
Date· July 14, 198G

Author - Cheryl Ewy

Subject - LineEdit ERS

Document Version Number - 00:10

Bevision History

00:00 (06-17-86)

00:10 (07-14-86)

Initial Release

LEFromScrap routine added
LEToScrap routine added
Call numbers changed for some routines
Support for control-F, control-Y and control- X

added to LEKey
Support for triple-click added to LEClick
LETextBox information updated
Error codes updated

(

OVERVIEW

LineEdit is a set of routines that provide basic line editing capabilities. These
capabilities include:

- Inserting new text.

- Deleting characters that are backspaced over.

- Translating mouse activity or arrow keys into text selection.

- Deleting selected text and possibly inserting it elsewhere, or copying text
without deleting it.

The LineEdit routines follow the Apple Human Interface Guidelines and support
these standard features:

- Positioning the insertion point by clicking the mouse.

. Moving the insertion point 1 character at a time by using the lett and right
arrow keys.

- Moving the insertion point 1 word at time by using Option-LettArrow or
Option-RightArrow.

- Moving the insertion point to the beginning or end of the line by using
OpenApple-LeftArrow or 0penApple-RightArrow.

- Selecting text by clicking and dragging with the mouse.

- Selecting text by using Shift-LeftArrow and Shift-RightArrow.

- Selecting words by double-clicking the mouse.

- Selecting words by using Shift-Option-LeftArrow or Shift-Option-RightArrow.

- Selecting the whole line by triple-elicking the mouse.

- Selecting from the Insertion point to the beginning or end of the line by
using Shift-OpenApple-LettArrow or Shift-OpenApple-RightArrow.

- Extending or shortening the selection by clicking the mouse while holding
down the Shift key.

- Deleting the selection or the character to the left of the insertion point by
using Backspace.

- Deleting the selection or the character to the right of the Insertion point by
using Control-F. .

• Deleting the selection or the whole line by using Control-X.

- Deleting the selection or from the Insertion point to the end of the line using
Control-Y.

- Inverse highlighting of the current text selection, or display of a blinking
vertical bar at the Insertion point.

L1neEd" ERS

(

· Cutting (or copying) and pnsting. LineEdit puts text you cut or copy into the
lineEdil scrap.

LineEdit does not support:

• more than 256 characters per line (except when using LETextBox)

- line wrap (except when using LETextBox)

- centered or right-justified text (except when using LETextBox)

- fully justified text (text aligned with both the left and right margins)

- scrolling

· the use of more than one font or stylistic variation per line

- "intelligent" cut and paste (adjusting spaces between words during cutting
and pasting)

-tabs

EDIT RECORDS

To edit a line of text on the screen, LineEdit needs to know where and how to
display the text, where to store the text, and other information related to editing.
This display, storage, and editing information is contained in an edit record that
defines the complete editing environment.

You prepare to edit text by specifying a destination rectangle in which to draw
the text and a view rectangle In which the text will be visible. UneEdit
Incorporates the rectangles and the drawing environment of the current grafPort
Into an edit record, and returns a handle to the record. Most of the LineEdit
routines require you to pass this handle as a parameter.

In addition to the two rectangles and a description of the drawing environment,
the edit record also contains:

- a handle to the text to be edited

• a pointer to the grafPort In which the text is displayed

• the current selection range, which determines which characters will be
affected by the next editing operation

For most operations, you don't need to know the exact structure of an edit
record since the LIneEdit routines access the record for you. The structure of an
edit record Is given below.

L1neEdlt ERS Page 3

TextHandle
] ,('nat h
MaxLength
DestRect
ViewRect
PortPtr
LineHite
BaseHite
SelStart
SelEnd
ActFlg
CarAct
CarOn
CarTimc
HiliteHook
CaretHook

HANDLE
JNTFGF.R
INTEGER
Rect
Rect
POINTER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
LOl~::; INT
POINTER
POINTER

(hndl to te:-:t. to be: editej)
((" U r r (' n t J f':-.:1 ~ h (' f t ('~: t)

{maximum text length)
{destination rectangle)
{view rectangle)
{ptr to grafPort}
{used for highlighting}
{used for drawing the text}
{start of selection range}
{end of selection range}
{used internally}
{used internally}
{used internally}
(used inte~~aJly)

{ptr to highlight routine)
{ptr to caret routine}

(
\

Warning: Never change any of the fields in the edit record directly.
. The.fields can only be changed by calling LineEdit routines.

The DestRect and ViewRect Fields

The destination rectangle is the rectangle in which the text is drawn. The view
rectangle is the rectangle within which the text is actually visible. In other
words, the view of the text drawn in the destination rectangle is clipped to the.
view rectangle. The view rectangle also determines the area in which mouse
activity affects the text. Clicking or dragging the mouse outside the view
rectangle does not affect the Insertion point or selection range. In most cases,
the view rectangle should be a few pixels larger than the destination rectangle
on all sides. This provides some slop area around the text in which the mouse
activity will still have an effect on the text.

IThis l1ne is fully visible. I
L:M_••_ •.•_._.•M M••__

, ;

Thisll1ne is not fully Vis~ble.
___.... ----t

DestRect ----+D
V1ewRect~D

You specify both rectangles In the local coordinates of the grafPort. To ensure
that the first and last characters In each line are legible In a document window J

you may want to Inset the destination rectangle at least four pixels from the left
and right edges of the grafPort's portRect.

UneEdlt ERS

/,

(

Edit operations may of course lengthen or shorten the text If the text becomes
too long to be enclosed by the destination rectangle, it's simply drawn beyond
the right edge. LineEdit doesn't support scrolling or wrapping to the next line,

The UneHlte and.Basetlite Fields

The BaseHite field has to do with where the the text is drawn relative to the top
of the DestRect. The LineHite field has to do with where the caret or
highlighting of the selection range is drawn relative to the text. The BaseHite
field specifies the distance between the top of the DestRect and the base line
(leading + ascent). The LineHite field specifies the height of the line (leading +
ascent + descent).

top of DestRect~-.".m"··-··-·"·"·"'''''''''···''··''''lleed1n

-";"1Tm "f"m'" 9

Bese Line-1~. :::::~t'

!he SeiStart and selEndB~'ds

In the text editing environment, a character position is an index into the text, with
position 0 corresponding to the first character. The edit record Includes fields
for character positions that specify the beginning and end of the current
selection range, which is the series of characters where the next editing
operation will ooeur. For example, the procedures that cut or copy from the text
of an edit record do so to the current selection range.

The selection range, which Is Inversely highlighted when the window Is active,
extends from the beginning character position to the end character position.
The figure below shows a selection range between positions 3 and 8,
consisting of five characters (the character at position 8 isn't included). The
end position of a selection range may be 1 greater than the position of the last
character of the text, so that the selection range can include the last character.

If the selection range Is empty· that is, Its beginning and end positions are the
same· that position is the text's insertion point, the position where characters
will be Inserted. By default, It's marked with a blinking caret (actually a vertical
bar).

UneEdlt ERS Page 5

o 1 2 3 4 5 7 e 9 10 11 12 13 14 15 16 17

a s ·lon ran e
se Ieet Ion renge

beginning et position 3
end ending et position 8

o 1 2 3 4 5 6 7 8 4) 1011 12 13 14 15 1617 18 19

!t:h:e: I(n:s:e:r:t\o:n: :p:o\n:tl
Insertion point
et position 4

If you call a procedure to insert characters when there's a selection range of
one or more characters rather than an insertion point, the editing procedure
automatically deletes the selection range and replaces it with an insertion point
before inserting the characters.

]be HlllteHQok andCaret~

The HiliteHook and CaretHook fields are used for text highlighting and drawing
the caret. These fields are initialized to $00000000. You can set the contents
of these fields by calling the LESetHilite and LESetCaret routines.

If you store the address of a routine In HiliteHook, that routine will be used
Instead of the QuickDraw procedure InvertRect whenever a selection range Is to
be highlighted. For example, you can write a routine which underlines selection
ranges Instead of highlighting them. The routine will be called with the stack
containing a pointer to the rectangle enclosing the text being highlighted.

The routine whose address is stored in CaretHook acts exactly the same way as
the HiliteHook routine, but on the caret instead of the selection highlighting,
allowing you to change the appearance of the caret. The routine will be called
with the stack containing a pointer to the rectangle that encloses the caret.

USING LINE EDIT

Before using LlneEdlt, you must initialize the Memory Manager, QuickDraw, the
Event Manager and the Window Manager, In that order.

The first LlneEdit routine to callis the Initialization routine LEStartUp.

LineEdit ERS Page 6

/

('
\

Call LENew to allocate an edit record: it returns a handle to the record. Most of
the text editing routines require you to pass this handie as a parameter.

When you're completely done with an edit record and want to dispose of it, call
LEDispose.

To make a blinking caret appear at the insertion point, call the LEldle routine as
often as possible (at least once each time through the main event loop); if it's
not called often enough, the caret will blink irregularly.

When a mouse-down event occurs in the view rectangle (and the window is
active) call the LEClick routine. LEClick controls the placement and highlighting
of the selection range in response to mouse activity, including supporting use of
Shift-Click to make extended selections.

Key-down, auto-key, and mouse events that pertain to text editing can be
handled by several LineEdit routines:

- LEKey inserts characters, deletes characters backspaced over, controls the
placement and highlighting of the selection range in response to the

. LeftArrow and RightArrow keys, and handles the Control-F, Control-X and
Control-V commands.

- LECut transfers the selection range to the LineEdit scrap, removing the
selection range from the text.

- LEPaste inserts the contents of the LineEdit scrap. By calling LECut,
changing the insertion point, and then calling LEPaste, you can perform a
IIcut and pastell operation, moving text from one place to another.

o LECopy copies the selection range to the UneEdit scrap. By calling
LECopy, changing the Insertion point, and then calling LEPaste, you can
make multiple copies of text.

o LEDelete removes the selection range (without transferring It to the scrap).
Vou can use LEDelete to implement the Clear command.

o LElnsert inserts specified text. Since LEDelete and LElnsert do not modify
the scrap, they're useful for implementing the Undo command.

After each editing procedure, UneEdit redraws the text if necessary from the
Insertion point to the end of the text. You never have to set the 'selectlon range
or Insertion point yourself; LEClick and the editing routines leave It where It
should be. If you want to modify the selection range directly, however· to
highlight an Initial default name or value, for example· you can use the
LESetSelect routine.

LineEdit ERS Page 7

(
\

(

To implement cutting and pasting of text between different applications, or
between applications and desk accessories, you need to transfer the text
between the LineEdit scrap (which is a private scrap used only by LineEdit) and
the Scrap Manager's desk scrap. To do this, use the LEFromScrap and
LEToScrap routines.

When an update event is reported for a text editing window, call LEUpdate
(along with the Window Manager routines BeginUpdate, EraseRect and
EndUpdate) to redraw the text.

Note: After changing any fields of the edit record that affect the
appearance of the text, you should call the Window Manager
routine InvalRect so that the text will be updated.

The LEActivate and LEOeactivate routines must be called each time
GetNextEvent reports an activate event for a text editing window. LEActivate
simply highlights the selection range or displays a caret at the insertion point;
LEOeactivate unhighlights the selection range or rerryoves the caret.

The LESetTex1 routine lets you change the text being edited. For example, if
your application has several separate pieces of text that must be edited one at a
time, you don't have to allocate an edit record for each of them. Allocate a
single edit record, and then use LESetText to change the text.

If you want to draw noneditable text in any given rectangle, you can use the
LETextBox routine.

LINE EDIT ROUTINES

LEBootlnit Call f $01

LEBootinit is called at boot time. It does nothing.

LEStartUp

input
input

Call • $02

ZeroPaqeAdrs
ProqramID

INTEGER
INTEGER

LEStartUp Initializes UneEdit and allocates a handle for the UneEdit scrap.
The scrap Is Initially empty. ZeroPageAdrs Is the starting address In Bank 0 of a
1-page work area assigned to L1neEdit. ProgramlO Is the 10 UneEdit will use
when getting memory from the Memory Manager. Duplicate LEStartUp calls
will cause an error to be returned.

L1neEdlt ERS Page 8

Note: You should call LEStartUp even if your applicalion doesn't
use LineEdit, so that desk accessories and dialog and alert boxes
will work correctly.

LEShutDown Call • S03

LEShutDown shuts down LineEdit and releases any workspace allocated to it.

LEVers ion

input
output

Call f S04

Result space
VersionInfo

WORD
INTEGER

LEVersion returns identifying information for LIneEdit.

LEReset Call ~ $.05

LEReset returns an error if LineEdit is active, otherwise it does nothing.

LEActive

input
output

Call f S06

Result space
ActiveFlag

WORD
INTEGER

LEActive returns a non-zero value if LineEdit is active, 'Otherwise it returns a O.

LENew

input
input
input
input
output

Call • S09

Result space
DestRectPtr
ViewRectPtr
MaxTextLen
hLE

LONG WORD
POINTER to Rect
POINTER to Rect
INTEGER
HANDLE

LENew allocates space for the text, creates and initializes an edit record, and
returns a handle to the new edit record. DestRect and ViewRect are the
destination and view rectangles, respectively. Both rectangles are specified in
the current grafPort's coordinates. The view rectangle must not be empty. For
example, don't make Its right edge less than Its left edge. tf you don't want any
text visible - specify a rectangle off the screen instead. MaxTextLen specifies
how many bytes to allocate for the text. It should be a value from 1 to 256. The
text will be limited to this length.

lineEdit ERS Page 9

Call LENew once for eVery edit record you want allocated. The edit record
incorporates the drawing environment of the grafPort, and is initialized with an
insertion point at character position O.

Note: The caret won't appear until you call LEActivate.

LEDispose

input

Call t SOA

hLE HANDLE

LEDispose releases the memory allocated for the edit record and text specified
by hLE. Call this procedure when you're completely through with an edit
record.

~ the Text of an Edit Becord_

LESetText

input
input
input

Call 41 SOB

TextPtr
Length
hLE

POINTER
INTEGER
HANDLE

LESetText incorporates a copy of the specified text into the edit record specified
by hLE. The TextPtr parameter points to the text, and the Length parameter
indicates the, number of characters in the text. If Length is greater than the
mmdmum text length allowed for the edit record, only the maximum number of
characters allowed will be copied into the edit record. The selection range is
set to an insertion point at the end of the text. LESetText doesn't affect the text
currently drawn In the destination rectangle, so call InvalRect afterward If
necessary.

1MeJ1tQ.D.£olnt and Selection Range

LEldle

input

Call t SOC

hLE HANDLE

LEldle should be called repeatedly to make a blinking caret appear at the
insertio,n point (if any) in the text specified by hLE. (The caret appears only
when the window containing that text is active.) UneEdit observes a minimum
blink Interval: No matter how often LEldle Is called, the time between blinks will
never be less than the minimum Interval. The user can adjust the minimum
blink interval with the Control Panel desk accessory.

To provide a constant frequency of blinking, LEldle should be called as often as
possible· at least once each time through the main event loop. Call it more

L1neEdlt ERS Page 10

than once If your application does an unusually large amount of processing
each time through the loop,

Note: LEldle actually only needs to be called when the window
containing the text is active.

LEClick

input
input

Call f SOD

EventPtr
hLE

POINTER to event record
HANDLE

(

LEClick controls the placement and highlighting of the selection range as
determined by mouse events. Call LEClick whenever a mouse-down event
occurs in the view rectangle of the edit record specified by hLE, and the window
associated with that edit record is active. The EventPtr parameter should be a
pointer to the mouse-down event record.

LEClick unhighlights the old selection range unless the selection range is being
extended. If the mouse moves, meaning that a drag is occurring, LEClick
expands or shortens the selection range accordingly. In the case of a d.ouble­
click, the word under the cursor becomes the selection range; dragging
expands or shortens the selection a word at a'time. In the case of a triple-click,
the entire line becomes the selection range. LEClick keeps control until the
mouse button is released.

LESetSelect

input
input
input

Call • SOE

SelStart
SelEnd
hLE

INTEGER
INTEGER
HANDLE

LESetSelect sets the selection range to the text between SelStart and SelEnd
in the text specified by hLE. The old selection range Is unhighlighted, and the
new one is highlighted. If SelStart equals SelEnd, the selection range is an
insertion point, and a caret is displayed.

SelEnd and SelStart can range from 0 to 256. SelStart must be <= SelEnd. If
SelEnd is anywhere beyond the last character of the text, the position just past
the last character is used.

LEActivate

input

Call • $OF

hLE HANDLE

LEActlvate highlights the selection range In the view rectangle of the edit record
specified by hLE. If the selection range Is an Insertion point, It displays a caret
there. This procedure should be called every time the Event Manager routine

L1neEdlt ERS Page 11

GetNextEvent reports that the window containing the edit record has become
active.

LEDeactivate

input

Call • $10

hLE HANDLE

LEDeactivate unhlghlights the selection range In the view rectangle of the edit
record specified by hLE. If the selection range is an insertion point, it removes
the caret. This procedure should be called every time the Event Manager
routine GetNextEvent reports that the window containing the edit record has
become inactive. .

E.d!1ing

LEKey

input
input
input

Call ~ $11

Key
Modifiers
hLE

WORD
WORD
HANDLE

(
\

LEKey replaces the selection range In the text specified by hLE with the
character given by the Key parameter, and leaves an insertion point just past
the inserted character. If the selection range is an insertion point, LEKey just
Inserts the character there.

If the Key parameter contains a Backspace character, the selection range or the
character Immediately to the left of the insertion point Is deleted. If the Key
parameter contains a Control-F character, the selection range or the character
Immediately to the right of the Insertion point Is deleted. If the Key parameter
contains a Control-X character, the selection range or the entire line is deleted.
If the Key parameter contains a Control-V character, the selection range or the
text from the insertion point to the end of the line is deleted.

If the Key parameter contains a LeftArrow or RightArrow character, LEKey will
move the insertion point or extend the selection range depending on the
contents of the Modifiers parameter.

LEKey redraws the text as necessary.

Call LEKey every time the Event Manager routine GetNextEvent reports El
keyboard event that your application decides shouki be handled by UneEdit.
The Key parameter shouki be the key reported by the event record. The
Modifiers parameter shouki be a copy of the Modifiers 'fieki In the event record.

Note: LEKey Inserts every character passed In the Key parameter
(except for Backspace, Control-F, Control-X, Control-V, LeftArrow

LineEdit ERS Page 12

and RightArrow). so it's up to the application to filter out all
characters that aren't actual text (such as Command keys and
other Control characters).

LECut

input

Call f $12

hLE HANDLE

LECut removes the selection range from the text specified by hLE and places it
in the LineEdit scrap. The text is redrawn as necessary. Anything previously in
the scrap is deleted. If the selection range is an insertion point, the scrap is
emptied.

LECopy

input

Call f $13

hLE HANDLE

LECopy copies the selection range from the text specified by hLE into the
LineEdit scrap. Anything previously in the scrap is deleted. The selection
range is not deleted. If the selection range is an insertion point, the scrap is
emptied.

(LEPaste

input

Call f $14

hLE HANDLE

LEPaste replaces the selection range in the text specified by hLE with the
contents of the UneEdit scrap, and leaves an Insertion point just past the
Inserted text. The text Is redrawn as necessary. If the scrap Is empty, the
selection range Is deleted. If the selection range Is an Insertion point, LEPaste
just Inserts the scrap there.

LEDelete

input

Call t $15

hLE HANDLE

LEDelete removes the selection range from the text specified by hLE, and
redraws the text as necessary. LEDelete is the same as LECut (above) except
that It doesn't transfer the selection range to the scrap. If the selection range Is
an Insertion point, nothing happens. .

LEInsert

input
input
input

Call • $16

TextPtr
Length
hLE

POINTER
INTEGER
HANDLE

LineEdit ERS Page 13

LElnsert takes the specified texi and inserts it just before the selection range
into the text indicated by hLE, redrawing the text as necessary. The TextPtr
parameter points to the text to be Inserted, and the Length parameter indicates
the number of characters to be Inserted. LElnsert doesn't affect either the
current selection range or the scrap.

Text DlspJmt

LEUpdate

input

Call f $17

hLE HANDLE

LEUpdate redraws the text specified by hLE. Call LEUpdate every time the
Event Manager routine GetNextEvent reports an update event for a text editing
window· after you call the Window Manager routines BeginUpdate and
EraseRect; and before you call the Window Manager routine EndUpdate. If you
don't include the EraseRect call, the caret may sometimes remain visible when
the window is deactivated.

LETextBox Call t $18

input TextPtr POINTER
I input Length INTEGER\

input BoxPtr POINTER to a Rect
input Just INTEGER

LETextBox draws the specified text in the rectangle indicated by the BoxPtr
parameter, with justification Just. LETextBox does an EraseRect on the
rectangle before drawing the text and clips the text to the rectangle. LETextBox
Is not limited to a single line on the screen as the other UneEdit routines are.
LETextBox will wrap to the next line whenever a CR (ASCII $00) character
occurs In the text string. The text string must end with a CR character.

The Tex1Ptr parameter points to the text, and the Length parameter indicates the
length of the text including the CR characters. The Length parameter can range
from 0 to 32,767. The rectangle is specified in local coordinates. The Just
parameter should be set to 0 for left justified text, 1 for centered text, and ·1 for
right justified text.

LETextBox creates Its own edit record, which It deletes when It's finished, so the
text It draws cannot be edited. LETextBox does not allocate space for the text
string or make any copies of the text string.

UneEdlt ERS Paoe 14

LEFromScrap Call • $19

LEFromScrap copies the desk scrap to the lineEdit scrap. If the number of
characters in the desk scrap is :> 256, an error is returned and the scrap is not
copied.

LEToScrap Call f $lA

LEToScrap copies the LineEdit scrap to the desk scrap.

LEScrapHandle

input
output

Call f $lB

Result space
ScrapHndl

LONG WORD
HANDLE

LEScrapHandle returns a handle to the LineEdit scrap.

LEGetScrapLen

. input
output

Call f $lC

Result space
ScrapLength

WORD
INTEGER

LEGetScrapLen returns the size of the UneEdit scrap in bytes.

LESetScrapLen

input

Call f $lD

NewLength INTEGER

LESetSCrapLen sets the size of the L1neEdit scrap to the given number of bytes.
NewLength should be a value from 0 to 256. If NewLength is :> 256, it is set to
256.

LESetHilite

input
input

Call f $lE

HiliteAdrs
hLE

POINTER
HANDLE

LESetHllite sets the HiliteHook field to HiliteAdrs which should be the address
of a routine which will be used to do highlighting of the selection range.

L1neEdlt ERS Page 15

LESetCaret

input
input

Call • $lF

CaretAdrs
hLE

POINTER
HANDLE

LESetCaret sets the CaretHook field to CaretAdrs which should be the address
of a routine which will be used to draw the caret.

LINE EDIT ERROR CODES

$1401
$1402
$1403
$1404

LineEdit ERS

Duplicate LEStartUp call
Reset error
LineEdit not active
Desk scrap too big to copy

Page 16

