreeMem
5.5.5 MaxBlock
5.5.6 ' TotalMem
5.5.7 CheckHandle
5.5.8 CompactMem

5.6 Other properties of blocks
5.6.1 HLock
5.6.2 HLockAll
5.6.3 HUnlock
5.6.4 HUniockAIi
5.6.5 SetPurge
5.6.6 SetPurgeAIi

5.7 Moving data
5.7.1 PtrtoHand
5.7.2 HandtoPtr
5.7.3 HandtoHand
5.7.4 BlockMove

6.0 Error Codes

7.0 ROM and RAM portions of the memory manager

Memory Manager ERS Rev 6 3

\
/

1.0 Introduction

'Memory [management] is the treasury and guardian of all things'
Cicero, De Oratore. Bk. i, Sec. 5

'The memory [manager] strengthens as you lay burdens upon it, and
becomes trustworthy as you trust it. '

Thomas De Quincy, Confessions on an English Opium-Eater

The memory manag~r is the bookkeeper for the memory in the Apple
II. By using the memory manager, programs can dynamically allocate,
deallocate and resize memory blocks in any order according to their needs.
The memory manager keeps track of the owner of each memory block so
that more than one program can share the available ram in the Apple. A
desk accessory, for example, can ask for memory even though it is being
called while running an application.

Conceptually, the memory manager is very similar to the Macintosh.
The user, however, should not be lulled into thinking that it is compatible
with the Macintosh'·s. Because of the architecture of the Apple II
and the 65816, the calls are very different and the internal d~ta

structures are totally different from the Macintosh.

2.0 fundamental concepts

In order to understand how the memory manager works, there are
some basic concepts that need to be understood. These are handles,
master pointers, fragmentation, compaction and purging. The use of these
terms are almost identical to the Macintosh.

2.1 Handles and master pointers

When a new block is created for a program, the program is not given
the address of the actual block. Instead, the program is given the address
of a pointer to the block. This address is called the handle and the
pointer to the block is called the master pointer. This way, if the block
is moved, the program can still find the block by looking at the master
pointer, which never moves. The following picture illustrates the
indirection through the master pointer.

Memory Manager ERS Rev 6 4

memory

data block

master pointer

h ndle e

I I
I -

-.....

Handle points to master pointer which points to actual block.

Figure xx. Handle to a Relocatable Block

In order to access the information in the block, the program must
copy the starting address from the master pointer into zero page to use
indirect addressing. This is called dereferencing the handle. Once this
is done, the program must make sure that the block doesn't move. The
block might be moved if the memory manager is called or a routine that
calls the memory manager is called. If the block is moved, it must be
dereferenced again.

2.2 Fixed and relocatable blocks

Some blocks must never be moved. 6502 code, for example, is seldom
position independent and if moved will no longer work. Blocks of data can
usually be moved without harm. The memory manager allows fixed blocks
to be created for position dependent data (Le. programs) and relocatable
blocks to be created for position independent data that can be moved when
necessary. The memory manager tries, but does not guarantee, to allocate
fixed blocks in low memory and relocatable blocks in high memory.

2.3 ,Memory fragmentation

Since memory blocks can be allocated and deallocated in any order,
memory tends to become fragmented after a while into a jumble of free
and allocated memory blocks. When this happens, the memory manager
may not be able to allocate a requested block even though there is enough
free memory available because the space is broken up into smaller I

isolated blocks. The following picture illustrates fragmented memory.

'''''''.

Memory Manager ERS Rev 6 5

Rlloc8ted blocks Blocks to be freed Fr8gmented memory

'.

o Free memory Fhced Blocks 0 Reloc8t8ble blocks

Figure xx. Memory Fragmentation

2.4 Com'pactlon

When the memory manager is unable to allocate a block it will try to
compact memory. Compaction is moving all of the relocatable blocks to
consolidate the free space into a single block. Compaction of the above
example is shown in figure XX.

Fixed blocks and locked relocatable blocks interfere with compaction
by forming immovable islands in memory. This can prevent the free block~

from being collected together and can leave memory fragmented after
compaction, as shown in figure XX. The memory manager never moves ~

relocatable block around a non-relocatable one. To minimize this problem,
the' memory manager tries to allocate fixed blocks towards the bottom of
memory and relocatable blocks towards the top of memory. Also, to help
prevent fragmentation, programs should use relocatable blocks whenever
possible and leave blocks unlocked as much as possible.

Memory Manager ERS Rev 6 6

high mem'ory

· .

high memory

low memory

Rfter compaction

o
low memory

Before compaction

Free memory FiMed Blocks o Relocatable blocks

Figure xx. Memory Compaction

.."" high memory high memory

low memory low memory

Before compaction Rfter compaction

o Free memory FiMed Blocks I;:, I Relocatable blocks

Figure xx. Fragmentation after Compaction

Memory Manager ERS Rev 6 7

2.5 Purging

If the memory manager is still unable to allocate a block after
compacting memory. it will try purging blocks. Only blo'cks that are
marked purgable and unlocked can be purged. Purging throws out the
contents of the block and frees it. THe block's master pointer remains
allocated and its value is set to nil. A handle pointing to nil master
pointer is called an empty handle. If your programs wants to refer to the
purged block, it must detest that the handle is empty and ask the memory
manager to reallocate the block. The data in the block has been lost and
must be recreated by the program. Figure XX shows a block being purged
and reallocated.

memory

purgable bloclc

mtuter pointer

handle

I I
I ..

--"""'-- ...
;. ,:

.

Figure XX a. Before purging.

memory

master pointer

handle

I I
I Nil

Figure XX b. After purging. Handle is empty and data is lost.

Memory Manager ERS Rev 6 8

memory

new bloclc

master pointer

handle

I I

C.

Figure XX c. Pointer points to new block.

2.5.1 Automatic Purging

When the memory manager runs out of memory, it will start purging
purgable blocks to attempt to make more room. The order of the purging is
based on the Purge Level of the block. The purge level is a 2 bit number
specifying the purging priority of the block. The values are:

3: Most purgable. Used for putting programs in zombie
state (see below).

2: Next most purgable.

1: Least purgable.

0: Not purgable.

Level 3 is used by the system loader. When some applications are exited,
the memory is not freed but its blocks are set to level 3. This way the old
application can be restarted later without going to the disk if the new
application did not need the space. The old application is in what is called
the zombie state. If the memory manager purges any blocks of an
application in the zombie state, it will purge all of the blocks. A
application should only use levels 0 to 2.

Memory Manager ERS Rev 6 9

" .. .\

2.6 Special Memory

The memory in the Apple /I is divided into three catagories. They are:

1) Nonspecial or normal memory .' This is memory that has no
special restrictions on it. Banks 2 • $DF and parts of banks $EO and $E 1.

2) Special memory • This is memory that has restrictions on
its use because it is memory that appears in the Apple lie. Special
memory may not be used by desk accessories, tools and other routines that
might be called while running old applications. Banks 0 • 1 and parts of
banks $EO and $E1 are special memory.

3) Reserved memory • This is memory that is not managed by
the memory manager. This includes the language cards, addresses $0000 ~

$0800 in banks 0 and 1, and addresses $0000 • $2000 in banks $EO and $El.
This memory is marked busy in the memory manager at startup time.

Memory Manager ERS Rev 6 10

How the Memory Manager Use. lants SOO, SOl, SED, SEI

oeoo' --)~~~~
0800 __) het P9 2

2P. Stlr:..1Kt P9 I
0000 --)

FFFF --)

HH --)

Bank $00 Bank $01

£000 --)

DODO --)

eDOO --)

ROOD --)

Bank $EO Bank $E~

6000 --)
Super HI-Res

HI-Res pgs I It 2
2000 --)

HI-Res pgs I It 2

Reserued Reserued
oeoo --)

lilt P9 2
0800 --)

lilt pg 2

ZP. SIIe••1Ht P9 I
0000 --)

ZP. SU::••1Ht P9 I

lHt P9 2

ZP. Stlr: ..1Ht P9 I

FHF --)

oeoo --)
0800 --)
0000 --)

6000 --)t

2000 --)

eooo --)

£000 --)

DODO --)

DC 00 --)~~~~

0800 --)

0000 --)

FFFF --)

eOOD --) eooo --)

DODO --) DODD --)

ED DO --) EDOO --)

"\

Unmam~gedMemory W////ffdj

Allocatable Memory I I
Allocatable, but Special t7ZZZ4I
(/ /e+uideo memory)

Memory Manager ERS Rev 6 1 1

_.... ':,.. - ..,~,~---,-- _... -"-_._-_.~' '--.' ...---.--'--_. ,

3.0 Differences from the Mac memory manager

There are many differences between this memory manager and the
Macintosh's. Some of the most notable are:

Fewer calls. If you want others, ask' for them
Blocks now have an owner 10
There is now a purging priority level for the block
There are only handles and no pointers

4.0 Properties of memory blocks

Memory blocks have attributes that determine how they are alIocated
and maintained. Some attributes are defined at alIocation time and can't
be changed. . Others can be modified after alIocation.

4.1 Allocation .attrlbutes

The memory in the Apple II and the architecture of the 65816 force
many restrictions on how blocks can be allocated. Blocks, for example,
may have to be page aligned or they may have to be in a certain bank. When

"''') allocating a block, an attributes word is specified that determines how
the block is alIocated. These attributes can only be set when the block is
alIocated. The attributes are:

D14 Fixed
D4 May not cross bank boundary
D3 May not use special memory
D2 Page Aligned
D1 Fixed Address
DO Fixed Bank

Dn l1li bit in attributes word. D15 l1li msb DO IIIl Isb

Fixed:
If a block is fixed, it cannofbe moved when compacting memory. Code

blocks will usualIy be fixed, but data blocks should usually not be.

..-- ,

Memory Manager ERS Rev 6 12

,.. _ ' _..,--

May not cross .. bank boundary:
This specifies that a block must not cross banks. Code blocks. tor

example, may never cross banks.

May not use special memory:
This specifies that the block may not be allocated in special memory,

This is memory that is used in the Apple lie and includes banks 0, 1 and
the video screens.

Page aligned:
For timing reasons, code or data may need to be page aligned

Fixed Address:
This is used to specify that the block must be at a specified address

when allocated. An ex~mple is alloca~ing the graphics screen.

Fixed Bank:
This specifies that the block must start in a specified bank. An

example is allocating a block to be used as a zero page or stack.

4.2 Modifiable attributes

The memory manager can move or purge a block while making room for
a new block. .There are attributes that determine whether a block can be
moved or purged. These attributes can be changed by the user after a block
is created. The attributes are:

015 locked
09.8 Purgelevel

Locked:
When a block is locked, it is unmovable and unpurgeable irregardless

of what Movable or Purgelevel is set to. This feature is to allow a block
to be temporily locked down while it is being executed or referenced.

Purgelevel:
This is a two bit number defining the purging priority of a block. 0 is

unpurgable and level 3 is the first purged. Applications should normally
use' levels 0 to 2.

Memory Manager ERS Rev 6 13

5.0 Memory Manager Calls

Calls to the memory manager fall into the following catagories:

Standard calls
$01 MMBootlnit
$02 MMApplnit
$03 MMAppQuit
$04 MMGetVersion
$05 MMReset
$06 MMStatus

Boot time initialization
Application initialization
Application quit call,
Gets version number
Called by system reset
Active status

Allocating memory
$09 NewHandle
$OA ReallocHandle
$08 RestoreHandle

Creates a new block and handle
Uses an existing handle
Restores a purged handle

"
"

Freeing memory
$10 DisposHandle
$11 DisposAII
$12 PurgeHandle
$13 PurgeAII

Deallocates a handle
Deallocates all of an owner's memory
Purges the contents of a block
Pl,.Irges all of an owner's purgable
blocks

FreeMem
Max810ck
TotalMem
CheckHandle
CompactMem

$1B
$1C
$10
$1E
$1F

Information on blocks and memory
$18 GetHandleSize Gets the size of a block
$19 SetHandleSize Grows or shrinks a block
$1 A FindHandle Finds the handle of a block containing

an address
Gets total amount of free space,
Gets size of largest free block
Gets size of all memory
Checks if a handle is valid
Forces memory compaction

Other properties of
$20 HLock
$21 HLockAII
$22' HUnlock
$23 HunlockAII
$24 SetPurge

blocks
Locks a block
Locks all of an owners blocks
Unlocks a block
Unlocks all of an owner's blocks
Sets the purge level of a block

Memory Manager ERS Rev 6 14

$25 SetPurgeAII

Copying Data
$28 PtrtoHand
$29 HandtoPtr
$2A HandtoHand
$2B BlockMove

5.1 Data types

Sets the purge level of all of an
owner's blocks

Copies from an address to a handle
Copies from a handle to an address
"Copies from one handle to another
Copies from one address to another

These are the data types used in the calls:

Pointer
Handle
UserlD
Address
Size
PurgeLevel

III AByte
III APointer
lIB Word
III Long int
III Long int
l1li 0..3

{Identifies. the owner of a segemnt}
{4 byte address}
{4 byte size of a block}
{Priority to purge" a block}

While the 65816 has only a 24 bit address space, addresses ari&
always given as 32 bit (4 byte) values with the high byte O.
Programs should never attempt to store other information in the
high byte of the address. If you do, the memory manager ancJ
other tools may not work properly.

5.2 Standard calls

These are standard calls defined for every tool. Note that the Applnit
call is different from other tool sets.

5.2.1 MMBootlnlt

This call initializes the memory manager at boot time. An application
must never make. this call since it will destroy all currently allocated
blocks including the caller. Never, ever, ever make this call. Donlt even
try to use it as part of a protection scheme.

Possible errors:
~ Type of error

Memory Manager ERS Rev 6 15

._-_._._. __ -.~_.-. ~--_ ..- -~._- --

$0000

5.2.2

No error

MMApplnlt

inputs: none

output: Owner: UserlO

This call is. made by an application when it starts up. If the call is
not made from a valid segment, a 10Err is returned. If this happens, the
program should call the 10 Manager for a 10 number and then call the
memmory manager to allocate its program segments. This should only
happen when running under the current operating systems.
Possible errors:
.Qo.d.e Type of error

$0000
$0207

No error
10Err An invalid owner 10 was given

5.2.3 MMAppQuit

inputs: Owner: UserlO

output: none

This call is given to the memory manager by the application when it
is finished and is about to exit.

Possible errors:
~ Type of error.

$0000

5.2.4

No error

MMGetVerslon .

inputs: none

output: Version: word

This returns the version number of the memory manager.

Memory Manager ERS Rev 6 16

.- ._..... _._.. ' .._----

Possible errors:
~ lyoe of error

-----' _~_ ,..---

$0000

5.2.5

No error

MMReset

The memory manager. will check the internal lists and return a
MemErr if they are inconsistent. This is an internal call used by the
system at reset time. An application should never make this call since
future memory managers may attempt to clean up a damaged system. This
could destroy the application.
Possible errors:
~ Iype of error

~,

\,

$0000
$0201

5.2.6

No error
MemErr

MMStatus

inputs:

Memory lists damaged.

none

outputs: Status: Boolean (always true)

Status is used to test if the tool is active. The memory manager is
always active.
Possible errors:
~ Iype of error

$0000 No error

'.

5.3 Allocating memory

These commands are used to create memory blocks.

Memory Manager ERS Rev 6 17

....-~'-----_.__ ._....._---_ ..

5.3.1 NewHandle

inputs:

outputs:

BlockSize:
Owner:
Attributes:
Location:

Handle

Size
UserlO
Word
Address

NewHandle is used to create a new block. BlockSize is the size of the
block to create. The attributes are described in section 4. If a block of
size 0 is created, the handle will be set to NIL. If a block of size 0 is
created, it must be unlocked and movable.

Possible Errors:
~ Type of error

.'.

$0000
$0201
$0204
$0207

No error
MemErr
LockErr
10Err

Unable to allocate block.
Illegal operation on a locked or immovable block
An invalid owner 10 was given

5.3.2 RealiocHandle

inputs: BlockSize:
Owner:
Attributes:
Location:
TheHandle:

Size
UserlO
Word
Address
Handle

output: none

ReallocHandle is used to reallocate a block that has been purged.
BlockSize is the size of the block to create. The attributes are described
in section 4 Any information that was in the purged block has been lost.

Memory Manager ERS Rev 6 18

Possible Errors:
~ Type of error

$0000
$0201
$0?03
$0204
$0206
$0207

5.3.2

No error
MemErr Unable to allocate block.
NotEmptyErr An empty handle was expected for this operation
LockErr Illegal operation on a locked or immovable block
HandleErr An invalid handle was given
IDErr An invalid owner 10 was given

RestoreHandle.

inputs:

output:

TheHandle: Handle

none

./

RestoreHandle is also used to reallocate a block that has been purged.
RestoreHandle will use the same attributes, owner and size that were in
the purged handle. The block may not be fixed address or fixed bank. If it
is, an AttrErr will be returned. Any information that was in the purged
block has been lost.

Possible errors:
~ Type of error

$0000
$0201
$0203
$0206
$0208

5.4

No error
MemErr Unable to allocate block.
NotEmptyErr An empty handle was expected for this operation
HandleErr An invalid handle was given
Att rErr Operation illegal on block with given attributes.

Freeing memory

.. ,....

These commands are used to free blocks and pointers. Once a block or
handle is freed, its contents cannot be recovered.

Memory Manager ERS Rev 6 19

5.4.1

.._~ .- ~..---'--.- .- ------_.~ .. '.- . _... -----_ ..

DlsposeHandle

inputs: theHandle: Handle

output: none

DisposHandle purges the block specified by theHandle and deallocates
the handle. The block's purge level and locked status are ignored.

Possible Errors:
~ Iype of error

$0000
$0206

5.4.2

No error
HandleErr An invalid handle was given

DlsposeAIi

inputs: . Owner: UserlD

output: none

DisposAII disposes all of the handles owned by Owner.

Possible Errors:
~ Iype of error

$0000
$0207

No error
IDErr An invalid owner 10 was given

5.4.3 PurgeHandle

inputs: theHandle: Handle

output: none

PurgeHandle purges the block specified by theHandle. The block must
be purgable and unlocked. The handle itself remains allocated but is empty
(pointed to NIL).

Memory Manager ERS Rev 6 20

---_.~.-' ._.-,-._~_.....-:." ~'--~

Possible Errors:
~ !ype of error

$0000
$0204
$0205
$0206

5.4.4

No error
LockErr
PurgeErr
HandleErr

PurgeAIi

Illegal operation on a locked or immovable block
Attempt to purge an unpurgable block
An invalid handle was given

inputs: Owner: UserlD

~.,
t

output: none

PurgeAII purges all of the purgable blocks owned by Owner. Only
purgable, unlocked blocks are purged. If any blocks were not purgable,
LockErr or PurgeErr will be returned and the purgable blocks will be
purged.

Possible Errors:
.cm:m Type of error

$0000
$0204
$0205
$0207

No error
LockErr
PurgeErr
IDErr

Illegal operat.ion on a locked or immovable block
Attempt to purge an unpurgable block
An invalid owner 10 was given

5.5 Information on Blocks

These commands are used to grow or shrink memory blocks.

5.5.1 GetHandleSize

inputs: theHandle: Handle

output: Size

Memory Manager ERS Rev 6 21

-~---_ ..-. ,--.._'-_..._-~ - .. -._-~---_._.,-'" --_._, ,--- _--

GetHandleSize returns the size of a block specified by theHandle ..

Possible Errors:
~ Iype of error

$0000
$0206

5.5.2

No error
HandleErr An invalid handle was given

SetHandleSlze

inputs: newSize:
theHandle:

Size
Handle

output: none

SetHandleSize changes the size of the block specified by theHandle.
The block can be made larger or smaller. If necessary to lengthen a block,
memory may be compacted or blocks may be purged. The handle should be
unlocked since it may have to move to change size. If the size is set to 0,
the handle will be set to NIL. Attempting to resize a purged handle will
return a EmptyErr.

Possible Errors:
~ Type of error

$0000
$0201
$0202
$0204
$0206

No error
MemErr
EmptyErr
LockErr
HandleErr

Unable to allocate block.
Illegal operation on An empty handle
Illegal operation on a locked or immovable block
An invalid handle was given

5.5.3 FindHandle

inputs:

output:

Location: Address

theHandle: Handle

Memory Manager ERS Rev 6 22

.....•....._---_ .. -_ - -~_. --_.__ _--

FindHandle returns the handle to the block containg the address
specified by location. Note that if the block is not locked, it may move. If
the address is not in any handle, then NIL (0) is returned.

Possible Errors:
~ Iype of error

$0000

5.5.4

No error

FreeMem

inputs: none

output: Size

FreeMem returns the total number of free bytes
not count memory that could be freed by purging.
fragmentation, it may not be possible to allocate
FreeMem does a compaction of the memory space.

Possible Errors:
~ Type of error

in memory. It does
Because of memory
a block this large.

$0000

5.5.5

No error

MaxBlock

inputs: none

output: size

MaxBlock returns the size of the largest free block in memory. It
does not count memory that could be freed by purging or compacting.

Possible Errors:
.Qm:J.e Type of error

\
I

./

$0000 No error

Memory Manager ERS Rev 6 23

5.5.6

----... ,..---
TotalMem

inputs: none

output: size

TotalMem returns the size off all of the memory in the machine. This
includes the main 256K.

Possible Errors:
~ Type of error

$0000

5.5.7

No error

CheckHandle

inputs: theHandle: Handle

outputs: none

CheckHandle checks to see if a handle is a valid handle.. This call is
intended primarily as a debugging aid. If the memory manager does not
recognize the handle as one it created, HandleErr is returned.

Possible errors:
~ Type of error

$0000
$0206

5.5.7

No error
HandleErr An i~valid handle was given

CompactMem

inputs: none

outputs: none

CompactMem can be used to force memory compaction. Memory
compaction is never done during interrupts so if CompactMem is called
from an interrupt. no compaction is done.

Memory Manager ERS Rev 6 24

~.----_._--- -~.- ..._-_._----~-

Possible errors:
~ Type of error

•• ,.._.0 • •.••....- • ',. .. ••• ,_,J-"'_~_' ~_

$0000

5.6

No error

Other properties of blocks

These commands change the other properties of memory blocks.

5.6.1 HLock

inputs: theHandle: Handle

output: none

HLock locks a block specified by theHandle. A locked block cannot be
relocated or purged during memory compaction.

Possible Errors:
~ Type of error

. ~.

$0000
0206

5.6.2

No error
HandleErr An invalid handle was given

HLockAIl

inputs: Owner: UserlO

output: none

HLockAII locks all of the blocks owned by Owner.

Possible Errors:
~ Type of error

. '-",

$0000
$0207

No error
10Err . An invalid owner 10 was given

Memory Manager ERS Rev 6 25

--_._'-~ •..._--- _...__._--- ----~_.. ,_.._.."'-_.._----

5.6.3 HUnlock

inputs: theHandle : Handle

output: none

HUnlock unlocks a block specified by theHandle. A unlocked block can
be relocated during memory compaction.

Possible Errors:
~ Type of error

$0000
$0206

5.6.4

No error
HandleErr An invalid handle was given

HUniockAIl

inputs: Owner: UserlO

output: none

HUniockAII unlocks all of the blocks owned by Owner.

Possible Errors:
~ Type of error

$0000
$0207

5.6.5

No error
10Err

SetPurge

inputs:

output:

An invalid owner 10 was given

newPlevel: PurgeLevel (word)
theHandle: Handle

none

SetPurge sets the PurgeLevel of the block specified by theHandle to
newPlevel.

Memory Manager ERS Rev 6 26

- - ._, ._. ._~ • .~ ~•••:",-"->-0"'",-__ ---~

Possible Errors:
~ lype of error

$0000
$0206

5.6.6

No error
HandleErr An invalid handle was given

SetPurgeAIi

inputs:

output:

newPlevel: PurgeLevel (word)
Owner: UserlD

none

SetPurgeAII sets the purge level of all of the blocks owned by Owner.

Possible Errors:
~ Type pf error

$0000
$0207

No error
IDErr An invalid owner 10 was given

5.7 Copying Data

These commands are used to copy data from one place to another in
the machine. The moves will work properly even if the source and
destination blocks overlap or cross bank boundaries. All of these
functions are essentially the same as block move. PtrtoHand, HandtoPtr
and HandtoHand will dereference the handles for the caller's convience.
The calls do not verify that a destination block is large en'ough to hold th~

data. There is no address validation on pointers and the functions will
cheerfully write over anything. even if it crashes the machine. The high
byte of the four byte address must be O.

Memory Manager ERS Rev 6 27

5.7.1

._-~ "-"-'-~-"'-"""'-'----

PtrtoHand

inputs: Source:
Dest:
Count:

Pointer
Handle
Size

output: none

Possible Errors:
~ Type of error

$0000
$0202
$0206

No error
EmptyErr
HandleErr

Illegal operation on An empty handle
An invalid handle was given

5.7.2 HandtoPtr

inputs: Source:
Dest:
Count:

Handle
Pointer
Size

": output: none
'. ,;;1 Possible Errors:

~ Type of error

$0000
$0202
$0206

No error
EmptyErr
HandleErr

Illegal operation on an empty handle
An invalid handle was given

5.7.3 HandtoHand

inputs: Source: Handle
Dest: Handle
Count: Size

output: none

Possible Errors:
,"" , ~ Type of error

,

Memory Manager ERS Rev 6 28

$0000
$0202
$0206

No error
EmptyErr
HandleErr

Illegal operation on an empty handle
An invalid handle was given

5.7.4 BlockMove

inputs: Source:
Oes't:
Count:

Pointer
Pointer
Size

output: none

Possible Errors:
.QQ.d.e Type of error

$0000 No error

....

6.0 Error Codes

These are the error codes returned by the memory manager

$0000'
$0201
$0202
$0203
$0204
$0205
$0206
$0207
$0208

Type of error

No error
MemErr Unable to allocate block.
EmptyErr Illegal operation on an empty handle
NotEmptyErr An empty handle was expected for this operation
LockErr Illegal operation on a locked or immovable block
PurgeErr Attempt to purge an unpurgable block
HandleErr An invalid handle was given
10Err An invalid owner 10 was given (usually zero)
AttrE rr Operation illegal on block with given attributes.

7.0 ROM and Ram portions of the memory manager

All of the memory manager is in rom except for the automatfc purging
routines. The first release of the memory manager has these in ram to
allow the operating syatem and loader people to determine the proper

Memory Manager ERS Rev 6 29

purging priorites. Future releases of the rom will have these routines in
rom.

Memory Manager ERS Rev 6 30

	v4_05_01
	v4_05_02

