PROMAL
(PROgrammer”s Micro Application Language)
THE PROMAL PROGRAMMING SYSTEM MANUAL

For The APPLE Ile and Ilc
-or-
COMMODORE 64

PART 1: MEET PROMAL!

PART 2: PROMAL USER”S GUIDE
PART 3: PROMAL LANGUAGE
PART 4: PROMAL LIBRARY

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, North Carolina 27609
(919) 878-3600

Rev. C — September 1986

ii

ACKNOWLEDGEMENTS
//_
The PROMAL Language, Compiler, Executive,
and Library were designed and written by:
Bruce D. Carbrey
The PROMAL Editor and portions of the Apple I1Ile/IIlc and
Commodore 64 1/0 Interface were written by:
Larry Isaacs
with programming assistance from
David Long
COPYRIGHT NOTICE
Copyright (C) 1984, 1985, 1986 Systems Management Associates, Inc.
(Programs & Manuals). All rights reserved worldwide.

TRADEMARKS

PROMAL and DYNODISK are trademarks of Systems Management Associates, Inc.
Apple II and ProDOS are trademarks of Apple Computer, Inc.

Commodore 64 is a trademark of Commodore Business Machines, Inc.
Thunderclock is a trademark of Thunderware Inc.

IBM is a trademark of International Business Machines.

RAMWORKS is a trademark of Applied Engineering.

1541 Flash is a trademark of Skyles Electric Works.

DISCLAIMER

Systems Management Associates, Inc. makes no claims or warranties with

respect to the contents of this publication or the product it describes, beyond
the limited warranty which accompanies this product. The right is reserved to
make any changes to this publication or the product it describes without
obligation to notify any person of such revision or changes.

iit
TABLE OF CONTENTS

PART 1: MEET PROMAL!

Hardware Requirements, Copyright Notice, TrademarksS..e..ceceeec..1-2
Notice from Apple Computer INCeconceosocsssssassssensssscensssssal=2
Meet PROMAL! . eveseveeenoosecassosscsssososssosnsnascsssssscsacnsensl=3
About the Promal Demo DisSkette.seseeesscsesescsscessasssassssssssl=3
AUALENCE e s e e voesevssosssesososcssssssssossessassssssscsssssessnsel=3
ADOUt this ManuUal..eeeeceececssescscossossssssccssssscssosssssessel=3
What 1S PROMAL? . e eveseosescnoscocoacssssssssssssssvsassnasosenssel=3
Duplicating the Demo DiSKEtt@eoeoeesovsoosascssseacossasasensenssl=l
Loading PROMAL .. eoeeocoooncsosoosasosscssscosaseossccsssnssasesassesl=d
Using the PROMAL EXECULLIVEeeeocsesssossssssssssossoansccassssensssl=bh
Writing a Program with the EditOfeceocevocorsscossosscossceasanssl=9
Compiling your first Programe.ceceeseeesscscscoscsssosssassasnsasesl-ll
Executing your PrOgGraleseescscossssossssasscsvossssasccssssscssesl=l2
Where does PROMAL put the Program?.....ceeceecsscsesscssssossscsel=l2
Revising your PrOZraMecesesessncesosasssasscsasssscsssssscssssessl=ll
A Sample PROMAL Text-processing Program (FIND)eveeeooseoossnnsseal=l5
Real (floating point) Numbers & Simple Business Program....eess.1=-24
An Advanced Program (CALC) e veevcnoancsnssesansancocsanssnssesssssl=2b
Advanced Editor FeatureS..seecscesossesossesssoscsescssssascssssssl=25
Some Special CapabilitieSeeeecessescsseacsasacsssassscacsossssessl=29
A Database Application Program (Apple II)eeeeoacesssescooscessseeal=30
Sprites, Animation & Sound Synthesis (Commodore 64)cceevecacnsasal=30
I0 CONCIUSION. ot esvvveenssosnannnnnsnssscsssssssssssssassosessssel=32
Developer”s Version, Source Code, & Graphics ToolbOXeeseesoseeeaeal=33
CUSEOMEr SEITVICEeersesvsencsoccecssssssscsssssasasascssscssasvssesl=3l

PART 2: PROMAL USER”S GUIDE

INErOdUCELION. e ooseeeesooccescsessssssssssasoscsscscssssanasscssssl™2
Manuals & System SEATLUDP:soessesssascsnsssoassossssnsassssssoeseel™d
Executive Commands and Command Editing...ceeeececcececsssossesses2=b
Built-in Executive CommandS...ccseecssssescssscsscsscssoscsssesssl28
Arguments for Executive COMMANAS .+ e sssesssasssonsecnssacsscassesel=9
FLile NAMESeesoeoeveneneocsssssssssssssssssssossosscsssscsssesssnsel2=9
File Name EXLENSIONS.+eeecesecscssansssscsosossssccvsssnssnssssesl2=l2
Numeric Arguments..2-12
DeVice NAMES . seeseooenesescassossnassscsasesssasscsscsssnssssssesl2=l3
I/0 Redirectioneeeceeeeeescecessssssssossassssscasscscoseasessessl=ll
PROMAL Executive Command SUMMATYesseeoavosesosscsasscscsassssssselll
BUFFERS (Apple II ONlY)eeeeosoooeerescssoosvssnsasssscsseseesl™ld
COLOR . ¢ s e svseeenososcssasssosssnsssssssssssssnccsscansscscsnsel=lb
COPY (EXTCOPY)eveveeeacesanossssosnsassoscsasnannsssonnssssss2=l?
G e e ereonossnocosasencanesssossnssssssssssvsssososssoanssnsese2=ld
DATE ¢ et esevsocsoseensoscsssssssassssssssossssascsssasssasesse2=20
DELETE . e eoesesesosseoncenessscscsssssssssssasssssnssssanseses2 20
DISKCMD (Commodore 64 Only)eceseceescacccescsssossossassesssssl=2]
DYNO (Commodore 64 Only)eseeceeeesvesocscancasocssansacnssees2=22
DUMP . e eoesesossesenonenssosssasssssssssssasssosnsasvssnscssesel2=23
EDLT e e veesencncoonosnoncsansascscssssssosssasssssescvensssnsel=2h
FHES(MHMRL.“.u.”.“.”.“.“.”.n.”.n.”.“.n.u.}44
FILL e coeoonoonsesssesonsesssasossssscsssssesssssasnssassssassel2b
FREY .o eoooeoeoesensscenesassssacnsosessssssnssesssssascssssesel™26
GET e e eoesannsosnosansossessoncosossescsasssssassasnssssassassesl=2]

GO.-..........-.......................-........-..-..--a....-2-28

iv

The

The

TABLE OF CONTENTS

HELP eeooeooeesecassonesceasssosssosssscseasssnssossssssssosssenssel2=29
JOBeveeeoeoeooneosassssssssssssassssssssscssssssnssssssssnssss2=30
LOCK (Apple II Only)eeececcceesscsosoossssosnocscsasnsncnsassel=32
MACRO . ecerevooconvoancocasansananssssnsssoscsssssassssscscsssl2=32
7 R [
NEWDIR (Apple II Only)eecscceccsocsceooacssscscccssssnossssscesel2=36
NOREAL::veocoesccescsecssscascnscssssassassasossssoscscscssccessessl—36
PAUSE . coeeeensossscseasosoonssssassoscnccsasososnssscsssvonssesel=3/
PREFIX (Apple II Only)eeeececeececcassoseccsccncsnonsscssnessl2=38
QUIT.eeeeeeeennsossosncsocsnossoascssssessssssssssassssscssss2—38
RENAME . . cceieeennsceeonssccsasonsocosossssscnssasassssasssssa2=39
SET . eeeecoocessossoossascssoccccnssosssnssssasssscnsssssssssassl—39
SIZE. . cseescseesoseasnsosscsssscssaasssssssasssasssscssesnssses2=b0
TYPE:eeeoesosooscassssesnsscsencsccnssscsnessssssssnencsssssces2=bl
UNLOAD: ¢ ceoossecoesoasoesesssnsscscsssssscssasassoasecosssosees2—b2
UNLOCK (Apple II Only)ececeveescsoccocooscosnsooosossscnnsessl=lb2

WS...................................-.........-.......-..o..2-43

PROMAL EditOreccessceesascessossccossccsssccssesssacssccsssessl=bd
Display Screen for New Fileeeeceesseseoosscssccacsoscssenoessl=l5
Editing KeyS:.eeeeeoeoscsoressssssssvcssssssssccssasscscccssssl=b]
Inserting and Deleting LineS.ececceeececcceocccossanssanscesss2=49
Searching with the FIND KeJ.ceeeooceooeeassocssoasccssasssneeas2=50
Search and Replace..seccececcecsrsssesssososcccssccsscnssvssssesssl2—Dl
Cut and Paste OperationS..cseceeescccscscccccccossonsssonssooeesl2—52
Saving a Block t0o @ Fileeeeeeeecececasecessasocsssonscnsaseeeal=52
Exiting the EditoOresceessessessscssscsccsscccccsssasosscsssnsealm53
Technical Notes on the Editor (C=64 only).cececessccccnsceseeal=b?

PROMAL Compilere.cccecescscccscccsocscsssssoncsssssassnncscssssl=56
Command line Arguments and OptionS.ccececeessssesceccsesssssel=56
Dialogue of the Compilation ProcesS.c.cececccssecesccscscssese2=58
Differences between Demo and Full Compiler.cc.icecececececcecess2-60
PROMAL Cross-Reference Map Utility (XREF)ccececsccscccccccese2=60

PART 3: PROMAL LANGUAGE MANUAL

Chapter 1: Introduction.....ccoereeeeesesserscscencscccssssssassesl—2
Chapter 2: PROMAL Programming Language Overview............c..0..3-3
Chapter 3: Elements of the PROMAL Language..:.c:ccescesoccssccsss3=/

Vocabulary and NameS:..eceeeoscoesosescssscsccscsssssssoosssocseld—/

DAta TYPEeSeeocososocsescnessocsassssssssssosssacsssasssssosssesesl—8

Literal Numbers, Characters, and StringSeeeeescesasascoeessaa3-9

VariablesS.ceceessessesesoscosescascoccossossesosssssosnsscnsssessel—l2
Constant Definition.ceseeeecsesscsosssososcosossssasassscessald~ll
Array VariableS.ceesecececssssosccsasssssssscsessssscsssssessel—li
DATA Definitioneeeeececescesssssssossscssccscccessssassnscsseeld—l’
Operators and Arithmetic Expressions..ccceceeccscesssseceasss3d=17
Relational OperatorSesceceecsccscsssosccscssosscssssscssassccneseld—2l
Logical OperatorS.cecscecececcsscssscoscsssscsccssosssssssssssnsel—2l
Shift OperatoOrS.ccecescssessvsessccscssscscssascscsccsssccssssl—22
Indirect and Address OperatorS.cscececcccscscscscscsoscccsceseld—22
Global VariableS.cceeeessecscssssassosscssssoscssscsssscsccsssld—24h

Chapter 4: StatementS.....cccocccecececascscssscssssccsssssscsssssel=25

Introduction..--................................-............3—25
PROGRAM Statement (& OVERLAY Statement)--....................3—25
Assignment Statement..cscceeceecessccosassssessssssssscsscssssld—26

TABLE OF CONTENTS

Conditional Statements----...-...........-.............-....-3—26

D 2 A1
WHILE . .evoeooeeooceosssnssassssosssosassasccssssosssnsssesld—28
REPEAT e e e voeeoeeooscoasosasasasssssscnsssasnsscssssssseesl~29
FORvoeeseoseoocoasssassasasssnssasssssscansesessasessses3—29
CHOOSE e s e o soeeessssecssosssssssnssssssasasesnossssssssess3d—30
BREAK e e eooosecavasseccosssssessnsssssccssssssnsnsassscssesd—3l
NEXT e evoocecooasoosossssnssanssssssssscsnassescceasssosseld—32
NOTHING .o v eeeoeooesesccoscsoascsssssssesnsscsssscnscessseeld=32
ESCAPE and REFUGE..ccscesesesssssossssscossensccsnssoeseeld=33
Chapter 5: Procedures and FunctionS......cccoeseeeeceenccssenesss3-36
Built—in Procedures and FunctionS...eeeeeeecesssscasceccscsss3=36
Simple Output & Fomatted Numeric OUtpUt.sscseeessccecssssesss3=37
Simple INpPUbeccosocsasosscossossceassassssssssossassassssansssl=38
NUMETLC TNPUL«teesscoscnasssansseasassssasasessssassassanssssld=39
User-Defined SuUbTroutineS..cesescesccsssscossoscssssssssssseseld=il
Passed ArgUMENEtS.ceoeseceoasassacassacasssasssssssscsssanesse3=b
Local VariableSe.ceecececcessssosssssasacassassscsascosonasesd=ld
OWN VAriableSeceeeeeeecescesssssscsosssssssssssosaseasssssssse3=lb
Good Programming Practices with SUbroutinesS.eceeessscoccocess3-46
RECUISLIOMN e esoeoccccesonsesssssssssssssssscsscsssscsscnsssses3~by
INCLUDE Statement for Multiple Source FileS....cessesscsscsss3-48
LIST Statement for Selective Listing..eeeeeececeecesoossccsees3-48
Conditional Compilation.e.seeecesessesssccssacscvscssasssssss3=bd
Chapter 6: Interfacing........ccoeeseeevssvesccsscssassncsnocssss3=5l
Opening and Closing Files and DeviceS.ecetecsssscscscseaneess3-51
Functions for File and Device I/0ceccceecsssssssosccsoscssssssl=d2
STDIN and STDOUT File HandleSe.ceceecossescesccccscossssaceses3d=d3
Output to Printer, Control and ESCape Sequences.......sse....3=54
Argument Passing from the ExXecUutivVeeseeseescsosceccsssconssaald=5b
EXTernal Variables for Special Memory Locations...ceseesecsess3=57
PROMAL Interface to Machine Language....cecsecescessscsssssss3-60
Chapter 7: Strings and Arrays Revisited.....cccccceeeecvacacnee..3-61
SETrINGSesecessocssasosnosssssnscessosassssasessasssscssssassssl=bl
Address Versus Content of an Array Element....cecssecsssscess3=62
Multidimensional Arrays & Arrays of Strings....eceecssccsssss3-64
Presetting Global VariableS.eesececcecsscscsvsccscasnsasseeses3=66
Chapter 8: The LOAA@T e+ e e eevececeassosossssssssscsosssssssencsseseld—67
DefinitionSeeseeeecscececcsossscscssssssascsosossssnscssnesnsel—b7
Modules & How the Loader WOrKSesesoesesosssssscsscossaossssssse3—68
Calling the Loader and Option§....ceeeecccsescsccsccesssseess3=70
Exporting & Importing Variables and Subroutines......cceee...3-73
Executing the Logical Program with Separate ModuleS..eseeesee3-75
Using a Bootstrap to Control Loading..eecsccscceccsacsccseese3=76
USIing OVErlayS.seesecscescscssvencsnssascssscssssssscccsnasesld=l]
Considerations for the Executive and Editor...eceeceeeccessse3=79
Successful Use of Overlays & Separate Compilation....ssoess...3-81

PART 4: PROMAL LIBRARY MANUAL
Summary of Library RoOULineS...ceeeeececcscccsccsssasscssacssosecssd=2
How to use the Library Routine DescriptionS.cececeeececscsccccscesb=b
PROC ABORT, FUNC ABS::ecesoconncsssosonccssosssassascssssssosssecd=5
FUNC ALPHA, PROC BLKMOV.eeeeooooceosossnasososssessasssscsncssosseah—b
FUNC CHKSUM, PROC CLOSE::ccsescecsvosncsccccasossnssnsansscssessed=]
FUNC CMPSTR. eeeeececcccscssssossssssssssasssssascssssscncnsnscsssh=8
FUNC CURCOL, FUNC CURLINE:..ecseevocoocacccnsosasssssasssecnssssssd=9
PROC CURSET, FUNC DIR:svessceesososoccsocasasssssossccssosssesssad=l0

vi

FUNC
FUNC
PROC
PROC
PROC
FUNC
FUNC
FUNC
FUNC
PROC
FUNC
FUNC
FUNC
FUNC
FUNC
PROC
PROC
PROC
FUNC
FUNC
PROC
FUNC
FUNC
FUNC
PROC
PROC
PROC
PROC
PROC
PROC
PROC
FUNC
PROC
FUNC
FUNC
FUNC
FUNC
PROC

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

TABLE OF CONTENTS

DIROPEN (Apple II 0nly)eceececccscocaoceoscocsoscassasonsessd—ll
EDLINE . cseeesscseasooaseosscasosessncssasossoscsssnossansssnsssi—l2
EXIT, PROC FILL:veceessoronosossssesonncssanccnsssoscncnssesd=lé
FKEYGET e oeeeesonosssacasosasssasssnsssecsscssassessnsesscsssesh=ld
FKEYSET e e caousonosseascsascassnsssnasasssscssssosssscssessccsseah=lbd
GETARGS . e eeoesrenoosososcsosssosassosssssssssasascscsscssesessad—=l7
GETBLKF ¢ eeveeernrncconsosossssosassasssassnsssassssssascsenssd—lB
GETC . veeesssoessnvosassssnssosssaasssessssssssssssssssnsssesd—l
GETCF, FUNC GETKEY..eoseeoeescanssssacassassssssssssncosensad=20
GETL e eooesssasasoesasasssoessassssnasssasesescssscassseansaasssesd=2l
GETLF et veveesesenecanssasssnosssssssasassssnancenocssanssssessd—22
GETPOSF (Apple II Only)eseeeenscoscesaoseasnoasssocossasseeesd=23
GETTST, FUNC GETVER: e e eeesesococcssessscconsnnannnanssesessd=24
INLINE, FUNC INLIST:.eceveuoceenncensccccoosnsonnosssoscscscssslh=25
INSET s eneoosssesesosoasosessssssssssssssssssscccsccescencesd=27
INTSTR e eeeeoassrsoveasossasosonssssssnncsssassscasssssscccnsossd=28
JSR, FUNC LENSTR..:cceeeassasassossssssssssssasssscooancneead—29
LOAD, FUNC LOOKSTR.eceososocecsssscsscccssasssoncscssssasacessd—30
MAXceoeoenosssseeoosonnoanessoceasconsnssssocsssscnnssassssssessbd=31
MIN, FUNC MLGET ¢eoososovcsssssscoconassosososessasacsssacsssesd=32
MOVSTR . e evoesesonseccanssosusosssasosesscnssssssssoscsssssnsnsssd=33
NUMERIC .t oeoesassoecoosssossescosansusvassssasscacsssaaseseesh=34
ONLINE (Apple II Only)ececcecescocasesesccsocncscnsssansnsssl=35
OPEN:eosesroesesaossecsesnsssesosssssosssssssssssscsssssnsseseld=30
OUTPUT e e ecsvecasseasoassecsssasosenascassossssnseassnncssenasesal=bl
OUTPUTF ¢ coeveesonssoesassasonsassssassssscssscssssecsssosseessh=t3
PROQUIT, PROC PUT.cseseeseascccnssoccssccsoccnsancncasvesceeesd=lbd
PUTBLKF ¢ evveeesosasecsosssosncssssssnsssasssssoscessssaseseeeld—ll
PUTF, FUNC RANDOM: .o eesosesvoocossossansonsosssssscccsosssessd=l?
REALSTR: cossoeassseasaaasacsssscssacssscassssessncnssscaseessh—b8
REDIRECT ¢ s csvoessoncsseesosscasoscsesscnssasssasssssasssccesssed—49
RENAME . c ¢ cevesassecosonsssessossssssascsnsasssssoonossssssssssd=50
SETPOSF (Apple II Only)ecescsceocecssscoccossssccsancosssacssei=5l
SETPREFIX (Apple II only), FUNC STRREAL..:eesesoccscsossosssb=52
STRVAL.:cceeeceessossnsesossoasseosssesssossnssssssscsssscnssceesd=53
SUBSTR, FUNC TESTKEY.:esssoeosososasescccccsscsseccosossssssssd=55
TOUPPER e ceeecccoceccncosonncanssssssssssssssssesssssnscsssed=50
WORDSTR, FUNC ZAPFILE..:ssssosuaceocscsossocscscssnscosossssed=5]

APPENDICES

A: ASCII CHARACTER SET.eeevvveescecccecasonnnoeocsnnnaseses A=l
B: PROMAL KEY CODES RETURNED BY FUNCS GETKEY AND TESTKEY....B-1
: ERROR MESSAGES & MEANINGS.:.eeeeeeecocavaseocccseasassaasaCl
: LOCATING RUNTIME ERRORS & VARIABLES IN MEMORY..:eeeosesss.D-1
: PRINTER SUPPORT e eeeseoeeeccccsosannsnsccsaseasanssasessB=l
: DATA COMMUNICATIONS SUPPORT . s eecocessossasoascsssassassssF=l
: PROMAL MEMORY MAPS.eeveevuueeeeeaseeosacnsecossassasannaaGml
: DYNAMIC MEMORY ALLOCATION....eeeeeeocovncnocsacaanaseeseal=l
: MACHINE LANGUAGE INTERFACING.+:eceeceososocacooccasssssasl=l
: RECURSION AND FORWARD REFERENCES...cceesoencssoseccesssasd=l
K: REAL FUNCTION SUPPORT . eeeveececanncscccccasaannsonnees K=l
: COMPATIBILITY ISSUES.cececeeooooocecnaseanensssssasassssal=l
: COMMODORE 64 RELATIVE FILE SUPPORT:ecceesecccccccssesssesM=1
: OPERATING SYSTEM NOTES . eeeeeeceeeceasaoaaacencnscssseseaN-1
: BACKING UP & FORMATTING DISKETTES..ceeeveesscosocaansssssO=1
: SYNTAX DIAGRAMS FOR THE PROMAL LANGUAGE.::s:seeecscssssssP=1
Q: PROMAL DEMO PROGRAMS. .. .vveeenvesneonnannssannssssessssasQ-l

MEET PROMAL!

Systems Management Associates, Inc.

1-1

MEET PROMAL!
(PROgrammer ‘s Micro Application Language)
AN INTRODUCTION TO THE PROMAL PROGRAMMING SYSTEM

For APPLE IIe, IIc and COMMODORE 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh NC 27609

Rev. C -~ Sep. 1986

Copyright (C) 1986 SMA Inc.

Rev.

C

1-2 Systems Management Associates, Inc. MEET PROMAL!

MINIMUM HARDWARE REQUIREMENTS

Apple I11: IIe or enhanced Ile, with Extended 80 column card (128K) and one
floppy disk, or Apple I1Ic. PROMAL supports ProDOS, not DOS 3.3. Sorry, PROMAL
does not work on an Apple II Plus. PROMAL works with (but does not require)
RAMWORKS or equivalent memory expansion for /RAM disk.

Commodore 64 or 128: One 1541/1571 or true compatible disk drive, or MSD
drive. Note: Most "Turbo" or other fast disk load accessories are incompat-
ible with PROMAL, and should be removed before running PROMAL. However, PROMAL
has DYNODISK built-in, which doubles the reading speed of 1541 or 1571 disk
drives, This feature can be disabled if desired. PROMAL is compatible with
the Skyles 1541 Flash and IEEE Flash.

COPYRIGHT NOTICE

Copyright 1984, 1985, 1986 Systems Management Associates, Inc.
All rights reserved worldwide, manuals and programs.

TRADEMARKS

PROMAL and DYNODISK are trademarks of Systems Management Associates, Inc.
Apple, Apple II, and ProDOS are trademarks of Apple Computer, Inc.

Commodore and Commodore 64 are trademarks of Commodore Business Machines, Inc.
Thunderclock is a trademark of Thunderware Inc.

Ramworks is a trademark of Applied Engineering.

IBM is a trademark of International Business Machines.

1541 Flash is a trademark of Skyles Electric Works.

DISCLAIMER

Systems Management Associates, Inc. makes no claims or warraaties with
respect to the contents of this publication or the product it describes, beyond
the limited warranty included with the product. Further, the right is reserved
to make any changes to this publication or the product it describes without
obligation to notify any person of such revision or changes.,

NOTICE FROM APPLE COMPUTER INC. FOR APPLE VERSION

ProDOS is a copyrighted program of Apple Computer, Inc., licensed to
Systems Management Associates, Inc. to distribute for use only in combination
with PROMAL. Apple Software shall not be copied onto another diskette (except
for archival purposes) or into memory unless as part of the execution of
PROMAL. When PROMAL has completed execution Apple Software shall not be used
by any other program.

Apple Computer Inc. makes no warranties, either express or implied, regard-
ing the enclosed software package, its merchantability or its fitness for
any particular purpose. The exclusion of implied warranties is not permitted
in some states. The above exclusion may not apply to you. This warranty
provides you with specific legal rights. There may be other rights that you
may have which vary from state to state.

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-3

MEET PROMAL!

Congratulations! You’re about to meet PROMAL, the most powerful integrated
programming environment you can buy for your computer. This manual can be used
in conjunction with the PROMAL Demo Diskette to help you get acquainted
with PROMAL.

About the PROMAL Demo Diskette... Don’t let the name "Demo" fool you.
This disk contains a fully functional PROMAL system. It contains all of the
features of the sealed System Disk, except the ability to compile large
programs (400 lines, maximum, excluding comments). Before opening your
sealed System Diskette you should use the Demo Diskette for evaluation. PROMAL
IS NOT COPY-PROTECTED AND ONCE THE SEAL 1S BROKEN ON THE SYSTEM DISKETIE IT
CANNOT BE RETURNED FOR A REFUND. All the files referred to in this MEET PROMAL
manual will be found on the PROMAL Demo Diskette. This way you can satisfy
yourself that PROMAL is everything we say it is. We want you to be 100 percent
satisfied with our product.

AUDIENCE

We do not claim that PROMAL is for everyone. PROMAL is for the person who
has a working familiarity with the computer and BASIC (or another high-level
language), and wants to get the most from his or her computer. If you are
frustrated by the limitations of BASIC but want to avoid the complexity and
low productivity of machine-language programming, then PROMAL is for you. If
you want to realize the full potential of your personal computer, you need the
power, the speed, and the capabilities of PROMAL.

ABOUT THIS MANUAL

Your PROMAL system includes four manuals plus Appendices and an Index.
The first manual, "MEET PROMAL!", which you are reading, will not make you a
proficient PROMAL programmer, but will provide enough information for you to
evaluate the PROMAL system. The "MEET PROMAL!" Manual is required reading for
the owner of the PROMAL System; please do not attempt to study the USER’S GUIDE
or LANGUAGE MANUAL until you have read and executed the examples in 'MEET
PROMAL!". This approach will help even the advanced programmer get the most
from PROMAL.

WHAT IS PROMAL?

PROMAL (PROgrammer’s Micro Application Language) is a high-performance
programming system. It includes:

* An Interactive Command EXECUTIVE

* A Full-Screen EDITOR

* A Structured Language COMPILER

* An on-line LIBRARY of predefined subroutines

The EXECUTIVE lets you enter commands to load and execute programs, to
manage files and memory, to display files and directories, and to do much more.
Many built-in commands are provided, and you can add as many of your own
commands as you want.

Copyright (C) 1986 SMA Inc. Rev. C

1-4 Systems Management Associates, Inc. MEET PROMAL!

The full-screen EDITOR makes it easy for you to create or modify PROMAL
programs or other text files., It has powerful features similar to many
word-processors, but is designed specifically to simplify program generation.

The COMPILER converts your program into a very compact, very fast-executing
command (or "object program") which you can run by just typing its name.
Compiled PROMAL programs will often run 20 to 100 (or more!) times faster than
BASIC, and occupy much less memory.

The LIBRARY provides an extensive base of built-in, pre-programmed subrou-
tines which are always available to your programs. The library greatly simpli-
fies programming by providing a nucleus of commonly-needed functions.

ABE PROMAL PROGRAMS LIKE BASIC PROGRAMS?

Although your previous experience with BASIC will be helpful in understand-
ing PROMAL, you will find very much that is different. Some aspects of PROMAL
may seem strange at first, but you will soon appreciate its simple elegance.
Once you have mastered a few basic concepts, you will find PROMAL much easier
to program than BASIC for any non-trivial application.

LET’S GET STARTED!

If you’‘re ready to begin your guided tour, get your PROMAL Demo Diskette,
your computer, and read on ...

DUPLICATING THE DEMO DISK -

Because the Demo Diskette contains important files which are not duplicated
on the sealed System Diskette, you should make a copy of the Demo Diskette
before proceeding. The examples in MEET PROMAL will write on the demo disk.
Therefore you should only use the copy, so that if you make a mistake or
accidentally overwrite or delete a file, you will still have the original Demo
Disk. You can copy the Demo disk with any kind of disk copy program.

Commodore owners who don’t have a copy program can use the DISKETTE utility, as
described in Appemndix 0. Apple users can use the standard ProDOS disk copier
furnished on the System Utilities Disk which came with your computer.

LOADING PROMAL
For Apple II:

Put your copy of the PROMAL Demo Diskette iato the disk drive, close the
door, and turn on your computer. If your computer is already on, you can hold
down the CTRL and open-Apple keys and press RESET.

If you have a hard disk and wish to boot from hard disk, create a new
directory, and copy all the files from the Demo disk onto it. The volume name
for the Demo Disk is /PROMAL/. Then execute PROMAL.SYSTEM.

If you have a Ramworks II or similar /RAM disk and want to use it with
PROMAL, first install your /RAM device as usual. Then execute PROMAL.SYSTEM.
This can be done from BASIC with the command -/PROMAL/PROMAL.SYSTEM.

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-5

Please note that only the Demo disk contains a bootable version of PROMAL.
The System disk (and optional Developer’s disk) in the sealed envelope are
crammed full of additional sample programs, utilities, etc., so there isn’t
enough room for duplicate copies of ProDOS, PROMAL.SYSTEM, etc. on each disk.
Always boot up with a copy of the Demo disk; then you can change disks (using
the PREFIX * command described later) to access files on the other disk(s).

For Commodore 64/128:

Please follow the following steps carefully.
1. Turn on your computer system in the usual manner.

2. If you have a Commodore 128, you must type GO 64, and reply Y to the
"Are you sure?" prompt. PROMAL works only in Commodore 64 mode. Do not
attempt to use 128 mode or non-1541 compatible disk features of the 1571 disk
(such as double-sided mode or "fast" mode).

3. Insert your copy of the Demo Disk in the drive, close the door and type:

LOAD "PROMAL",8 <RETURN>

4. 1If the only peripheral on your system is a single 1541 or 1571 disk
drive, proceed to step 5. The Commodore 64 version of PROMAL includes
DYNODISK, which doubles the reading speed of the Commodore 1541 or 1571 disk
drive. This feature is comparable to many other disk speedup products which
you may have or may have seen. PROMAL is compatible with Skyles Flash products
provided you disable DYNODISK as described below. Do not use PROMAL with any
other disk speedup cartridge or software package unless you are sure it does
not use any memory in the Commodore 64 and is completely 1541-compatible;
otherwise, PROMAL will not work properly. DYNODISK works automatically with
all PROMAL programs; there is nothing to install. DYNODISK has the same
limitations as other disk speedup products, namely:

(a) You can’t use DYNODISK if you have any other device (such as a printer
or second disk drive) attached to the computer on the serial bus. Therefore iﬁ
you have a printer, you should either turn it off while reading from disk, or
disable DYNODISK as described below. If you decide to leave DYNODISK enabled
and turn off your printer, and you have a printer interface (such as a CARDCO),
you will need to turn it off too (in the case of the CARDCO G+, this means
disconnecting the single wire from the back of the computer). Failure to
observe this precaution may cause the computer to "hang up", necessitating
reloading PROMAL. DYNODISK can be re-enabled by a simple command when PROMAL
is running.

(b) If you don‘t have a 1541 or 1571 disk drive, see APPENDIX N before
continuing.

If you need to disable DYNODISK, type:
POKE 3555,0 <RETURN>
5. Type:

RUN <RETURN>

Copyright (C) 1986 SMA Imc. Rev. C

1-6 Systems Management Associates, Inc. MEET PROMAL!

For Either computer:

The system will then load the EDITOR, EXECUTIVE, and LIBRARY. On the screen
you will see:

LOADING EDITOR
LOADING EXECUTIVE
LOADING LIBRARY...

The screen will then clear and display:

PROMAL Development System EXECUTIVE
Version 2.1
Copyright (C) 1986 SMA Inc.

PROMAL is a Trademark of
Systems Management Associates, Inc.

At the end of the signon information, you will see (unless you have a
Thuanderclock card in an Apple II system, which sets the date automatically):

PLEASE ENTER TODAY'’S DATE
(in the form MM/DD/YY):

Type in the correct date, for example 09/30/86, and press RETURN. PROMAL
uses this date to automatically "tag" all compiled programs with their creation
date, so if you make revisions to a program, you can easily see which is the
current version. You will now see:

Apple 11 Commodore 64
Fl1 = EDIT Fl = EDIT

F2 = PREFIX * F2 = DUMP

F3 = COMPILE F3 = COMPILE
F4 = GET F4 = GET

F5 = FILES F5 = FILES
F6 = EXTDIR * F6 = MAP

F7 = HELP F7 = HELP

F8 = COPY F8 = COPY

These lines tell what the default function keys do. On the Apple II, the
letter "F" may be replaced by an "Apple" icon. On the Apple II, a function key
is activated by holding down either Apple key and pressing the desired number.
You may use function keys to quickly enter commands when using the EXECUTIVE.
Now lets begin our guided tour of the PROMAL EXECUTIVE.

USING THE PROMAL EXECUTIVE

The "-->" is the PROMAL EXECUTIVE’s prompt, which indicates that the
EXECUTIVE is ready for you to type in a command. Try typing this:

TYPE README.T

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-7

followed by <RETURN>. All commands need to be terminated by the {RETURN> key.
This command will display additional information about your system not included
in this manual, If instead you get a "FILE NOT FOUND" error, just go on.

Now try typing:
hello

followed of course by <RETURN>. You should see:
--> hello

PROGRAM OR OVERLAY NOT FOUND: HELLO

_..> _

Here’s what happened. When you typed "hello", PROMAL tried to execute the
command called "hello". Since there is no built-in command called "hello", the
EXECUTIVE searched for a user-defined command file on disk. Since it didn’t
find the command file "hello", it gave you an error, and is now ready for
another command. This is how PROMAL executes commands. First it looks for the
command in memory, and then on disk. (You can create new commands by compiling
a PROMAL program.) Unlike BASIC, you can have several programs in memory at
once, and execute any of them by just typing the name. In fact, the EXECUTIVE
and EDITOR are just compiled PROMAL programs that are already in memory!

Now press function key FS (for Apple II, hold down either Apple key and
press 5). You will see "FILES" appear. This is a built-in command. Press
CRETURN> and the EXECUTIVE will execute the FILES command. Try it. You should
see a list of file names. On the Apple these names will be displayed in four
columns. On the Commodore, the display will be similar to a directory listing
made from BASIC.

These are the file names on your demo diskette. Notice that most of the
filenames end in ".C" or ".S". This is because PROMAL file names have a single
character file extension after the name which tells what kind of file it is.

".C" files are compiled command programs and ".S" files are PROMAL language
source (text) programs which can be edited. Therefore FIND.S is a source
program and FIND.C is the compiled (executable) form of the same program.

For the Apple II only, you can get more information about the files on the
disk by using the EXTDIR command (EXTended DIRectory). Press F6 (Apple key
with 6), or type EXTIDIR * and press <RETURN>. Be sure to type a space before
the asterisk. You should see a list of all the files, with information about
each file, and a summary showing how many blocks are free on disk. Unlike the
FILES command, the EXTDIR command is not built-in to the EXECUTIVE. Instead,
EXTDIR is actually a PROMAL program which is loaded from disk and executed when
you type EXTDIR.

IMPORTANT: For the Apple II only, please note that if you change disks you
will need to press F2 and <RETURN> after changing disks to issue a PREFIX *
command. This tells ProDOS what the new volume name is; otherwise, it will
still look for your old diskette, probably generating DEVICE NOT READY or FILE
NOT FOUND errors.

Copyright (C) 1986 SMA Inc. Rev. C

1-8 Systems Management Associates, Inc. MEET PROMAL!

Now press F7 and <RETURN)> (or just type in HELP - the result is the same).
You will see the screen scroll up to display a "help" page similar to:

PROMAL HELP
CTRL- CTRL-
E Enter insert mode D Delete char,
B Recall Prior Line F Cursor to first
\ Clear To End Line L Cursor to last
PARTIAL COMMAND SUMMARY
COMPILE [File [L[=List]}[0=0Object]
COPY File [Dest.][#Drvs]

DELETE File Function Keys
DUMP From [To] £1 = EDIT
EDIT [File] £2 = PREFIX *
FILES [Dir] £3 = COMPILE
FILL From To Value f4 = GET

FKEY [Number String] f5 = FILES
GET Commandfile f6 = EXTDIR *
JOB File.J [Arg...] f7 = HELP
MAP f8 = COpPY

PREFIX [/Path/ or *]
RENAME File Newname

SET Addr Vval [Val...]

TYPE File

UNLOAD [Command]

__> _

The display above is for the Apple 1I; the Commodore display will differ
somewhat. The top four lines are clues to using some control keys for line-
editing while you are in the EXECUTIVE. We’ll get to them in a minute. The
rest of the lines summarize maany of the most commonly-needed commands. Many
commands need or may have arguments after the command name. These arguments
are usually file names or numbers. Arguments shown in square brackets ([]) on
the help screen are optional. For example, DUMP needs one argument, "From",
and can optionally have a second argument, "To". Try typing this:

dump 1100

You will see a display similar to:

1100 72 65 7A 85 72 A5 71 65 rez.r.qe

The actual numbers and letters shown will be different. This is the contents
of memory locations 1100 hex through 1107, displayed in hex and ASCII. A "."
is shown for any byte which doesn’t represent a printable ASCII character. If
you’re not familiar with hex notation, don’t be concerned; later you may want
to consult the reference manual for your computer to learn about hexadecimal.
DUMP with one argument will display 8 bytes starting at the FROM address.

Now suppose you wanted to dump from 1100 to 1180. Wait! If you think you
know, don‘t type yet! Instead press CTRL, and while holding it down, press B.
What happened? You should see:

==> dump 1100_

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-9

You can recall your last command by using CTRL-B! Now you can "edit" your
prior command by just typing " 1180" at the end of the line. Don‘t forget the
space between 1100 and 1180; PROMAL expects a space between arguments. Press
<RETURN>. You should see a display of memory from 1100 to 1180.

You will find CTRL-B very useful for correcting mistakes in commands. You
can recall the prior command and edit it again, rather than re-typing all of
it. There are several keys you can use to edit command lines, but we’ll save
these until we discuss the EDITOR (unless you want to experiment right now
using the clues given by HELP).

One more thing about CTRL-B. Try pressing it several times. What happens?
You can "backtrack" through prior commands, one at a time! After you get all
the way back to the start of the session (before you typed in the date), the
next CTRL-B will "wrap around" again to the most recent command.

WRITING A PROGRAM WITH THE EDITOR

Now that you know a little about using the EXECUTIVE, let’s try writing a
program using the EDITOR! Press Fl and <RETURN> (or type EDIT). Almost
instantly the screen will clear, except for the bottom 5 lines which show:

LINE = 1
1=DEL LN 2=INS LN 3=MARK 4=RECALL 5=FIND 6=CHANGE 7=HELP 8=QUIT

The top 20 blank lines form your text area, and the bottom 5 lines are a
status area, which tells you that the function keys have now been redefined.
On the Commodore 64, these function key legends occupy two 40-column lines
instead of one as shown above. For example, Fl now means ''delete line". You
won’‘t need any of these function keys (except F8=QUIT) to edit your first
PROMAL program.

The blinking cursor is at the top of the screen. It always indicates where
the next character you type will appear. Try typing in the following program,
exactly as shown below. Be sure to start each line in the first column, and
use <RETURN)> to end each line.

PROGRAM HELLO

INCLUDE LIBRARY

BEGIN

PUT "HELLO YOURSELF!",NL
END

If you make a mistake, use the DELETE key to delete characters. You can
use the cursor keys to backup and over-type any corrections too. You can type
in upper or lower case or a mix - it doesn’t matter. If you prefer upper case,
you may want to press CTRL-A, which will cause ALPHALOCK to be displayed in the
status area. After this, any alphabetic keys you type will automatically be in
upper case.

Copyright (C) 1986 SMA Inc. Rev. C

1-10 Systems Management Associates, Inc. MEET PROMAL!

One thing you probably noticed right away is that this program doesn’t have
any line numbers. PROMAL programs don’t need them. You’ll see later how you
make branches and subroutine calls without line numbers. Another thing that’s
different about PROMAL programs is that you can only put one statement on a
line. This makes programs more readable and easier to change. If you think
about it, the main reason you put multiple statements on one line in a BASIC
program was to avoid using another line number. Since PROMAL has no line
numbers, there’s no need for several statements on one line.

The first line of your program simply gives it a name (HELLO). Every
PROMAL program starts this way. The next line tells PROMAL to include all the
subroutines in the built in LIBRARY. You will normally use the INCLUDE LIBRARY
statement in every program you write, The "BEGIN'" line merely indicates the
start of the main program. The next line is the substance of your little
program. PUT is similar to a BASIC PRINT, and prints strings or characters.
Unlike BASIC, you have to tell PROMAL explicitly when you want to start a new
line. The NL does this (it stands for New Line). You can also use CR
(Carriage Return) in place of NL; the result is the same.

When you’re done press F8. You will see a display similar to that below.
The numbers on your screen may be different (especially on a Commodore 64).
This display shows your choices of what to do. '"WORKSPACE", is a small,
in-memory file with the name "W". It is useful for temporarily storing a small
source program you are experimenting with, without saving it on disk.

Press W and <RETURN). Immediately, the cursor will re-appear below the
"SELECTION?" prompt. This indicates that your text has been writtem to the
workspace (it’s fast!), and you may now make another selection.

PROMAL EDITOR 2.1
Copyright (C) 1986 SMA, Inc.

BUFFER SIZE = 9862
FILE NAME W (AUTO UPDATE ON QUIT)
FILE SIZE 66

OPTIONS

REPLACE ORIGINAL FILE
WRITE TO NEW FILE
WRITE TO WORKSPACE
CONTINUE EDITING

QUIT EDITOR

OO0z 2 X
1]

SELECTION?

Type Q and <RETURN>, and the EXECUTIVE prompt reappears:

-->

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-11

COMPILING YOUR FIRST PROGRAM

Unlike BASIC, you must COMPILE your program before you can run it.
Compiling it does not destroy your source (text) program, but generates a
separate ('"object") program which is executable.

Press F3, (or type compile) and press (RETURN>. After a pause while the
COMPILER loads from disk, you will see it "sign on", followed by a rapidly
changing display as your program compiles. This will only take a few seconds.
The compiler will display READING LINE XX, where the XX’s change rapidly to
show you what line number it’s working on. The final display should look
similar to this.

PROMAL DEMO COMPILER 2.1
Copyright (C) 1986 SMA Inc.

READING LINE 2
INCLUDING LIBRARY
READING LINE 67
RESUMING FILE W
READING LINE 68
COMPILING <MAIN PROGRAM)>
READING LINE 70
HELLO compiled:
70 Source lines
$0025 (37) bytes Obj.
$0 Scalar, $0000 (0) tot. Vars.
Table usage:
Symbols: 36% Fwd. Refs: 1%
Strings: 1%

—_> _

The display may differ slightly, especially for the Commodore 64. The
summary at the end shows information about the object file which the compiler
wrote to disk. This object file is your executable program, with the default
name HELLO.C.

You may be wondering why the compiler said it compiled 70 source lines (less
for the Commodore 64). Your program was only 5 lines long! The answer is that
the INCLUDE LIBRARY line of the program caused the COMPILER to read another
file called the LIBRARY at that point in your program. Later when you start
writing big programs, you can tell it to include other files of your own. For
example, you can tell it to INCLUDE some file of subroutines. 1In this way, you
can share commonly-used routines between many programs without having to
re-type them or "paste" them into your program. The LIBRARY file contains
about 63 lines of standard definitions (59 for the Commodore) that you will
want in nearly every PROMAL program. Like the Workspace, the LIBRARY is a
memory-resident file.

The summary also tells how big your compiled program is (37 bytes), how
many bytes are needed for its variables (none in this case), and some
information about how much of the compiler’s internal tables were used. This
is described in the PROMAL USER’S MANUAL. Don‘t be concerned that your little

Copyright (C) 1986 SMA Inc. Rev. C

1-12 Systems Management Associates, Inc. MEET PROMAL!

program took up 36 percent of the symbol table; the demo compiler has a small
symbol table. The full compiler can compile programs with thousands of lines.

EXECUTING YOUR PROGRAM

Now that the compiler is done, your program is vready to execute.
Just type:

hello
And your program will display:
HELLO YOURSELF!

_-> _
When your program finished, it returned control to the EXECUTIVE. You have now
created a new, user-defined command for the EXECUTIVE! Your object program is
saved on disk as file HELLO.C, and will be run anytime you type HELLO from the
EXECUTIVE. You can save as many commands as you want on as many diskettes as
you like. To execute a command, just type its name. If it’s been executed
before and is in memory, it will execute instantly. If not, the EXECUTIVE will
fetch it from disk and execute it.

Note that you have not yet saved your source program {the text file you can
edit) on disk; it’s ouly in the temporary workspace. Normally, you will want
to save your source program on disk when you exit from the EDITor. If you waat
to, you can still save it now, from the EXECUTIVE, by typing COPY W HELLO.S
which copies the Workspace to a new disk file called HELLO.S.

WHERE DOES PROMAL PUT THE PROGRAM?

You might be curious to know where your program is in memory. Type:

MAP

and you will see a "map" of memory, which tells where PROMAL put your program
and how the remaining memory is allocated. The top half shows information
about what program(s) you have in memory, and the bottom half shows a summary
of available space. We won’t go into all the details of the MAP display here.
It is fully explained in the PROMAL USERS GUIDE.

Apple II

HELLO (PRO.) 09/30/86 CHKSUM 49CB
CODE $2900-29FF

OBJECT PROGRAMS $2900-29FF (256)
FREE SPACE $2A00-8DFF (25600)
SHARED VARIABLES $8E00- (0)
EXEC./EDIT SPACE $6100-8DFF (11520)
TOTAL SPACE $2900-8DFF (25856)

ACTIVE WORKSPACE $1200~1241 (66)
FREE WORKSPACE $1242-S5AFF (18622)

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-13

Commodore 64

COMPILE (PRO.) 11/ 4/85 CHKSUM 1465
CODE $4F00-81FF, VARIABLES $8200-84FF
HELLO (PRO.) 09/30/86 CHKSUM 4A86

CODE $8500-85FF

OBJECT PROGRAMS $4F00-85FF (14080)
FREE SPACE $8600~98FF (4864)
ACTIVE WORKSPACE $9900-9941 (66)

FREE WORKSPACE $9942-A0FF (1982)
SHARED VARIABLES $A100 q))

EXEC./EDIT SPACE $A200-CFFF (11776)
TOTAL SPACE $4F00~CFFF (33024)

For the Apple version, you may have two programs in memory (EXTDIR and
HELLO), or just one if you didn’t try EXTDIR before. The Commodore version
shows two programs in memory, COMPILE and your HELLO program. Since the Apple
has somewhat less memory than the Commodore, but has a relatively fast disk,
the Compiler is always unloaded automatically when it finishes, leaving more
room for other programs. Since the Commodore has a little more available
memory but a slow disk, PROMAL normally keeps the compiler in memory when it
finishes so you won’t have to wait for it to load when you need it again.

The number after "CODE" shows the address where your program was loaded.

If you executed another program, a part of PROMAL called the loader would
put it right above where HELLO ends. PROMAL always allocates programs and data
on exact "page" boundaries in memory (that is, the starting hexadecimal address
will always end in 00). Technically, PROMAL programs are known as
"relocatable'" object code, which means that they can be run anywhere in
memory. In the event that you use up so much memory that there isn’t enough
room to load the specified command program, PROMAL will automatically "unload"
programs to make enough room. The MAP also tells other information about your
HELLO program. It tells you it is a PROMAL program, that it was compiled on
11/04/85 (or whatever date you used), and what its '"checksum" is. If your
program uses any variables (your HELLO program doesn’t), it shows what space is
allocated for variables.

The checksum requires more explanation. When PROMAL loads a program into
memory, it computes a l6-bit sum of all the bytes loaded. This is the checksum
shown, in hex. Anytime you execute that program, PROMAL recomputes the
checksum and compares it to the saved value. If the two values don’t match,
the loader knows something has corrupted the program in memory (such as another
program POKEing around where it shouldn’t!). The loader then automatically
reloads the program from disk. This provides an integrity check for your
programs.

The meanings of the rest of the summary are described in the PROMAL USER
GUIDE. One thing you might be interested in now though is the line labelled
TOTAL SPACE. This is the maximum amount of memory that you can use for PROMAL
programs; about 25K bytes for the Apple or 33K bytes for the Commodore.
Although this amount is somewhat less than is allowed by BASIC, you can still
have PROMAL programs that are much larger and more complex than is possible
using BASIC, because PROMAL programs are much more compact. For example, the

Copyright (C) 1986 SMA Inc. Rev. C

1-14 Systems Management Associates, Inc. MEET PROMAL!

COMPILEr itself is a PROMAL program of over 4000 lines, yet occupies only about
14K bytes. 1In addition, PROMAL allows you to use overlays to run programs
that are larger than memory. This is described in the PROMAL LANGUAGE MANUAL.

You won‘t concern yourself often with how PROMAL allocates memory, because
it is automatic. We have examined it briefly here to give you an idea of how
the PROMAL program loader really works, and to touch on some of the technical
concepts behind the power of the PROMAL System.

REVISING YOUR PROGRAM

Let’s try making a small change to your program. Re-enter the EDITOR by
pressing Fl and <RETURN)>. Your program will reappear in the text area of the
display automatically.

Use the cursor keys to position the cursor over the "Y" in "YOURSELF" in
the fourth line. Now press CTRL-D if you have an Apple II, or CTRL-backarrow
(the key to the left of the "1" key) if you have a Commodore 64. What
happened? This key deletes a character, but unlike the DELETE key, it pulls
all the text on the line to the right over to "fill ia the hole". Press this
key 8 more times to get rid of "YOURSELF!". The line should look like this:

PUT "HELLO ",NL

Now put the cursor over the N in "NL" and press CTRL-E if you have an Apple
or SHIFT-INST if you have a Commodore. The highlighted word INSERT appears in
the status area at the bottom of the screen, indicating you are now in insert -
mode. In insert mode, anything you type will "push over" the text to the right
of the cursor. With insert mode on, type:

CARG[1],

from your cursor position. To exit from insert mode, press any cursor key or
{RETURN>. Your line should now look like this:

PUT "HELLO ",CARG[1],NL

In PROMAL, square brackets are used to enclose array subscripts instead of
parentheses as in BASIC, so you can tell an array from a function easily. CARG
is an array which is pre-defined (in the LIBRARY) for a special purpose. CARG
is short for "Command Argument". The CARG array is an array of strings, which
is automatically available to your program when it starts. CARG[1l] is the
first argument on the command line, CARG[2] is the second argument, etc.

Now press F8 to exit, and select W and then Q to resave your new version to
the workspace and exit to the EXECUTIVE. Now re-compile your program by
pressing F3 and <RETURN>. After your program compiles, type:

hello PROMAL
What happened? Your program displayed

HELLO PROMAL

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-15

Now try typing:
hello everybody

Whatever you type as the first argument gets passed to your program by the
EXECUTIVE in the variable CARG[1l], and your program prints it. Now try:

hello editor and executive
Your program will display:
HELLO EDITOR

What happened to "and executive'"? Why didn’t it display? Remember that a
blank separates arguments on a command. Therefore "AND" got put in CARG[2],
and "EXECUTIVE" got put in CARG[3], because the EXECUTIVE thinks they’re each a
separate argument, Your program only prints CARG[1].

You can force the EXECUTIVE to accept a string with blanks in it as a
single argument by enclosing it in quotes. Try this:

hello "editor amd executive"
You will now see:
HELLO editor and executive

If you were observant and if you were typing in lower case, you might have
noticed another difference. Ordinarily the EXECUTIVE converts lower case
commands and arguments to upper case as it reads them im. But if you enclose
an argument in quotes, it won’t convert the argument to upper case.

Naturally you can do more with command arguments than just print them. For
example, you can use a command argument as a file name for your program to read
or write. Our next example will demonstrate how to do this, and how you can do
even more powerful "I/O redirection" on a command line.

Now that you’ve written a trivial PROMAL program, you may want to see a
program that really does something useful. In the next section we’ll take a
look at a fairly short but useful program that illustrates a text-processing
application, and illustrates many key PROMAL features, including using the
LIBRARY.

1f you want to postpone your exploration of these programs until later, you
can simply turn off the computer.

A PROMAL TEXT-PROCESSING PROGRAM

Suppose you had a mailing list on a disk file called MAILLIST.T, which you
had prepared with the PROMAL Editor. For simplicity’s sake, suppose you had
one entry per line, for example:

Board, Kim 0., 6502 Processor St, Santa Clara, CA 95050

Copyright (C) 1986 SMA Inc. Rev. C

1-16 Systems Management Associates, Inc. MEET PROMAL!

Suppose you had this file, and now you wanted to see all the customers in
zip code 95050 of California. You could go buy a data base manager, right?
Well, that’s one way, but with PROMAL, a simple program may solve the problem.
What you need is a command to find and display (or print) all the lines
containing "CA 95050", for example:

FIND "CA 95050" MAILLIST.T

The FIND program to do this is already on your PROMAL Demo Diskette. To
see the source program, type:

EDIT FIND.S

The EDITOR will "sign on", load the file into memory, and then display the
first 20 lines of the program. The entire text of the program is reproduced on
the following page for convenience.

After the first line, you will notice that there are a number of lines
which start with a semicolon (;). These are comments. Any line which starts
with ";" is a comment. Completely blank lines are considered comments, too.
You can also put a ";" and a comment at the end of a statement. It is consid-
ered good programming practice to put enough comments in your program to
adequately document it. It is important to realize that because PROMAL
compiles your program, adding comments will not make your program use any more
memory or execute slower. The compiler simply ignores all comment lines. This
is an important difference from BASIC, where comments eat up valuable memory
and increase execution time. Naturally adding comments to your source files
will make them bigger, but this has no relation to the size of your executable
object program. So feel free to comment!

Hold down the "cursor down" key and the EDITOR will "scroll" the text
upward till you reach the end of the program. You can use the 'cursor up"
key to back up in the same way. Now scroll the screen until the line

INCLUDE LIBRARY
is on the top line of the display.

Now let’s take a look at this program. Don’t expect to understand all of
it after this explanation; you just want to get the general idea of what a
PROMAL program looks like and what some of the main concepts are. You’ll need
to study the PROMAL LANGUAGE MANUAL before you will actually be able to write
or fully understand a complete program.

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-17

SOURCE PROGRAM "FIND.S"

PROGRAM FIND

by B. Carbrey 5/22/84
Program to priat all lines in a text file which match a specified string.

Command syntax: FIND <string> <file)>
Examples:

we we we ae

s FIND JANUARY MYDATA.T

will display all lines in the file MYDATA.T which contain the
word JANUARY.

.o we

FIND "New Jersey'" MAILLIST.T > TEMP.T

will output all lines with New Jersey to the file TEMP.T from MAILLIST.T.
(quotes are needed if the string sought includes blanks).

we se

INCLUDE LIBRARY

BYTE LINE[81] ;Input/output buffer
WORD INFILE sInput file handle

FUNC BYTE HASSTRING ; STRING
; Returns true if LINE contains the desired STRING
ARG WORD STRING sdesired string
WORD I ;jindex to line
BEGIN
1=0
WHILE I < LENSTR(LINE)
IF CMPSTR(STRING,"=",LINE+I,TRUE,LENSTR(STRING))
RETURN TRUE
I=1+1
RETURN FALSE
END

BEGIN ; main programs..

IF NCARG <> 2 ; wrong # of arguments?
PUT NL,"FIND error: 2 args. needed."
PUT NL,'"Usage: FIND string file"

ABORT

INFILE=OPEN(CARG[2]) ; open data file

IF INFILE=0 jopen error?

PUT NL,"FIND error: cant open ",CARG[2]
ABORT

WHILE GETLF(INFILE,LINE) ; read a line

IF HASSTRING(CARG[1]) ; string match?
PUTF STDOUT,LINE,NL ; yes, show
END sthats all folks!

Copyright (C) 1986 SMA Inc. Rev. C

1-18 Systems Management Associates, Inc. MEET PROMAL!

First we need a few rules:
1. All variables must be defined (or '"declared") before they are used.

2. Variables may have up to 31 characters. Unlike BASIC, which only looks
at the first two characters, PROMAL uses all the characters to distinguish
between variables. Also unlike BASIC, variables can contain PROMAL key words
without causing trouble. Long variable names do not use any more memory than
short variable names in your compiled program.

3. A variable definition tells the kind of data the variable represeunts.
PROMAL supports the following data types:

BYTE: a single character, or an unsigned number from 0 to 255.

WORD: an unsigned number from 0 to 65,535, often used as an address.
INTEGER: a signed whole number between -32,767 and +32,767.

REAL: a "floating point" (decimal) number between -1.0E-37 and +1.0E+37.

4. Key words and variables must be separated from each other by blanks.
They can’t be run together as in BASIC.

5. Subroutines are given names (not line numbers), and can be either
PROCedures or FUNCtions. A function starts with the key word FUNC, and returns
a value to the calling program (much like BASIC). The function definition
tells the type of data the function returns. Procedures start with PROC and do
not return a value. They are similar to BASIC subroutines. Both procedures .
and functions are called by just putting the name in a statement. Functions
and Procedures must be defined before they are called. In PROMAL, therefore,
the main program always comes last, after all functions and subroutines.

With these rules in mind, let’s look at few lines of the program:

BYTE LINE[81] ; Input /output buffer
WORD INFILE sInput file handle

These two lines define two variables used by the program. The first variable
is called LINE, and is of type BYTE. It is declared to have a dimension of 81l.
This variable will be used to hold a line of text read from the data file, up
to 80 characters long. Note that PROMAL, unlike BASIC, does not have a
primitive STRING data type. Instead, strings are treated as an array of bytes.
This may seem like a shortcoming at first, but you will soon discover that
PROMAL can actually manipulate strings very easily and much more efficiently
than BASIC (experts in BASIC take note: this is because PROMAL never needs
time-consuming '"garbage collection"). By convention, a PROMAL string is an
array of bytes terminated by a 0 byte (which is why LINE is dimensioned 81 to
hold up to 80 characters).

INFILE is declared to be a variable of type WORD. Note that you still have
to declare it, even though it is not an array. The comment says that INFILE is
a "file handle". A file handle is a variable that is used to represent an
active file. We’ll demonstrate this later.

Now study the 13 lines beginning with:

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-19

FUNC BYTE HASSTRING 3 STRING

These 13 lines define a function called HASSTRING. The function ends with the
END line. 1In BASIC you could only define functions with one argument, and ounly
on one line. In PROMAL, a function can have any number of arguments passed to
it and can have any number of lines. In our case, the line,

ARG WORD STRING ;desired string

tells us that the function will expect one argument (ARG stands for "argu-
ment"), and it will be of type WORD and will be given the name STRING inside
this function.

1f BASIC is the only language you’ve ever used, this next part may be a
little hard to grasp, so don’t be concerned if you don’t get it. Actually, the
variable STRING will hold the address of whatever string the calling routine
passes to it. If function HASSTRING is called like:

HASSTRING("CA 95050")

then the STRING variable will hold the address of a string of bytes in memory
containing "CA 95050", terminated by a zero byte. This whole string can be
manipulated using the STRING variable.

The line:
WORD 1

declares a working variable for use within the function. Because this variable
and STRING are both declared within the HASSTRING function, they are called
local variables and only have meaning within the function. You may define
other variables with the same names in other subroutines which would be
completely different. This is an important concept. You may define and use
variables in a subroutine without having to worry if you have already used the
name for something different elsewhere. Variables declared before the first
subroutine (such as LINE and INFILE) are global and may be used by all subrou-
tines.

The BEGIN line starts the "action" part of the function. The next line:
I=0

will be the first statement executed when function HASSTRING is called. It
sets I to 0. This is an assignment statement, just like BASIC. Note that
variables are not automatically initialized to 0, as in BASIC, but contain
"garbage" until you assign something to them.

Now let’s take a look at the rest of the function definition:

WHILE I < LENSTR(LINE)
IF CMPSTR(STRING,"=",LINE+I,TRUE,LENSTR(STRING))
RETURN TRUE
I=1+1
RETURN FALSE
END

Copyright (C) 1986 SMA Inc. Rev. C

1-20 Systems Management Associates, Inc. MEET PROMAL!

There’s a lot going on in these few lines! First of all, if you are
looking at the lines on the 40 column Commodore display, one of the lines is
only partially visible because it is longer than 40 characters. The last
visible character is highlighted in reverse video so you can tell there is more
to the line off-screen. To see the rest, just put the cursor on the line and
move the cursor right. When it reaches the last column of the display, the
whole line will scroll left to let you see the rest. Just press RETURN to
restore the line to its normal position (Note: it is also possible to move the
whole "window" to the right to view long lines - this is described in the
PROMAL USER’S GUIDE).

The WHILE statement is one of several kinds of loops in PROMAL. It has no
direct counterpart in BASIC, but is something like a combination IF and
FOR-NEXT loop. A WHILE loop has the form:

WHILE condition
statement 1
statement 2

next statement

A WHILE statement tests the condition (like a BASIC IF statement). If the
condition is TRUE, then all the indented statements (statement 1, statement 2,
«..) are executed. After the last indented statement (...) is executed,
control passes back to the top of the loop and the condition is tested again.
This is repeated until the condition is false. Control then passes directly to
the next (non-indented) statement.

Now you may see why PROMAL does not need statement numbers. The structure
of a PROMAL program is given by its indentation. By the way, it is very easy
to generate indented lines with the EDITOR. The TAB key (or CTRL-I) moves the
margin in by one level of indentation (two spaces), and CTRL-Q (Apple) or
CTRL-U (Commodore) moves it back out.

In our case, the WHILE tests to see if I is less than the leangth of the
current line of interest, LINE, LENSTR is a built-in LIBRARY function which
returns the length of a striang, much like the BASIC function LEN.

Another built-in library function is CMPSTR, which is used in the next
line:

IF CMPSTR(STRING,"=",LINE+I, TRUE,LENSTR({STRING))
CMPSTR compares two strings. It has the following form:
CMPSTR(stringl,operator,string2,fold,limit)

Here stringl and string2 are the addresses of the two strings to be compared,
and operator is the kind of comparison desired, chosen from:

ll<", ll<._.ll’ l|<>", Il__.", |l>=ll, ">ll

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-21

which are the same as for BASIC. '"Fold" should be TRUE if lower case letters
are to be considered the same as the equivalent upper case letters. "Limit" is
the maximum number of characters to compare.

The string comparison is done in an IF statement, which is much like an
IF-THEN statement in BASIC. If the condition after the IF is true, then all
the indented statements after the IF statement are executed. If the condition
is false, then the indented statements are skipped. In our case there is only
one indented statement. The IF statement above is roughly equivalent to the
BASIC statement:

IF STRINGS = MID$(LINE$, I,LEN(STRING$)) THEN...

except that there is no provision in BASIC for treating equivalent upper and
lower case letters as equal during a string comparison.

If our comparison is true, then the desired string (for example, "CA
95050") has been found somewhere in the line, so

RETURN TRUE

is executed, which exits from the function and returns the value TRUE to the
calling routine. In PROMAL, FALSE is defined as a byte with the value 0, and
TRUE is 1.

If the desired string is not found then:
I=1+1

is executed, which advances to the next character of the line, and the WHILE
loop is repeated. If the desired string is not found anywhere in the line,
then control falls out of the WHILE loop into:

RETURN FALSE

which simply exits back to the caller with the value FALSE returned. Therefore
our function will return TRUE if LINE contains the string passed to it and
FALSE if it doesn’t.

Again, if some of this discussion seems unclear, don‘t worry. We are
covering a lot of ground very fast and superficially, to try and give you '"the
big picture". Keeping this in mind, let’s move on to the main program.

The main program starts after the last subroutine (there was only one in
our case), and after the BEGIN. The first four lines are:

IF NCARG <> 2 ;wrong # of arguments?
PUT NL,"FIND error: 2 args. needed."
PUT NL,"Usage: FIND string file"
ABORT

The variable NCARG is a companion to CARG, and is predefined in the
LIBRARY. It tells the number of command-line arguments passed from the EXECU-
TIVE to the program. In our case, the FIND program needs two arguments, so we

Copyright (C) 1986 SMA Inc. - Rev. C

1-22 Systems Management Associates, Inc. MEET PROMAL!

check to see if two were given when FIND was executed. If not, we print two
error messages and then ABORT. ABORT is a built-in procedure which returuns S
control to the EXECUTIVE.

Assuming NCARG was 2 as it should be, the indented lines above would be
skipped, and this line would be executed:

INFILE=OPEN(CARG[2})

OPEN is another built-in function, which opens a file. It expects the name of
the file as its argument. In our case, we want to open whatever file name is
the second argument on the command line. OPEN returns 0 if the open was not
successful, and the "file handle" otherwise. We store this handle in INFILE.
From now on, anytime we want to access the file, we use this file handle. You
may have multiple files open at once.

First we must make sure the file was opened successfully. If not (for
instance, if the file was not found), we just print an error message and quit:

IF INFILE=Q ;open error?
PUT NL,"FIND error: can’t open ",CARG[2]
ABORT

Assuming the OPEN succeeded, we are now ready to search the file for lines
containing our string:

WHILE GETLF(INFILE,LINE) ; read a line -

GETLF is another built-in function. It stands for "GET Line from File". The
first argument is the file handle and the second argument is the address where
we want the line in memory. In our case, we will read the line into the

array LINE. GETLF returns TRUE if it was successful and FALSE if end-of-file
was encountered before any data could be read. Since we are testing this
returned value in a WHILE loop, the indented statements after the WHILE will be
repeated until end-of-file is reached. These indented lines are:

IF HASSTRING(CARG[1]) ;string match?
PUTF STDOUT,LINE,NL ;yes, show

The IF statement calls our function, HASSTRING, passing it our desired string,
which is the first command argument. IF HASSTRING returns TRUE, then the line
contains the desired string and we should print it.

PUTF is another built-in procedure which is very similar to PUT. The only
difference is that PUTF can output to a file, not just to the screen, like PUT.
The first argument of PUTF is the file handle to write to. The remaining
arguments are the same as for PUT.

Why do we want to use PUTF iastead of PUT, and what is STDOUT? Well, we
could have just used:

PUT LINE,NL ;yes, show

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-23

instead, but then we would only be able to output to the screen. You might
like to be able to output to the printer or a file, without having to change
the program. This re-directing of output can be done using a PROMAL feature
called I/0O Redirection.

The LIBRARY pre-defines a file handle called STDOUT (STandarD OUTput).
This file handle is always open. By default, it is opened to the screen.
However, you can redirect it from the EXECUTIVE to the printer or to a file.
For example, consider this EXECUTIVE command:

--> FIND "CA 95050" MAILLIST.T >P

This would redirect all the output to the printer ("P" is the name of the
printer in PROMAL). This I/0 redirection is done automatically by the EXECU~
TIVE. All your program has to do is output to STDOUT, and the output will go
wherever the command line redirects it. It is not necessary to open this file,
because the EXECUTIVE has already done it. The '">" is the output redirection
operator of the EXECUTIVE and should follow the last argument. For example:

-=> FIND "CA 95050" MAILLIST.T > CALLIST.T
would output the list of lines to a file called CALLIST.T

This completes our discussion of the FIND sample program. If you want to
try the FIND program, you can exit the editor (f8 key followed by Q and
(RETURN>), and then execute it from the EXECUTIVE. You don’t have to compile
it because the object file FIND.C is already provided (but you can if you want
to). Since you don’t actually have a mailing list on disk to try it on, you
might want to try this example instead:

FIND "WHILE'" FIND.S
What does this do?

If you’d like to try out the I/O redirection feature, but don’t have a
printer, try this:

FIND "NL" FIND.S >W
TYPE W

This will write all lines containing NL in the file FIND.S to the Workspace
(deleting whatever was there before). The TYPE command will display the
contents of the workspace on the screen. If you find the I1/0 redirection
interesting, you might want to try this too:

DUMP 1100 1180 >W
TYPE W

What does this tell you about the built-in EXECUTIVE commands?
If you have persisted this far, you will have little difficulty learning to

program your own applications in PROMAL. So far, you have learned how to EDIT
and COMPILE a PROMAL program for handling text files.

Copyright (C) 1986 SMA Inc. Rev. C

1-24 Systems Management Associates, Inc. MEET PROMAL!

REAL (FLOATING POINT) NUMBERS

So far the sample programs have dealt mostly with integer numbers, which is
all that is needed for many applications. PROMAL also provides the data type
REAL for floating point arithmetic. This is the kind of numeric data you know
from BASIC, except that:

1. PROMAL real arithmetic is accurate to 11 significant digits instead of
only 9 like BASIC.

2. You can precisely specify the output format for PROMAL real data (for
example, how many decimal places you wish to use). This is very important for
business applications, where decimal point alignment is expected:

BASIC OUTPUT PROMAL OUTPUT
$100 $100.00

23.21 23.21
6.66666667 6.67

11.1 11.10
140.9766667 140.98

3. PROMAL real arithmetic is usually faster than BASIC (but not nearly so
fast as arithmetic on BYTE, WORD, or INT data types).

4. The PROMAL LIBRARY does not include built-in functions for square root,
trig functions, exponentials, log functions, etc. Instead, these functions are
provided in source form which you can include easily in your programs as
needed. APPENDIX K describes these functions.

A SIMPLE BUSINESS PROGRAM

A simple program called BUDGET, illustrating the use of REAL data is
included on the PROMAL Diskette. To run the BUDGET program, type:

BUDGET

from the EXECUTIVE. This program displays a hypothetical budget report showing
expenditures for a month. You can study the source file, BUDGET.S, with the
EDITOR to see how to format REAL numeric output. We won’t cover this program
here, but the file BUDGETDOC.T is a text file which describes the program. The
PROMAL LANGUAGE MANUAL provides full information on REAL data.

AN ADVANCED PROGRAM

Have you ever wondered how BASIC, PROMAL, or any language evaluates an
arbitrary arithmetic expression with variables, constants, parentheses and
operators? If so, you may have imagined that it takes a very complex program
to do so. Well, the file CALC.S on your Demo disk contains a PROMAL program of
about 180 lines (excluding comments) which simulates a four-function calculator
with 26 "memories". This program can evaluate any arithmetic expression of
arbitrary complexity, using the four operators +, -, *, and / plus paren-
theses. To try the program, type:

Copyright (C) 1986 SMA Inc. ' Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-25

CALC

from the executive and just follow the directions. You may type in an expres-
sion, for example:

3.26+(1-.82)/3

CALC will display the answer (showing two digits after the decimal point by
default):

= 3.32

You may also type an assignment statement to ome of the 26 variables, A through
Z. For example:

P = 3.14
X 2%p

You may also change the number of decimal places displayed for aunswers. To
change to 6 decimal places, type:

#6

When you have finished experimenting with CALC, you can exit back to ‘the
EXECUTIVE by just pressing <RETURN) by itself. Now let’s take a look at this
program. Having a good-sized program will give us a chance to try out some of
the more advanced editing features of PROMAL, too.

ADVANCED EDITOR FEATURES
From the EXECUTIVE, type:

UNLOAD
EDIT CALC.S

This will unload the programs we now have in memory and EDIT the source program
for our four-function calculator. First, let’s zip all the way down to the
main program. Press the F5 function key. The word FIND will appear in the
status area below the working display area. Complete the FIND command like
this:

FIND ‘MAIN

and press RETURN. Be sure to remember the quotes (either " or ’/ will work, as
long as they’re the same on both ends of the string). The screen will almost
instantly change to show the 20 lines beginning with:

BEGIN ; Main Program

The status line will show that this is line 244. The cursor will be on the M
in Main. This is how the FIND command works. You can also search for a
particular line by specifying the line number instead of the quoted string.
For example, FIND 1 will put you back at the top of the program, and FIND 9999
will put you at the end of the program (because there are less than 9999

Copyright (C) 1986 SMA Imc. Rev. C

1-26 Systems Management Associates, Inc. MEET PROMAL!

lines). You can also back up or go forward from where you are by using a
signed number. For example, FIND -100 will back up 100 lines from your present
cursor position and then re-display.

Now go back to the beginning of the program by using a FIND 1 command. Do a
CTRL-N to see the next 20 lines. The status line should indicate that the
top of the screen is now showing line 21. The lines starting with CON declare
some constants in the program. For example, the line:

CON LINESZ = 80 ; Max line size

defines the constant LINESZ to have the value 80 throughout the program. A
constant is similar to a variable, but cannot have its value changed during
execution. Below the constants are declarations for several variables. Press
CTRL-N to advance to the next screen (starting with line 41). Notice the line:

REAL VAR[27] ; Variables A-Z cur value

This array of type REAL will hold the current value for each of our simulated
calculator’s "memories". Suppose you decide you want to change the variable
VAR to be called MEMS instead, throughout the program. Use the F6 function
key, and complete the command as follows:

CHANGE 100 ‘VAR’ ‘MEMS’

and press RETURN. This tells the EDITOR to change 100 occurrences of VAR to
MEMS. You will see the first occurrence of VAR highlighted (in a comment) aund
the status area will show the prompt:

CHANGE THIS STRING (Y/N/C=CANCEL)?

You can press Y to change the string and advance to the next occurrence, N to
advance to the next occurrence without changing this one, or C to cancel the
command at this point. Press Y and watch what happens. The next occurrence is
highlighted, and you are again asked if you want to change it. However, this
occurrence of VAR occurs in the word VARIABLES in a comment, so you .don’t want
to change it. This is why you get a chance to "veto" each occurrence!
Otherwise you might get some surprises. Press N to skip this occurrence.
Continue pressing Y or N at each prompt, as appropriate {most will be N). When
all occurrences have been found and presented to you, the status area will
show:

11 CHANGES MADE. PRESS RETURN.
to indicate the total number of changes made out of the 100 you specified.

Press <RETURN>. Now press F5 to issue a FIND 72 command. You should see a
DATA statement that looks similar to:

Copyright (C) 1986 SMA Inc. Rev. C

—

MEET PROMAL! Systems Management Associates, Inc. 1-27

DATA WORD HELP [] = ; Instructions...
"Please enter an arithmetic expression',
"such as \OF 3.14 * (20.25-8.5) \OE OR",
"an assignment statement to A through Z",
"such as \OF X=3-a/.55 \OE OR",

"#n to select n decimal places (0-8)",
"in answer (for example \OF #4 \OE) OR",
"just press RETURN to exit the program."”,
"M, 5 blank line

0 ; eand of list

This DATA statement declares an array of strings called HELP. PROMAL DATA
statements are somewhat like BASIC DATA statements, except that you don’t have
to READ the data into a variable; its already there. DATA statements are the
only statements that may take up multiple lines. The brackets after the
variable name indicate an array. It is not necessary to put a dimension inside
the brackets for a DATA declaration, because PROMAL will figure out how big to
make the array. The first subscript of a PROMAL array is always 0, not 1.
Therefore if we later have a statement:

PUT HELP[2]
it will display:
an assignment statement to A through Z

If you have a Commodore 64 instead of an Apple, the "\0F" and "\OE" in the DATA
statements will be replaced by £12 and £92. The Commodore does not have a
backslash key, so the "pounds sterling" key is used ianstead. The \ or £ symbol
is used in a string to embed non-printable characters. The \ is followed

by exactly two hexadecimal digits which give the code for the desired embedded
control character. In this case, the \OF and \OE turn reverse video on and off
respectively on the Apple (and £12 and £92 do the same function on the Commo-
dore 64).

Note that the array HELP is declared to have a type of WORD rather than BYTE
as you might have expected. This is because the array is actually an array of
pointers to the strings, and each pointer is a word (this is explained in the
PROMAL LANGUAGE MANUAL).

Getting back to the EDIT session, suppose you decide that you want to move
the lines containing the DATA statement for the HELP array closer to the top of
the program for some reason. Put the cursor on the first line of the DATA
statement (line 73) and press the MARK function key (F3). The line will be
highlighted. Now move the cursor to the last line of the DATA statement (line
82) and press F3 again. The lines will be shown in reverse video, indicating
they are now "marked" for some action. The function key legends in the status
now show the choices for what to do with the marked lines:

1=DELETE 2= 3=MARK 4=WRITE 5=FIND 6=MOVE 7=COPY 8=CANCEL
COPY makes a copy of the marked limes at the new cursor location. WRITE lets

you write out the marked lines to a file, the printer, or the Workspace. MOVE
cuts the lines from where they are and inserts them at the cursor location.

Copyright (C) 1986 SMA Inc. Rev. C

1-28 Systems Management Associates, Imc. MEET PROMAL!

DELETE simply deletes the marked lines. CANCEL lets you back out of the
command without doing anything. Move the cursor up, scrolling the screen,
until the cursor is on line 32, right below INCLUDE LIBRARY. Then press the
MOVE function key (F6). Instantly you will see the screen re-displayed with
the DATA statement moved to the new location, and the function key legends
restored to normal.

You have now used all the function keys except Fl (DELETE LINE), F2 (INSERT
LINE), and F4 (RECALL). You can experiment with Fl and F2 to see how they
work, The RECALL function key (F4) is used to insert another file ianto your
program at the cursor location. You can "cut" from one program and ‘'paste"
into another using WRITE and RECALL. These commands are described in the
EDITOR section of the PROMAL USERS GUIDE.

Let’s try one more thing with the EDITOR. FIND line 258. The secoad line
will begin a WHILE loop. Now suppose that for some reason you decide you need
to add another loop of some kind that would encompass all the lines ian the
existing WHILE loop. This means that you need to indent all these lines by
another level. Here’s an easy way to do this. Put the cursor on the first
line to be indented (the WHILE statement) and press CTRL-" (control key with
shift and 6) 1f you have an Apple or CTRL-J if you have a Commodore 64. The
line jumps to the right by two spaces. Press the same key again and the next
line will indent. Just repeat this for as many lines as desired. To get rid
of an unwanted level of indentation, press CTRL-0O (the letter 0). If you
forget what control keys do what, use the HELP function key (F7).

You’ve now seen most of the major features of the EDITOR. If you wish you
may study the rest of the program before exiting back to the EXECUTIVE. The
comments should give you an idea what is going on. An important routine is
procedure GETTOKEN. This routine reads characters from the line until it has a
complete "token". A token is a complete number, a variable name, or an
operator. When examining this routine, it will be helpful to know that the
PROMAL operator @< is called an indirect operator. It follows a variable name
that is being used as a pointer. LPTR@< therefore gets the character at the
address given by LPTR. PROMAL supports other indirect operators as well, and
can perform very powerful operations using pointers.

This routine uses several new functions defined in the LIBRARY. The
standard function TOUPPER converts lower case characters to upper case. The
standard function INSET determines if a character is in a string or set of
characters. The function NUMERIC tests if a character is a numeric digit. The
function STRREAL converts a string to a real value (somewhat like the BASIC
function VAL). All these functions are detailed in the PROMAL LIBRARY MANUAL.

The actual parsing of the input to CALC is done by a technique known as
"recursive descent". This is a goal-oriented technique which tries to match
the input line to a known pattern, where each part of the pattern is processed
by a subroutine. The theory involved is fairly advanced, and there is no need
for you to understand it. If you are interested you can follow through how the
CALC program processes a sample expression "by hand'", which will be very
instructive to understanding it. Also, Appendix P of the PROMAL LANGUAGE
MANUAL has some further discussion of recursive descent parsing and syntax
diagrams. This will only be of interest to the very advanced programmer,
however. Our main purpose in examining this program is to show how to use the
advanced editor features, and introduce some new statements. Also, we wanted

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-29

to give credence to our claim that PROMAL is a suitable tool for developing
compilers, assemblers, and other system programs.

Exit the EDITOR with function key F8. Don’t save the modified program to
workspace or to disk. Instead, simply exit back to the EXECUTIVE by pressing Q
and ¢RETURN>. If you wish you may compile the original CALC program directly
from disk, by typing the EXECUTIVE command:

COMPILE CALC

The COMPILER will ask you if you want to replace the existing CALC.C file when
it finishes. You can reply either Y or N, since the result will be the same
because you haven’t changed the program.

SOME SPECIAL CAPABILITIES

For advanced programmers, here are some additional capabilites which
may be important to you. These are described in the PROMAL LANGUAGE MANUAL:

l. You can assign the address of an external variable anywhere in memory.
This allows you to give meaningful names to those "special' addresses. For
example on an Apple system you might use:

EXT BYTE HIRES_ON AT $C057

which assigns the name HIRES_ON to the Apple Softswitch controlling hi-res
graphics. The statement HIRES ON=1 will therefore enable hi-res mode. A
Commodore 64 example would be:

CON YELLOW=7
EXT BYTE BACKGROUND AT $D021

e e

BACKGROUND = YELLOW

This sequence lets you give a meaningful name to the VIC background color
register and manipulate it like any other variable. Isn’t BACKGROUND=YELLOW
much clearer than its BASIC equivalent of POKE 53281,7?

2. You can perform bit-level operations with PROMAL such as AND, OR,
EXCLUSIVE OR, and SHIFTS. This often eliminates the need for machine language
programming for I-0 or special needs.

3. If you ever do need machine language routines, PROMAL provides a clean
interface. You can call machine language routines from PROMAL with passed
arguments (you can even set the hardware registers if you want). You can
embed machine language routines in DATA statements, or load larger programs
from disk using a built-in library function, or directly from the EXECUTIVE.

SOME SPECIAL SYSTEM-DEPENDENT DEMO PROGRAMS
Your PROMAL Demo disk has some other demonstration programs which exploit

the special capabilities of your computer. You may wish to try these programs,
which are described briefly below.

Copyright (C) 1986 SMA Inc. Rev. C

1-30 Systems Management Associates, Inc. MEET PROMAL!

FOR THE APPLE 11 ONLY:

The following section applies only to the Apple II version of the PROMAL
Demo diskette. If you have a Commodore computer, you may wish to skip down to
the section, "FOR THE COMMODORE 64 ONLY".

A DATABASE APPLICATION PROGRAM

Now that you‘’ve seen some of the features of the PROMAL system in action,
let’s move on to a more complex application program. This will give you the
chance to see more capabilities of the PROMAL language and to use some advanced
editing features. This example takes advantage of the 80 column screen on the
Apple IIe or Ilc.

A hypothetical record store (Pete Promal’s Record Shop) keeps a database of
information about what albums are in stock on disk. The records are kept as
ordinary sequential text files, with each record having the following format:

Field offset (size)

0 (19) 20 (10) 30 (20) 50 (10) 60 (2) 63 (4) 68 (4)

Artist name (First) Album name Label Year Quantity Bin #

For example, a typical record from the database file looks like this:
Jackson Michael Thriller Epic 82 0040 0108

The last two columns tell the quantity on hand and the bin number, which is the
physical location of the albums in the store.

A small segment of this hypothetical database is the file RECORDDATA.T ou
the demo disk. To see what it looks like, type:

TYPE RECORDDATA.T

The SORTDEMO program lets you sort this database by any of the fields, in
ascending or descending order. Type:

SORTDEMO
from the EXECUTIVE and you should see:
PETE PROMAL’S RECORD SHOP
SORT UTILITY
Please select the sort options below,
<{space> changes the highlighted option.
<RETURN> accepts the highlighted option.

<ESC» exits the program.

Sort order is [ASCENDING)

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-31

If you press <space), the highlighted word [ASCENDING] turns to [DESCENDING].
Pressing {space> again changes it back. Press <(RETURN> to accept an ascending
sort. In a similar manner, you can pick the remaining options to choose which
field of the record to sort on and what output device to select (screen, disk,
or printer).

After selecting the output device, the program will read the data file, sort
the records in the manner you specified, and display the records in sorted
order. The program then exits to the EXECUTIVE.

We will not go over this source file for this program, but if you wish to
study it, the comments will help explain the operation of the program.

FOR THE COMMODORE 64 ONLY:

The following section applies only to the Commodore 64. If you don’t have a
Commodore 64, you may wish to skip down to the section, "IN CONCLUSION".

SPRITES, ANIMATION, AND SOUND SYNTHESIS WITH PROMAL

On the Commodore 64 PROMAL Diskette is a moderately complex program called
BILLIARDS. This illustrates how PROMAL can be used to program sprites and
sound in real time. Although the program is not a complete game program, it
could be upgraded to be one. The program was deliberately chosen because it
involves a lot of computation, a great deal more than most animated games. The
program simulates the motion of three balls on a billiard table. It actually
approximates the true behavior of the balls by the physical equations of
motion. It solves collisions between balls and the rails using transfer of
momentum, and includes coefficients of drag so the balls appear to slow down
realistically. We’re not saying you have to be a physicist to use PROMAL; but
rather, that if you do need to do something complex, PROMAL can handle it a lot
better than BASIC.

If you write this program in BASIC, there simply won’t be any animation to
speak of, because the balls will move slowly and jerkily. With PROMAL, the
balls bound around the table fairly realistically, complete with sound effects.
The billiards program has already been compiled for you on the PROMAL Diskette.
To try it from the EXECUTIVE, type:

UNLOAD
BILLIARDS

After the program loads, you will see the table and three balls. One of
the balls will zip diagonally across the table, colliding with the others.
When the balls almost stop, the program exits back to the EXECUTIVE. You can
use CTRL-B if you want to run it again. After you’ve learned more about
PROMAL, you might like to modify this program to accept different angles and
velocities for the "hit" on the cue ball. Or, if the balls on the screen look
egg-shaped instead of round (due to the fact that pixels are not the same width
as their height), you may want to change the sprite data to make the balls look
more round.

Copyright (C) 1986 SMA Inc. Rev. C

1-32 Systems Management Associates, Inc. MEET PROMAL!

We won’t go over the source program for BILLIARDS, but you may examine it
with the EDITOR if you wish. Although the comments will give you a good idea
what is going on, you will need to study the PROMAL LANGUAGE MANUAL to fully
understand the details of this program.

1f you liked the BILLIARDS program, try this:

UNRLOAD
INFILTRATOR

This will execute a fairly simple arcade-type game written entirely in
PROMAL. The source code to this program is included on one of the PROMAL
disks, if you’d like to examine or improve it. This game features smooth
horizontal scrolling (impossible from BASIC), multiple multi-color sprites, and
some ''phasor" and explosion sound effects. Have fun!

Note: Because this program’s source file is larger than 400 lines, you
will not be able to compile it with the Demo compiler. The standard compiler
can compile it easily with the B option. This program uses an INCLUDE file.

IN CONCLUSION

As we said earlier, the purpose of this manual was not to teach you how to
program in PROMAL but to give you a good idea about what it is like to program
in PROMAL. You have now gone through the mechanics of editing, compiling and
running small and large programs. You have used a few EXECUTIVE commands and
know how the EXECUTIVE can run programs and pass command arguments to programs.
We hope you now have a good idea of what PROMAL is all about.

There are many powerful PROMAL features we have not even touched on yet.
For example, you can use the EDITOR to prepare a "script" of commands for the
EXECUTIVE to execute using the JOB command. This can be used to run a whole
series of programs or commands as a 'batch". Also, we have only seen a very
few of the routines in the LIBRARY. There are many routines in it to do
everything from a block-move to searching a linked list.

The PROMAL LANGUAGE MANUAL contains a full explanation of how to program in
PROMAL, with plenty of examples provided. The LIBRARY has a reference manual
of its own. The PROMAL USER’S GUIDE explains all the built-in EXECUTIVE
commands in detail, as well as all EDITOR commands and compiler optiomns. If
you’ve liked what you’ve seen of PROMAL, but don’t quite understand everything
we’ve covered, you’ll still have very little difficulty becoming a proficient
PROMAL programmer.

MAKING WORKING DISKS

To start using PROMAL for writing your own programs, you will want to make a
"working disk" with just the files you need on it plus your own programs.
Appendix O tells you what files you need and how to copy them.

Copyright (C) 1986 SMA Inc. Rev. C

MEET PROMAL! Systems Management Associates, Inc. 1-33

END USER VERSION AND DEVELOPER’S VERSION

The PROMAL system is available in two versions. The Standard or "End User"
version gives you everything you need to develop programs for use on your
computer, or for use oan other people’s computers which also have PROMAL. The
Developer’s Version includes all of the Standard System, but in addition
contains a special Utility which will let you generate stand-alone PROMAL
appllcatlons which will run on computers that do not have PROMAL. The devel-
oper’s Version includes an Unlimited License for you to distribute these
programs without payment or royalties of any kind to SMA. It also includes
another small manual, the PROMAL DEVELOPER’S GUIDE. If you have purchased the
End User system, you can upgrade later to the Developer’s Version by just
paying the difference in price (call for details).

SOURCE CODE FOR THE PROMAL SYSTEM

As an option, you can purchase the source code for the PROMAL EXECUTIVE,
EDITor, and a source listing of the assembly language Runtime Package and
Library. This is a unique benefit to PROMAL programmers, which is not
available for any other commercial programming system. Contact SMA for pricing
and availability.

GRAPHICS TOOLBOX

A Graphics Toolbox is available as an option. This provides very fast, high
resolution drawing subroutines you can use from your PROMAL program. It can be
used with either the End User or Developer’s version of PROMAL.

With this package you can easily write programs to draw bar graphics, pie
charts, function plots, and other graphlc images. The Graphics Toolbox for the
Commodore 64 draws in 16 colors using the 320 by 200 high resolution mode. On
the Apple, graphics are done in 280 by 192 high resolution monochrome, since
the Apple does not have a high-res color mode. Despite substantial underlying
differences in hardware, graphics applications written for the Commodore are
highly portable to the Apple and visa versa.

Call SMA for ordering information on the low-cost Graphics Toolbox.
REGISTERING YOUR PROMAL SYSTEM

After you’ve opened your sealed System diskette(s), be sure and fill out and
send in your "END USER AGREEMENT, LICENSE and REGISTRATION FORM". This is the

only way you will be able to get oun our mailing list, so you can receive
important upgrade notices, product announcements and the PROMAL NEWSLETTER.

Copyright (C) 1986 SMA Inc. Rev. C

1-34 Systems Management Associates, Inc. MEET PROMAL!

CUSTOMER SERVICE

If you run into a problem with PROMAL you can’t resolve by carefully reading
the manual (and the trouble shooting guide in Appendix C), please call our
Customer Service line at (919) 878-3600. Please be prepared to tell us what
your computer hardware is, your version of PROMAL, serial number (on sealed
disk if you’ve opened it), and an exact description of what actions you took
and what symptoms you observe., Please get the exact wording of any error
messages. This will make it much easier for us to help you.

Thank you for purchasing PROMAL. We are sure you will find it to be an
indispensible addition to your software collection.

Copyright (C) 1986 SMA Inc. Rev. C

—

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-1

PROMAL
(PROgrammer’s Micro Application Language)
USER’S GUIDE
A GUIDE TO USING THE PROMAL
-~ EXECUTIVE --
-~ EDITOR -~

-- COMPILER --

For Applie II and Commodore 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, North Carolina 27609
(919) 878-3600

Rev. C - September 1986

Copyright (C) 1986 SMA Inc. Rev. C

2-2 Systems Management Associates, Inc. PROMAL USER’S GUIDE

PROMAL USER’S GUIDE

INTRODUCTION

Welcome to the exciting world of programming in PROMAL. PROMAL provides a
complete programming environment to let you get the most out of your computer.
Unlike other programming languages which have historically come from big
computers and have been "shoehorned" into personal computers, PROMAL was
designed from the ground up for use on small machines. Because of this, it
provides the tools you need to quickly and easily write programs which run
"lightniang-fast",

Not only do PROMAL programs often run 20 to 100 times (or more) faster than
BASIC, but non-trivial programs are usually easier to program and maintain in
PROMAL than BASIC.

Your PROMAL programming system includes all of the following:

o

An operating system EXECUTIVE for interactive control

A powerful full-screen program EDITOR for preparing programs

A fast, one-pass COMPILER for the PROMAL language

A standard LIBRARY of over 50 versatile subroutines, ready to use
Ready~-to-run demonstration programs for you to rum, study, and modify
A complete manual with examples to guide you

% %k 3k

3*

Let’s take a quick look at what each of these tools does for you.

The PROMAL operating system EXECUTIVE is your coatrol center. You type in
commands to run programs, activate the PROMAL editor or compiler, and perform
other operations. A number of built-in commands are provided for manipulating
files, displaying and changing memory, etc. In addition, you can add your own
commands. The PROMAL EXECUTIVE lets you have several programs in memory at
once, and you can run any of them instantly by merely typing the name of the
program.

The PROMAL full screen EDITOR makes it easy to create or change programs or
text information. The editor is like a good word processor, except that it is
designed specifically for writing PROMAL programs. To make changes, you simply
move the cursor around on the screen and insert or delete text as desired. The
editor can scroll forwards or backwards to rapidly display any part of your
program. Powerful search and replace commands make it easy to make correc-
tions. You can "cut and paste" blocks of text, too.

The most important part of the system is the PROMAL language and compiler.
The COMPILER takes the program you created with the EDITOR and coaverts it to a
form which runs with nearly the speed of assembled machine language programs.
It is this compilation process which is mainly responsible for PROMAL’s great
speed. Compiled PROMAL programs also occupy less memory than BASIC or other
languages. You can save your compiled program on disk, and it can be run at
any time later by just typing its name.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE __ Systems Management Associates, Inc. 2-3

The LIBRARY of over 50 subroutines is already built into the PROMAL system.
You can call these routines from your program to perform a wide variety of
tasks. Haviang all these subroutines immediately available greatly simplifies
the job of programming.

There’s nothing like some good examples to speed the learning process, so
several complete, useful demonstration programs are included on the PROMAL
disk.

ABOUT YOUR PROMAL MANUALS

If you have not already done so, you should read your MEET PROMAL! manual,
which will provide you with a "hands-on" guided tour of the PROMAL system as a
whole. This short manual introduces many of the novel concepts of the PROMAL
system in a ''get-acquainted" style.

This manual, the PROMAL USER’S GUIDE, tells you how to use the various
components of the PROMAL system. After this introduction, it is divided into
three major sections, covering:

1). Operation of the EXECUTIVE (including all EXECUTIVE commands) ;
2). Operation of the EDITOR;
3). Operation of the COMPILER.

The PROMAL LANGUAGE MANUAL, describes the PROMAL language in detail. You
will probably want to read it after you have gained some proficiency with the
EDITOR and EXECUTIVE by reading the USER’S GUIDE.

The PROMAL LIBRARY MANUAL provides a detailed reference for the the
subroutines in the LIBRARY, arranged alphabetically. You will want to skim
this material after reading the LANGUAGE MANUAL, and refer back to it for
details as the need arises.

A set of Appendices serves all of these manuals, giving supplemementary
information. An index is provided to all manuals and the Appenidces.

If you purchased the Developer’s Package, you will have an additional
manual, the DEVELOPER’S GUIDE, which covers topics relevent to making
stand-alone PROMAL programs which can be run on systems without PROMAL.

STARTING THE SYSTEM

The MEET PROMAL! manual tells you how to "boot up your system" using a copy
of the Demo disk. You should always use a "working disk" that has a copy
of the PROMAL software on it, and leave the original disk in a safe place.

Once you have your system booted up, PROMAL will sign on and the EXECUTIVE
will now display the default meanings of the function keys (note: see the JOB
command description below for a way to defeat the display of the default
function keys during boot-up). This display will look similar to this:

Copyright (C) 1986 SMA Inc. Rev. C

2-4 Systems Management Associates, Inc. PROMAL USER’S GUIDE

Commodore Apple 11

F1 = EDIT Fl = EDIT

F2 = DUMP F2 = PREFIX *
F3 = COMPILE F3 = COMPILE
F4 = GET F4 = GET

F5 = FILES F5 = FILES

F6 = MAP F6 = EXTDIR *
F7 = HELP F7 = HELP

F8 = COPY F8 = COPY

Note: F4 means hold either Apple key and press 4.

If you have read MEET PROMAL!, you already know that pressing one of the
function keys is equivalent to typing in the command name it stands for. For
example, pressing Fl will cause the word "EDIT" to appear on the screen, just
as if you typed it in. The "-->" is the PROMAL EXECUTIVE prompt, followed by a
blinking cursor. This indicates that the EXECUTIVE is waiting for you to type
in a command.

You are now ready to begin using PROMAL.
EXECUTIVE COMMANDS AND COMMAND EDITING

To tell the EXECUTIVE something, you can use any of the fuanction keys or
type in a command that the EXECUTIVE knows. The "built-in" commands are
described in detail in the next section. All commands must be terminated by
the RETURN key. Up until the time you press the RETURN key, you can use any of
the line-editing keys described in Table 1 to make corrections.

Once you press RETURN, the EXECUTIVE will attempt to execute whatever
command you have typed. There are three "levels" of commands, which the
EXECUTIVE searches in this order:

1). Built-in commands
2). User-defined commands in memory
3). User-defined commands on disk

If the EXECUTIVE can not find the command in any of these places, it will
display:

**% ERROR: PROGRAM OR OVERLAY NOT FOUND: xxxx

__> _

User-defined commands are simply compiled PROMAL programs. Several of
these command files are on the Demo disk. They are easily recognized because
their names end in ".C", indicating a command file. You can create your own
commands by writing a PROMAL program and compiling it. To run a PROMAL
program, you don’t have to LOAD it and RUN it like you do with BASIC; you
simply type its name. The EDITOR and COMPILER sections of this manual and the
LANGUAGE MANUAL contain all the information you need to create your own
commands .

Commands may be typed in either upper or lower case letters. PROMAL
operates using upper-and-lower case, like a normal typewriter. If you
prefer all upper case letters, you can press CTRL A, which enables alpha-lock.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-5

—— v . o " —— . - A i " - T - D YD e 0 4 T el D A 8 e

Commodore Apple

Key Key Description
RETURN RETURN End of line. The completed line is entered into

the PROMAL system. May be typed from any cursor
position in the line. Maximum line size is 80
characters for the EXECUTIVE.

DEL DELETE Replace the character left of the cursor with a blank
and back up the cursor one position

INST CTRL E Enable "insert mode". Any characters subsequently typed
will be inserted before the character the cursor is on,
pushing any existing text to the right. Exit imsert
mode by pressing RETURN or other line-editing keys.

CTRL <-- CTRL D Delete character with pullback. Deletes the character
under the cursor and pulls any remaining text to the
left to fill in the gap.

Cursor right. Moves the cursor to the right, without
altering the character under the cursor. Stops at the
end of the line. Repeats automatically after a brief
pause if held down.

1]
il
v
J

(== {— Cursor left. Moves the cursor to the left, without
altering the character under the cursor. Stops at the
first character entered. Repeats automatically after a
brief pause if held down.

CTRL X CTRL X Cancel the entire line. Erases all characters typed on
the line and repositions the cursor to the first
character position.

CTRL K CTRL \ Clear to end of line. Erases all characters from the
cursor to the end of line.

CTRL Y CTRL L Jump to last character of line. Moves the cursor to the
column after the last character on the line, without
affecting the line content.

NOTE: The CTRL key is used like a shift key. CTRL X means you hold down the
CTRL key and press X at the same time. N/A means not available.

Copyright (C) 1986 SMA Inc. Rev. C

2-6 Systems Management Associates, Inc. PROMAL USER’S GUIDE

TABLE 1 (continued)

Commodore Apple

Key Key Description

CTRL [CTIRL F Jump to first character of line. Moves the cursor to
the first character position, without affecting the line
content.

CTRL A CTRL A Toggle Alpha-Lock mode. When pressed the first time,

causes all subsequent alphabetic characters to be
entered and displayed as upper case when typed.

Does not affect other characters displayed on the screen
or already typed. Pressing CTRL A again returns to
normal upper and lower case alpha mode.

F1 Apple 1 Function key. Erases curreat text on command line and
through through enters the equivalent function key definition. More can
F8 Apple 8 be typed after the function key definition or it can

be edited further if desired.

CTRL B CTRL B Backtrack. Erases current text on the command line and
enters the last line eatered. More can be typed after
the recalled command, or it can be edited further.
Pressing CTRL B again will recall the next-to-last
command entered. This can be repeated up to the limit .
of the backtrack buffer of 256 characters; then the
display will "wrap around" to repeat the most recent
command again.

CTRL STOP CTRL RESET Program abort. Unconditionally aborts the curreatly-
running program and returns control to the PROMAL
EXECUTIVE, closing any open files. Should be used only
as an "emergency exit" (does not work if interrupts are
disabled or if a machine-language program has executed
an illegal opcode). Apple version clears screen and may
cause loss of data in files open for writing.

CTRL Z CTRL Z Indicates end of file from the keyboard device if it is
the first character of a line. See the TYPE command for
an application.

NOTE: The CTRL key is used like a shift key. CTRL X means you hold down the
CTRL key and press X at the same time. N/A means not available.,

It is possible to alter almost all of the choices for editing keys (See
Appendix G). The default keys were chosen so as not to conflict with
pre-defined Commodore keys.

For the Commodore 64, CTRL-STOP will not be operational while the disk is
being accessed with DYNODISK enabled, because DYNODISK disables interrupts
temporarily while it is running.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-7

TABLE 1 (continued)

SPECIAL SYSTEM-DEPENDENT KEYS

Commodore Apple

Key Key Description
STOP N/A Stop action. This key temporarily suspends all program

execution (including user-defined programs, built in
commands, and machine-language programs) until the key
is released., It is useful for halting a rapidly-
changing display so you can read it (does not work if
interrupts are disabled).

CTRL N/A Slow display. During display on the screen, slows down
the scroll rate while held down. Makes it easier to
read rapidly scrolling text.

N/A CTRL C Abort command. Can be used to abort an Executive
command or a running program if it is displaying on the
screen. This method is preferred to CTRL-RESET for
aborting programs on the Apple.

N/A CTRL S Pause output. Temporarily halts display to screen until
any key is pressed.

NOTE: The CTRL key is used like a shift key. CTRL X means you hold down the
CTRL key and press X at the same time. N/A means not available.

- ——— . i > P S o o D i D D i o B D A D R A A Ml M D T S D D A Yl D PP e) R O A e D D S T Al D AR S o

BUILT-IN EXECUTIVE COMMANDS

The EXECUTIVE has a number of built-in commands which are always available,
summarized in Table 2 below. These commands are explained in detail in the
following sections.

Copyright (C) 1986 SMA Inc. Rev. C

Systems Management Associates, Inc. PROMAL USER’S GUIDE

T e e T D e D i A D) S o A VD D D Y AT AT A D D A A A D DD Dl D e D Sl s T D D A A D A D Sy

O R D D D S Al D Sl T A D N A A A e A D D e D D~ - - T - -

Set the number of ProDOS disk buffers (# open files).
Change the curreant color and/or screen background color.

Clear the screen.
Change the current date (See note).

Delete a file.

Send C-64 disk commands aad display error channel replies.
Display memory in hexadecimal and ASCII characters.
Enable/disable double speed read for 1541/1571 disk drives.
Enter the full screen PROMAL EDITOR.

Display the names of files on disk.

Fill a region of memory with a constant.

Redefine a function key or display present assignments.
Load a PROMAL or machine language program into memory.
Execute a machine language program in memory.

Display a "help" menu of EXECUTIVE commands and control keys.

Execute a list of EXECUTIVE commands stored in a file. -
Lock (write-protect) a file,

Define a command macro.

Display the current memory allocation and loaded programs.

Create a new directory.

Discard support for REAL data (makes more memory available).
Display a message and wait for RETURN key.

Display or change disk volume name or subdirectory.

Exit to BASIC (Commodore) or to specified system (Apple).

Change the name of a file.

Set memory locations to specified values or characters.
Display the size of a compiled PROMAL program.

Display a file of text on the screen, printer, etc.
Remove a PROMAL program from memory.

Unlock (allow writing) a file.
Clear or alter the size of the Workspace (in-memory file).

2-8

Command Avail¥* Function
BUFFERS A
COLOR C
CoPY AC Copy a file.
CS AC
DATE AC
DELETE AC
DISKCMD C
DUMP AC
DYNO C
EDIT AC
FILES AC
FILL AC
FKEY AC
GET AC
GO AC
HELP AC
JOB AC
LOCK A
MACRO AC
MAP AC
NEWDIR A
NOREAL AC
PAUSE AC
PREFIX A
QUIT AC
RENAME AC
SET AC
SIZE AC
TYPE AC
UNLOAD AC
UNLOCK A
ws AC
*Note: A=Apple, C=Commodore

DATE is not a built-in command on the Commodore 64, but a compiled program
which is automatically unloaded after it is run.

D s o e L D D D T D D D A Al e i D D D e el o e S i A D T ol T - " A > T~ >

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-9

ARGUMENTS FOR EXECUTIVE COMMANDS

Many EXECUTIVE commands have required or optional arguments. An argument
is a series of characters separated from the command by one or more blanks. For

example:
COPY MYFILE.T
has one argument, "MYFILE.T", and

DUMP 1000 1078

has two arguments. The kind of argument needed (if any) varies with the
individual commands. Frequently an argument will be a file name to operate on.

In order to describe what kind of arguments a command can have, the
following notation is used in this manual:

(1). A name shown in all CAPITAL letters indicates the name of the command
or a word which must be typed in exactly as shown. It may be typed in either
upper or lower case letters.

(2). A name shown in Upper and lower case letters is a descriptiom of
something the user must type in. For example,

COPY Filename
means the argument must be a legal PROMAL filename.

(3). Anything enclosed in square brackets, "|[]" is optional. The
text will explain what the default is if the optional argument is not speci-
fied .

(4). Ellipsis (...) are used to show an arbitrary number of repetitions of
the preceding item. For example:

SET Address Value [...]

means that the SET command can have an arbitrary number of Value arguments
specified.

FILE NAMES

File names are frequently used as arguments for EXECUTIVE commands.
File name requirements differ somewhat for various computers, because the disk
formats and underlying operating systems are different. In order to promote
portability between computers, PROMAL uses a default naming convention that is
very similar for all computers, but may not allow access to all file names and
file types that are legal on a particular computer. PROMAL normally operates
on these PROMAL files automatically, by default. However, provision is made in
the EXECUTIVE and PROMAL language to be able to operate on amy type of file
which is legal on your computer. Find the file name rules which apply to your
computer below. Hereafter, any reference to a file name means a PROMAL file
name unless otherwise stated.

Copyright (C) 1986 SMA Inc. Rev. C

2-10 Systems Management Associates, Inc. PROMAL USER’S GUIDE

File Names for Commodore 64 Computers

PROMAL can operate on standard PROMAL files, or any kind of file available
on the Commodore 64. By default, PROMAL operates on standard PROMAL files,
which conform to these rules:

(1). The name must be 1 to 14 characters long, with the first character
being an alphabetic character. If a single character name is chosen, it should
not duplicate the names of any of the PROMAL devices given in Table 4. The
remaining characters must be alphabetic, numeric, or the left-pointing arrow
character (an ASCII underlime character; this is the key above the CTRL key).
The name may NOT contain blanks or other punctuation, and is mot enclosed in
quotes when used as a EXECUTIVE command argument. Names may be typed in upper
or lower case, but are converted to all upper case internally.

(2). The name part can optionally be followed by a period and a single
character file extension. The file extension must alphabetic or numeric. It
indicates the "kind" of file. If omitted, a default extension of ".C" will be
assumed, which indicates a PROMAL command file (executable program). Multiple
character file extensions may be used but are not recommended.

(3). The file name may have an optional drive number prefix followed by a
colon. The choices are 0: or 1:., If no prefix is specified, 0: is assumed.
See Appendix N for information on multiple drive systems,

All normal PROMAL files on the Commodore 64 are stored as sequential (SEQ)
type files, including executable programs. PRG and REL files are not normally
used. The following are examples of legal PROMAL file names:

AB x7 MyData YOUR45.T DOIT.C
Hello_There.C T12345.5 Z_ RECOVER. S
0 :STUFF 1 : AUXDATA.D

The names above which do not have a file extension will be stored on disk with
the file extension ".C". Thus if you type AB for a file name, the file AB.C
will be the file acted upon (EXCEPTION: The EDITOR and COMPILER will assume a
file extension of .S for the source files they operate on). The following
names are not legal PROMAL files for the reasons noted in parentheses:

7THDATA. S (must start with an alphabetic character)

MY Data (can’t have embedded blanks or punctuation)

THE LAST PROGRAM (can’t have more than 14 characters)

OLD.STUFF.D ("." can only be used to start the file extension)

EXECUTIVE commands normally use PROMAL file names. However, you may access
any file name which is legal on the Commodore 64 by enclosiang the name in
quotes, The COPY command also requires specification of the file type for
non-SEQ files, as is described later,

Appendix M describes PROMAL support of relative files, which should not be
manipulated with EXECUTIVE commands. It is also possible to open files to
access Commodore direct access files, directories, and the command/error
channel., These facilities are described later.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE __ Systems Management Associates, Inc. 2-11

File Names for Apple II Computers

PROMAL can operate on standard PROMAL files, or any kind of file available
under ProDOS. By default, PROMAL operates on standard PROMAL files. A
PROMAL file name is slightly more restrictive than a ProDOS file name. Legal
PROMAL file names must conform to these rules:

(1). The name must be 1 to 13 characters long, with the first character
being an alphabetic character. The remaining characters must be alphabetic,
or numeric. The name may NOT contaia blanks, periods, underlines, or other
punctuation. If a single character name is chosen, it should not duplicate a
PROMAL device name given in Table 4. Names may be upper or lower case. ProDOS
converts all names to uppercase internally.

(2). The name part can optionally be followed by a period and a single
character file extension. The file extension must alphabetic or numeric. The
file extension indicates the "kind" of file. If omitted, a default extension
of ".C" will be assumed, which indicates a PROMAL command file (executable
program). Multiple character file extensions are permitted but not
recommended. The total name including the extension may not exceed 15
characters.

(3). The file name may have an optional pathname which specifies the ProDOS
volume name and/or subdirectory name. Volume names are indicated by a leading
/ character, are up to 15 characters long, and start with an alphabetic
character. Volume names are assigned when the disk is formatted using the
ProDOS Utility. Subdirectories follow the same naming rules as volumes, and
can be specified when files are created. If mo prefix is specified as part of
the file name, then the curreat prefix will be used. The current prefix is set
by the PROMAL PREFIX command, and is initially the prefix of the disk or
directory from which PROMAL was booted. The total combined pathname and
filename cannot exceed 60 characters. For floppy disks, we suggest you avoid
using subdirectories. If a path name and file is specified without a leading /
character, it will be appended to the present path. For example if the present
prefix is /MYDISK/, and a name given is PROGS/GO.C, then the resultlng path
will be /MYDISK/PROGS/GO.C.

(4). 1In lieu of a volume name, you may use a two character drive prefix as

follows:

0: The /RAM volume (slot 3 drive 2)

1: Floppy drive 1 (slot 6)

2: Floppy drive 2 (slot 6)
When using the drive prefix, PROMAL will read the volume name from the selected
drive and use it for the volume name part of the file name. It does not change
the current prefix.

The following are examples of legal PROMAL file names on the Apple II:

AB 1:x7 MyData YOUR45.T DOIT.C
HelloThere.C T12345.S 0:2Z.SYSTEM RECOVER.S
2:/WORK1/STUFF /USER.DISK/MATH/DATA.D X

Copyright (C) 1986 SMA Inc. Rev. C

2-12 Systems Management Associates, Inc. PROMAL USER’S GUIDE

The names above which do not have a file extension will be stored on disk with
the file extension ".C". Thus if you type AB for a file name, the file AB.C
will be the file acted upon (EXCEPTION: The EDITOR and COMPILER will assume a
file extension of .S for the source files they operate on). The following
names are ILLEGAL on the Apple II for the reasons noted in parentheses:

7THDATA.S (must start with an alphabetic character)
0:MY Data (can’t have embedded underline, blanks or punctuation)
OLD.STUFF.D ("." can only be used to start the file extension)

EXECUTIVE commands normally use PROMAL file names. However, you may access
any file name which is legal with Apple II ProDOS by enclosing the name in
quotes. Placing the name in quotes suppresses the default file extension.
This allows you to use the EXECUTIVE to copy, delete, and rename files created
by BASIC, word processors, or other non-PROMAL programs. For example:

COPY "PRODOS"
is an EXECUTIVE command to copy the PRODOS system file (not PRODOS.C).

FILE EXTENSIONS (ALL COMPUTERS)

Table 3 below lists the customary file extensions used for various kinds of
PROMAL files. Other extensions may be devised by the user for special needs.

D A . — —— — T — . D D D o el D Dl P A S D A D D T AN A DD D WD D A D A A A S

Extension Type of file indicated

.C A Command file. An executable (compiled) PROMAL program. This is
the default extension.

.D A data file.,

.E A PROMAL EXPORT file (for separate compilation, described in
Chapter 8 of the LANGUAGE MANUAL).

«J A "Job"™ file, usually prepared with the EDITOR, used to drive the
EXECUTIVE from a script of commands.

.L A program listing

.R A Commodore 64 relative file (see Appendix M)

.S A PROMAL source program, normally prepared by the EDITOR.

.T A text file, other than a PROMAL source program.

X A cross-reference map (output from XREF utility).

-~ . — A e A AU D D D e e ot A 4D A D D D el > D AD DD T AT D D DD DD D D P T Al D D A A D D DU A

NUMERIC ARGUMENTS

Some EXECUTIVE commands accept numbers for arguments. The built-in
EXECUTIVE commands all require numeric arguments to be specified in hexadeci-
mal. User-defined programs may specify decimal or hexadecimal at the discre-
tion of the programmer. It is not necessary to understand hexadecimal numbers
for casual use of the EXECUTIVE. The Commodore and Apple Reference Manuals
describe hexadecimal notation. Hex numbers may be specified with any number of

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-13

digits; however, the value must not exceed FFFF. In the PROMAL manuals,
numbers appearing in the text with a § prefix indicate a hexadecimal number.

You do not use the $ prefix for EXECUTIVE commands, because the EXECUTIVE
implicitly expects hex values.

Normally, blanks are treated as separators between arguments. If you wish
to speCLEy an argument which contains an embedded blank, the argument must be
enclosed in quotes (either " or ‘). The EXECUTIVE will then treat the entire
quoted string as one argument. It will remove the quotes before acting on the
argument. Also, the EXECUTIVE normally "folds" all lower case letters in
arguments to upper case before acting on the argument. However, if the
argument is enclosed in quotes, no conversion takes place. For example:

SET 5000 "Now we will learn PROMAL"

will treat the entire quoted character string as one argument, and will not
convert it to upper case (this command installs the string specified into
memory starting at location 5000 hex).

DEVICES

The PROMAL EXECUTIVE (as well as PROMAL programs) can perform input and
output to certain devices as well as files. PROMAL devices are named with a
single character, as shown in Table 4 below.

o . 08 D D D D - - - > " s s

- . i > - > - —— o — i o > - Y " VD D D D D D o >

Name Meaning

The Screen. For output only.

The Keyboard. For input only.

The Printer. For output only.

The Null device (discards all output). For output only.
The Workspace (in-memory file). For input or output.
The Library (in-memory file). Normally for input.

The Telephone (modem). For input/output.

HErEZYAR®m

> A —— " " T - Y o D " D A D TS Sl e N A s S . s

Most EXECUTIVE commands can accept one of these device names anywhere a
file can be specified. For example:

TYPE L
will type the contents of the library on the display.

The W device is a simulated file in memory, also called the Workspace.
Although the Workspace is small compared to a disk, it is much faster. The
Workspace is often used as a place to save a source program you are working on
temporarily. The size of the Workspace can be varied on the Commodore 64 by
the WS command. Naturally, if you turn off the computer or leave PROMAL, the

Copyright (C) 1986 SMA Inc. Rev. C

2-14 Systems Management Associates, Inc. PROMAL USER’S GUIDE

contents of the workspace are lost. You can save the Workspace oa disk with
the COPY command. -

The N device simply discards whatever output it receives. This may sound
useless but is sometimes useful, as you will shortly see after we discuss I/0
redirection.

1/0 REDIRECTION

Most EXECUTIVE commands normally output to the screen. However, output may
be redirected to a file or device by using the redirection operator '"D>" after
the last argument. For example:

TYPE MYLETTER.T >P

will type the file MYLETTER.T on the printer instead of the screen. Similarly
the command

FILES >W

will output the names of all the files on the disk to the Workspace. You may
also redirect output to a file, for example:

DUMP 4000 4100 >MEMDUMP.T

will output the memory contents to the text file MEMDUMP.T instead of to the
screen as it normally would. You can only redirect output to one device at a
time.

Many PROMAL programs also allow.their output to be redirected in the same
manner., Suppose that you had an application program which produced verbose
output on the screen each time it ran, and that you wanted to run it without
seeing any output. You can do this by redirecting output to the N device.

Some PROMAL programs also allow input redirection. 1In this case, the
program normally accepts input from the keyboard, but can alternatively accept
input from a file or device. To redirect input, the input redirection symbol
(<) should be used after the last argument. For example, suppose a PROMAL
program called INVENTORY normally accepts input from the keyboard and generates
a file specified as the first argument. You might tell the program to take its
input from another file called APRILINPUT.T instead like this:

INVENTORY APRIL.D <APRILINPUT.T

The programming techniques for interfacing to the EXECUTIVE are described
in the PROMAL LANGUAGE MANUAL, and make it quite simple to support this kind of
command.

PROMAL EXECUTIVE COMMAND SUMMARY

On the following pages are descriptions of the individual EXECUTIVE
commands. Commands are presented with a syntax definition, a description of
the command’s function and examples of use. Unless otherwise noted, the —
commands are available on both Apple and Commodore 64.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-15

————— - B " o A P D T D " D D AU YD o D D M D D DA D D D D S o

> A > A D A T " . — - " - AT D D D D D D D AV D DD D T D D D D D D M M A

AVATLABLE ON APPLE II ONLY.

BUFFERS [Number][HIRES]

The Apple II ProDOS operating system requires that a 1024 byte buffer be
allocated in memory for each open file. The BUFFERS command is used to set or
display the number of buffers you wish to have set aside. The default is
three, which allows three open files at ouce. Typing BUFFERS without any
arguments displays the number of buffers preseatly assigned. Typing a number
after BUFFERS will set the number of buffers specified. Setting the number of
buffers will cause all programs to be unloaded, and will affect the memory
map. PROMAL allocates the buffers below the available program space.

You also use the argument HIRES (alone or in combination with a number).
This will cause PROMAL to unload all programs in memory and reserve space for
the hi-resolution graphics "page" from $2000 to $3FFF. This will be necessary
before running any program which uses Apple Hi-Res Graphics. You can dealloc-
ate the hi-res buffer by typing BUFFERS with a number but without the HIRES
argument.

Example 1:

BUFFERS

will display the current number of 1024 buffers reserved, for example:
NUMBER OF BUFFERS = 3

Example 2:

BUFFERS 1 HIRES

allocates one 1024 file buffer plus an 8K byte hi-res screen at $2000. This
will of course reduce the size of a PROMAL program which can be loaded.

Notes:

1. You can include a BUFFERS command in a JOB file without harm, even
though the buffers for the file may move, so long as there is a buffer avail-
able for the job file when the command is completed.

2. Reducing the number of disk buffers below three may adversely affect the
operation of the PROMAL COMPILER, since it may need up to three files at once.

3. There is not enough free memory to COMPILE a program after a BUFFERS
HIRES command. Therefore when developing a graphics application, remember to
switch back to normal mode with a BUFFERS 3 command before compiling.

Copyright (C) 1986 SMA Inc. Rev. C

2-16 Systems Management Associates, Inc. PROMAL USER’S GUIDE

s . o T . . . - - D D - D YD A T - o

s 0 s e e A s s e e S D D S S A A A A A A A e D D Al D D D Ol D D D DA D A Sl A Al D A D D A D D o

AVAILABLE ON COMMODORE 64 ONLY.

COLOR Number [Bkgndnum]
or
COLOR Colorname [Bkgndcolorname]

The COLOR command is used to change the color used to display text on the
screen, and optionally to change the background color. The first argument is
the name or number of the desired color for the text, chosen from the follow-
ing:

0 BLACK 4 PURPLE 8 ORANGE C GRAY2

1 WHITE 5 GREEN 9 BROWN D LTGREEN
2 RED 6 BLUE A LTRED E LTBLUE
3 CYAN 7 YELLOW B GRAY] F GRAY3

The second argument is optional. 1If specified, it selects the background
color. If not specified, the background color is unchanged. Naturally, if you
select the same foreground and background color, the text will be invisible
(but the computer will still "see' what you type). If you specify a number
greater than $F, the EXECUTIVE will force it into the range of 0 to $F by
discarding all but the low order 4 bits. Names must be spelled exactly as
shown above in order to be recognized (for example, GRAY2 is okay but GRAY 2 is ~
not, nor is GREY2).

Example 1:

COLOR PURPLE

selects purple characters from this poiat on.
Example 2:

COLOR A O

selects light red characters on a black background.

- - - - o

COPY -~ Copy file or device -- CcoPY

D " > s D el B U D D D D A D e e S T kol i i e i Dl Al D D D A B D D D M i el A U D D

COPY Filename
or
COPY Source Dest
or
COPY Filename Prefix
The COPY command is used to copy the contents of a file (or device) to '”\
another file or device.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-17

COPY for Apple II1

If only one argument is given, it must be a file name, not a device name.
It may have a prefix or drive designator specified. The destination for the
copy of the file is decided as follows: If a prefix was specified and differs
from the current prefix, then the file is copied from the specified prefix to
the current prefix. If no prefix was specified, the copy is made from the
present drive to the "other" drive (1 to 2 or 2 to 1), if it exists and is
ready; otherwise, you will be prompted to swap diskettes for a single drive

copy.

In the second form, the Source and Dest may be file names or device names.
The copy is made from the Source to the Destination. The destination file name
may be different.

In the third form, the first argument must be a file name, not a device
name, and the second argument must be a prefix or drive designator. The file

will be copied to the specified prefix with the same name.

For all file names, default file extensions will be applied except for
arguments in quotes or devices.

Examples for Apple:

If command 1S...

COPY MYFILE

COPY MYFILE

COPY 1:MYFILE

COPY MYFILE.T YOUR.T

COPY PROG.S W
COPY 1:PROG.S 2:
COPY MINE.S YOURS
COPY L S

COPY COMPILE 0:

COPY "PRODOS" 2:

corY "PRODOS" "2:"

COPY /MY.LET/JOE.T

COPY 2:PROG.S P

and...

Single drive

2 drives, current
prefix on drive 1
current prefix is
/RAM/ (RAMdisk)
anything

anything

anything

anything

anything

anything

anything

anything

current prefix is
/ TEMP/
anything

Theneeoo.

will copy MYFILE.C to another disk,
prompting for disk changes.
copies MYFILE.C from drive 1 to 2.

copies MYFILE.C from drive 1 to
/RAM/ .

copies MYFILE.T to YOUR.T on the
current prefix.

copies PROG.S from the current
prefix to the Workspace.

copy file PROG.S from drive 1 to
drive 2.

copy file MINE.S to file YOURS.C
on the current prefix.

copy the L device (library) to the
screen,

copy COMPILE.C from the current
prefix to the /RAM/ disk

copy file PRODOS from the current
prefix to drive 2 and change its
name to PRODOS.C.

copy file PRODOS from the current
prefix to drive 2 with the same
name .

copy JOE.T from prefix /MY.LET/ to
/TEMP/ with the same name.

copy file PROG.S on drive 2 to
the printer.

Copyright (C) 1986 SMA Inc. Rev. C

2-18 Systems Management Associates, Inc. PROMAL USER’S GUIDE

The COPY command can only copy one file at a time and does not support
wildcards. However, Apple PROMAL has a utility program, EXTCOPY, which can -
copy multiple files using wildcards (* and ?). 1It’s syatax is:

EXTCOPY Pattern Prefix

where Pattern is the desired Filename pattern with wildcards, and Prefix is the
destination prefix.

Example:
EXTCOPY *.C 0:
copies all files eading in ".C" from the curreat prefix to the /RAM disk.

COPY for Commodore 64

I1f only one argument is given, it must be a file name, not a device name.
It may have not have a drive designator specified. You will be prompted to
swap diskettes for a single drive copy.

In the second form, the Source and Dest may be file names or device names.
The copy is made from the Source to the Destination. The destination file name
may be different. Drive designators (0: or 1:) may be used.

In the third form, the first argument must be a file name, not a device
name, and the second argument must be a drive designator. The file will be
copied to the specified drive with the same name.

For all file names, default file extensions will be applied and a file type
of SEQ will be used, except for arguments in quotes. For names in quotes, no
default file extension will be applied, and you may specify a file type
explicitly by appending a comma and a letter (S for SEQ, P for PRG, or U for
USR) to the name inside the quotes {for example, "Basic Prog,P". When enclosed
in quotes, names are case-sensitive.

Examples for Commodore:

I1f command is... Then...

COPY COMPILE will copy COMPILE.C to another disk, prompting
for disk changes (single drive copy).

COPY MYFILE YOURFILE will copy MYFILE.C to YOURFILE.C on the
same disk.

COPY SOURCE.S copy SOURCE.S to another disk, prompting
for disk changes (single drive copy)

COPY SOURCE.S W Copy file SOURCE.S to the Workspace.

COPY W S Copy the workspace to the screen.

COPY MYFILE 1: Copy file MYFILE.C from drive 0 to drive 1.

COPY 1:TEST.S 0:OLDTEST Copy file TEST.S from drive 1 to drive 0 with
a name change to OLDTEST.C

COPY 1:TEST.S 0:OLDTEST.S Copy file TEST.S from drive 1 to drive 0 with
a name change to OLDTEST.S

COPY TEST.L P Copy file TEST.L to the printer. —

COPY "PROMAL,P" Copy file PROMAL of type PRG to another

disk, prompting for disk changes (1 drive)

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-19

COPY for both computers

Single drive copies can be made for files up to 64K bytes long. Large files
may require several disk swaps. Other copies are limited only by the available
disk or device space.

If the file already exists on the destination diskette, you will be
prompted:

FILE XXXXX EXISTS.
APPEND, REPLACE, OR CANCEL (A/R/C)? _

Press the A key to append onto the end of the existing file, R to replace the
existing file, or C to cancel the command.

Notes:

1. You will not be able to append the Workspace; copying to it discards any
previous contents.

2. Do not attempt to execute a COPY command from a JOB file on disk in a
single drive system if the copy will require disk swaps, because PROMAL will
attempt to read the JOB file while your destination disk is in the drive. You
may execute such a job file by first copying the job file to the Workspace and
then using a JOB W command.

3. See Appendix R for Commodore dual drive installation instructions.

4. Do not attempt to copy Commodore 64 relative files.

5. On the Apple, attempting to replace a locked file will give a WRITE
PROTECTED erxror message.

6. Attempting to append a locked file or file on a write protected disk
will produce a DISK ERROR message.

7. Copying a file to the W device which is larger than the workspace will
result in a DISK/DEVICE FULL error with the rest of the file not copied.

8. On the Apple, copying a file from one drive to another when both drives
have the same volume name will give an ILLEGAL FILE/DEVICE NAME error.

9. The copy command uses the free memory space for a copy buffer.
Therefore you can increase the efficiency of copy operations (especially for
single drive copies) by UNLOADing memory before copying.

. o S o D AP R Ao el i il T S T A28 D A A D D D D T B D D A A D D D A D D T T AD D D D D PD D D AD l MD D MD l D E

@ P 2 < S o D - > 7 ol 0D D D D A D Dl D A P e D A e < S 7 0

The CS command clears the screen and moves the cursor to the home position.
It does not have any arguments.

Example:

Cs

Copyright (C) 1986 SMA Inc. Rev. C

2-20 Systems Management Associates, Inc. PROMAL USER’S GUIDE

. - ———— i " - . — — — —— ——— - - " o -

- - - o - T — o s T — " - > -

The DATE command prompts for the current date., It is the same command that
is executed automatically when the EXECUTIVE signs on. If you have already
entered the date, it will display the current date and then ask you for the
desired date. You may enter the date or simply reply with RETURN to keep the
present date., The PROMAL compiler uses this date to "stamp' all compiled
programs with their creation date. This creation date is displayed by the MAP
command when programs are in memory, or by the SIZE command if they are on
disk.,

Example:
DATE

Today is 9/30/86
Please enter today’s date: _

Note:

1. On the Apple IIe, the date will be updated automatically on systems with
a Thunderclock or equivalent card when the DATE command is executed, without
any prompt or user action,

2. On the Commodore 64, DATE is not a built-in command, but a separate
program, which is automatically unloaded after it executes. Therefore you will
need to have the file DATE.C on your boot disk to have the DATE command run.

3. If no BOOTSCRIPT.J is present on the boot disk, the PROMAL EXECUTIVE
will execute DATE automatically during bootup. If a BOOTSCRIPT.J file is
present, DATE will not be automatically executed, so you should have a DATE
command in your BOOTSCRIPT.J file unless you don’t want to set the date (see
JOB for more information).

" o " - - . > . - . e A D D D D D D D D D D D A Sl et M D Tl D D D D D D D A A WD D D >

4D " D T - - . - - -~ -

DELETE Filename {...]

The DELETE command removes one or more specified files from the disk
directory. The file name(s) to be deleted should be specified as the argu-
ment(s). Wildcards are not permitted in the Filename. You may not delete a
device, only a file name. However, typing DELETE W will clear the workspace.
Attempting to DELETE a file on a write-protected disk (or a locked file on an
Apple II) will produce an error message.

CAUTION: There is no prompt for verification before the file is deleted, nor is
there any way to ''un-delete" a file, so use DELETE with caution. You should
maintain backups of all important files (for any system, not just PROMAL).

——

Example:

DELETE MYPROG

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-21

deletes the file MYPROG.C from the diskette.

You may delete files with no file extensions by specifying the file name in
quotes, for example:

DELETE '"'PRODOS"

For Non~-PROMAL files on the Commodore 64, file names enclosed in quotes are
case sensitive. For example delete "promal® will not delete the file PROMAL
but delete "PROMAL" will. PRG and USR type files may be deleted.

Notes:

1. DELETE only removes a file from the disk directory. If the deleted file
is a program which is also in memory, it is not removed from memory and can
still be executed. The UNLOAD command removes the memory-resident program.

2. On the Apple II, you may delete subdirectories, provided they are empty.
Remember to enclose the name in quotes.

— 220 2 1 i i e . e T A T U D A D T A M D S D D D D D PO D D D D A VU D D D S DD A T o T i S e S

————— i = " e T 1o o o M . D D D P Pl D A 7 " T 8 A T A D W A TR 2 7 25 S

AVAILABLE ONLY ON THE COMMODORE 64

DISKCMD [Command]

The DISKCMD can be used to send a command to the Commodore disk command
chaanel, and to display the status message from the disk error chaannel. For
normal operations, this command is never needed, since PROMAL and the EXECUTIVE
normally handle all command/error processing transparently. You should use
this command only for special circumstances requiring special disk commands.

If no argument is given, the current disk status will be displayed, for
example:

00, OK,00,00

If the argument is specified, it should be a Commodore disk command enclosed in
quotes.

Example:

The following command will immediately format the disk currently in the
drive, erasing everything currently on the disk:

DISKCMD "NO:WORKDISK1,K6"

CAUTION: Be very sure you really want to format the disk before typing this
command, there is no chance to change your mind!

Copyright (C) 1986 SMA Inc. Rev. C

2-22 Systems Management Associates, Inc. PROMAL USER’S GUIDE

The example above formats drive O (device 8) with a disk name of WORKDISKl and
a disk ID of K6. You should always use a different two letter ID for every
disk you format.

A good use of DISKCMD is to issue a "I0Q" command if you have changed
diskettes and think that the new and old diskette may have the same ID.
Refer to the Commodore 1541 or 1571 manual for more information on commands
which may be issued to the command channel,

1 > > s " . 2t s 1 T s o — - - D W D WD WD A DA A D A D D D A A D D A T T A D P A

AVAILABLE ONLY ON THE COMMODORE 64

DYNO [Onoff]

PROMAL for the Commodore 64 has DYNODISK, a built-in software package which
effectively doubles the read speed from Commodore 1541 or 1571 disk drives.
Needless to say, this is a tremendous asset, since the Commodore disk is
notoriously slow. DYNODISK works with all files, not just programs. The DYNO
command with no arguments specified will display the current DYNODISK status,
either ON or OFF. The optional command Onoff must be either the word ON or
OFF, and turns the DYNODISK feature on or off,

Examples:
DYNO

will display the current status, as either ON or OFF.
DYNO OFF

disables DYNODISK for further operations until turned back on. With DYNO OFF,
the 1541 will operate at normal speed.

Notes:

1. DYNODISK cannot be used with MSD drives or other drives which are not
100% compatible with the 1541. You can permanently disable dynodisk by setting
the byte at $0DE2 non-zero. Do not enable DYNODISK with Skyles FLASH or with
other commercial disk speed up cartridges or software. Most other commercial
disk speedup products do not work with PROMAL at all because they use some of
the same memory needed by PROMAL.

2. Like any 1541 speedup package, DYNODISK does have its drawbacks. If you
have a printer or other device on the serial bus, it must be turned off while
DYNODISK is ON. Failure to observe this rule may hang up the system, requiring
a re-boot of PROMAL. If you have a printer with an interface cartridge, it
must also be off while DYNODISK is on. Only a single drive is supported.
Having DYNODISK on reduces the number of buffers which are available inside the
154] drive. Therefore you may be able to have fewer open files while DYNODISK
is enabled. DYNODISK disables interrupts temporarily while it is reading from
disk. Therefore you will not be able to use CTRL-STOP to abort a program while
it is reading the disk with DYNODISK on.

Copyright (C) 1986 SMA Inc. Rev, C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-23

3. DYNODISK only doubles the transfer rate of information from the disk
drive to the computer. It does not improve the access time or time needed to
open a file. Therefore you will observe the biggest speed reductions when
reading large files, and little or no improvement on small files. For reads of
very small amounts of information, having DYNODISK enabled may actually take
slightly longer due to a small setup overhead required. DYNODISK only affects
reading speed, not writing speed. See GETBLKF in the LIBRARY manual for
programming considerations using DYNODISK.

4. On a 1571 drive, do not send the disk commands to enable the
double-sided mode or any of the faster, non-Cé64—-compatible disk modes, with or
without DYNO on.

1t o o " T e D D P A D A o D D D A Al D D o D D D PP A D D D D D T i Al D Y D A ol M Nl D A D Sy D T

= i e o D T <} o D P D e D A D T 2D D D D 0 D A D D D D Dl WO D T O S s O D D D D D T S 9D D

DUMP Address [ToAddress]

The DUMP command is used to display a region of memory on the screen in
hexadecimal and in ASCII characters. The first argument is the desired
starting address. The second, optional argument is an ending address. If no
second address is specified, eight bytes will be displayed.

Examples:
DUMP 10A0Q

will display eight bytes of memory beginning at $10A0. The display will appear
similar to this:

10A0 50 0C 4C D6 29 4B 00 52 P.L.)K.R

The starting address is shown in the leftmost column. The next eight 2-digit
groups show the hex values of $10A0 through $10A7. The rightmost column shows
eight characters with the ASCII character equivalent of each of the bytes.
Bytes which don’t have a printable ASCII character (including blanks) are
displayed as "." instead.

DUMP 4000 4100 >P
will dump the contents of $4000 through $4100 to the printer.

Note: When an end address is specified, a complete line will always be
displayed even if it "overshoots" the final address. Therefore the above
example will actually display $4000 through $4107, since $4100 will fall in the
first position of the last line of the output.

Copyright (C) 1986 SMA Imc. Rev. C

2-24 Systems Management Associates, Inc. PROMAL USER’S GUIDE

- " D D A MDD A D D T " - —— e D D D VD D~ o

- A - - . . - ——

EDIT [Filename]

The EDIT command is used to invoke the PROMAL full-screen EDITOR. The
optional argument is the name of the file to be edited. If no file is speci-
fied, the Workspace will be used. 1If a file is specified and exists, it will
be edited., Otherwise, it will be assumed to be a new file to be generated.

The EDITOR is described separately in the EDITOR section of this manual,
Example:

EDIT MYPROG.S
edits the file MYPROG.S

Note for Commodore 64 systems: Normally the EDITOR is always resident in
memory and will start immediately when EDIT is typed. However, it is possible
to unload the EDITOR from memory by using the '"B" option when running the
COMPILER to free up extra room for the symbol table (see the COMPILER section
of this manual). In this case the EDITOR will automatically be reloaded from
disk when needed. The Editor will also be reloaded from disk if the EDITOR
program has been corrupted (for example, by an errant user program poking
around in memory). You may EDIT larger files by UNLOADing programs or clearing
or reducing the Workspace before starting the Editor.

] o D il D D A D A D U S N e D D A DA WD D A A N D A S Al D A D D D WD

FILES — Display diskette directory —— FILES
FILES
or
FILES Pattern¥* COMMODORE 64 ONLY FOR THIS FORM
or
FILES Subdirectory APPLE II ONLY FOR THIS FORM

The FILES command is used to display the names of files on disk.

FILES for the Apple II:

If no argument is given, all files on the curreant prefix will be displayed,
in four columns. If an argument is given, it should be the desired prefix. No
wildcards are supported.

Examples:

FILES Displays all filenames in current prefix

FILES 2: Displays all file names on drive 2

FILES /USER.DISK/TEMP/ Displays all files in specified directory

FILES 0: >P Prints the names of all files on the /RAM disk.

Copyright (C) 1986 SMA Imnc. Rev., C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-25

Note:
1. Redirecting FILES to the prianter prints one file name per line.

For a more detailed listing of the directory with file sizes, dates, and
other information on the Apple, use the EXTDIR command. The EXTDIR command is
not a built-in command, but a compiled PROMAL program. It requires an argument
specifying a pattern to match. The wild cards are * and ?.

Examples for Apple:

EXTDIR * Displays all files on the current prefix
EXTDIR 2: Displays all files on drive 2
EXTDIR /TEMP/T*.C Displays all files starting with T with a .C

extension in the /TEMP/ directory.
You will need file EXTDIR.C in order to use the EXTDIR command.

FILES for the Commodore 64:

The files will be listed on the screen in the same format as for BASIC,
including the file sizes. Wild cards may be used to display only selected
files. The wildcard characters operate exactly as described in the Commodore
1541 Disk Manual. 1If no Pattern is specified, all the files on the disk will
be displayed. The size of each file is measured in Commodore Blocks, which are
256 bytes each. The number displayed is in decimal, not hex. Displaying files
does not affect programs in memory. The wildcards allowed are * and ?. The *
character matches any string, and the ? character matches any single character.

Examples for Commodore 64:

FILES Displays all files on drive 0

FILES PR* Displays all files starting with "PR"
FILES 1: Displays all files on drive 1

FILES »P Prints the names of all files

Note:

1. You might suppose it would be possible to display all file names with
the extension ".S" by using the "FILES *.S" command. Unfortunately, the
Commodore ROMs in the disk drive do not interpret the * wildcard this way.
Instead, the *.S pattern is interpreted as matching all files on the disk, no
matter what the names are. Therefore the * wildcard is only useful for
matching names with a common prefix which differ only in the suffix. The *
wildcard cannot be used to represent a common suffix.

2. Redirecting FILES to the printer prints one file name per line.

Copyright (C) 1986 SMA Inc. Rev. C

2-26 Systems Management Associates, Inc. PROMAL USER’S GUIDE

s s s - S - A - - . - - -~ -

FILL From To Data

The FILL command is used to fill a region of memory with a constant. The
first argument, From, is the starting address. The second argument, To, is the
final address to fill. The third argument, Data, is the byte to fill with. All
arguments are normally specified in hexadecimal. However, the Data argument
may be specified as a character in single quotes (‘) if desired.

CAUTION: If you want to experiment with the FILL command, specify an unused
area of memory {shown as "FREE SPACE" by the MAP command). Indiscriminate

use of the FILL command could overwrite important programs (such as PROMAL

itself) ian memory.

Examples:
FILL 4800 4923 0

fills $4800 through $4923 with $00.
FILL 4210 4310 * °

fills $4210 through $4310 with ASCII blanks ($20).

- —— - —— - 0 i T o o e

FKEY [Keynumber String]

The FKEY command is used to display or change the meaning of the function
keys, Fl through F8. If no arguments are given, the current function key
definitions for all function keys will be displayed. If the optional arguments
are specified, then the first argument is the desired function key number to
change, 1 through 8. The second argument is the desired character string to be
substituted when the function key is pressed. The String may be up to 31
characters long. If it coantains blanks, then it should be enclosed in quotes.
Only normal, printable characters can be included in the String. Control
characters (such as RETURN) cannot be embedded in the String.

Examples:
FKEY

will display the current function key definitions. A typical display would be:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-27

Commodore 64 Apple I1

Fl1 = EDIT Fl1 = EDIT

F2 = DUMP F2 = PREFIX *
F3 = COMPILE F3 = COMPILE
F4 = GET F4 = GET

F5 = FILES F5 = FILES

F6 = MAP F6 = EXTDIR *
F7 = HELP F7 = HELP

F8 = COPY F8 = COPY

This is the default list of function key definitions at power-up.
FKEY 2 MYPROGRAM
changes function key F2 to generate "MYPROGRAM" when it is pressed.
FKEY 5 "COMPILE MYPROGRAM O=NEWVERSION"
changes F5 to be "COMPILE MYPROGRAM O=NEWVERSION".
If you wish to have certain function keys automatically defined when you

"boot up" PROMAL, you may do so by simply including the appropriate FKEY
commands in the BOOTSCRIPT.J file on your working diskette.

- ———— > > P > B D s T = < P T LD D D D D P D A it D D D I P D D D D D D D D D Dl o R A D D P D MDD D TR S T A D A i s A

———— A " W A D A D VD LD O DT D AN A D A i A D T

GET Progname

The GET command is used to load a PROMAL or machine language program into
memory without executing it. The argument, Program, is the desired file
name to be loaded. Normally it is a legal PROMAL file name, written without
quotes. Only compiled PROMAL programs (or relocatable machine language
programs in the PROMAL format as described in Appendix I) can be loaded using
this form. An attempt to GET a file of another type will result in an error
message. After the program is loaded, it will appear on the MAP display, and
can be executed immediately by typing its name.

Alternatively, the Program can be the name of any non-relocatable Machine
Language program, enclosed in quotes ("). In this case, the named machine
language program will be loaded into memory at the address from which it was
saved. No checking is done for overlapping of other programs, nor is space
allocated for the program in the MAP. See Chapter 6, function MLGET in the
LIBRARY MANUAL, and Appendix I for more details.

Examples:
GET SORT
loads the PROMAL program SORT.C into memory (because .C is the default

extension). The actual load location will be determined by the LOADer, and
can be displayed using the MAP command.

Copyright (C) 1986 SMA Inc. Rev. C

2-28 Systems Management Associates, Inc. PROMAL USER’S GUIDE

GET "MLSUBS"

loads the non-relocatable machine language file called "MLSUBS" into memory at
its formerly saved address. It will not show up in the MAP display.

Notes:

1. PROMAL allows several programs to be resident in memory at once, subject
to the amount of free memory left. The LOADer will relocate the PROMAL
program to an available location. If there is not enough room left, the
LOADer will unload programs one at a time, beginning with the last-load-
ed program, until there is enough room. When the program is loaded, the
LOADer also computes and saves a '"checksum" of the program image in memory.
When you subsequently execute the program, the LOADer will re-compute the
checksum and compare it to the saved value., If the two values differ, it
indicates that the program in memory has been corrupted (by another program),
and so the LOADer will re-load the program from disk before executing it.

2. On the Apple II, most machine language programs load initially at $2000
and then "relocate" themselves to their final location. In order to load such
a program with the GET command, you need to do a BUFFERS HIRES command first to
free the space from $2000 to $3FFF. You also need to insure that the program
will not have any other memory "collisions" with PROMAL, including its
"relocated" destination, zero page usage, etc.

3. On the Apple II, if you GET a PROMAL program, and no error is issued,
but when you use the MAP command it does not appear, it means that your program
was successfully loaded, but was immediately unloaded when the EXECUTIVE was
swapped back in. You will need to UNLOAD. If the symptom persists, then the
program is too large to fit in memory at the same time as the EXECUTIVE; you
can execute it by typing its name, but you can’t GET it from the EXECUTIVE.

The COMPILE program exhibits this characteristic.

- - - - N - - - ——

- - - - " D D A D > D D T T A D A D D D D D Tl T D DA D D D D T T D D D D DD D D D A D A D D D D

GO Address
The GO command is used to execute a machine language program already in

memory (not a PROMAL program). The argument specifies the starting address for
execution in hex. The GO command cannot be used to execute a PROMAL program.

Example:

GO FF81
will execute the machine language program at address $FF8l1. On the Commodore
64, this address is the Commodore 64 Kernal routine "CINT" which re-initializes

the screen and video chip.

Notes:

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-29

The machine language routine is entered via a 6502 JSR instruction. If the
machine language program exits with an RTS instruction, it will return to the
PROMAL EXECUTIVE in the normal way. If a machine language BRK instruction is
encountered, control will be returned to the EXECUTIVE with an error message
similar to:

#*%% RUNTIME ERROR: M/L BRK HIT

P A X Y F S
6B01 A3 B2 11 32 Fé
AT $5000

*%% PROGRAM ABORTED.

This display gives the contents of the 6502 registers at the time of the
breakpoint and the address of the PROMAL instruction which called the machine
language routine. If a GO command was used to enter the program, it will show
the starting address instead.

—————— " —— A D D D " A " -~ D D " D - T > o Y T D D T N e A D A D

HELP -— Display help screen — HELP

- ———— - 105 o = -~ D N P D " T > - - - — T A > -~ — .

HELP

The HELP command displays a single screen of information showing some of
the coutrol keys used for editing and a list of the most commonly-needed
EXECUTIVE commands.
Example:

HELP

on the Commodore 64 will display a screen similar to:

PROMAL HELP

CTRL~ CTRL~-

A Upper Alpha On/Off Delete Char.
B Recall Prior Line [CRSR to start
K Clear to End Line Y CRSR to Eand

Partial Command Summary
COLOR [Colorname [Background]]
COMPILE [File [L[=List]}[0O=0Object][B]]
COPY File [Dest.]

DELETE File Function Keys
DUMP From [To] F1 = EDIT
EDIT [File] F2 = DUMP
FILES [Pattern*] F3 = COMPILE
FILL From To Value F4 = GET
FKEY [Number String] F5 = FILES
GET Commandfile F6 = MAP

JOB File.J F7 = HELP
MAP F8 = COPY

RENAME File Newname
SET Addr. Val [Val...]
Type File

Unload [Command]

Copyright (C) 1986 SMA Inc. Rev. C

2-30 Systems Management Associates, Inc. PROMAL USER’S GUIDE

The Apple II help screen is somewhat different (see MEET PROMAL!).

Note: Any function key definitions longer than 8 characters will have only the
first 8 characters displayed on the HELP menu. The FKEY command will print the
entire definition.

———— - = - . W P A e - D > A W " o D " D T W T U " -

- - - o - -~ -

JOB File.J

The JOB command allows the EXECUTIVE to accept a list of commands from a
file on disk instead of the keyboard. This is sometimes called a "batch"
capability. Normally this file of commands is prepared using the PROMAL
EDITOR. The EXECUTIVE will read commands from the job file until end of file
is reached or an error is encountered. Commands should appear in the job file
just as they would be typed from the keyboard. Both built-in and user-defined
programs may be executed from the job-file "secript".

Example:
JOB SCRIPTl.J

will cause the EXECUTIVE to read and execute the list of commands on the file
SCRIPTl.J. For example, this file might contain:

FILL 4000 4700 O
GET ""MYMLSUBS"

zero memory segment
load special machine language subroutines

e we we we we

MAINPROG load & run my PROMAL program
DELETE TEMPJUNK get rid of uuneeded scratch file
PROG2 >P run my second program, redirect output to printer

The EXECUTIVE will attempt to execute all five of these commands before
accepting more commands from the keyboard.

When PROMAL is first booted up, it looks for a special JOB file on your
working disk called BOOTSCRIPT.J. If it finds this file, it will execute the
commands on it before accepting commands from the keyboard. You can EDIT the
BOOTSCRIPT.J file to do whatever you want. For example, you may want to change
the Commodore screen colors with the COLOR command, change the function key
definitions with the FKEY command, or execute a certain program automatically
when you start the system.

If no BOOTSCRIPT.J is found, the EXECUTIVE will execute an FKEY command and
a DATE command by default, to display the function keys and prompt for the
date. If you do have a BOOTSCRIPT.J file and want the prompt for the date, you
should include the DATE command (and the FKEY command if you want) in the
seript. For the Commodore 64, you will need to have the file DATE.C oun disk.

—~

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-31

PROMAL supports another feature which greatly enhances the power of JOB
files. You can pass arguments (called macros) to a JOB file which will be
substituted for "placeholders" in the script. These "placeholders" consist of
a \ character (or a "pounds sterling" character on the C-64) followed immedi-
ately by a single digit indicating which argument should be substituted. For
example \1 will be replaced by the first argument, \2 by the second argument,
etc. The first argument is specified after the file name on the JOB command.
An example may clarify all this:

Suppose you prepared a file called DO.J which looked like this:

EDIT \1.S

DELETE \1.1
COMPILE \1 L=\1.L
UNLOAD \1

\1 TESTDATA.D

Now suppose you use the command:
JOB DO.J MYPROG

The result will be that PROMAL will execute the following commands:

EDIT MYPROG.S

DELETE MYPROG.L

COMPILE MYPROG L=MYPROG.L
ULOAD MYPROG

MYPROG TESTDATA.D

Each occurrence of \1 was replaced with the first argument (after the file name
DO.J) as the commands were read.

Notes:

1. Comments may be included in the Job file, preceded by ";".

2. The ".J" must be explicitly specified in the JOB command.

3. A JOB command may not appear in a JOB file script, except as the last
command in the file. You can make a job file that "loops" by making the last
command a JOB command with the same filename.

4. A runtime error or any program which executes the library procedure
ABORT will terminate the job file and return control to the keyboard.

5. You may execute a JOB file in the Workspace by typing JOB W. Of course
you shouldn’t use the Workspace for anything else at the same time.

6. The \ character is the "pounds sterling" (£) key on the Commodore 64.

7. Don’t put any command in the JOB file that will require swapping the
disk the JOB file is being read from (such as a one-drive copy).

8. The JOB file uses one disk buffer, so you may not be able to execute
some file-intensive command from a JOB file which works fine when executed
directly from the keyboard. Copying the JOB file to the workspace and
executing JOB W may alleviate this problem.

9., See the PAUSE command for a useful command in JOB files.

Copyright (C) 1986 SMA Inc. Rev. C

2-32 Systems Management Associates, Inc. PROMAL USER’S GUIDE

i A T — . D R " D~ R A A i " e - - T > M U T — —— -

. ———— ——— " — > g — e D - —_ A " - " ——

AVAILABLE ON APPLE II ONLY

LOCK Filename [...]

The LOCK command sets the write-protect lock on the specified file names.
Locked files cannot be written to, renamed, or deleted until they are unlocked.

Example:

LOCK COMPILE

will write-protect the file COMPILE.C.

Note: Locking a file only provides protection against inadvertent deletion or
modification. It does not protect files from hostile users, other software, or

from erasure by formatting a disk, nor does it prevent copying or use of the
file. See the ProDOS Technical Reference Manual for more details.

- 0 A Nt s e e e Sl i o o S S LB A S A A P D S - - . o -

. ——— . . - A - -~ -

MACRO String [String...]

The MACRO command allows you to define macro substitution strings (in the
same manner as is described for the JOB command), which can be used
interactively instead of in a JOB file. A macro allows a string to be
substituted for a two-character abbreviation in an EXECUTIVE command when it is
processed. The two character abbreviation consists of the backslash character,
\ (or "pounds sterling" key on the Commodore 64) followed by a number from 1 to
8, indicating which string is to be substituted. The MACRO command defines the
substitution strings to be used in subsequeant commands. The first argument
will replace \1, the second argument \2, etc.

Example:

MACRO /DEVEL/MYPROG

After this command is issued, then:

COMPILE \1

will be processed by the EXECUTIVE exactly as though you had typed:
COMPILE /DEVEL/MYPROG

Example 2:

MACRO 2:PROCESSDATA " 10 100 200 300"

If you then type:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-33

\VIN2

this will be processed by the EXECUTIVE as:
2:PROCESSDATA 10 100 200 300

Notes:
1. The MACRO command is particularly handy for defining frequently needed

volume or path names on the Apple.

2. Macros are independent of function key definitions and may be used
inside function key definitions.

3. Macro strings may be any length which will fit the same line as the
MACRO command. They may not be nested.

4. A JOB command or another MACRO command redefines all macros.

A — A > > o - . D . . T B D - - T T D D " W D D VD AD D VD) D D U P T T D O s B

. . - o D A D - T . A D D M A i D A D P i A R S D D S T D

The MAP command is used to display the load addresses of any programs in
memory, and a summary of how memory is currently allocated. The actual format
of the MAP display varies somewhat depending on the memory organization of the
computer.

Example:
MAP

will display the current memory map. If no programs have been loaded yet, the
map should appear similar to this (the actual addresses may differ):

Apple 1I
OBJECT PROGRAMS $2900- (0)
FREE SPACE $2900-8DFF (25856)
SHARED VARIABLES $8E00Q- (0)
EXEC./EDIT SPACE $6100-8DF8 (11520)
TOTAL SPACE $2900-8DFF (25856)
ACTIVE WORKSPACE $1200- (0)

FREE WORKSPACE $1200-5AFF (16688)

Commodore 64

OBJECT PROGRAMS S$4FQ0- (0)
FREE SPACE $4F00-98FF (18944)
ACTIVE WORKSPACE $9900~- (0
FREE WORKSPACE $9900-A0FF (2048)
SHARED VARIABLES $A100- (0)
EXEC./EDIT SPACE $A200-CFFF (11776)
TOTAL SPACE $4F00-CFFF (33024)

Copyright (C) 1986 SMA Inc. Rev. C

2-34

Systems Management Associates, Inc. PROMAL USER’S GUIDE

The numbers in the FROM-TO column are in hexadecimal. The numbers in
parentheses are the size in decimal. The meaning of the displayed lines is as

follows:

OBJECT PROGRAMS

FREE SPACE

ACTIVE WORKSPACE

FREE WORKSPACE

SHARED VARIABLES

EXEC./EDIT SPACE

TOTAL SPACE

Indicates the total space allocated for all programs
currently loaded in memory (excluding shared variables).

Indicates the total space presently available for
additional programs and variables. This space can also
be used to increase the Commodore Workspace (with the WS
command) . The available space can be increased by
UNLOADing programs, reducing the Workspace, or using a
NOREAL command. For the Commodore 64, programs may
additionally use the EDITor space if needed (described
in Chapter 8 of the PROMAL LANGUAGE MANUAL).

Indicates how much of the Workspace is currently in

use. A WS CLEAR command will set this to 0. For the
Apple II, the Workspace is maintained in auxiliary
(banked) memory. On the Commodore 64, the Workspace may
move as programs are loaded (the coatents are
maintained).

Indicates the size of the unused portion of the Work-
space. The WS command can be used to alter this value,

Indicates the space allocated for un-initialized global
variables (arrays and reals). These variables are
allocated at the top of available memory.

This is the space occupied by the EXECUTIVE or the
EDITOR, or by a users program or variables if needed.
The EXECUTIVE and EDITOR share the same space in
memory. Only one or the other (or neither) is present
at any given time, For the Commodore 64, when a program
is executed, the EXECUTIVE is copied to the RAM under
the ROMs and the EDITor (which was under the ROMs) is
swapped into the vacated space. On exit, they swap
again. For the Apple II, copies of the EXECUTIVE and
EDITOR are kept in the auxiliary 64K RAM bank and are
copied into the EXEC./EDIT space as needed. See
Appendix G and Chapter 8 of the PROMAL LANGUAGE MANUAL
for more information.

This is the maximum amount of space presently
allocatable for PROMAL programs and variables, if all
programs are unloaded, (and, for the Commodore, if the
Workspace is cleared and the EDITor’s space is used, as
described in Chapter 8 of the PROMAL LANGUAGE MANUAL).

After several programs have been run, the MAP command might produce a
display that looked more like this:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-35

Apple I1
FIND (PRO.) 5/ 2/85 CHKSUM 8171
CODE $2900-2AFF, VARIABLES $8D00-8DFF
CALC (PRO.) 8/ 5/85 CHKSUM 8FAF

CODE $2B00-30FF, VARIABLES $8C00-8DFF

OBJECT PROGRAMS $2900-30FF (2048)
FREE SPACE $3100-8BFF (23296)
SHARED VARIABLES $8C00-8DFF (512)

EXEC./EDIT SPACE $6100-8DFF (11520)
TOTAL SPACE $2900-8DFF (25856)

ACTIVE WORKSPACE $1200- (0)
FREE WORKSPACE $1200-5AFF (18688)

Commodore 64

FIND (PRO.) 1/ 6/85 CHKSUM BSE7
CODE $4F00-50FF, VARIABLES $A000-AOFF
CALC (PRO.) 5/24/85 CHKSUM AE67

CODE $5100-56FF, VARIABLES $9F00-AOFF

OBJECT PROGRAMS $4F00-56FF (2048)
FREE SPACE $5700-96FF (16384)
ACTIVE WORKSPACE $9700-

FREE WORKSPACE $9700-9EFF (2048)
SHARED VARIABLES $9F0Q0-AOFF (512)
EXEC./EDIT SPACE $A200-CFFF (11776)
TOTAL SPACE $4F00~CFFF (33024)

This display shows two PROMAL programs present in memory, FIND and CALC.
The line starting with the name of the program shows that it is a PROMAL
program, the date it was compiled, and the checksum which the EXECUTIVE uses to
verify the integrity of the program before execution (described in the GET
command) .

The line beginning with "CODE" shows the starting and ending address of the
executable code, and the address range of the variables. It is normal for
programs to have overlapping variables allocated, which is why this area is
called "shared variables" in the summary. However, the variables may also be
allocated immediately after the code portion, if the program had the keyword
OWN on its PROGRAM line when it was compiled (discussed in the PROMAL LANGUAGE
MANUAL) .

Memory is always allocated in pages of exactly $100 bytes each (256
decimal). This is why all the address ranges start with $xx00 and end with
xxFF. Therefore even if a program is only a few bytes long, it will still
be allocated a whole page. See Chapter 8 of the LANGUAGE MANUAL for further
information. The SIZE command can be used to determine the true size of a
program to the exact byte.

For the Commodore 64, notice that the Workspace has moved slightly to make
room for the new shared variables. This will not affect the content of the
Workspace, which is maintained by the LOADer.

Copyright (C) 1986 SMA Inc. Rev. C

2-36 Systems Management Associates, Inc. PROMAL USER’S GUIDE

Notes:

l. Memory areas not shown on the MAP display are used by the PROMAL
system. A detailed memory map for PROMAL system usage is shown in Appendix G.
The EDITOR and COMPILER will use all of the area indicated as FREE SPACE for
buffers when they run. In addition, they may use the Commodore Workspace if it
is completely empty (see the EDITOR section of this MANUAL for a full
discussion of when the EDITOR uses the Workspace). The Commodore COMPILER also
has an option of using more memory for its symbol table (see the COMPILER
section of this manual).

2. If you GET the Apple compiler, it will not show up in the memory map.
This occurs because the compiler will be immediately unloaded from memory after
it is loaded to make room for the EXECUTIVE, which overlaps it. This is of no
particular consequence, except that you must have a copy of the compiler on
disk if you want to run it.

s s it A " D "]]~] 7 2 — -

. D D T i S T . D D D s D 2 T A T - T - A .

AVAILABLE ON APPLE II ONLY

NEWDIR Name

The NEWDIR command is used to create a new subdirectory called Name. The
name should be a legal ProDOS sub-directory name. A "/" will be added to the
end of the name if one is not specified. If the name does not start with a "/"
character, then the current specified name will be appended to the current
prefix.

Example:

NEWDIR MUSIC/ ; Creates new subdirectory /MUSIC/ on current prefix.
NOREAL —- Remove real number routines -- NOREAL
NOREAL

The NOREAL command is not normally needed, but allows you to discard all
routines from the PROMAL runtime software and resident library which support
the processing of REAL (floating point) data. This adds approximately 2.5 K
bytes of additional available space for editing, compilations, or other
programs. However, you will not be able to successfully execute any program
which makes use of REAL data (the EDITOR and EXECUTIVE do not; the COMPILER
only uses REALs if the program it is compiling uses REALS).

When the NOREAL command is executed, the EXECUTIVE will first UNLOAD all
programs from memory. It will then move the bottom of available memory down by
about 2.5K. You may then resume normal operations.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-37

If you normally have no need for floating point capabilities (many applica-
tion areas such as games, music, graphics, and text editing normally don’t need
REAL data), you may wish to include the NOREAL command in your BOOTSCRIPT.J
file (described in the JOB command, above) to automatically free up more space
when you boot up.

Once NOREAL has been executed, the only way to restore the REAL processing
is to reboot the system.

If you get either of these two messages, it indicates that you may have
tried to execute a program which uses REALs after you have discarded REAL

processing:

*%% RUNTIME ERROR: ILLEGAL OPCODE
AT xxxx

%%% RUNTIME ERROR: REQ’D PROGRAM NOT LOADED
AT xxxx

—— <t - —— T ——— L D B D - T D 1 s M U A D D i T

- —— > A — " - - A 4 1 - o P L " S e D A A I Y o A N T D D o el D U o DD D TSl N DD T O 0 2

PAUSE ["Message'"]

The PAUSE command is normally only used in JOB files. When executed, it
displays the text of a message enclosed in quotes and then waits for a carriage
return from the keyboard. The text of the message must be enclosed in double
quotes.

Example:
PAUSE "PRESS RETURN TO CONTINUE."

When executed in a JOB file, this will pause and display "PRESS RETURN TO
CONTINUE" on the screen. If you press RETURN, the job will continue with the
next command. Alternatively, you could press CTRL-STOP (Commodore) or CTRL-C
(Apple) to abort the job at this point in the JOB file execution.

Copyright (C) 1986 SMA Inc. Rev. C

2-38 Systems Management Associates, Inc. PROMAL USER’S GUIDE

———— - —— D - — D W A N A A

s — - — o — . — > D D - e - N . D . -

AVAILABLE ON APPLE 11 ONLY

PREFIX [Pathname]
or
PREFIX * [Slot Drive]

The PREFIX command is used to set or show the current prefix (path name)
which will be used for subsequent file references. The PREFIX command without
any arguments displays the current path name. If a name is specified as an
argument, it should be a legal path name (starting and ending with / char-
acters). This form is most often used to select a different diskette (ProDOS
Volume) for subsequent action. The form PREFIX * will change the pathname to
whatever the volume name is for the diskette in the drive which booted up
PROMAL, and display this name. This form is most often used after changing
diskettes.

Examples:

PREFIX will display the current path name, for example
PREFIX * updates the current prefix to the volume in drive 1
PREFIX 2: sets the current prefix to the volume in drive 2
PREFIX /WORK1/ sets the current prefix to /WORKI1/

PREFIX * 6 1 sets the current prefix to slot 6 drive 1

If ProDOS can not find a diskette with the specified volume name, a DEVICE
NOT READY error will be given. You can use the PREFIX * command to determine
the volume name of an unknown diskette. Volume names are initially assigned
when the diskette is formatted.

IMPORTANT: You should always execute a PREFIX * command after changing

diskettes. Otherwise, ProDOS will not be able to find your commands or files,
because the current prefix will still be the removed volume name.

QUIT -~ Quit PROMAL —- QUIT

Y s - -~ — D — - -

QUIT
The QUIT command exits from the PROMAL system. The workspace will be lost.

For the Commodore 64: QUIT resets the computer back to its power-on status
in BASIC. You may not re-enter PROMAL except by re-loading it from disk.

For the Apple II: QUIT will change to 40 column mode and prompt for the name
of a "prefix". Enter the name of the desired system to rum, which must end in
".SYSTEM". For example, to run BASIC, you might enter /WORK1/BASIC.SYSTEM.

Example:

QUIT

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE __ Systems Management Associates, Inc. 2-39

It is not necessary to QUIT before turning off your computer. You may
simply remove the diskette and power off the computer in the normal manner,
provided the disk is not being accessed.

o~ - - - o " VT - T T e o T o it

- A D T 1 A T i > A D D VD T 2 " " " . D D " i o o

RENAME 0ldfile Newfile

The RENAME command is used to rename a file on disk. The first argument is
the existing file name and the second is the new file name desired.

Examples:
RENAME MYFILE YOURFILE

changes the file named MYFILE.C to YOURFILE.C.
RENAME DATAl.D DATAL.T

changes the extension of the file.

For the Commodore 64: Non-PROMAL files may be renamed by enclosing the file
name (case sensitive) in quotes, for example:

RENAME "BASIC PROG" "OLQ_PROG"

For the Apple II: Any path name can be specified for the old file. If you
wish the new name to not have a file extension, enclose it in quotes. File
names without extensions should be enclosed in quotes. You may rename a
directory (in quotes). Remember to change the PREFIX after you do. You can
rename a volume name (in quotes, no trailing ‘/‘).

AT A . > D S B D A D D D i D A T D D D A VD A D P T T D A D VD A TR D A D S D O VR A A D U D DD S A il s s

- A - A D Y T D D D o D D Al D D D S D D D D A AT A D D A D) DD Dl A A A T S

SET Address Value [...]

The SET command is used to install values in memory. The first argument is
the starting address, in hex. The second (and optionally additional) arguments
specify the values to be installed into memory in sequence. Each Value
argument can be:

(1). A byte specified in hexadecimal

(2). A word greater than $00FF specified in hexadecimal

(3). A string to be terminated by a 00 byte, enclosed in double quotes (")
(4). A string enclosed in single quotes (’)

The difference between (3) and (4) above is that if the string is enclosed in

double quotes ("), a 00 byte terminator will be installed automatically after

the last byte of the string, but if it is enclosed in single quotes (’), no 00
byte is added.

Copyright (C) 1986 SMA Inc. Rev. C

2-40 Systems Management Associates, Inc. PROMAL USER’S GUIDE

CAUTION: Indiscriminate use of the SET command may overwrite important programs
or data in memory (such as PROMAL itself)., Before experimenting with the SET
command, you should pick a "safe" location, such as in the FREE SPACE displayed
by the MAP command.

Example:
SET 54B0 4B
sets the byte at location $54B0 to $4B.
SET 5700 A921 0 143
sets location $5700 to $21, $5701 to $A9, $5702 to $00, $5703 to $43, and $5704

to $01 (note: word values are stored in the standard 6502 processor order with
the low-order byte first and the high-order byte at the next address).

SET 4B10 ‘Hello’

installs five bytes starting at $4B10 (lower case letters are not changed to
upper case).

SET 4B10 "Bye now"

installs the specified string starting at $4B10, and adds a $00 byte after the
last character installed in memory (the $00 byte is used to terminate a string
as defined by the PROMAL LANGUAGE MANUAL).

- — - - . " o o v

- - . - - —— - A " -~ -

SIZE Filename

The SIZE command is used to display the memory requirements of a PROMAL
compiled program without actually loading it into memory. The argument is the
name of a legal PROMAL command file. The EXECUTIVE will read the header from
the file and display the pertinent information in a form similar to the MAP
command .

Example:
SIZE BILLIARDS

will display the load requirements of the BILLIARDS.C file without actually
loading the program into memory., The SIZE command display will be similar to:

BILLIARDS (PRO.) 9/21/84 VER 2
CODE $06D7, GLOB VARS $0060, $10

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-41

The first line displays the command name, the kind of program (PROMAL), the
compilation date, and the PROMAL version that created the object module (1 for
pre=2.0, 2 for version 2.0 and above). The second line indicates the size of
the executable program code in hexadecimal bytes, and the amount of memory
required for arrays and simple variables, in bytes. No load address is shown,
because the EXECUTIVE has not loaded the program.

—— — —— D D P - . Y > DD D D D D D A D D D D e D -

TYPE -— Display file on screen —— TYPE

v o B D D B . - A D D D A D g A A A D T D DD D D D D DD DD D D VD D D D D DD D ot

TYPE Filename
The TYPE command is used to display the coantents of a text file or source
program on the screen. It can also be used to display the contents of the

Workspace. Output can be redirected to amother PROMAL output device such as
the printer. The argument is the name of the file or device to be typed.

Examples:
TYPE FIND.S
types the file FIND.S on the screen.
TYPE MYJOB.J >P
types the file MYJOB.J on the printer.
TYPE L
types the standard library (L device) on the screen.
TYPE K >P
turns your computer into an electronic correcting typewriter. All lines typed
on the keyboard will be output to the printer when RETURN is typed. To

terminate the command type CTRL-Z, which indicates "end of file" from the
keyboard.

Notes:

1. If you attempt to type an compiled program or other non-text file, it
will display garbage on the screen. This can happen if you forget to specify
the ".S" extension on the filename to be typed.

2. On the Commodore 64, you may slow a TYPE display down by holding down
CTRL. You may pause the display temporarily by holding down STOP. You can
abort the command by pressing CTRL/STOP.

3. On the Apple II, you may temporarily halt the display with CTRL-S, and
continue the display with any key. CTRL-C will abort the command.

Copyright (C) 1986 SMA Inc. Rev. C

2-42 Systems Management Associates, Inc. PROMAL USER’S GUIDE

——— - —— - - . - - D D NP A L " A - D D > T i

UNLOAD - Unload program from memory -- UNLOAD -

S . . T 0 D D e i D " o

UNLOAD [Commandname]

The UNLOAD command is used to remove a command (PROMAL compiled program)
from memory, making space available for other programs. This will also make
more room available for the EDIT buffer and the COMPILER’s tables, which use
the available space for temporary storage. The optional argument is the name
of the command to be UNLOADED. If the command is not found, no error is
indicated. If the command name is found, it will be removed from the EXECU-
TIVE’s internal table of loaded programs, along with any programs which occupy
higher addresses. If the Commandname argument is not specified, all commands
are unloaded.

Example:
UNLOAD BILLIARDS

removes the BILLIARDS program from the EXECUTIVE’s command list, freeing up
memory previously allocated to it for other programs. The MAP command can be
used to display the results.

Notes:
1. When a program is unloaded, the memory it occupied is not cleared or
altered in any way. The space is merely deallocated, making it available for o
other programs as they are loaded.
2. If two loaded programs have the same name, only the last one loaded will
be unloaded. This situation arises when different object file names were
loaded which had the same PROGRAM name when compiled. '

- — " - T " - — - - " - - - — —

AVAILABLE ON APPLE II ONLY

UNLOCK Filename [...]
The UNLOCK command removes the write-protect status from a file previously
LOCKed. Once UNLOCKed, the file can be deleted, renamed, or overwritten.

File names without an extension may be unlocked by enclosing the file name in
quotes,

Example:

UNLOCK MYSOURCE.S

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-43

s ki T D D D D o T D D DD il il i o T P D Al D D > > 1 D S o T R B T o — N o = —rie

WS -- Change or clear Workspace -—- WS
WS Size ; This form is available on Commodore 64 only

or
WS CLEAR ; This form is available on both computers.

Description:

The WS command is used to change the size of the Workspace (the W device
in-memory file), or to discard its contents. The first form (for Commodore
only) has an argument which specifies the desired Workspace size in hex bytes.
If the value specified is less than $20, it is assumed to be in hexadecimal
K-bytes instead. If the size requested is larger than the remaining available
space, NOT ENOUGH MEMORY will be displayed. If the ACTIVE (in use) Workspace
is larger than the requested Workspace, no action takes place and the message
"ACTIVE W IS LARGER. (WS CLEAR WILL EMPTY W)" will be displayed.

The second form is used to clear the Workspace. The memory content of the
Workspace is not actually altered, but the internal pointers used to manipulate
the Workspace are set so that the active Workspace is 0.

Examples:

WS E
sets the Commodore Workspace size to 14K bytes ($E times $0400).

WS 1800
sets the Commodore Workspace size to $1800 bytes (6K bytes).

WS CLEAR

clears the active Workspace to 0 without affecting the size of the Workspace.

Notes for Commodore 64:

1. The default size of the Workspace is 2K bytes (2048 decimal). The
location of the Workspace varies as programs are loaded and unloaded. The
EXECUTIVE maintains the contents of the Workspace as it is moved around in
memory. The COMPILER and EDITOR will use the Workspace for buffer space if it
is completely empty. Therefore you can EDIT or COMPILE larger programs by
issuing a WS CLEAR command first (See the EDITOR section of this manual for a
more complete description of the EDITOR’s treatment of the Workspace).

Notes for Apple II:

l. The workspace is maintained ia auxiliary memory (the "other" 64K of banked
memory). The Apple has a fixed size workspace of about 18K bytes.

Copyright (C) 1986 SMA Inc. Rev. C

2-44 Systems Management Associates, Inc. PROMAL USER’S GUIDE

THE PROMAL EDITOR

The PROMAL EDITOR is a full-screen text editor for preparing and changing
text files. It incorporates many of the features found in the finest word
processors, but is designed specifically for the generation of PROMAL source
programs. Some of the important features of the EDITOR are:

Cursor-driven, full-screen operation.

Displayed function key legends and on-line HELP screen.
Automatic vertical scrolling.

Automatic horizontal line scrolling

Insert or type-over mode.

Global search and search-and-replace with "veto".

Block copy, move, delete, save, and recall.
Semi-Automatic indentation support for PROMAL programs.
Fast operation.

%* % 3k % ¥} o o F *

The EDITOR is loaded into memory automatically when PROMAL is booted up,
and is normally a permanent part of the PROMAL system in memory. This makes it
very coavenient to use, since the EDITOR is always instaatly available.

ENTERING THE EDITOR

From the EXECUTIVE, you may enter the EDITOR with the EDIT command, of the
form:

EDIT [Filename]

where Filename is an optional argument specifying the name of the file to edit.
If the Filename is omitted, the EDITOR will use the file in the Workspace, if
any. Otherwise, a new file will be assumed. 1If a Filename is specified and
does not exist, the EDITOR will start a new file by that name. The EDITOR also
assumes a default file extension of ".S", so it is not necessary to specify

the extension when entering the file name.

The EDITOR begins by "signing on". If a new file is being created, this
display will not be visible long enough to read because the screen will be
immediately cleared and the cursor moved to the upper left-hand corner of the
screen for you to start your new text file or program. If you are editing an
existing file, the message will be visible until the file has been loaded into
memory.

THE EDITOR DISPLAY FORMAT

For a new file, the EDITOR will show an initial display as shown in Figure
la (For Commodore 64) or 1b (for Apple II) below.

Copyright (C) 1986 SMA Inc. Rev. C

—

PROMAL USER’S GUIDE

Systems Management Associates, Inc.

2-45

———— " o - - " " - T VD T D WD D P D D T S D A D L ks .

- — - - D D D D T Sl D D D D D T U D D D D D D Y O DTl D D P A DD D A P A e

FIGURE la

" - — D - - . -

LINE= 1
F1=DEL LN F3=MARK F5=FIND F7=HELP
F2=1INS LN F4=RECALL F6=CHANGE F8=QUIT

- " . > D . - — o N D D A D D ND D WD D ol i

- D - - - - - - A — — - " - T~ - ——— -

- . B 4D A D R D T A . > Y . Al D A D D AP D D T AR D D D AT AP D D D D D T A D D D e O

~ R

LINE = 1
1=DEL LN 2=INS LN 3=MARK 4=RECALL 5=FIND 6=CHANGE 7=HELP 8=QUIT/)
Rev. C

Copyright (C) 1986 SMA Inc.

2-46 Systems Management Associates, Inc. PROMAL USER’S GUIDE

The first 20 lines of the screen are initially blank for a newly created
file, or contain the first 20 lines of an existing file. This area is called
the text area and is where most editing operations take place. A full-width
dashed line separates the text area from the bottom 4 lines of the screen,
called the status area. This area displays the meanings of the current
function keys and displays status information such as the current line number
in the file. The line number display will change automatically as you move
about in the file or insert, delete or move lines.

To create text in a new file, just type in the normal fashion. The RETURN
key will advance the cursor to the next line. If you reach the end of the text
area, the text area will automatically scroll up by one line to make room for
additional text, The lines that scroll off the top of the screen are not lost
but are merely no longer visible, If you move the cursor up beyond the top
line, the text area will scroll down 1 line, until you stop moving the cursor
up or reach the beginning of the file.

If the cursor stops advancing as you type and characters overprint one on
top of the other, it means that either (1) you have reached the maximum line
size so no more characters can be entered oa this line, or (2) the edit buffer
is completely filled.

In the EDITOR, you have all of the editing keys available to you that were
in the EXECUTIVE, plus some additional ones. These keys are summarized in
Table 5 below.

The best way to learn how to use the EDITOR is to EDIT an existing file
and experiment with the various keys. You will not alter the existing file on
disk unless you specifically elect to overwrite the existing file when you exit
from the EDITOR, so you won’t do any harm.

EDITOR FUNCTION KEYS

The function keys operate somewhat differently in the EDITOR than in the
EXECUTIVE. The meaning of each of the function keys is always shown in the
status area of the screen. Under some circumstances, these function key
"legends'" will change during command processing, to allow more than a total of
8 possible actions. Some of the function keys perform an operation
immediately, and some require additional input to be typed followed by RETURN.
The action of each of the function keys is described in the following sections.

For the Apple II, function keys are activate by holding down either Apple
key and pressing the desired number key.

THE HELP DISPLAY
Pressing the F7 (HELP) function key will temporarily erase the screen and

display a screen showing the meanings of the control keys. Pressing RETURN
will restore the normal display.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE

Systems Management Associates, Inc. 2-47

- — o —— - -

s - v e o s o o

RETURN RETURN

DEL DELETE

INST CTIRL E

CTRL é— CIRL D

== -

CRSR up up arrow

CRSR down down arrow

D AR e . A A — -

. - — I -~ — - - —

Description

End of line. Advances to the start of the next line.
May be typed at any position in the line.

Replace the character left of the cursor with a blank
and backup the cursor one position . Will "pull back"
characters to the right only if in "insert mode".

Enable "insert mode". Any characters subsequently typed
will be inserted before the character the cursor is on,
pushing any existing text to the right. Exit insert
mode by pressing RETURN or any cursor key.

Delete character with pullback., Deletes the character
under the cursor and pulls any remaining text to the
left to fill in the gap. On the Commodore 64, this key
is located above the CTRL key.

Cursor right. Moves the cursor to the right, without
altering the character under the cursor. Stops at the
end of the line. Repeats automatically after a brief
pause if held down. On the Commodore 64, advancing
beyond column 40 will cause the line to temporarily
scroll left, allowing editing beyond column 40. On the
Apple, line scrolling begins at column 80.

Cursor left. Moves the cursor to the left, without
altering the character under the cursor. Stops at
column 1 of the line. Repeats automatically after a
brief pause if held down.

Cursor up. Moves the cursor up by one line. If already
at the top of the screen, scrolls the screen down to
back up by one line, until the beginning of the file is
reached,

Cursor down. Moves the cursor down by one line. If
already at the bottom of the text area, scrolls the
screen up to advance by one line in the file, until end
of file is reached. Will not advance beyond end-of-file
(use RETURN to add new blank lines at end-of-file).

Note: N/A means not available. CTRL X means hold down the CTRL key and press

X.

Copyright (C) 1986 SMA Inc. Rev. C

2-48 Systems Management Associates, Inc. PROMAL USER’S GUIDE
TABLE 5 (continued)

Commodore Apple

Key Key Description

HOME CTRL Position the cursor to the upper left hand corner.

CTRL X CTRL Clear the entire line. Erases all characters typed on
the line and repositions the cursor to the first
column of the same line.

CTRL K CTRL Clear to end of line. Erases all characters from the
cursor Lo the end of line,

CTRL Y CTRL Jump to last character on line. Moves the cursor to the
character after the last character on the line, without
affecting the line coatent.

CTRL | CTRL Jump to first character on line. Moves the cursor to
the first character position, without affecting the line
content.

CTRL A CTRL Toggle Alpha-Lock mode. Switches in or out of ALPHALOCK
mode. If the ALPHALOCK indicator appears in the status
area, then all subsequent alphabetic characters to be
entered and displayed as upper case when typed.

Pressing CTRL A again returns to normal upper and lower
case alpha mode.

CIRL I TAB Tab and indent. Moves the current level of indentation

or in by two columns, forming a new temporary margin.
CTRL Generally used after a conditional statement in a
PROMAL program.

CIRL U CTRL Un-indent. Moves the current left margin two columns
left, so that subsequent text will be entered with one
less level of indentation. Generally used to end
an indented block following a conditional statement in a
PROMAL program.

CTRL N CTRL Next page. Erases the text area and displays the next
20 lines from the file being edited.

CTRL P CTRL Previous page. Erases the text area and displays the
prior 20 lines from the file being edited.

CTRL J CTRL Adjust right. Moves the line the cursor is on to the

Note: N/A means

right by one level of indentation (2 columns) and
advances the cursor to the next line. Usually used

to indent an existing block of statements in a PROMAL
program when adding a conditional statement in front of
the block.

not available. CTRL X means hold down. CTRL key and press X.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-49

TABLE 5 (continued)

Commodore Apple

Key Key Descrigtion
CTRL O CTRL O Adjust left, Moves the line the cursor is on to the

left by one level of indentation and advances to the
next line. Usually used to remove a level of indenta-
tion from a PROMAL program.

CTRL W CTRL W Set window. Erases and redisplays the text window
starting with the cursor’s curreat column. Usually used
to examine or edit the right-hand portion of a group of
lines which are wider than the screen. Does not
effect the line content. The characters in leftmost
column will be highlighted to emphasize that text exists
off the left side of the display.

CTRL V CTRL V Normalize window. Restores the normal text display
position so that lines are displayed beginning with
column 1. Used to remove effect of a prior CTRL W.

CTRL B CTRL B Backtrack. Erases any existing command line aund
enters the last EDITOR command entered. More can be
typed after the recalled command, or it can be edited
further. Pressing CTRL B again will recall the next-to-
most recent line entered. This can be repeated up to
the limit of the backtrack buffer of 256 characters;
then the display will "wrap around" to repeat the most
receat command again.

Note: N/A means not available. CTRL X means hold down the CTRL key and press
x'

—-----—_---—--—‘—-—‘--------——‘—--—_n-----_—‘--———-—-—O---‘@———--—---_-—-—---_“--‘.

INSERTING AND DELETING LINES

Pressing the F1 (DEL LN) function key will cause the line the cursor is
on to be deleted and the lines below it will move up to fill in the gap. 1f
you delete a line accidentally, you can recover it by pressing the F4 (RECALL)
function key followed by the RETURN key.

Pressing the F2 (INS LN) function key will open up a new, blank line
above the line the cursor is currently on, and move to the start of the new
blank line. Existing lines of text are pushed down to make room for the new
line.

Copyright (C) 1986 SMA Imc. Rev. C

2-50 Systems Management Associates, Inc. PROMAL USER’S GUIDE

SEARCHING WITH THE FIND KEY

The F5 (FIND) function key can be used to jump to a specific line number
in the file or to locate a particular character string. If you press F5, the
word FIND will appear in the status area, followed by a blinking cursor. If
you type in a number followed by RETURN, the text area will be immediately
redisplayed starting with that line number. For example:

FIND 67

will immediately display lines 67 through 86 of the file. You can also jump to
the end of the file by merely typing a number greater than the last line of the
file, for example FIND 9999. The largest line number that can be eatered is
32767. You may jump to the beginning of file using a FIND 1 command.

You may also enter a displacement instead of an absolute line number. For
example,

FIND +50

will redisplay the text area beginning 50 lines from where you are now, aud:
FIND =200

will back up 200 lines from where you are now.

You may search for a certain string with the F5 function key by specifying
the desired string in quotes., For example:

FIND ‘ INFILE’

searches for the string "INFILE". Either single (‘) or double (") quotes may
be used to enclose the string, but must match on both ends. Searches are
always made in the forward direction, starting from the present cursor position
(not necessarily at the top of the screen). If the string is found, the text
area will be redisplayed starting with the line containing the string, with the
cursor on the first character of the string. If the string is not found, a
"NOT FOUND" message will be displayed in the status area and the text area will
not be changed. Press RETURN in this case to remove the message.

You may also combine searches on a single command. For example to jump to
the beginning of file and then search for ‘WHILE GETC’, you could press the F5
function key and complete the command as:

FIND 1 "WHILE GETC"
If "WHILE GETC" is not found, then the text area will redisplay starting at the
first line after the NOT FOUND message. In a compound search such as this, the

screen will display the last "successful" part of the search (that is, the FIND
1 part in this case). A particularly useful compound search is:

FIND +1 ’‘XXXXX’

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-51

where XXXXX is whatever text you are looking for. If this finds an occurrence
of XXXXX, but not the one you wanted, you can repeat the search starting with
the next line by just pressing CTRL B and RETURN. You can also use a compound
search to locate a selected word in a particular subroutine. For example:

FIND 1 'PROC SUBL’ ‘ARG’

will find the first occurrence of ‘ARG’ in procedure SUBl, but will ignore all
prior occurrences in the file, because the EDITOR will first jump to line 1,
then search for ‘PROC SUBl’, and then search forward for “ARG’.

SEARCH AND REPLACE

Function key F6 (CHANGE) is similar to the FIND function key, but allows
you to change a string to a different string automatically. Like the FIND
command, you will need to complete the command after pressing the F6 key. For
example:

CHANGE ‘SPRITEXY ‘SPXY’

will search forward from the present cursor location for the string 'SPRITEXY",
and when it is found will highlight the matching string in the text window and
display the prompt:

CHANGE THIS STRING (Y/N/C=CANCEL)?_

Replying with the Y key will cause the string to be replaced and the command
completed. Replying with the N key will cause the EDITOR to search for the
next occurrence of the string, and repeat the prompt when it is found.

Pressing the C key will abort the command with the message "0 CHANGES MADE".

More often, you will want to use the CHANGE command to replace several or
all the occurrences of a certain string. This can be done by replacing a
repeat constant in front of the string to be searched for. For example:

CHANGE 999 "SPRITEXY" "SPXY"

will tell the EDITOR to replace up to 999 occurrences of the string "SPRITEXY"
with "SPXY", again searching forward from the present cursor location. The
EDITOR will pause at each occurrence, highlight it, and prompt:

CHANGE THIS STRING (Y/N/C=CANCEL)?_

This gives you a chance to "veto" any occurrences which you don’t want to
change. This is very important, since the EDITOR will often "surprise" you
with occurrences you didn’t think of. For example, "TEN' may appear in
"OFTEN", which you really didn’t want to change. After the last occurrence is
found, the EDITOR will tell you how many changes were made.

Copyright (C) 1986 SMA Inc. Rev. C

2-52 Systems Management Associates, Inc. PROMAL USER’S GUIDE

"“CUT AND PASTE" OPERATIONS

The PROMAL EDITOR supports a variety of block operations, often known as
"cut and paste" operations. A block of text is one or more complete lines of
text to be operated on as a group. Blocks caan be moved, copied, deleted, saved
to a file or inserted from a file., To designate a block, place the cursor in
any column of the first line of interest and press the F3 (MARK) key. The
line will be highlighted, and the function key legends will change to:

F1=DELETE F3=MARK F5=FIND F7=COPY
F2= F4=WRITE F6=MOVE F8=CANCEL

which indicate your new choices (shown on one line on the Apple II). Move the
cursor to the last line of the text block and press F3 (MARK) again. For
large blocks you may need to scroll the screen or use a FIND command to locate
the last line desired. All intervening lines will be highlighted when you
press the F3 key again. Any number of lines can be marked. You have now
designated the block to operate on. The F8 (CANCEL) key can be used at any
time to cancel the command. You may also mark the block with the last line
first and then the first line; it doesn’t matter. If you wish, you can also
just press F3 repeatedly until you have the desired number of lines marked.
Each depression of F3 will mark one more line.

If you want to move the block or copy it elsewhere in the file, position
the cursor to the desired destination and press F7 (COPY) or F6 (MOVE). The
marked block will be inserted above the line the cursor is on. The high-
lighting will be removed, completing the command. Copying a block requires as -~
much free space as copying. Therefore when moving large blocks, you may wish
to use WRITE block, DELETE block, RECALL block instead (described below). If
you want to delete the marked block, press Fl (DELETE) iunstead. CAUTION:
THERE IS NO WAY TO "UN-DELETE"” A DELETED BLOCK.

SAVING A BLOCK TO A FILE

If you want to save a marked block to a file, press the F4 (WRITE) key.
The word "WRITE" will appear in the status area, followed by the cursor.
Complete the command by typing the name of a legal PROMAL file to receive the
copy of the marked block. The file will be created and written on disk, and
the highlighting removed, completing the command. For example:

WRITE TEMP.S

will copy the marked block into the file TEMP.S on disk. (Note: if you omit the
extension, the EDITOR will supply a ".S" extension by default.) You may also
write to devices. For example:

WRITE P

will type the marked block on the printer. You may also write a block to the
Workspace, under some circumstances (see the discussion of the workspace and
the edit buffer at the end of this section for more information). You cannot
append to the Workspate, however. Do not try to write to the S device.

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL USER’S GUIDE Systems Management Associates, Inc. 2-53

To insert a file on disk into the file being edited, move the cursor to the
desired location and press F4 (RECALL). Complete the command by typing in
the name of the desired file. The file will be inserted above the preseat
cursor position. To insert a file after the very last line of text, press
RETURN to put the cursor on a new line below the last line; then do the insert.

When you start writing your own PROMAL programs, you will find the BLOCK-

WRITE and RECALL commands very useful for copying pieces of an existing
program into a new program, so you don’t have to type all those lines over.

EXITING FROM THE EDITOR
Function key F8 (QUIT) will display the buffer status and exit menu,
for example:

PROMAL EDITOR VERSION 2.1
COPYRIGHT (C) 1986 SMA, INC.

FILE NAME = W (AUTO-UPDATE ON QUIT)
BUFFER SIZE = 10685
FILE SIZE = 9596

R = REPLACE ORIGINAL FILE

N = WRITE TO NEW FILE

W = WRITE TO WORKSPACE

C = CONTINUE EDITING

Q = QUIT EDITOR
SELECTION?

The buffer size and file size are shown in decimal bytes. The buffer size
represents the maximum file size that the EDITOR can work on (it can be
increased by unloading programs or, on the Commodore 64, by clearing the
Workspace) .

Press the key corresponding to the desired option and press RETURN. R will
replace the original file you specified on entry to the EDITOR, if any (it may
be a new file you specified on entry to the EDITOR, too). If you select N, you
will be prompted to enter the name of the new file. The W option writes to the
Workspace (W device). It is possible that the Workspace may not be large
enough to hold the entire file edited. In this case, you will be asked if you
wish to write to the Workspace anyway, in which case the file will be trun-
cated. Otherwise you tan write the whole file to the disk to save it. On the
Commodore 64, when "auto-updating" the Workspace, the Workspace may be
increased in size automatically if needed to hold the file,

Copyright (C) 1986 SMA Inc. Rev. C

2-54 Systems Management Associates, Inc. PROMAL USER’S GUIDE

For coanvenience, the Workspace is automatically updated when you Quit the
EDITOR if you entered the EDITOR without specifying any file or device name.
This is so that you will have your corrections saved in the workspace without
having to remember to select the W option explicitly. (NOTE: You can edit the
workspace without having it automatically updated on exiting from the editor,
by starting the EDITOR with the command "EDIT W' instead of just "EDIT").

After you have made one selection, such as writing the file to disk, you
can make another selection. The C option will let you continue editing the
file. It is a good idea when you are doing a lot of editing to periodically
write the file out to disk so all is not lost in the event of a power failure
or similar problem. When you are ready to return to the PROMAL EXECUTIVE,
enter Q and RETURN. This will clear the screen and return to the EXECUTIVE.
NOTE: Never abort the EDITor with CTRL-STOP (Commodore) or CTRL-RESET (Apple).

As a final note, the PROMAL EDITOR is itself written in PROMAL. We think
that you will find this fact significant if you have ever coasidered writing
your own editor, word processor, or similar program in a high-level language.
Obviously, PROMAL can do the job!

TECHNICAL NOTES ON THE EDITOR FOR THE COMMODORE 64
The remainder of the section on the EDITOR applies only to the Commodore 64.
RELATIONSHIP OF THE WORKSPACE TO THE EDIT BUFFER

The EDITOR uses all unallocated memory as a buffer for editing your text.
The size of unallocated memory can be displayed by the EXECUTIVE MAP command.
Depending on how you enter the EDITOR and whether the Workspace is empty or

not, the Workspace (W) may or may not be "absorbed" into the edit buffer:

High Memory

Workspace Workspace
Edit
Buffer
Free Edit
Space Buffer
Executable Executable Executable
Programs Programs Programs
Low Memory
Before EDITing EDITing with EDITing with
Workspace preserved Workspace absorbed

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE _ Systems Management Associates, Inc. 2-55

The Workspace will be "absorbed" into the Edit buffer (to maximize your
available editing buffer size) if:

1. The Workspace is empty, or,

2. The Workspace is not empty and NO file name was specified on the EDIT
command (in this case the Workspate is absorbed non-destructively).

The Workspace will NOT be absorbed into the Edit buffer if:

1. The workspace is NOT empty and a file name or W was specified on the
EDIT command.

If the Workspace is absorbed, you cannot WRITE or RECALL from the Workspace
during the EDIT session. If the session was started with an EDIT command
without a file name or W specified, the Workspace will be automatically
updated when you quit the EDITOR. If the Workspace is not absorbed, you may
use it like a file during the EDIT session (for SAVEs and RECALLS) .

In any event, the Workspace will be "un-absorbed" when you exit from the
EDITOR back to the EXECUTIVE. The EXECUTIVE WS command can be used to clear
the Workspace or alter its size before entering the EDITOR.

EDITOR COMMODORE 64 CHARACTER SETS

The EDITOR creates and updates files of standard ASCII characters.
Unfortunately, the Commodore character-generator ROM’s do not conform
completely to the ASCII standard. As you may know, there are two sets of
characters which can be displayed on the screen, upper case plus graphics and
upper plus lower case. The PROMAL EXECUTIVE selects upper and lower case mode,
and this is the mode that should normally be used with PROMAL. The ALPHA LOCK
(CTRL A) feature can be used to automatically generate upper case letters in
this mode, if you so choose.

There may be times, however, when you might want to edit in the upper case
and graphics mode. You can switch modes by pressing SHIFT C= (shifted Commo-
dore key). When the EDITOR starts up, it senses the currently selected mode
and edits accordingly. Also, when the EDIT HELP menu is displayed, you may
switch modes and then resume editing with the C selection. Selecting the
upper case and graphics mode will permit you to enter the various non-ASCII
characters supported by Commodore. For installing special characters into
strings in a PROMAL program (such as to change colors or reverse video), we
recommend that you use the special hex literal form described in the PROMAL
LANGUAGE MANUAL instead of using graphics keys (for example, "£€12 Hello! £92"
will generate a reverse video string, " Hello! "). When you exit back to the
PROMAL EXECUTIVE, whatever character set you entered the EDITOR with will be
restored.

Copyright (C) 1986 SMA Inc. Rev. C

2-56 Systems Management Associates, Inc. PROMAL USER’S GUIDE

THE PROMAL COMPILER

The heart of the PROMAL system is the PROMAL compiler. This program takes
as input a file containing your source PROMAL program (which you normally
generate with the editor). It produces as output a small, very-fast executing
command file (object program). This object program can be executed from the
PROMAL EXECUTIVE by merely typing its name. Optionally, the COMPILER can also
produce a listing file. The listing shows your original source program, with
line numbers and the addresses assigned to variables and statements.

Unlike BASIC, you cannot execute a program in the form you type it in.
First it must be compiled. This is a great benefit, since the compiled program
will only be a small fraction of the original size, and will execute many times
faster than it would be possible to execute the original text version of the
program with an interpreter, as is done in BASIC. The compiler does not alter
your source file; it is left intact so you can examine it or edit it further.
Anytime you make a change to the source program, you will need to re-compile it
before the changes will take effect in the object program.

Unlike the EDITOR and the EXECUTIVE, the COMPILER is not automatically
loaded into memory when PROMAL boots up. This is because the COMPILER is a
large program (about 15K bytes), and it is only needed when you want to compile
a new program (or revised old program) into executable form.

STARTING THE COMPILER
The COMPILER can be run from the EXECUTIVE with a command of the form:
COMPILE [Sourcefile][O=Objectfile]][L{=Listfile]][V=c][B[=Solf]]
The simplest form of this command is just:
COMPILE

which will compile a source program from the Workspace and produce an execut-
able object program on disk, ready to run by typing its name. The object
program written will have the same file name as the name on the PROGRAM line of
the source program, with a ".C" extension.

If you compile a program which already has an existing object file on the
disk, the compiler will prompt:

REPLACE EXISTING Filename.C (Y/N)? _

Press Y and RETURN to replace the old file; any other reply will terminate
the compilation. After a successful compilation, the EXECUTIVE will
automatically unload any existing copy of the compiled program from memory.
This ensures that you will always execute the new version of a freshly compiled
program, not an old version which might still be in memory.

For the Commodore 64: The demo compiler can be used to compile small
programs directly from the Workspace. When using the full compiler (which is
larger than the demo compiler), you will want to keep the Workspace clear and
compile directly from disk.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE __ Systems Management Associates, Imnc. 2-57

For the Apple II: The compiler is always loaded from disk when needed, and
unloads when it is finished, so you will have more room available for your
programs. It is a good idea to give an UNLOAD command before compiling.

Most frequeatly you will compile directly from a source program on disk and
produce an object file on disk. For example:

COMPILE MYPROG

will tell the compiler to read the file MYPROG.S (the compiler supplies the
" §" default extension) and produces an object file called MYPROG.C. The
COMPILER gives the object file on disk the same name as the source file,
but with a ".C" extension.

You can use the "O" (the letter "oh") option to output the object code to a
file other than the same name as the source file. For example:

COMPILE MYPROG O=NEWVERSION

will read MYPROG.S and generate NEWVERSION.C. (Note: we strongly recommend
that you use the same file name for your object file as is declared on the
PROGRAM header line of the source program. Otherwise, the EXECUTIVE will load
the FILE you specify from disk each time you type its name even if the same
program is already in memory, because it does not match the command name. The
name on the PROGRAM statement is the name which appears in the MAP display.)

If you add the "L" option to your command, a listing will be produced.
The "L" option by itself will cause the listing to be written to a file with
the same name but with a ".L" extension. For example:

COMPILE MYPROG L

will read MYPROG.S, produce an object file MYPROG.C, and listing file MYPROG.L.
If the listing already exists it will be replaced. You can also send the
listing directly to the printer by specifying L=P.

The V option is used to specify a version of your program for conditional
compilation, described in Chapter 5 of the PROMAL LANGUAGE MANUAL.

The final option for the COMPILE command is the "B" option, which is used to
compile big programs from disk. This option will not normally be needed unless
you are compiling fairly large programs. The B option is not available on the
Demo compiler. It is easy to tell when you need to specify the B option. The
statistics displayed at the eund of a compilation tell you how much of the
COMPILER’s available table space was used. If any of the percentages shown
start approaching about 90 percent, you probably should be using the B option.
When compiling large programs, you should be sure to remember to UNLOAD other
programs before compiling, because the COMPILER uses all available memory for
its tables. For example:

UNLOAD
COMPILE MYPROG B

will read MYPROG.S and produce an object code file MYPROG.C, allowing very
large programs to be compiled (typically several thousand lines).

Copyright (C) 1986 SMA Inc. Rev. C

2-58 Systems Management Associates, Inc. PROMAL USER’S GUIDE

The B option changes the way the compiler uses memory, so it will have more
memory for its tables. Normally the compiler stores the compiled object code
in a buffer in memory until the whole program is compiled, and then writes it
to disk. When the B option is selected, it writes the object code to disk "on
the fly" instead. For the COMMODORE 64 only, the "B" option will also delete
the EDITOR from memory, making enough room available to compile very large
programs. The EDITOR will be reloaded from disk when you need it.

For very large programs it is possible that one of the tables used by the
compiler may overflow even with the B option. For example, if your program
uses many hundreds of lines of strings in data statements, the string table may
get full (as indicated by the statistics displayed at the end of compilation).
In this case, you can tell the compiler to allocate more of available memory
for the particular table which is overflowing, using this form of the B option:

COMPILE Myprog B=Solf

where Solf represents a four digit hexadecimal number, where the four
individual hex digits must sum to exactly 10 hexadecimal. For example:

COMPILE MYPROG B=Cl12

Each digit represents what part of available memory is to be allocated for a
particular table, in units of 1/16th of available memory, as follows:

S (first digit) = number of 16ths used for symbol (name) table
0 (second digit) = number of 16ths used for object buffer

L (third digit) = number of 16ths used for literals (strings)
F (fourth digit) = number of 16ths used for forward references

Therefore the example above used 12/16 ($C=12 decimal) of available memory for
the symbol table, 1/16th for the object code buffer, 1/16th for strings, and
2/16ths for forward references. The default for the B option is B=Al132. The
value of the second (0) digit should always be left at 1.

For the COMMODORE 64, you should never attempt to use the L option to
produce a listing file on disk at the same time as using the B option. This is
because the 1541 disk drive will only allow one file to be open for writing at
a time while a file is open for reading, and the B and L options each require
one output file. If you want to get a listing, use L=P or make a second
compilation with O=N to suppress the object file.

DIALOGUE OF THE COMPILATION PROCESS

When the COMPILER starts, it will run continuously until your program is
compiled or until an error is detected, without further action on your part.
After it "signs on", it will immediately read in your your source program, and
show a rapidly changing message:

READING LINE nnn
where nnn is the line number the compiler is reading. This number will change

rapidly (several lines per second), especially if you are compiling from
the Workspace. When the compiler encounters an INCLUDE LIBRARY statement in

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL USER’S GUIDE __ Systems Management Associates, Inc. 2-59

your program, it will display another line saying:
INCLUDING LIBRARY

and will then generate another line of the form
READING LINE nnn

as it scans the LIBRARY. This takes about 5 seconds. It will then display:
RESUMING FILE O:Filename.S

indicating that it has finished the INCLUDE file and is resuming reading the
original file (the "0:" indicates the disk drive number for Commodore 64
versions; for Apple II this will be replaced with the path name). Also, each
time the COMPILER reads a new Procedure or Function definition in your program,
it displays a message showing the start of the subroutine.

If an error is detected in your program, the COMPILER will halt and display
the offending line, followed by an error message. For example:

READING LINE 303
COMPILING FUNC BYTE READJOYSTICK
READING LINE 309

IF FIREBUTTON OR UP OR DOWN
Fedededededdodododieiolodedollokdok ke

ERROR 27:
UNDEFINED

Want to EDIT W (Y/N)? _

This indicates that the variable FIREBUTTON has not been defined (declared).
The row of asterisks indicates how much of the line the COMPILER had read
before the error was detected.

The line "Want to EDIT W (Y/N)?" asks if you want to edit the file contain-
ing the error (in this case, the Workspace, W). If you reply with Y (and
{RETURN»), the EDITOR will start and automatically position the cursor to the
offending line, simplifying the correction process. Otherwise, you will be
returned to the EXECUTIVE.

When looking at a compiler error message, note that the row of asterisks
may not always indicate the exact location of the problem. The asterisks only
indicate how far the compiler had read before it recognized an error. The
error could have been caused by anything up to this point in the program. For
example, a misspelled variable declaration near the beginning of the program
will not cause an error until referenced with the "correct" spelling later in
the program. Appendix C contains a listing of all Compiler error messages with
an explanation aand corrective action for each. The compiler error messages are
contained in file COMPERRMSG.T. If this file is not present on your disk, you
will only get an error number, without the text of the message.

Assuming your program compiled to completion without an error, you will see
a signoff message with a summary. This indicates that your program compiled

Copyright (C) 1986 SMA Inc. Rev. C

2-60 Systems Management Associates, Inc. PROMAL USER’S GUIDE

successfully and is ready to execute. You are back in the EXECUTIVE. The
summary shows the total number of lines read by the compiler, the number of
bytes of object code generated, the number of bytes of memory your program will
need for variables, and how much of the compiler’s tables were used. Numbers

- with a § prefix are hexadecimal, and those in parentheses are in decimal. Note
that the actual object file will be somewhat larger than the number of bytes of
object code generated, because the object file contains additional header and
relocation tables,

DIFFERENCES BETWEEN VARIOUS PROMAL COMPILERS

The Demo compiler and standard compiler are both named COMPILE. The Demo
compiler is found on the demo disk and the full compiler on the PROMAL system
disk., You may prefer the Demo compiler for small program development.

The Demo compiler does not support the B option (described above), nor does
it support IMPORTs, EXPORTs, or separate compilation (described in Chapter 8 of
the PROMAL LANGUAGE MANUAL), and is limited to a maximum of 400 source lines
(excluding comments but including the LIBRARY).

For the Apple II, if you use the EXECUTIVE command GET COMPILE, the standard
compiler will not show up in the memory MAP and cannot be executed from memory,
because there is not enough room in memory for the compiler and the EXECUTIVE
at the same time. This is of no consequence, except that you need to keep a
copy of the compiler on each of your disks you use for program development.

PROMAL CROSS REFERENCE MAP UTILITY -

XREF generates an alphabetized list of all the identifiers (names) used in a
program, with a sorted list of line numbers on which they appear. This list is
very useful for locating where variables, procedures, or functions are used in
a program. The XREF utility is normally used after a compilation with a
listing generated. In this case, XREF will append the cross-reference map to
the end of the listing file. The syntax of XREF is:

XREF [Sourcefile][V=c]

where Sourcefile is the name of the PROMAL sourcefile to be read. It may be
good idea to UNLOAD any other programs before running XREF, so it will have
plenty of room for the tables it uses internally. The optional second argument
V specifies a version for conditional compilation. If you are using
conditional compilation, you should specify the same V option that you use on
the corresponding COMPILE. Omitting the V will cross reference all conditional
blocks.

When XREF is run, it appends the cross reference map to the end of the
listing file, if one exists, Otherwise, it generates a listing with line
numbers {but does not generate any code or do any syntax checking like the
compiler) and a cross reference map, on a file with the same name as the source
file but with a .X extension. This is useful if you wish to obtain a cross
reference map for a program which will not successfully compile yet.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE

Systems Management Associates, Inc.

PROMAL
(PROgrammer”s Micro Application Language)
LANGUAGE MANUAL
A PROMAL LANGUAGE DESCRIPTION AND REFERENCE

For Apple II and Commodore 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, North Carolina 27609
(919) 878-3600

Rev. C - Sep. 1986

Copyright (C) 1986 SMA Inc.

Rev.

c

3-2 Systems Management Associates, Inc. PROMAL LANGUAGE

PROMAL LANGUAGE MANUAL

CHAPTER 1: INTRODUCTION

This manual will introduce you to the PROMAL programming language, which we
think will find to be the most enjoyable and creative language available
for your computer. This manual will guide you step by step through a descrip-
tion of the PROMAL language, with examples along the way. It assumes that you
already have a working knowledge of BASIC (or some other high-level language)
and elementary computer concepts such as bits, bytes and memory addresses.
Comparisons are often given between PROMAL programs and the equivalent BASIC
program, so that you may draw on your previous experience.

You should study the manual carefully, because PROMAL is significantly
different from BASIC. As a BASIC programmer, you may find some aspects of
PROMAL a little strange at first reading. But if you give it a fair trial,
we re sure you will soon want to do all of your programming in PROMAL.

We assume that you have already read the companion manual MEET PROMAL!,
which provides a "hands—on" introduction to the PROMAL system as a whole. You
will find the operational aspects of the PROMAL EXECUTIVE, EDITOR, COMPILER,
and LIBRARY described in detail in the PROMAL USER”S MANUAL. This manual
explains the heart of the PROMAL system, the PROMAL programming language, which
you can use to create your own programs. PROMAL is especially well suited for:

Text processing applications

Scientific and Engineering applications
Educational applications

Interactive programming

Small business programming

Compilers, assemblers, editors or system software

* % % X F *

Not only do PROMAL programs for these applications often run 20 to 100 times
(or more) faster than BASIC, they are actually easier to program than BASIC!
Programs that used to take weeks or months of assembly-language drudgery can
now be quickly developed with PROMAL instead.

WHY USE PROMAL?

Why should you learn PROMAL when you already know BASIC? Why should you
learn PROMAL instead of one of the older, structured languages such as PASCAL
or C?

Perhaps the most important reason is that PROMAL is in many respects
the most structured language available, because the PROMAL compiler reads
indentation as part of the syntax of the language. As you will see, the fact
that indentation always shows the true structure of your program will make your
programs easier to write, and more importantly, easier to maintain.

Another important consideration is that PROMAL is the omnly compiled language
available from a single vendor for the IBM PC, Apple II, and Commodore 64 - the
three biggest-selling machines in history. If you plan to develop commercial
software, or just think you might change computers some day, this will be
important to you. And PROMAL gives you top performance on all machines.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-3

CHAPTER 2: PROMAL PROGRAMMING LANGUAGE OVERVIEW

A PROMAL source program is a file of text composed of lines, normally
created using the PROMAL EDITOR. Each line is called a statement. A program
has a certain organization to it, which is similar to a recipe. A program
starts by declaring its name, and then identifies what "ingredients” are used
in the program. Ingredients are identified by the kind of data to be used, the
name of the data, and the quantity required. The list of ingredients is called
the declarations part of the program. After the declarations part of the
program comes the actual instructions which tell how to manipulate the data.
For clarity, the instructions are usually broken up into a number of proce-
dures, each of which has a name suggestive of its function.

For example, consider the actual PROMAL program in the right column, below,
and observe the similarities with the recipe at the left.

A Kitchen Recipe A PROMAL Program

FRIED CHICKEN: {-- Your recipe name --> PROGRAM LONGESTLINE
INCLUDE LIBRARY

2 1b. Chicken pes. <-- Main ingredients --> BYTE LINE [81] ;current line

1/4 1b. shortening and amounts needed BYTE LONGEST ;longest length
WORD IFILE ;input file

SEASONED FLOUR: {== Sub Procedure Name -—> PROC SIZELINE

1/2 cup flour {-- Ingredients for --> BYTE LENGTH ;cur line length

1 tsp. salt sub—-procedure

1/4 tsp. paprika
BEGIN ; Procedure
Mix all ingredients <-- Ianstructioms for --> LENGTH=LENSTR(LINE)

for seasoned flour. sub-procedure IF LENGTH > LONGEST
LONGEST = LENGTH
END
Heat oven to 450. {-- Main Process ~~> BEGIN ; Main Program
Melt shortening. setup IFILE=0PEN("TESTFILE.T")
Coat chicken with LONGEST=0

seasoned flour.

Cook about 45 min. <-- Loop waiting for --> WHILE GETLF(IFILE,LINE)

until golden brown. a condition SIZELINE ;test if biggest
Serve with gravy. {-- How to serve up --> OUTPUT "Longest = #I",LONGEST
the results END

The program above reads a file and prints the length of the longest line in
the file. It is useful to get the feel for what a complete (although very
simple) PROMAL program looks like before delving into the details.

Copyright (C) 1986 SMA Inc. Rev. C

3-4 Systems Management Associates, Inc. PROMAL LANGUAGE

If you have programmed in BASIC, probably the first thing you will notice
about the program above is that there are no line numbers. Line numbers are
not used and not needed in PROMAL programs. You will soon discover that this
makes PROMAL programs much easier to write and understand. PROMAL statements
normally start in column 1. Let”s look briefly at the statements that compose
the program, just to get the general idea of what they do.

PROGRAM LONGESTLINE

This line starts the program. The name LONGESTLINE is the command you will
eventually type from the EXECUTIVE when you want to run this program.

INCLUDE LIBRARY

This line tells the PROMAL COMPILER to include the definitions of all the
built-in library routines (which are needed for input-output, etc.). You will
normally have this statement near the start of every program.

BYTE LINE [81] scurrent line
This line declares that you will be using a variable called LINE which is

an array of 81 BYTEs. One byte can store one character, so this array can hold
an 80 character line plus a line terminator. The ";" indicates the start of a

comment. The rest of a line after a ";" 1s ignored by the compiler.

BYTE LONGEST ;longest length

This line declares a simple (non-array) variable called LONGEST. It is
used to hold the number of characters in the longest line. In PROMAL, unlike
BASIC, all variables must be declared before they are used (not just arrays).

WORD IFILE syinput file

This line declares a variable of type WORD. Later you will learn that a
WORD is usually used to hold an address. 1In this case, the address will be a
"file handle” for the file of text to be read. You can think of a file handle
as just a number identifying a particular file.

PROC SIZELINE

This line begins the definition of a PROMAL procedure, which is similar to
a BASIC subroutine. It has been given the name SIZELINE by the programmer.

BYTE LENGTH scur line length

This is a variable of type BYTE which is only used within the procedure.
This will be explained further later on.

BEGIN

This line signals the beginning of actual executable instructions within
the procedure.

LENGTH=LENSTR(LINE)

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inmc. 3-5

This is an assignment statement which uses the built in function LENSTR to
determine the number of characters currently in the array LINE, and install
that number into LENGTH.

IF LENGTH > LONGEST
LONGEST = LENGTH

The IF statement tests if the current length is larger than the largest
line length so far, and if so, updates the value of LONGEST to LENGTH. Other-
wise, the second statement is simply skipped over.

END

The END statement indicates the end of the procedure (like a BASIC RETURN
statement).

BEGIN

Since there are no more PROCEDURES, the BEGIN signals the beginning of the
main program. In PROMAL, the main program always comes last. This may seem a
little strange at first, but follows from the general rule that everything,
including all subroutines, must be defined before being used.

IFILE=OPEN("TESTFILE.T")

This is actually the first statement which would be executed in the
program. It tells the computer to "OPEN" the file called "TESTFILE.T" for
reading, and installs the file handle into IFILE. Any subsequent input
references to IFILE will read from "TESTFILE.T".

LONGEST=0

This statement works just like its BASIC equivalent, and initializes the
value of LONGEST to O.

WHILE GETLF(IFILE, LINE)
SIZELINE s;test if biggest

These two statements comprise a loop. The WHILE statement attempts to read
one line from the file into the LINE array. If successful, the SIZELINE
subroutine is called, and the WHILE statement is repeated again. This process
is repeated until end-of-file is reached, in which case the GETLF function is
unsuccessful, and control passes through without executing SIZELINE again. 1In
PROMAL, subroutines are called by merely typing their names; no GOSUB is
needed.

OUTPUT "Longest = #I", LONGEST

This statement is similar to a BASIC PRINT statement. It would show an
answer on the screen, for instance:

Longest = 67

Copyright (C) 1986 SMA Inc. Rev. C

3-6 Systems Management Associates, Inc. PROMAL LANGUAGE

assuming the longest line was 67 characters. The "#1" in the OUTPUT statement
is a code which tells the computer how to format the answer; in this case,
telling it to print it as an integer number.

END
This line terminates the program.
It is not important to understand the details of the program at this point,

but just to get the general idea of what a program looks like. The following
sections will explain the rules for writing a program in detail.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-7

CHAPTER 3: ELEMENTS OF THE PROMAL LANGUAGE

In the last chapter we got a quick "top down" view of how a simple complete
PROMAL program looks. In this chapter, we will take a "bottom up"” look at some
of the elements of the PROMAL language in greater detail. Then we will learn
how to combine these elements into statements and programs.

VOCABULARY

The following reserved words have special meaning in PROMAL programs, and
form the basic vocabulary of the language:

AND CON EXT INT OWN TO
ARG CHOOSE FALSE LIST PROC TRUE
ASM DATA FOR NEXT PROGRAM UNTIL
AT END FUNC NOT REAL WHILE
BYTE ELSE IF NOTHING REFUGE WORD
BEGIN ESCAPE IMPORT OR REPEAT XOR
BREAK EXPORT INCLUDE OVERLAY RETURN

The reserved words may be spelled with either upper or lower case letters, or a
mix of both. Therefore BEGIN, begin, Begin, and Begln are equivalent. These
reserved words are also sometimes called keywords. In PROMAL (unlike BASIC)
you must separate keywords from each other or from other names with blanks or
other punctuation. This helps make programs readable and does not impose any
speed or memory size penalty on the program. As a practical matter you may
also wish to consider the standard library routine names listed at the start of
the LIBRARY MANUAL as reserved words, although this is not strictly true
because you do not have to use the LIBRARY. You may even change the names in
the LIBRARY, although this is definitely not recommended (for reasons of
consistency with other programmers).

NAMES

Names are used to identify constants, variables, data, functioms, proce-
dures and programs in PROMAL. You may choose names (also called identifiers)
as you wish, following these rules:

1. A name may be from one to 31 characters in length.

2. The first character must be alphabetic.

3. The remaining characters must be alphabetic, numeric, or the underline
character " " (left-pointing arrow on the Commodore 64, which has no
underline key).

4. Either upper or lower case alphabetic characters may be used. Both are
considered equivalent. The PROMAL compiler treats all alphabetic
characters as upper case in identifiers. Therefore XYZ and xYz are
considered the same name.

5. A name may not duplicate one of the reserved words in the basic vocab-
ulary above.

Unlike Commodore or Apple BASIC, which only looks at the first two
characters of a name, all characters of a name are "significant™ in PROMAL.
For example, EXTRAPOLATEX1 and EXTRAPOLATEY1 will be considered as two
different variables, even though the first eleven characters are identical.

Copyright (C) 1986 SMA Inc. Rev. C

3-8 Systems Management Associates, Inc. PROMAL LANGUAGE

Similarly, TON is a legal name, even though it contains the reserved word TO
(which would make it illegal in BASIC). After compilation, programs using long
names do not use any more memory or execute any slower than programs with short
names, so you should select names which are meaningful. For example,

AMOUNT DUE is probably a better choice for a name than AD.

Some examples of legal names are:

A ZERO OldInventory X Y Data
aBc foréd S D200
C4 d2000 DearJohn ET

Some examples of ILLEGAL names (for the reasons indicated) are:

B-4 (second character is not alphanumeric or _)
3D (first character is not alphabetic)
LIST (duplicates a reserved word)

Again, remember that you cannot run variable names and PROMAL keywords
together the way you can in BASIC. For example,

IFID=MEORID=YOU

may be an acceptable way to start an IF statement in BASIC, but in PROMAL you
would have to write:

IF ID=ME OR ID=YOU
instead.
DATA TYPES

A data type refers to the kind of data that a program can manipulate.
PROMAL has four built-in data types, three of which are very simple and quite
close to the data types that are used in machine language. This primitive
simplicity greatly contributes to PROMAL”s speed of execution. The four types
are:

Type Meaning
BYTE An unsigned integer number between O and 255, or

a single ASCII character, or
the Boolean value TRUE or FALSE.

WORD An unsigned integer number between O and 65,535.
INT A signed integer number between -32,767 and +32,767.
REAL A floating point number between approximately 1.E-37 and

1.E+37. Similar to BASIC”s standard numeric data type.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-9

The data type BYTE is a distinguishing characteristic of the PROMAL lang-
uage. This is very important, because byte variables can be manipulated very
rapidly and are frequently needed for the types of applications PROMAL is
intended for. As the name implies, a BYTE variable occupies only one byte of
memory. WORD and INT (integer) variables each occupy two bytes (16 bits). In
memory, the low order 8 bits are stored in the first byte and the high order 8
bits are stored in the next higher address. This is the conventional way to
store addresses for the 6502 family processor used in the Apple II and Commo-
dore 64. BYTEs, WORDs, and INTegers may mot have any fractional part; thus 11
and 12 are okay but 11.5 is not.

REAL variables occupy 6 bytes of memory each. They are similar to the
numeric data type used in BASIC (5 bytes each), but are accurate to 11 signifi-
cant digits instead of 9 significant digits like BASIC. REAL variables have
the greatest flexibility because they can store very large and very small
numbers, including a decimal fraction. However, they are manipulated much more
slowly than the other data types (but not as slowly as in BASIC), and therefore
should be used with discretion. PROMAL also provides facilities for formatted
output, so that you can precisely control the number of digits and number of
decimal places printed for REAL output.

BASIC programmers may note the absence of character strings as a standard
data type. But PROMAL can handle strings very well as an array of type BYTE.
String handling is not difficult and will be discussed in detail later.

LITERAL NUMBERS, CHARACTERS, AND STRINGS

Numbers may be written in the usual way. A number written without a
decimal point is assumed to be of type BYTE, INT, or WORD, depending on its
size and sign. Unsigned values less than 256 are assumed to be BYTE. Larger
values are type WORD. Any negative number is assumed to be INT.
Examples of legal BYTE, INT or WORD type numbers are:

0 1 137 22340 65535 ~-78

The following are illegal as BYTE, INT or WORD type numbers (for the reasons
indicated):

1,333 ; (Cannot have a comma)
120.6 ; (Cannot have a decimal point - OK for REAL numbers)
65539 ; (Out of range — must be less than 65536)

Literal numbers may also be specified in hexadecimal, by using a "$§"
prefix. Hexadecimal (base 16) numbers are often more convenient for specifying
memory addresses or bit patterns. For example, it is easier to remember that
the Commodore 64 VIC-2 video chip is at address $D000 than at its decimal
equivalent, 53248. If you are not familiar with hexadecimal numbers, you may
wish to consult your computer”s reference manual. Examples of legal hex
numbers are:

$0 $a $2BD SFFFF $0012

Copyright (C) 1986 SMA Imnc. Rev. C

3-10 Systems Management Associates, Inmc. PROMAL LANGUAGE

The following are ILLEGAL hex numbers (for .the reasons indicated):

$1B3.4 ; (Cannot have decimal point in hex number)
FFFF ; (No $ prefix)
$102B0 ; (Out of range — must be less than $10000).

REAL numbers must be specified with a decimal point. 1In BASIC, you can
write a real number without a decimal point, but not in PROMAL. If you forget
to write the decimal point, PROMAL may accept the number as a valid byte,
integer, or word value, without an error indication. However, if you pass this
value to a function or procedure that 1s expecting a REAL value (such as OUTPUT
using a #R format), the procedure or function will try to interpret your result
as REAL, resulting in a garbage value. Therefore you should always be careful
to specify a decimal point for a real constant. You may also write REAL
literal numbers using the "E" format scientific notation, as in BASIC.

Examples of legal REAL numbers are:

0. .0 123. 3.1415926535 -.0000007 56.00
1.2ell -.003E-10

The following are illegal real numbers (for the reasons indicated):

76000 ; (no decimal point - will be treated as out-of-range integer)
2,333.00 ; (cannot have a comma)
1.21E+50 ; (value out of range; must be less than 1E+37)

In specifying literal numbers, you should keep in mind the size limits for -~
the various data types. Only REAL numbers may be larger than 65535 decimal
($FFFF) and may have a fractional part.

PROMAL programs often need to specify single ASCII characters for some
operation (Appendix A contains a summary of the ASCII character set). To
specify a single literal character, enclose it in single quotes, for example:

’a’ ’Q’ ’4r k- -, .

The PROMAL compiler will substitute the numeric ASCII value of the character.
For example, writing “A” is equivalent to 65 or $41 (see table, Appendix A). If
you need to show the single quote character itself () as a literal character,
you must double it (7777).

A literal string is a group of characters enclosed in double quotes.
Examples of literal strings are:

uAn "Hello There! " "26" "+_*/" wee

When the compiler encounters a literal string in your source program, it
generates the ASCII representation of the string, followed by a $00 byte
terminator, in your object program. Literal strings use one byte per charac-
ter, plus a string terminator which is always a $00 byte. Therefore the string
"A" occupies two bytes of memory and the string "Hello There!” occupies 13
bytes in your compiled program. The last example ("") above is called the null
string, and contains no characters. This is not the same as a string contain-
ing a blank. A blank is a character and occupies space in memory. The O-byte
terminator is always generated automatically by the compiler. A literal string

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-11

may contain O or more characters. As we will see later, character strings may
be up to 254 bytes long, but as a practical matter, a literal character string
is limited to the number of characters which will fit on a single line.

The most common use of a literal string is to output a message, which is
just as easy as a BASIC PRINT statement:

PUT "Hello world!”

PUT is actually a built in procedure which should be followed by the address of
a string which is to be printed. So for example when the PROMAL compiler sees:

PUT "Hello world!”

it actually generates a string for you in memory (terminated by a O byte), and
generates a call to the PUT procedure, passing PUT the address of the string to
print. The compiler uses the address of the first character of the string as
the “"value”™ of the string. If you don”t understand this completely yet, don”t
worry about it. The importance and usefulness of this will be explained more
fully later.

If you need to include the double-quote character itself (") in a literal
string, it should be doubled. For example:

PUT "“She said, ""I711 be back."""
will actually cause the program to print:
She said, "I°11 be back.”

You can also embed unprintable codes (such as ASCII control characters or
special characters, such as characters to trigger color changes on the Commo-
dore 64) in a string by writing the character \ (£ pounds sterling key on the
Commodore 64, which has no backslash key) followed by exactly two hex digits
giving the desired character code. For example:

PUT "New line \ODstarting here”

will embed a $OD (ASCII carriage return) in mid-string. If you wish to include
the \ itself in a string, you should double it, in the same manner as the
quote. A particularly useful pair of embedded codes on the C-64 are \12 and
\92, which start and stop reverse video output, respectively. On the Apple II,
\OF and \OE will enable and disable reverse video.

It is important to remember the difference between a character and a
string. A literal character is always a single character enclosed in single
quotes. A literal string is zero or more characters enclosed in double quotes.
This means that “A” and "A" do not have the same meaning to the PROMAL compil-
er. “A” occuples a single byte and has the value 65. "A" occupies two bytes,
65 followed by O, and has the "value” of whatever address the PROMAL compiler
assigns to the first character.

Copyright (C) 1986 SMA Inc. Rev. C

3-12 Systems Management Associates, Inc. PROMAL LANGUAGE

Note that you may use PUT only to print characters and strings on the
screen. If you need to print the value of a variable, you will need to use
OUTPUT instead, which is described later.

VARTABLES

PROMAL variables are used to hold values, in much the same way as BASIC
variables. However, as we have already seen, PROMAL variables may have long
names. PROMAL variables also have a "type" assoclated with them, which must be
BYTE, INT (integer), WORD, or REAL. BASIC variables also have a type, but the
type is implied by the name of the variable itself. For example, a % suffix in
BASIC indicates an integer type variable and a $ suffix indicates a string type
variable. When using PROMAL, however, you must declare the type and name of
every variable explicitly instead. No special suffixes are used.

DECLARING VARIABLES

In PROMAL programs, all variables must be declared before they are used. A
variable declaration tells the PROMAL compiler the name of the variable, what
type of variable it is, and how much space it will need. A sample variable
declaration might be:

INT SCORE ; Game score

This declares that you will be using a variable with the name SCORE, and that
it will be of type INT. Therefore the variable SCORE will be able to take on
signed values between -32767 and +32767. Only one variable may be declared on
a line. It is considered good programming practice to put a comment after the
variable name explaining what it is used for, as is shown above.

In BASIC, you did not have to declare variables (except for the DIM state-
ment, which is a declaration for arrays). Having to list all your variables at
the top of the program may seem like a nuisance at first, but you will come to
appreciate the value of it. When you pick up a PROMAL program, you can quickly
find out the names of all the variables in the program and what they are used
for by reading the declarations. If you want to add a new variable, you won”t
have to search the whole program to make sure the name you choose has not
already been used for something else; you just look at the declarations. If
you forget to declare a variable before you use it, the PROMAL compiler will
flag the variable name with an error message saying "UNDEFINED" when you try to
use it.

There is an even more important reason why variables need to be declared.
This is best illustrated with an example from BASIC. Suppose you decide to
modify an existing BASIC program which uses a variable called X0. You add a
few lines to the program, using the variable X0, but the program mysteriously
doesn”t work. Eventually you discover that the reason is that you typed XO
(X-"letter 0") but the original variable was X0 (X-"zero”). In this case,
BASIC automatically creates a new variableé, initialized with a value of zero,
instead of using the existing variable X0 which you really wanted. In PROMAL,
you would not have this problem because the compiler would flag XO as UNDE-
FINED. As a matter of historical interest, one of the NASA space program”s
planetary probes was lost due to a navigational error caused by precisely this
kind of bug in a FORTRAN program (like BASIC, you don”t have to declare
variables in FORTRAN).

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-13

As you learn the PROMAL language, you will find other instances like this
where PROMAL imposes a certain structure on your programming to help improve
the clarity and style of the program.

Unlike BASIC variables, which are automatically initialized to 0, PROMAL
does not provide any initialization of variables. This means that you cannot
assume anything about the value of a variable until you have assigned some
value to it. The initial value of a variable is simply whatever happened to be
"left over” in the memory location PROMAL assigns to the variable. Chapter 7
describes a convenient method for initializing all variables to zero with a
single statement.

CONSTANT DEFINITION

A constant is a name given to a numeric value which will not change
throughout the program. A constant must be defined with a CON statement before
it can be used. For example:

CON LF=10 ; ASCII linefeed character

defines the symbol LF to be 10. After this, anytime the PROMAL compiler
encounters the name LF, it will substitute the value 10 instead. There are two
differences between constants and variables. First, the value of the constant
is permanent and is assoclated with the constant name at compile time. Second,
no memory is set aside to save the value of the constant in the data area.
Instead, any time the constant is referenced, the compiler generates the value
of the constant (in the same manner as a literal constant) in the executable
code of the program. Only one constant can be defined on a line. Again, it is
considered good practice to add a comment to a constant definition explaining
what the constant is. If you are an assembly language programmer, you may
recognize that a PROMAL constant is equivalent to an assembly language
"equate”. You may also define the type of the constant explicitly, for
example:

CON WORD STARTLOC=$40

defines STARTLOC to be of type WORD with a value of 40 hexadecimal. If you
don”t specify the type explicitly, PROMAL will assume type BYTE if the value is
less than $100, INT if it has a minus sign, and type WORD otherwise. Later we
will learn more about constant definitions, after we learn about operators

and expressions.

You may not declare a REAL constant. Instead, you should use a DATA
statement if you wish to associate a name with a permanent value of type REAL.
Disallowing REAL constants saves memory and reduces the complexity of the
compiler.

Copyright (C) 1986 SMA Inc. Rev. C

3-14 Systems Management Associates, Inc. PROMAL LANGUAGE

ARRAY VARIABLES

PROMAL allows arrays of any of the four data types, with up to eight
subscripts. Subscripts for the array are enclosed in square brackets "[]",
not in parentheses like BASIC. This makes it easy to tell the difference
between an array element and a function call (where parentheses are used to
enclose the arguments, as will be discussed later). Like all other variables,
arrays must be declared before they can be used. An array variable declaration
is similar to a simple variable declaration, but is followed by the number of
elements of the array desired. For example:

BYTE BUFFER [81]

declares an array of type BYTE which can hold 81 elements (BUFFER[O] through
BUFFER[80]). It is important to observe that if you define an array as X[N],
then the last element is X[N-1], not X[N], because X[0] is the first element.

It is considered good programming practice to define a constant which
controls the size of a subsequently declared array. This will usually make it
easier to alter the program later. For example:

CON BUFSIZE = 100
BYTE BUFFER1 [BUFSIZE]
BYTE BUFFER2 [BUFSIZE]

You may not use a variable as the dimension for an array, however. This is
because the PROMAL compiler allocates memory for the array at compile time; the
size of the array must be known at compile time, not when the program is
actually run.

The subscripts for an array of any type must always be of type WORD. If an
array subscript evaluates to type BYTE, it will be "promoted” to WORD automa-
tically. A subscript which evaluates to type REAL will cause the compiler to
generate an error message. The maximum subscript which can be used is
dependent on the amount of free memory. When you refer to an array name
without subscripts (or backets), the address of the array will be used. The
importance of this will be illustrated later.

It is possible to define both simple variables and arrays at specified
locations in memory. For example you can define the screen memory as an array
starting at $0400 (1024). This is kind of declaration is called an external
variable, described in Chapter 6, "Interfacing”.

CAUTION: When array elements are referenced, PROMAL does not perform any
bounds checking (because of the adverse affect on performance). Therefore a
sequence like:

WORD I
BYTE BUF[10]
BYTE LINE[8]
I=12

BUF[1]=0

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-15

will not produce an error message and will move the O into part of the LINE
array instead of the BUF array as was intended. You should always take care to
insure that array indices stay in bounds, or strange and invariably unpleasant
results will occur!

Multiple dimension arrays have the subscripts separated by commas. For
example:

BYTE SCREENIMAGE [80,25]
REAL STIFFNESS [10,20,3]
IF SCREENIMAGE [0,I] = ~ ~
SCREENIMAGE [0,I] = SCREENIMAGE [1,I]

BEND = TORQUE * STIFFNESS[I,J,K]

The amount of memory required to store an array is the product of its
declared dimensions times the size of each element. The SCREENIMAGE array
above uses 2000 bytes, and the STIFFNESS array uses 3,600 bytes. Multiple
dimension arrays are mapped into memory such that incrementing the first
subscript will address elements that are physically adjacent in memory. Or,
another way to visualize this is to say that SCREENIMAGE 1s organized as 25
groups of 80 bytes each (mot 80 groups of 25 bytes each). Therefore if you
wish to have a two dimensional array of text, the column subscript should come
first and the row subscript second, as was done for SCREENIMAGE above. This is
discussed further in Chapter 7.

DATA DEFINITION

A data definition is similar to a variable but has a predefined initial
value which is determined at compile time. For example:

DATA REAL PI = 3.1415926535
defines a data item of type REAL which will be predefined to‘the value of PI.

Unlike constants, data definitions can define arrays as well as simple
variables. The DATA definition is most frequently used to define a table of
values which will not be changed by the program. The DATA definition looks
similar to a variable declaration, except that it starts with the word DATA and
is followed by an "=" and the desired value (or values). For example:

DATA BYTE MYTABLE [] = 23, 12, 8, 4, 2, 1, 0

This line defines an array called MYTABLE of type BYTE having 7 elements.
Notice that the size of the array is not given in the brackets; the PROMAL
compiler counts the number of elements for you. You must explicitly define the
value of all elements. The first element of the array will be MYTABLE[O] and
will be initialized to 23. The last element will be MYTABLE[6] and have the
value O.

You may not define multiple-dimension DATA arrays. Only a single dimension
is permitted for DATA declarations.

Copyright (C) 1986 SMA Inc. Rev. C

3-16 Systems Management Associates, Inc. PROMAL LANGUAGE

You may not change the value to a data item with an assignment statement.
If a data name appears on the left side of an assignment statement, the
compiler will generate a "Variable Expected” error. It is possible to force
the data items to be altered with an assignment statement to a variable array
which overlaps the data items, but this is considered poor programming practice
(and will also cause your program to be reloaded from disk if you try to
re—execute 1t, because data items are included in the checksum which the
EXECUTIVE uses to determine if a program has been corrupted).

If you wish to use a table of data items to set the initial values of a
variable array which will subsequently be altered, the correct procedure is to
copy the data array to another variable array (using the BLKMOV procedure,
described later), and then alter the variable array.

The data definition is the one statement in PROMAL which can consist of
multiple lines. In order to continue the data definition on additional lines,
either the = sign or a comma should be the last character of the preceding
line. For example:

DATA WORD LIST [] =
0,45,13,27,
0,46,13,28,
1,46,14,28,
1,47,14,29

defines an array of 16 words.

DATA statements are frequently used to define an array of strings which can
be used for messages, etc. during the program. For example:

DATA WORD ERRORMSG [] =
"Function Successful.”, ;3 O
"Illegal widgit."”, ;3 1
"Widgit not found.”, ;2
"You must specify a Widgit Number first.” ; 3

This statement defines a table of four words, each initialized to point to a
string. Later in your program, if you wanted to print the "Widgit not found.”
error message, you could simply write:

PUT ERRORMSG[2]

PUT is a built—in LIBRARY procedure which displays the string specified, in
this case the third string in the table.

Please note that the type of the above data array is WORD, not BYTE. This
is because each element of the array is a string. You may recall from our
discussion of strings that the "value” of a string is the address of its first
character; therefore a WORD is necessary to hold this address.

Copyright (C) 1986 SMA Inmc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-17

OPERATORS

An operator is a special symbol which indicates an action to be performed.
PROMAL provides the following operators:

Op. Description Example Result
+ Addition 3+5 8

- Subtraction or negation 48 - 11 37

* Multiplication -10.32 * .034 -.35088
/ Division (fraction discarded except REAL) 200 / 30 6

% Remainder (mod) 200 % 30 20

<< Left shift 7K1 14

>> Right shift $A0 >> 4 SOA

< Relational operator less than 4 <9 TRUE

<= Relational operator less than or equal 6 <=6 TRUE

<> Relational operator not equal TATOTA” FALSE

= Relational operator equal “A°=65 TRUE

>= Relational operator greater than or equal 10 >= “a” FALSE

> Relational operator greater than 3>8 FALSE
AND Logical AND operator 3>1 AND 4<1i0 TRUE

OR Logical OR operator 2<=1 OR 8>9 FALSE
XOR Logical exclusive OR $00 XOR SFF S$FF

NOT Logical complement NOT TRUE FALSE

i Address of variable #X addr of X
:< Extract low byte of WORD or INT $1234:< $34

:> Extract high byte of WORD or INT $§1234:> $12

:+ Convert to WORD $5A:+ $005A

:=- Convert to INT SFF:- +255

s Convert to REAL 45:. 45.0

@< Indirect through pointer to BYTE PTRE see text
@- Indirect through polanter to INT PTR @- see text
@+ Indirect through pointer to WORD (PTR+2) @+ see text
@. Indirect through pointer to REAL PTR @. see text

Some of these operators may look familiar from your experience with BASIC;
others are entirely new. These operators may be combined with operands, which
may be numbers, characters, strings, constants, variables, data, or functions,
to produce expressions. We shall now examine the most important of these
operators in detail.

ARITHMETIC EXPRESSIONS

Like BASIC, arithmetic expressions are evaluated from left to right (in the
absence of parentheses), with multiplication and division having a higher
priority than addition and subtraction. Therefore the expression:

344 %5

evaluates as 23, not 35. A summary of operator precedencé is given below.

Copyright (C) 1986 SMA Inc. "Rev. C

3-18 Systems Management Associates, Inc. PROMAL LANGUAGE

OPERATOR PRECEDENCE

(operators in the same row have equal precendece)

i<, D, i+, -, ., @, @+, @-, @., # Highest precedence
NOT

* [/, %, <, >

- (negative)

+, -

<, &=, >, =, >=, >

AND OR XOR Lowest precedence

The arithmetic operators, +, —, *, and /, work in the expected fashion,
but with a few twists. First of all, remember that PROMAL deals with integers
(whole numbers) as well as real numbers. The result of arithmetic on type
BYTE, WORD or INT cannot have a fractional result. Therefore 5 / 2 evaluates
as 2, not 2.5 (any fraction is always discarded). However, 5. / 2. evaluates
as 2.5, because the presence of the decimal point tells the PROMAL compiler
that the numbers are REAL.

Note for Commodore 64: Be careful not to type the shifted "+" character on
the keyboard when you want a plus sign. It looks like a plus sign, but isn’t
(the same applies to BASIC).

Most operators take two operands. For most operators, these two operands
do not have to be of the same type. In a mixed expression involving operands
of different types, the operands are usually “"promoted” to the "higher"” type
automatically, where BYTE is the "lowest” and REAL is the "highest” type. The
table below summarizes the results of a partially evaluated expression of the
type shown in the left column when an operator is encountered with a new
operand of the type shown in the top row:

RESULT TYPE FOR MIXED MODE EXPRESSIONS

Next operand involved is...

Present
Type 1is... BYTE WORD INT REAL
BYTE BYTE WORD INT REAL €
WORD WORD WORD INT REAL &
—Result type
INT INT INT INT REAL <
REAL REAL REAL REAL REAL <

The TYPE of the data being operated on must be considered. For example,
adding two variables of type BYTE will always result in a value which is also
of type BYTE, even if the result is too large to fit in a BYTE variable. For
example, if X is a variable of type BYTE which has been previously assigned the
value of 254, then the expression X+4 will NOT have a value of 258, but 2. This
is because BYTE variables can only take on values between 0 and 255, so that
when you add 4 to 254, the result is (258-256) = 2.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-19

If you don”t quite understand this, think of PROMAL BYTE, INT and WORD
variables as being like the odometer on your car. Most odometers go up to
99,999.9. If your odometer reads 99,998.0 and you drive 4 more miles, the
odometer will read 00,002.0, not 102,000.0. A PROMAL variable of type BYTE
only goes up to 255 ($FF hex), and then "wraps around” again starting at 0. A
numeric expression which overflows the maximum value representable simply
"wraps around” like this with no indication of an error. Similarly, if you
subtract a larger BYTE operand from a smaller BYTE operand, the result is
"wrapped around” but still positive. For example, 3 - 4 evaluates to 255
(think of what happens if you turned back the odometer 4 miles when it had a
reading of 3).

Since by definition a BYTE type variable is unsigned, you cannot apply the
negation operator to it directly, so the byte 1s automatically promoted to type
INT (integer) before the negation is performed. This "promotion” is only done
in the temporary work area called the accumulator where PROMAL does its
arithmetic; it does not change the type or size of the original variable.

An operand of type WORD also is always positive, but in this case the
largest possible "odometer reading" is 65535 (FFFF hex). For example if Y is a
variable of type WORD with a value of 1, then Y-3 is 65534 ($FFFE), not -2,

Only integers and reals may take on negative values. To understand how
integers work, again consider your auto odometer. If you started out at 0 and
turned the odometer back 1 mile it would read 99,999.0. Turn it back another
mile and it would read 99,9998.0. If you wanted to use your odometer to
measure both forward and backward movement from O, you might define everything
from O to 49,999.9 as positive, and everything from 50,000.0 and above as
negative, effectively splitting the total number of representable numbers in
two (half positive and half negative). This is exactly how INT variables work
in PROMAL.

In two bytes there are 65,536 possible numbers, which we divide in two,
with O to 32767 being considered positive ($0000 to $7FFF). The other half of
the numbers represent negative numbers, with -1 represented by $FFFF. The most
negative number possible is -32768, or $8000. However, since there is no
+32768 number representable, the number -32768 is disallowed. This number
scheme is called "two”s complement"” arithmetic, and is standard on almost all
computers.

For example, consider the following fragment of a PROMAL program:

BYTE X
WORD Y
WORD ANSWER
254

= 300
ANSWER = X + ¥

X
Y

This will produce the expected result of ANSWER=554. However, if you
change the last line to read:

ANSWER = X + 3 + ¥

Copyright (C) 1986 SMA Inc. Rev. C

3-20 Systems Management Associates, Inc. PROMAL LANGUAGE

then the result will be ANSWER=30l, because X and 3 are both type BYTE, so X +
3 evaluates to 1l; this is then promoted to a word and added to Y to give 30l.
If the order of the operands was changed to:

ANSWER = X + Y + 3

then the result would be 557, because X + Y would be evaluated first, with X
being promoted to WORD before making the additiomn.

Most of the time you will not have to worry about mixing different types in
an expression, but when you do you should bear in mind the order of evaluation.
You can "force” an operand to be promoted (or "demoted”) from one type to
another with the "type cast"” operators, which are:

Extract low order byte from word or integer (or convert real to byte).
Extract high order byte from word or integer.

Convert to word (unsigned).

Convert to integer (signed)

. Convert to real (floating point).

I + VA

These operators are written immediately after the operand which they are to
change. For example:

ANSWER = X:+ + 3 + ¥

would result in ANSWER=557, because the :+ operator will promote or "cast” X to
a word before performing the addition with Y. The expression X:+ is read as "X
cast to a word".

There are four special cases for arithmetic operators.

1. The % operator (remainder) cannot be applied to REAL operands. The sign
of the result is always considered positive for the % operator.

2. If you multiply or divide two operands of type BYTE, both operands will
be promoted to WORD, and the result will be type WORD.

3. Taking the negative of a BYTE or WORD converts to an INT. No error
is given 1if the result is out of range (result truncated to 16 bits).

4. Dividing by zero will produce a fatal run-time error. A "zero divide”
error can be triggered by any of the following:

a. Division by O (X/ 0).

b. Remainder by O (X Z 0).

c. A REAL result larger than the largest representable value (about
1.E+37).

d. Conversion of a REAL to a BYTE, WORD, or INT which cannot be
represented (e.g., 100000. :+).

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-21

RELATIONAL OPERATORS

The relational operators (<, <=, <>, =, >=, >) are the same as their
BASIC counterparts, and return a value of TRUE or FALSE. 1In PROMAL, TRUE is
represented by a byte of value 1 and FALSE by a byte of value 0. For purposes
of comparison in a conditional statement such as an IF statement (which we will
study later), any non-zero value is considered TRUE. The result of a compari-
son using a relational operator is always type BYTE. Promotion of operands in
a comparison is the same as for the arithmetic operators, but the result is
always type BYTE.

The fact that the result of a relational operation can be interpreted as 0
or 1 as well as FALSE or TRUE can be useful. For example, the two statements:

IF PHASORS > 100
SCORE = SCORE + 1

can be replaced by the single equivalent statement:
SCORE = SCORE + (PHASORS > 100)

because the expression (PHASORS > 100) will evaluate as 1 if TRUE and 0 other-
wise.

The relational operators all have equal priority of evaluation and are of
lower priority than any arithmetic operators, so that "normal” comparisons will
produce the expected result when written without parentheses. For example the
expression:

3%3>3+3
evaluates as TRUE (1).

Please note that you may not compare two strings by simply using the
relational operators on the variables involved, because this would merely
compare the addresses of the strings, which has no relation to the content of
the strings. To compare strings, use the CMPSTR function, described in the
LIBRARY MANUAL.

LOGICAL OPERATORS

The logical operators (AND, OR, NOT, XOR) may be combined with relational
operators or used for bit-by-bit Boolean operations. These operators may only
be used on operands of type BYTE, which is normal if using them in conjunction
with relational operators. All logical operators have an equal priority of
evaluation which is lower than the arithmetic and relational operators, so that
"normal” combinations of operators will produce the expected result without
parentheses. For example the expression:

X > 100 AND Y =0
is equivalent to:

(X > 100) AND (Y = 0)

Copyright (C) 1986 SMA Inc. Rev. C

3-22 Systems Management Associates, Inc. PROMAL LANGUAGE

and will evaluate TRUE if X is greater than 100 and Y is O.

AND, OR and XOR are useful in performing bit-by-bit Boolean operations and
masking operations (on type BYTE operands only). For example:

PORT AND S$OF

will "mask off" the high order 4 bits of PORT. As you may have already discov-
ered, these masking operations are frequently needed to manipulate selected
bits within a byte.

The operator NOT is a unary operator which converts any non-zero byte to O,
and 0 to 1. To perform a bit-by-bit complement, use XOR $FF instead.

SHIFT OPERATORS

The operators << and >> perform left and right shifts, respectively. The
operand to be shifted appears on the left side of the operator, and the shift
count on the right, for example:

XVAL << 4

shifts the value of XVAL left by four bits. Shifts may be applied to all data
types except REAL; however, the shift count must be of type BYIE. The shift
count should be in the range of 0-8 for BYTE operands and 0-16 for WORD or INT
operands. Shift operators have the same precedence of evaluation as multipli-
cation and division. One of the most frequent uses of shifts is to perform
multiplications or divisions by powers of 2. For example:

COUNT <K 3
will compute eight times the value of COUNT much faster than:
COUNT * 8

Right shifting by N is equivalent to (and much faster than) dividing by 2 to
the Nth power. Shifts are also sometimes used in conjunction with the logical
operators for manipulating data into specific bits of a register. Bits shifted
out of a byte or word are lost; O bits are always shifted into the word (even
if it is a negative integer). The result of a shift ou type INT is type WORD.
There is no built-in operator to perform bit rotations.

INDIRECT AND ADDRESS OPERATORS

The operator # is the address operator. It can only be applied to a
variable or data name (not to a number, string, constant or function). The #
operator returns the address of the variable which follows it. For example:

WORD PTR
REAL STRENGTH

PTR = #STRENGTH

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-23

sets the variable PTR to the address of the variable STRENGTH in memory. The #
operator can also be used to find the address of a particular element in an
array, for example:

WORD PTR
DATA BYTE COMDCHAR [] = “D”,”X”,”P",”A","E"," Q"

PTR = #COMDCHAR[2]
will set PTR to the address of the character “P~.

The operators @<, @-, @+ and @. are indirect operators. They are used
to access data "pointed to” by some variable or expression. The expression to
the left of the indirect operator should be of type WORD. If it is of type
BYTE, it will be promoted to type WORD automatically. For example:

WORD POINTER
REAL VALUE[10]
POINTER = #VALUE[7]

IF POINTER@. > 0.5

Here POINTER is set to the address of a certain element of an array of REALs.
Later, the expression POINTER@. can be used to test the value of that element.
The expression "POINTER@." can be thought of as "the real number pointed to by
POINTER."

One of the most common uses of the indirect operators is to extract charac-
ters from strings. For example, consider the following program fragment:

BYTE BUFFER [80]
WORD PTR

BYTE CHAR

PTR= BUFFER

CHAR = PTR &

This sequence will set CHAR to the first character of the array BUFFER.
Although this could also have been done with the more straightforward state-
ment:

CHAR = BUFFER[O]

the use of PTR allows more versatility, since PTR could point to amy array, not
just the BUFFER array. Pointers and indirect operators are very useful in
passing arrays and strings to subroutines to be operated on, as you will see in
Chapters 5 and 7.

Note that you may not use the indirect operators to identify the destinatiom
variable for an assignment statement. Therefore

Copyright (C) 1986 SMA Inc. Rev. C

3-24 Systems Management Associates, Inc. PROMAL LANGUAGE

PTR@K = 10 ; ILLEGAL!

is not legal. You may use the predefined array M, which is defined in the
Library as an array of bytes encompassing all of memory, to solve this
problem. The above example could be correctly written as:

M[PTR] = 10 ; Right!

The use of pointers and the array M is discussed further in the section on
subroutines and in Chapter 5 and 7.

GLOBAL VARIABLES

Variables are normally declared first in your program, before the executable
statements. These variables are called global variables, because they can be
accessed from anywhere in your program. Later another kind of variable will be
introduced called a local variable. Local variables are defined inside
subroutines, and are known only inside that subroutine. Global variables are
defined before any subroutines (or between subroutines), and are known
everywhere thereafter in the entire program, (including inside all
subroutines). This distinction will be clarified in Chapter 5, where
subroutines are discussed.

Now that you know how to declare variables and form expressions, you are
ready to learn how to bring these pieces together with the reserved words to
form statements, and then combine these statements into a complete working
program.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-25

CHAPTER 4: STATEMENTS

INTRODUCTION

In this chapter you will learn about PROMAL language statements. If you
have only programmed in BASIC and not in another "high-level” language you
should study this chapter very carefully. If you have programmed in Pascal or
"C" this chapter will be important for understanding the differences as well as
the similarities of PROMAL and other "“structured” languages.

Some PROMAL statements are similar to statements in BASIC. For example,
XV = YV + 17

is an assignment statement, which is very similar to a BASIC LET statement.
However, there are some important differences between BASIC statements and
PROMAL statements, including:

1. Statements do not have line numbers.

2. Only one statement is permitted on a line.

3. A statement may not occupy more than one line (with the exception of
the DATA statement). -

4. Keywords and variables must be separated from each other by blanks or
other punctuation marks as required by the statement.

SYNTAX DIAGRAMS

In many ways, PROMAL allows you a great deal more flexibility in construct-
ing statements than BASIC. In order to help you determine exactly what makes
up a legal statement, a set of syntax diagrams is included in Appendix P. These
syntax diagrams tell you graphically how to construct a legal PROMAL statement.
Syntax diagrams are not difficult to use, once you are familiar with them. 1If
in the following descriptions you are unsure about a PROMAL statement”s correct
syntax, you may refer to the diagrams in Appendix P, and the accompanying
discussion of how to read them.

PROGRAM STATEMENT

Every PROMAL program must start with a PROGRAM statement of the form:

PROGRAM Name [OWN [EXPORT]]
OVERLAY Name [EXPORT]

where Name is a legal PROMAL identifier not used for any other purpose. The
PROGRAM line declares the command name by which you will execute the program
when it is loaded into memory. You should always make the PROGRAM name the
same as the file name you COMPILE. The OWN keyword is optional, and is
normally not used. If specified, it will cause the compiled program to be
loaded into memory with the global variables allocated immediately after the
program, rather than being shared with other programs in high memory. This and
the EXPORT and OVERLAY keywords are discussed further in Chapter 8 and in the
optional Developer”s Guide.

Copyright (C) 1986 SMA Inc. Rev. C

3-26 Systems Management Associates, Inc. PROMAL LANGUAGE

ASSIGNMENT STATEMENT

The assignment statement is the simplest and most fundamental statement in
PROMAL (or in any other language). You are familiar with it in BASIC. 1Its form
is:

variable = expression

where expression can be a constant, a variable, a function, or a combination of
these in an arithmetic or relational expression. See the Syntax Diagrams in
Appendix P for all the possibilities. The assignment statement assigns the
contents of (or results of) the expression on the right side of the "=" sign to
the variable on the left side.

The variable on the left cannot be a DATA item. Here are some sample
assignment statements:

X=0
ENDPAGE = TRUE

SMALLX =MIN(X1,X2,X3)
VAL[I]=3.14159*RADIUS[I]*RADIUS[I]
YBIGGER = Y > X AND Y > 2

CONDITIONAL STATEMENTS

A conditional statement 1s a statement which alters the order of execution
of statements based on evaluating a condition. In BASIC, the conditional —
statements are IF, FOR...NEXT, ON...GOTO, and ON...GOSUB. PROMAL has condi-
tional statements which are more powerful and easier to read and understand
than the related BASIC statements. The PROMAL conditional statements are the
IF, WHILE, REPEAT, FOR, and CHOOSE statements.

IF STATEMENT

By far the most common conditional statement is the IF statement. It can
take several forms. The simplest form is:

IF expression

statement 1 TRUE
statement 2

FALSE

statement n v

In this form, the expression is tested, and if it is TRUE, then all the
indented statements following it are executed. If it is FALSE, then control
passes directly to statement n, on the same level of indentation as the IF.

For example:

IF X > 10
OLDX = X
X =10

Z=X

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-27

In this case, the conditional expression tests if X is greater than 10. If so,
then OLDX is set to X and X is set to 10. If not, the two statements after the
IF statement are skipped. In either event, the line Z = X is always executed.

BASIC programmers, please note that you cammot put THEN, GOTO, or anything
else on the same line as the IF, after the condition! You must put the state-
ments to be executed on the lines after the IF, and they must be indented. The
indentation must be exactly two columns to the right of the IF. The proper
indentation is easily obtained by using the TAB key (or CTRL I) in the PROMAL
EDITOR.

If you have ever taken any courses in programming, you probably were told
that indentation is a good way to show a program”s structure. PROMAL simply
enforces this concept. The indentation does show the structure of the program.
This is probably the most important feature of the PROMAL language. By using
indentation as a syntactical element of the language, PROMAL is able to do away
with a host of confusing statement delimiters and begin-end brackets which
pervade other structured languages.If you don"t indent, you”ll get an error
message when you compile your program.

A second form of the IF statement has an ELSE clause:

IF expression

statement 1 TRUE PALSE

ELSE
statement 2

statement n 2

()

In this form, the indented statements after the IF are executed if the express-
ion is TRUE, and the statements after the ELSE are executed otherwise. This
form is used to select one of two mutually exclusive paths. For example:

IF X > 100
POINTS = 3
ELSE
POINTS = 1

SCORE = SCORE + POINTS

If X is greater than 100, POINTS is set to 3 and control passes to the last
line. If X is not greater than 100, POINTS is set to 1 and control passes to

the last line.

The final form of the IF statement has one or more ELSE IF clauses before
the final ELSE, for example:

IF CHAR = "D~
DRAW

ELSE IF CHAR
ERASE

ELSE IF CHAR
EXIT

ELSE
OUTPUT "ILLEGAL COMMAND."

]
\
=
\

1
\
e
\

Copyright (C) 1986 SMA Inc. Rev. C

3-28 Systems Management Associates, Inc. PROMAL LANGUAGE

This form is used to choose one of a number of mutually exclusive paths.

Please note that the only thing that can follow an ELSE on the same line is an
IF and a condition. The ELSE without an IF must be the last ELSE associated
with the initial IF. Also be sure that ELSE and IF are typed as two words, not
one.

IF statements may be "nested” to any depth needed. For example:

IF X > 100 ;1
IF Y > X)
Z=34X ; 3
Y=0 ;4
ELSE ;5
Y=1 ; 6
IF X > 200 5 7
Z=Y-100 ; 8

Q=Y+Z i 9 '

In this example, each IF controls all the statements with greater indentation.
For example, if the first IF (statement 1) is false, then control will pass
directly to statement 9. If statement 1 is true, then statement 2 decides if
statements 3 and 4 should be executed or skipped. The only way statement 8
will ever be executed is if statement 1 is true, statement 2 is false, and
statement 7 is true. You should have no doubt about which IF statement an ELSE
"belongs to"; it is always the one with the same indentation.

Indentation plays a key role in making programs readable. You will soon be
able to just scan over a PROMAL program or subroutine and immediately be able
to understand its logic. Since PROMAL does not have a GOTO statement, there
will be no mystery as to how you get to a certain statement. By just looking
at the indentation, you will have a "picture” of the program organization.

WHILE STATEMENT

Next to IF, WHILE is the most commonly needed control statement .in PROMAL.
It has the following form:

WHILE expression
statement 1 TRUE

statement n FALSE

The WHILE statement evaluates the conditional expression. If it is TRUE, the
indented statements are executed, as in an IF statement. After the last
indented statement is executed, control returns to the WHILE statement and the
condition is re-tested. The loop is repeated until the expression evaluates as
FALSE; control then passes to statement n, which starts in the same column as
the WHILE statement. The indented statements in a WHILE loop may be executed
zero or more times. For example:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-29

SUM = 0
=0
WHILE X < XLIMIT
SUM = SUM + X
X=X+1
Z=X

This program fragment forms the sum of the integers from O to XLIMIT. At the
end of the loop, Z will be equal to XLIMIT.

REPEAT STATEMENT

A REPEAT statement is very similar to a WHILE statement, except that the
condition is tested at the end of the loop instead of the top. The REPEAT
statement has the following form:

REPEAT -

statement 1

UNTIL expression @
TRUE,

The indented statements are executed one or more times. After the first
execution of the indented statements, the conditional expression is evaluated.
If the result is FALSE, control passes back to the top of the loop. If the
statement is TRUE, control passes to the next statement after the UNTIL. For
example:

REPEAT
CHAR = GETC
UNTIL CHAR = “A”

GETC is a standard LIBRARY function which returns a key from the keyboard.
Therefore this loop waits for an “A” to be typed, ignoring all other input.

FOR STATEMENT

The FOR statement is similar to a BASIC FOR-NEXT loop, but is more restric-
tive. A FOR loop has the form:

FOR Iter = Low TO Hi
statement 1

statement n

Iter must be a variable of type WORD, and Low and Hi must be expressions which
evaluate to the lower and upper bounds for the loop. For example:

WORD BUFFER [100]

WORD I

FOR I = 0 TO 99
BUFFER [I] = O

Copyright (C) 1986 SMA Inc. Rev. C

3-30 Systems Management Associates, Inc. PROMAL LANGUAGE

will initialize the array BUFFER to O. Note that the iteration variable must
be a simple variable, not an array element or expression, and must be type
WORD. Also note that the loop must iterate upward, not downward (as is
permitted in BASIC). There is no "STEP" size option as in BASIC; the step size
is always 1. The indented block of a FOR loop is always executed at least
once, even if Low is greater than Hi. These restrictions allow the FOR loop to
execute very rapidly. If you need a FOR loop which doesn”t meet these
requirements, use a WHILE loop instead.

CHOOSE STATEMENT

The CHOOSE statement is a multi-way branch, somewhat similar to BASIC s
ON-GOSUB statement, or the CASE statement of Pascal. It has the following
form:

CHOOSE expression
choice 1
statement 1
choice 2
statement 1
ELSE
statement j

statement k

The CHOOSE statement works like a multiple-choice test. The expression 1is
evaluated, and each of the choices listed below is compared to it in success-
ion. When a match is found, the indented statements are executed. If no match
is found, the indented statements after the ELSE are executed (think of the
ELSE as "none of the above"). In any event, control always winds up at
statement k, the first non—-indented line after the ELSE. For example:

CHOOSE GETC
-8~
X=0
START
-c-
CONTIN
-L-
X=9999
LASTLINE
ELSE
PUT "Illegal key letter"”
X=1

The program fragment above inputs a character from the keyboard (functionm
GETC). If the character is “B”, then X is set to O and the START subroutine is
called, and control transfers to the last line (X=1). If the character is “C”,
the CONTIN subroutine is called instead, and control then passes to the last
line. If the character does not match any of the choices, then an error
message is output (the PUT does this), and control passes to the last line.

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-31

The choices for the CHOOSE must match the type of the expression in the
CHOOSE line exactly, and the expression must mot be type REAL. Note that this
means if you have a CHOOSE with an expression of type WORD or INT, and your
choices are small BYTE constants such as 0, 2, 100, etc., you must remember
to promote the choices to type WORD or INT.

WRONG! RIGHT

WORD NUM WORD NUM
CHOOSE NUM CHOOSE NUM
1 l:4+

PROCESS_} PROCESS_I
2 2:+

PROCESS 2 PROCESS_;
ELSE ELSE

PROCESS_OTHER PROCESS_OTHER

Any CHOOSE statement can be simulated with an IF statement with an appro-
priate number of ELSE IF clauses. However, CHOOSE will often be more efficient
since you do not have to spell out each comparison explicitly.

The CHOOSE statement also has an alternative form where the word CHOOSE
appears alone, for example:

CHOOSE

CHAR € 7 ~
CONTROLCHAR

CHAR > §7F
ILLEGALCHAR

ELSE
NORMALCHAR

In this form, each of the choices is evaluated in succession until one
evaluates TRUE. If all of the choices are FALSE, then the indented statements
after the ELSE are executed. This is exactly equivalent to. an IF with several
ELSE IF clauses, except you do not have to write the ELSE IF”s explicitly.

BASIC users should note that after the indented statements are executed
for one of the choices, control automatically passes to the first non-indented
statement after the ELSE; you do not need to put a GOTO after each like you do
for a BASIC ON-GOSUB. Also note that the ELSE is mandatory, because it indi-
cates the final choice ("none of the above”).

BREAK STATEMENT
Sometimes it is desirable to "break out” of a loop at a point other than

where the conditional test is done. The BREAK statement provides this capabi-
lity for WHILE and REPEAT loops (but not for FOR loops!). For example:

Copyright (C) 1986 SMA Imc. Rev. C

3-32 Systems Management Associates, Inc. PROMAL LANGUAGE

WHILE TRUE ; (do forever)
IF 18 = “(~
IF (I+1)@ >= “a” AND (I+1)E& <= "z~
IF (I+2)@ = 7))~
BREAK
I=I+1
FOUND=1

This program segment will search all of memory for a single lower case alpha-
betic character enclosed in parentheses. Executing BREAK causes control to
immediately pass to the statement after the end of the most recent WHILE loop
(i.e., to the FOUND=I statement).

NEXT STATEMENT

The NEXT statement is used to cause an immediate jump to the top of the
current WHILE or REPEAT loop (but mot a FOR loop). For example:

INQUOTE=FALSE

COUNT=0
REPEAT
CHAR = GETC
IF CHAR="""
INQUOTE=NOT INQUOTE
NEXT
IF INQUOTE
NEXT

COUNT=COUNT+1
UNTIL CHAR=CR

This program segment counts the number of characters typed up to the next
carriage return, excluding characters enclosed in quotes (including carriage
returns in quotes). The NEXT statements pass control back to the top of the
loop so as to ignore characters in between (and including) quotes. There may
be better and easier ways to do this —- this is just for illustration.

NOTHING STATEMENT

The NOTHING statement does not perform any action, and the PROMAL COMPILER
does not generate any object code for a NOTHING statement. This may seem of
dubious merit, but is actually useful. For example:

REPEAT
NOTHING
UNTIL GETC = CR

This loop simply waits for a carriage returu from the keyboard, ignoring all
other characters. The NOTHING statement fulfills the syntactical requirement
that at least one indented statement must follow the REPEAT, but it performs no
action. If you tried to leave out the NOTHING statement, you would get an
error message from the compiler.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-33

SHORTCUTS FOR CONDITIONAL STATEMENTS

You may recall that TRUE is represented by a byte with value 1 and FALSE by
a byte with value 0. Several "shortcuts” can be used to take advantage of this
fact to generate faster executing PROMAL statements. First of all, for a
variable FLAG of type BYTE,

IF FLAG=TRUE
can be written equivalently but more economically as:

IF FLAG

Also the sequence:

IF X > 100
FLAG = TRUE
ELSE

FLAG = FALSE
can be more economically written as:
FLAG = X > 100
ESCAPE AND REFUGE STATEMENTS

The ESCAPE statement and REFUGE statement are unique to PROMAL and do not
have a counterpart in other structured languages or BASIC. PROMAL, like many
modern structured languages, does not have a GOTO statement, which results in
much cleaner, more readable and more bug-free programs. There are occasions
when you might wish you had a GOTO. This is best illustrated by an example.

Suppose you had a complex application program, with many layers of subrout-
ines. Suppose further that at some low-level subroutine you come to a point
where you need a piece of logic that could be paraphrased as:

IF Disaster
Print error message
Exit back up to the top level routine.

This is a common problem. Unfortunately, other languages do not provide a way
to "exit back up to the top level routine”. Instead, you must "unwind” all the
CALLs with RETURNS. In other structured languages, you typically "solve"” this
problem by testing some global "Disaster” flag after returning from a lower
level subroutine to short-circuit further processing, for example:

LOWERSUB ; call lower subroutine
IF DISASTER ; if had problem in LOWERSUB
RETURN ; don”t go any further

Each higher level subroutine would perform the same logic, uatil you "unwind”
all the way back up to the desired routine. While this method works, it is
unwieldy and dilutes the performance and clarity of the program with a lot of
duplicate error checking.

Copyright (C) 1986 SMA Inc. Rev. C

3-34 Systems Management Associates, Inc. PROMAL LANGUAGE

PROMAL solves this problem a different way. The REFUGE statement can be
thought of as an "executable label”, and the ESCAPE statement as a GOTO which
can exit back to a previously executed REFUGE.

The syntax of the ESCAPE and REFUGE statements is:

REFUGE n
ESCAPE n

where n is a constant between O and 2, allowing up to 3 different "refuges” to
be defined concurrently in a single program. (Note: actually, there is also a
REFUGE 3, but this is reserved for a special purpose and is described in the
optional DEVELOPER”S GUIDE). Executing:

REFUGE 2
defines the statement after it as refuge number 2. Subsequently executing:
ESCAPE 2

will cause an immediate re-entry into the last subroutine (or main program)
executing a REFUGE 2 at the line after the REFUGE statement, and will restore
the context of the subroutine at that point. By restoring context, we mean
that all intermediate variables, return addresses, etc., which would normally
be "pending” when a RETURN is executed are discarded, up to the point where the
refuge was executed. An ESCAPE is somewhat like a NEXT or BREAK statement,
except that instead of just jumping to the beginning or end of a loop, you can
jump to anywhere you“ve been before. It is the programmer”s responsibility to
insure that you do not try to ESCAPE to a REFUGE in a routine that has already
returned (which will leave control in no-man”s land!). On the next page is an
example of fragments of a program using a REFUGE and ESCAPE:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-35

PROC ERROR ; print error message and escape
ARG WORD ERRNO

BEGIN

PUT NL, ERRORMSG[ERRNO],NL ;display message
ESCAPE 1

END

PROC CHECKCHAR

BEGIN

IF CHAR <> LEGAL
ERROR 3

END

PROC PROCESSWORD
CHECKCHAR
END

PROC DOPHRASE
PROCESSWORD
END

PROC DOLINE
REFUGE 1 ;Come here after error
WHILE GETL(LINE)

DOPHRASE

END

Copyright (C) 1986 SMA Inc. Rev. C

3-36 Systems Management Associates, Inc. PROMAL LANGUAGE

CHAPTER 5: PROCEDURES AND FUNCTIONS

PROMAL provides a greatly enhanced subroutine capability compared with
BASIC. Some of the most important characteristics of PROMAL subroutines are:

1. Subroutines may be either PROCedures or FUNCtions. Functions return a
value which may be used in an expression. Procedures do not return a
value.

2. Both procedures and functions must be defined (or "declared”) before
they can be called.

3. Functions and procedures are called by merely referencing their name in
a statement.

4. Both procedures and functions may be passed ARGuments which they may
operate on.

5. Both procedures and functions may have local variables which are kaoown
only within the scope of the subroutine. These local variables may
duplicate other names outside the subroutine without interference.

6. Procedures and functions may be called recursively.

Let us now explain these concepts and show how to make effective use of
subroutines.

BUILT-IN FUNCTIONS AND PROCEDURES

PROMAL does not have any built-in statements to do input and output, like
BASIC PRINT and INPUT statements. Instead, PROMAL relies on a LIBRARY of
pre—defined subroutines and functions to provide input and output. These
routines are always resident in memory, and are used by the EDITOR, EXECUTIVE,
and COMPILER as well as programs you write. When you use these subroutines,
they could easily be mistaken for a special statement. For example:

OUTPUT "Hello World!"”

appears just like a statement. There is no "CALL" or "GOSUB" keyword to reveal
that this is really a subroutine call, with a passed argument of "Hello
World!”. This is no accident. A design intent of PROMAL is that subroutines
should give you much of the power of adding your own statements to the lang-
uage. You call subroutines of your own in the same way.

The built—-in subroutines are described in detail in the LIBRARY MANUAL. At
this point we would like to introduce you to just the most important of these
routines, so that you can perform basic input and output operations.

Before you can call a subroutine, you must define it. For the LIBRARY
subroutines, this is done by having the following statement near the top of
your program:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-37

INCLUDE LIBRARY

This defines all the standard LIBRARY routines to the PROMAL compiler. For
now, it is sufficlent for you to know that this LIBRARY gives the name and
location of each of the built-in routines. You can display the Library with a
TYPE L command from the EXECUTIVE.

SIMPLE OUTPUT

Probably the most fundamental of the standard procedures is called PUT. It
outputs single characters or strings to the screen. It can have one or more
arguments. For example:

PUT "Hello world!",NL

This statement calls the PUT procedure and passes it two arguments to be
displayed. The first argument is the string "Hello world!", and the second
argument is NL, the pre-defined "newline” character (which is the ASCII control
character CR and has the value 13 for the Apple/Commodore version of PROMAL) .
Unlike a BASIC PRINT statement, you must explicitly output an NL each time you
want to start a new line. This makes it easy to build up a composite line with
several calls to PUT.

Please note that, unlike BASIC, you canmot print the numeric value of a
variable with the PUT statement. You can only print strings or characters. To
print a numeric value, you will want to use the OUTPUT procedure.

FORMATTED AND NUMERIC OUTPUT

OUTPUT is a procedure for performing formatted output to the screen. It
accepts one or more arguments. The first argument must be a string. It is
called a format string, because it tells the format in which any additional
arguments should be printed. If you have ever used a BASIC version which
supports PRINT USING, OUTPUT is similar. Actually, it is most similar to the
PRINTF function in the C language. .

The format string contains text to be printed on the screen as well as
formatting information. The special lead—-in character # is used to start a
field specification (sometimes called a field descriptor), which tells how to
print something. For example:

INT SECS

SECS = 673
OUTPUT "The answer is #I seconds.”, SECS

These statements will display:
The answer is 673 seconds.
The value of the argument SECS replaces the format field specification #I. The

"#1" indicates that the second argument should be displayed as an integer. The
most commonly needed field specifications include:

Copyright (C) 1986 SMA Inc. Rev. C

3-38 Systems Management Associates, Inc. PROMAL LANGUAGE

#1 Print the argument as a signed integer number.

W Print the argument as an unsignéd number (not for REAL variables!)
4 Priant the argument as a hexadecimal number.

i#ts Print the argument as a string.

#C Print a carriage return.

#E Print the REAL argument in scientific notation.

#R Print the REAL argument with a decimal point.

The OUTPUT statement can have more than two arguments. The format string must
have a field specification for each argument to be printed. For example:

WORD N

N = 257
OUTPUT "#C#W decimal = #H hexadecimal.",N,N

will display:
257 decimal = 101 hexadecimal.

after a carriage return. Notice that the #C does not go with any argument; it
just prints a carriage return.

You can also specify a "field width"” in the format string (for example, to
make columns of numbers line up). These options are fully described in the
LIBRARY MANUAL. For REAL output, you normally specify both a field width and
the number of decimal places to be displayed, in the form:

#w.dR

where w is the field width (from 3 to 12 characters), and d is the desired
number of decimal places. For example:

REAL BUCKS

BUCKS = 276.10
OUTPUT "$#7.2R",BUCKS

will display:

$ 276.10
whereas BASIC would always print $ 276.1 instead.
SIMPLE INPUT

Now that you know how to output to the screen, let”s see how you input from
the keyboard. The procedure GETL is used to get one line from the keyboard and
store it in an array as a string. GETL allows all editing features (backspace,

insert, delete, CTRL-B, etc.) allowed by the EXECUTIVE. It returns when the
RETURN key is pressed. For example:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Assoclates, Inc. 3-39

BYTE LINE[81]

GETL LINE

reads one line from the keyboard and puts it in array LINE. After the call,
the LINE array will be terminated by a 00 byte. It will not include the
carriage return. Normally only one argument is present for the GETL procedure,
and that argument is the address of where to put the line. Remember that the
name of an array without a subscript evaluates as the address of the array.
Optionally, you may include a second argument which is the maximum line length
to accept (excluding the O byte terminator). For example:

GETL LINE, 20

will read a line from the keyboard up to 20 characters long. Additional
characters on the line will be ignored. If the second argument is not
specified for GETL, a maximum of 80 characters can be input.

The GETL statement is much more powerful than a BASIC INPUT statement
because GETL supports a complete set of line-editing keys, as shown in Table 1
of the USERS MANUAL. These keys are consistent with the editing keys used in
the PROMAL EXECUTIVE and EDITOR.

One of the most useful features of GETL is the ability to recall prior lines
by pressing CTRL-B. Another powerful feature for many applications is the use
of function keys to "call up” pre-defined strings of up to 31 characters (much
like many commercial "keyboard enhancers”). The LIBRARY MANUAL describes how
to use FKEYSET to define a string to be substituted for a function key.

NUMERIC INPUT

How do you read in a numeric value from the keyboard? This is not quite as
simple in PROMAL as in BASIC, because PROMAL does not have a built—-in statement
to read a number. Instead, you do it in two parts. First, you read a line
into a buffer as described above. Then you convert the value represented by
the string using function STRVAL or STRREAL. STRVAL converts a string to the
numeric value it represents of type INT, or WORD. STRREAL is used to convert
type REAL numbers. It is similar to the BASIC function VAL. For example, to
read a number called HEIGHT from the keyboard, you could write:

BYTE BUF [81]

WORD HEIGHT

BYTE INDEX

GETL BUF

INDEX = STRVAL(BUF,#HEIGHT)

The STRVAL function expects at least two arguments. The first argument is the
address of the string to be converted. The second argument is the address of
the variable to receive the value. To specify the address of the variable
(rather than the value), you need to specify the # operator, as shown above.
Forgetting the # in front of the variable is a common error that results in the
value being installed at whatever address is the current value of HEIGHT, so be
careful! Also remember that the destination variable must be type WORD or INT,

Copyright (C) 1986 SMA Inc. Rev. C

3-40 Systems Management Associates, Inc. PROMAL LANGUAGE

not BYTE. Besides installing the value of the number into HEIGHT, function
STRVAL will return an index of type BYTE. This index indicates the number of
characters which were scanned in the string before the end of the number. If
the INDEX is returned as 0, it indicates that no numeric digits were entered,
probably representing an error condition. For example, 1f you typed

123

then INDEX would be returned as 3 and HEIGHT as 123. This method may seem a
little ungainly and roundabout at first, but it allows a great deal of
flexibility and programmer-defined error recovery, which is essential for
serious programming. STRVAL also supports hexadecimal input, formatted input,
and variable numbers of inputs on a line. These options are described in the
LIBRARY MANUAL.

BASIC users accustomed to using the INPUT statement to prompt for a numeric
input from the keyboard and input it may want to incorporate the following
general purpose PROMAL routine. This INPUTR function will give a prompt for
input and return the REAL value that the user enters from the keyboard. If an
illegal input is entered from the keyboard, it repeats the prompt.

FUNC REAL INPUTR ; Prompt
; Prompt for numeric input from keyboard, return one REAL value.
ARG WORD PROMPT ; Desired prompt

REAL TEMP ; Value to be returned

BYTE INDEX ; Index to # chars scanned

OWN BYTE BUF[21] ; Temp buffer for typed input line
BEGIN

REPEAT

PUT NL,PROMPT ; Display prompt

GETL BUF,20 ; Get typed input

INDEX=STRREAL(BUF, #TEMP)

IF INDEX=0 ; No legal digits?

PUT NL,"Please enter a numeric value”

UNTIL INDEX > O
RETURN TEMP ; Return value typed in
END

A sample program fragment using this routine for input might look like this:

REAL HEIGHT

REAL WIDTH

REAL AREA

HEIGHT=INPUTR ("Height of triangle? ")

WIDTH = INPUTR("Base of triangle? ")

AREA=0.5*HEIGHT*WIDTH

OUTPUT "#CArea of triangle is #12.4R square units.#C", AREA

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-41

An example in the STRVAL section of the LIBRARY MANUAL contains a variation of
the routine above for entering WORD or INT data instead of REAL values. For
your convenience, both these functions are provided on disk as source files
INPUTR.S and INPUTW.S, so you can easily include them in your programs or
modify them to suit your individual needs.

The LIBRARY contains many more Input—Output routines, including file input
and output. We will postpone a discussion of these routines until later.

USER-DEFINED SUBROUTINES

When you define your own PROMAL subroutine, you write it in the following
general form:

{header}
{arguments}
{local variables}
BEGIN

{body}

END

The {header} is a single line that identifies the start of the subroutine.
It has the form:

PROC name
or
FUNC Type Name

which defines whether the subroutine will be a procedure or a function. For
example:

PROC SORT
declares the start of a procedure called SORT.
FUNC BYTE TESTPORT

declares the start of a function called TESTPORT which will return a value of
type BYTE. The type returned may be BYTE, WORD, INT, or REAL.

The {arguments} and {local variables} will be discussed very shortly.

The {body} part of the procedure or function is contained between the BEGIN
and END statements. It contains the executable statements of the procedure or
function. When program control reaches the END statement, the subroutine will
return to the calling program. Optionally, the RETURN statement can be used to
return before the END statement.

For FUNCtions, a RETURN statement is required and must be followed by an
expression which evaluates to the value to be returned by the function. For
example:

Copyright (C) 1986 SMA Inc. Rev. C

3-42 ' Systems Management Associates, Inc. PROMAL LANGUAGE

RETURN YVAL+1

will return the value of YVAL+l as the value of the functioan. Function values
will be covered in more detail shortly.

PASSED ARGUMENTS

A powerful feature of PROMAL is the ability to use arguments passed to
procedures and functions. BASIC does not support passed arguments (except in a
very limited sense in simple function definitions using FNx, which is rarely
used). To use passed arguments, the PROMAL subroutine definition should
include one argument declaration line for each argument which is to be passed
to the subroutine. An argument declaration looks like a simple variable
declaration, with the word ARG in front:

ARG Type Name

Type is the desired data type which may be BYTE, INT, WORD, or REAL. Name is
the desired name of the subroutine, formed in the same way as other variable
names.

For example:

PROC SORT
ARG WORD N
ARG WORD PTR

declares two passed arguments, N and PTR, both of type WORD. The order in
which the arguments are declared is the same as the order in which the corres-
ponding values will be passed. For example, if the SORT procedure above was
called with:

BYTE ARRAY[100]

SORT 26, ARRAY

then when SORT begins executing, N will have the value of 26 and PTR will have
the address of ARRAY. As you can see, a procedure is called by simply writing
the name of the procedure to be called. Arguments are passed by putting the
arguments after the procedure name. Each argument can be an expression, and
arguments are separated by commas. When you call a procedure or function which
you have defined, the number of arguments must agree exactly with the number
you declared, or you will get an error message from the compiler. The initial
value of the arguments depends entirely on the values passed.

If the routine is later called with:
SORT CURSIZE+l, BUFFER

then N will have the value CURSIZE+l and PTR will have the value BUFFER. As
you might imagine, this substitution process makes subroutines very versatile.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-43

A very important fact about arguments is that the names declared for passed
arguments are local to the subroutine. This means that the name declared has
meaning only within the subroutine where it is declared. It may duplicate a
name used outside the subroutine for another purpose without harm. Technical-
ly, we say that the scope of the variable is local to the subroutine. This
means that you can write a subroutine for one program and later copy it into
another program without having to worry if the names you chose for argument
variables will "collide" with some other variable names already in use. For
example, suppose the following program fragment calls our sample routine:

N=11

SIZE=17

SORT SIZE,BUF
Z=N

After the SORT routine returns, what will be the value of N when it is assigned
to Z? Will it still be 11 or will it be 17 because SIZE is 17 and was substi-
tuted for N in the SORT routine? The answer is that N will still be 11,
because the N in the subroutine is only meaningful within the subroutine where
it is declared.

PROMAL passes arguments on a "call by value” basis, with arguments passed
on the microprocessor”s hardware stack. This means that when you pass an
argument to PROMAL, the argument is evaluated and this value 1s substituted for
the local variable. Therefore, if the local variable”s value is altered within
the subroutine, it will not affect the value in the calling routine. For
example, suppose that part of our SORT routine looks like this:

PROC SORT
ARG WORD N
ARG WORD PTR
BEGIN

Assuming we call the subroutine with:

SIZE=17
SORT SIZE, BUFFER

What will be the value of SIZE when the subroutine returns? Will it still be
17 or will it be 0? It will be 17, because the variable N is local to the SORT
routine, and contains a copy of the value of SIZE, not the SIZE variable
itself.

A passed argument need not have the same type as the type declared for the
variable in the subroutine, although in general it is good practice to make
them the same. If you pass a BYTE argument to a variable declared to be a
WORD, the value will be converted to a WORD as it is passed. For example:

BYTE SIZE
SIZE=10
SORT SIZE, BUFFER

Copyright (C) 1986 SMA Inc. Rev. C

3-44 Systems Management Associates, Inc. PROMAL LANGUAGE

will work properly, even though SIZE is type BYTE and will be substituted for N
inside the subroutine, which has a declared type of WORD. Technically, the
declared variable is sometimes called a "formal parameter” and the value passed
in the call to the subroutine is called an "actual parameter”.

Although a BYTE actual parameter may be passed to a routine with a WORD
formal parameter, you should be very careful to only pass a REAL argument to a
REAL formal parameter. Passing REAL variables to a routine expecting BYTE, INT
or WORD arguments will produce very strange results!

Sometimes you may want to modify a global variable which is passed as an
argument to a subroutine. In this case, the usual procedure is to pass the
address of the variable to be changed to the routine, and let the routine set
the value using the globally pre-defined array M, which is defined in the
library to be an array of bytes encompassing all of memory. For example, our
subroutine SORT may wish to sort the array of bytes pointed to by PTR. To set
the first value of this array to O, for instance, we could write in the body of
our subroutine:

M[PTR]=0

Arguments must be declared as simple (unsubscripted) variables. You may
not declare an argument which is an array. This does not mean that you can’t
access a global array from inside a subroutine. You may do this freely. You
cannot declare the array inside the subroutine. It is also possible for a
subroutine to operate on an array whose address is passed as an argument. In
our example procedure, SORT, the array BUFFER was given as the second
argument. Remember that when an array name is used without a subscript, PROMAL
generates the address of that array. Therefore our call will pass the address
of the array to the subroutine, which is why PTR is declared to be a WORD.
Since PTR contains the address of the start of the array, elements of the array
can be accessed using the indirect operators, or by the M array as shown
above. For example:

BYTE BUFFER[10]

PROC SORT

ARG WORD N

ARG WORD PTR

BEGIN

IF PTRE > (PTR+1)&

o0

END

SORT 10,BUFFER

The IF statement above will compare the value of the first and second bytes of
the array BUFFER.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-45

Installing a REAL value into a variable whose address is passed as an
argument can be accomplished by a block move of exactly 6 bytes from the
address of the local variable to the desired destination. See BLKMOV in the
LIBRARY MANUAL for information on block moves.

LOCAL VARIABLES

A local variable is similar to an argument, but has mno initial value
defined. Local variables are known only within the subroutine in which they
are declared, and "disappear” when the routine returns. Local variables are
most often used for temporary storage within the routine. Local variables
should be declared after the last ARGument in the procedure or function. A
local variable declaration appears the same as a simple global variable
declaration. For example:

PROC SORT
ARG WORD N
ARG WORD PTR
WORD I

BYTE CHAR

declares two local variables, I and CHAR. The compiler knows these are local
variables and not global variables because they are declared within the subrou-
tine. Except for having no initial value, local variables behave identically
to arguments. In particular, they are allocated on a stack and therefore must
be simple variables, mot arrays.

To illustrate the concepts of global and local variables, here is a com-
plete, simple function which returns the number of blanks in a string. Remember
that a PROMAL string is an array of bytes terminated by a $00 byte.

FUNC BYTE NUMBLANKS ; string
; return # blanks in string
ARG WORD STRINGPTR ;address of string
BYTE N scounter
BEGIN
N=0
WHILE STRINGPTREK

IF STRINGPTREK =~ ~

N=N+1

STRINGPTR=STRINGPTR+1
RETURN N
END

There are a number of important concepts here. First, the line
WHILE STRINGPTREK

will evaluate TRUE as long as the byte pointed to by STRINGPTR is not O; that
is, not end-of-string. Second, the line

STRINGPTR=STRINGPTR+1

Copyright (C) 1986 SMA Inc. Rev. C

3-46 Systems Management Associates, Inc. PROMAL LANGUAGE

is perfectly legal and does not change the address of the original string
passed to the subroutine. STRINGPTR is local to the subroutine and is initial-
ized to point to the start of the string, and can be used to step through the
string one character at a time.

Finally, notice that the variable N, which is used to count the number of
blanks, must be initialized to O explicitly because PROMAL does not initialize
local variables to anything. The result of the function is returned via the
RETURN N statement.

If you call this function with the statement:
NB = NUMBLANKS("Hello there everybody!")

then NB will be set to two. Notice that functions, unlike procedures, must be
called with the arguments enclosed in parentheses. This is because a function
can be part of a larger expression, for example:

GETL MYMSG
NBPl = NUMBLANKS(MYMSG) + 1

will set NBPl to the number of blanks in MYMSG plus 1.

OWN VARIABLES

Local variables may not be arrays, and the value associated with a local
variable "disappears” upon exit from the subroutine in which it is defined
(because space for the variable is allocated on a stack). This meets the
requirements of the vast majority of variables in subroutines. Sometimes
though, you may want to have a variable known only within the subroutine, but
which is an array or needs to preserve its value from call to call. This can
be done by declaring an OWN variable. For example, the statements:

OWN BYTE TEMPBUF[8]
OWN WORD COUNT

declare two variables whose names are local to the subroutine in which they are
declared, but which will maintain their values through multiple subroutine
invocations. The most common use of OWN variables is to provide a scratch
array needed for intermediate processing by a subroutine. OWN variables should
be declared after all arguments and local variables, but before the BEGIN
statement in a subroutine.

GOOD PROGRAMMING PRACTICE WITH SUBROUTINES

It is considered good programming practice to add a comment after the
header line of a procedure or function definition which tells the function of
the subroutine, what it expects for 1input, what it returns for output, etc.
Many PROMAL programmers like to put a comment at the end of the header line
listing the required arguments. If you do this, it will be easy to refer to
the header line for a quick reminder of what arguments are expected. Finally,
it is a good idea to put a comment on each argument declaration and local
variable, identifying the purpose of the variable and any constraints on its
use.

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-47

You should make frequent use of procedures. It is generally best to keep
procedures short. Most PROMAL routines should have only a few lines of code.
The PROMAL COMPILER, EDITOR, and EXECUTIVE contain hundreds of subroutines with
less than twenty lines of code. If you have a procedure of more than about 50
to 100 lines, it should probably be broken up into lower-level subroutines. It
is often a good idea to use procedures for various phases of processing, even
if the procedures are only called in one place in the entire program. PROMAL
subroutine calls require very little overhead time. Therefore in general you
need not worry about extra procedure calls slowing down your program the way
GOSUBS slow down BASIC. Remember, PROMAL doesn”t have to search for your
subroutines the way BASIC does. The PROMAL compiler generates the address of
the routine during compilation, so calls are very. fast, and take the same
amount of time no matter where in the program the subroutine definition is
located.

Subroutines are named the same way as variables. It is often a good idea
to pick a verb which describes the main action of the subroutine for its name.
Then when you call the subroutine with one or more arguments, the statement
will be very readable, for example:

DISPLAY SPACESHIP
calls procedure DISPLAY with an argument of SPACESHIP.

You can learn a lot about procedures and functions by studying the sample
programs on the PROMAL diskette.

RECURSION

PROMAL fully supports recursion. This means that it is permissable for a
procedure or function to call itself, or for procedure A to call procedure B
which in turn calls procedure A again. This capability is very important in
certain programming disciplines, such as writing compilers, artificial intelli-
gence applications, and in symbolic math. It is also possible to have forward
references to procedures and functions. Techniques for recursive programming
are described in Appendix J.

The ability to perform recursion on the Commodore 64 and Apple II is
limited by the architecture of the 6502 processor, which only has a 256 byte
stack. Although PROMAL has been carefully written to work around this limita-
tion as much as is practical, you should not expect too many levels of nesting
(or recursion) before you get a STACK ERROR message. You will use up more
stack space as the number of local variables or passed arguments increases. A
typical function with one passed argument and one local variable can call
itself about 40 times before stack overflow occurs. This is why it is possible
to get a stack overflow error while compiling a program with an expression that
is very complicated and uses many levels of parentheses. The compiler uses
recursion extensively to parse statements and can run out of stack space as
repeated recursive subroutine calls are made to process complex statements.

Copyright (C) 1986 SMA Inc. Rev. C

3-48 Systems Management Associates, Inc. PROMAL LANGUAGE

USING THE INCLUDE STATEMENT FOR MULTIPLE SOURCE FILES

For large programs, it is not practical to edit the entire program at once.
Instead, you should break up your source program into several files. Your
main file can then have an INCLUDE statement for each of the sub-files. You
have already seen how the INCLUDE statement is used to include the LIBRARY
definitions in your program. You can do the same thing for your own programs.
For example, the statement:

INCLUDE FILESUBS

will cause the compiler to pause at this point in the main file and compile all
the lines in the file FILESUBS.S before continuing.

You may put an INCLUDE statement anywhere you can put a declaration. A
".S" extension will be assumed for the file name if one is not specified. The
INCLUDE file can have a drive or directory prefix. For the Commodore 64, due
to limitations of the Commodore 1541 disk drive, you cannot have nested include
files (that is, a file INCLUDEd in the compilation cannot itself contain
another INCLUDE statement). For the Apple II, INCLUDE files may be nested up
to 3 deep. However, you may need to specify more than three buffers for ProDOS
(see the BUFFERS command in the PROMAL USER”S GUIDE) in order to use nested
INCLUDEs. INCLUDE statements can also be used to import definitions from
separately compiled modules, as is described later in the LOADer section.

ENABLING AND DISABLING LISTING OUTPUT WITH THE LIST STATEMENT

The L option on the COMPILE command is used to enable listing output for
the compiler. When making a listing, you can also disable the listing for
parts of your program with the LIST statement. The LIST statement can appear
anywhere a declaration can appear. It can have either of the following forms:

LIST Constant
or
LIST

The first form enables the listing if Constant evaluates to a non-zero
value and disables the listing if it is zero. The second form restores the
listing mode to whatever it was prior to the previous LIST (on or off). This
form is useful at the end of a subroutine package which has the listing turned
off, where it is not known if you will want the listing ON or OFF after the end
of the subroutine package.

You may have any number of LIST statements in a program. If the L option
is not specified on the COMPILE command, no listing will be made regardless of
any embedded LIST statements. For an example, if you TYPE L, you will see how
the listing of the LIBRARY is disabled.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-49

CONDITIONAL COMPILATION

Sometimes you may have several versions of a program which vary only
slightly. For example, the PROMAL EXECUTIVE is slightly different for the
COMMODORE 64 version and the APPLE II version. In cases like this, you may
wish to take advantage of PROMAL"s conditional compilation capability.
Conditional compilation allows you to generate several versions of a program
from a single source file (perhaps with INCLUDEs), by specifying which version
you wish to compile on the COMPILE command line. Here”s how it works.

Inside your program source file, you can "bracket" the source lines which
should only be compiled for a certain version. This is done by inserting a
line above the first version—dependent line, containing a question mark in
column one followed immediately by a single character representing the version
for which the following lines are to be assembled. For example, you might
choose “A” for an Apple-dependent portion and “C” for a Commodore-dependent
section:

PROGRAM MYPROG
INCLUDE LIBRARY

7A
PUT NL,"The COLOR command is not supported on the Apple.”
?

?C
COLOR=NUMVAL
?

In this example, there are two conditionally compiled blocks, each of a
single line. The first block is started by the ?A and is only intended to be
compiled if we want an Apple version. The ? by itself (exactly in column 1)
terminates this block. The second block is started by ?C and terminated by
the second plain ? character.

Selecting which (or neither) block should be compiled 1s selected by the V
(version) option on the COMPILE command. For example,

COMPILE MYPROG V=A
will cause the Apple version to be compiled, and
COMPILE MYPROG V=C

will cause the statement COLOR=NUMVAL to be compiled instead. If you don’t
specify either V=C or V=A on the command line, then neither block will be
compiled.

Conditional compilation is sort of like a simple IF statement, except that
if the conditional block is skipped, the compiler does not generate any code at
all for those statements; the result is equivalent to removing them with the
EDITOR (or, more precisely, to "commenting them out” by putting a semi-colon in
front of each).

Copyright (C) 1986 SMA Inc. Rev. C

3-50 Systems Management Associates, Inc. PROMAL LANGUAGE

You can specify a conditional block for either or two or more versions. For
example:

?AC

starts a conditional block which will compile if either V=A or V=C is
specified, but won"t otherwise.

If no V option is specified, the compiler will compile a block which starts
with

7%

if it appears. This is useful for embedding an error message to remind the
user that a version must be specified on the command line. For example:

PROGRAM MYPROG

7%

*%% YOU MUST SPECIFY V=A OR V=C TO COMPILE THIS PROGRAM! **%*
?

INCLUDE LIBRARY

If you compile this program without the V option specified, the compiler will
attempt to compile the warning line, giving an error message and displaying the
line. If you specify a V option, the warning will not be compiled.

You may have any number of conditional blocks in a program. However, you
may not nest conditional compilation blocks (that is, you can”t have a
conditional block inside another conditional block). The size of a conditional
block is arbitrary, and may span INCLUDE files. It is your responsibility to
insure that each block is terminated by a ? in column 1. You may have any
number of single character version indicators following the ? character which
begins a conditional block, but you may specify only one character on the V
command line option (if you specify more, all but the first character will be
ignored, so V=APPLE is equivalent to V=A). :

The RELOCATE.S file on the PROMAL SYSTEM DISK illustrates the use of
conditional compilation.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-51

CHAPTER 6: INTERFACING

This chapter describes how your PROMAL program interfaces with its
environment, including:

1. Disk files.

2. The printer.

2. The EXECUTIVE. :

3. Your Apple II or Commodore 64 computer hardware.

FILES AND DEVICES

The PROMAL USERS GUIDE contains a section on the requirements for naming and
using PROMAL files and devices on your computer. You may wish to review this
material, particularly Table 3 and Table 4, before proceeding with this
section, which describes how to input and output to files and devices from
within your PROMAL program. In particular, please remember that PROMAL file
names normally have at least two characters, while device names have a single
character. Also remember that the system will normally assume a default file
extension of ".C" for file names if no file extension is specified.

PROMAL provides functions and procedures in the LIBRARY to input and output
to files and devices. The same routines may be used to access a file or
device (such as the printer).

OPENING ARD CLOSING FILES

Before a file or device can be accessed, it must be opemed. The library
function OPEN performs this task. The OPEN function returns a file handle
(sometimes called a file descriptor), which is a pointer to a table maintained
in memory by PROMAL, used to control file 1/0. This file handle should be
assigned to a variable of type WORD. Once the file is open, the file handle
can be used to direct subsequent I/0 to the file desired. For example:

WORD INFILE

INFILE = OPEN("MYFILE.D",”R")

opens file MYFILE.D for reading. The second argument must be of type BYTE (not
string!) and indicates the mode of operation, chosen from the following:

“R” (or omitted) Open the file for read access.
W Open a new file for write access.
“A” Open an existing file for append access.

“B~ (Not available on Commodore) Open for both read and write access.

If the file handle is returned as O, then the open was not successful, and
an error code is available in a globally predefined variable called IOERROR.
IOERROR will be one of the following:

Copyright (C) 1986 SMA Inc. Rev. C

3-52 Systems Management Associates, Inc. PROMAL LANGUAGE

IOERROR Meaning (if file handle returned as 0)

No error, normal result

Illegal mode character

Illegal file or device name

Disk drive is not ready (or wrong volume name for ProDOS)

File not found

File already exists (for "W~ access attempt)

No free channels or buffers (too many open files)

Attempt to write on write-protected disk ("W~ or “A” access)
Other Other error, see Commodore 64 disk manual or Apple ProDOS manual.

NoOwmesAWN~=O

You should always test for an open failure before attempting I/0O to the file or
device. For example:

WORD INFILE ;file handle for input file
INFILE = OPEN ("MYFILE.D",”R7)
IF INFILE = O
IF IOERROR=4 ;the most likely error
ABORT "MYFILE.D file not found."”
ABORT "#CDisk OPEN error #W",IOERROR
; Open was successful...

You can also open the devices for input or output in the same way, for
example:

INFILE = OPEN ("W",”R")

opens the Workspace for read access. Recall that the Workspace is a single
in-memory file with a fixed maximum size (variable size for the Commodore 64).

WORD PRINTER
PRINTER=0PEN("P","W")
IF PRINTER=0

PUT NL,"CANT OUTPUT TO PRINTER"

opens the printer device for output and checks the file handle for a successful
open.

FUNCTIONS FOR FILE AND DEVICE 1/0

Probably the most commonly used routines for accessing files are GETLF and
PUTF. Function GETLF gets a line of text from a file or device, and procedure
PUTF outputs characters or strings to a file or device. The first argument for
all file-access routines must be the file handle of the previously-opened
file or device. Function GETLF returns TRUE if it successfully got a line, and
FALSE if end-of-file was encountered immediately. For example:

WHILE GETLF(INFILE, BUFFER)

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-53

reads a line from the file opened successfully with file handle INFILE and
installs a line into the array BUFFER, which is assumed to have been previously
declared as an array of bytes. The WHILE statement is frequently used in
conjunction with this function to continue reading until end-of-file. The body
of the WHILE loop contains whatever processing is to be done on the line. You
may specify an optional third argument on function GETLF which specifies the
maximum number of characters to be returned from the line. GETLF should only
be used to read text files, not compiled programs.

Procedure PUTF is similar to the screen-output routine, PUT, except that
the first argument must specify the file handle of a successfully-opened
file or device. For example:

WORD OUTFILE
OUTFILE = OPEN ("MYFILE.T", "W7)
IF OUTFILE = O
PUT "Unable to open MYFILE.T for output.”
ABORT
PUTF OUTFILE,"This line goes to MYFILE.T",NL
PUTF OUTFILE,"So does this.”,NL

e e

Like PUT, PUTF can contain any number of strings or single character argu-
ments to be output. It will not output a carriage return unless explicitly
indicated. PUTF can put any kind of data byte out to a file, not just print-
able characters.

The OUTPUTF procedure is equivalent to the OUTPUT procedure for formatted
output, except that the first argument must be the desired file handle. For
example:

OUTPUTF OUTFILE, "#C#H #S",LINENUM,LINE
outputs to the file previously opened.

Other functions are available for single character and block input-output
to files and devices. These are described in the LIBRARY MANUAL.

STDIN AND STDOUT FILE HANDLES

When your PROMAL program begins, you already have two open file handles
available for use. These are the globally predefined WORD variables STIDIN and
STDOUT. By default, these file handles normally point to the keyboard and
screen, respectively. However, they can be redirected to any file or device
when your program is executed by an EXECUTIVE command (See the MEET PROMAL and
PROMAL USER”S MANUAL for details). Therefore if you,input from STDIN and
output to STDOUT, your program”s output will be redirectable under EXECUTIVE
control. For example:

PUTF STDOUT,"This goes to the screen or where I redirect it.", NL
PUTF STDOUT,"So does this.”

Copyright (C) 1986 SMA Inc. Rev. C

3-54 Systems Management Associates, Inc. PROMAL LANGUAGE

You do not have to open STDIN or STDOUT. These variables already hold open
file handles when your program starts. If you want some output to go to the
screen no matter what, you simply use PUT and OUTPUT instead of PUTF and
OUTPUTF. This will bypass I/0 redirection set by the EXECUTIVE.

OUTPUT TO PRINTER

To output to the printer, simply OPEN the "P" device for output and use the
file output procedures with the for the printer specified as the first
argument. For example:

WORD PRT ; Handle for printer
REAL X
PRT=0PEN("P","W") ; Open printer for writing
IF PRT = 0
ABORT"#cUnable to open printer.”
PUTF PRT, NL, "This line goes to the printer.”
X=124.35
OUTPUTF PRT, "#cThe answer is #12.4R",X

Note that just because you were able to OPEN the printer successfully does
not necessarily mean the printer is ready to receive output. If you OPEN the -
printer, send it output, and the system appears to hang, it may be that the
printer is not on-line or ready to print.

For the Commodore 64, you must remember not to power on the printer while
DYNODISK is on (also, for interfaces such as the CARDCO, the interface must be
off too; for the CARDCO interface, this means that the single wire must be
unplugged from the back of the computer while DYNODISK is on). You can turn
DYNODISK on and off from within a program, if desired (see Appendix G).

When doing output to a printer, be sure to send a NL after the last line,
since many printers keep the line in their internal memory until a CR is
received to cause them to print.

PRINTER CONTROL

Printers vary considerably in terms of interface to the computer. To help
reduce the difficulty in dealing with various printers and printer interfaces,
PROMAL pre-defines several variables (in file PROSYS.S) to govern printer
output.

For the Apple II, you can control whether or not PROMAL should automatically
send a LF after every CR to your printer. See APPENDIX E for details. Also,
if your computer is a IIc or is connected by a serial interface, you will need
to set another variable to perform graphics or escape sequences. This is also
described in APPENDIX E.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-55

For the Commodore 64, printers (or printer interfaces) often have special
modes selected on the basis of the "secondary address”. The following three
variables can be used to control your printer:

EXT ASM BYTE C64PSA AT $ODF3 ; Desired secondary address (default 7)
EXT ASM BYTE C64PUL AT $ODF4 ; Bit 7=1=flip case (default=$80=yes)
EXT ASM BYTE C64PDV AT $ODF5 ; C-64 printer device # (default 4)

These variables can be set by your program before opening the "P" device, or by
direct commands from the EXECUTIVE or your BOOTSCRIPT.J file. See APPENDIX E
for details.

PRINTER ESCAPE SEQUENCES

Most printers use ASCII control characters or escape sequences to select
different attributes such as underlining, font selection, character size, etc.
It is very easy to send these sequences to the printer using PROMAL PUTF
statements, after you have set up your printer control options properly as
described above. For example, if your printer manual tells you that the
particular escape sequence you want is:

Escape sequence Decimal form BASIC form
ESC W1 27, 87, 49 LPRINT CHR$(27);CHR$(87);CHRS$(49)

then in PROMAL you could just write:
PUTF PRT, 27, 87, 49
assuming you have previously opened the "P" device with handle PRT.

For Commodore 64 computers using interfaces such as the CARDCO, you may have
to select some special mode before sending escape sequences to your printer.
For example, the CARDCO model G+ needs to be opened with C64PSA=5 and C64PUL=0
(as described above) in order to select "tramsparent mode”.

OUTPUT TO SCREEN AND PRINTER

Sometimes you may want to output the same text to the screen and the
printer. This can be accomplished by executing the same PUTF or OUTPUTF
statement twice, using different file handles. For example, the following
program fragment supports selective output to either just the screen or to the
screen and printer:

WORD SP [2] ; File handles for screen, printer
WORD BOTHOUT ; =0 if just screen, 1 if screen + printer output wanted
WORD I
SP[0]=STDOUT ; screen file handle (already open)
BOTHOUT=0
PUT NL,"Do you wish output to printer too?”
IF TOUPPER(GETC)="Y" ; yes?
SP[1]=OPEN("P",”W”) ; then open printer for writing
BOTHOUT=1

Copyright (C) 1986 SMA Inc. Rev. C

3-56 Systems Management Associates, Inc. PROMAL LANGUAGE

FOR I=0 TO BOTHOUT
PUTF SP[1],NL,"This will go to printer & screen if BOTHOUT=1",NL

ARGUMENT PASSING FROM THE EXECUTIVE

PROMAL provides a simple mechanism for passing command-line arguments from
the EXECUTIVE to a program. The standard LIBRARY defines two globally prede-
fined variables which are preset by the EXECUTIVE before control is passed to a
program:

NCARG is the number of arguments passed to the program.
CARG[1] is a string containing the first argument, if present
CARG[2] is a string containing the second argument, if present

CARG[NCARG] is the last argument.

CARG[O] is a string containing the command which was executed (the
command name)

For example, if your program 1s executed by the EXECUTIVE command:

DOIT Myfile 2367

then on entry to the progranm,

NCARG will be 2
CARG[1] will be "MYFILE"

CARG[2] will be "2367"

CARG[0] will be "DOIT"

All the CARG array elements will be pointers to strings containing the argu-
ments. The program should consider these strings as DATA and not modify them
in place.

The EXECUTIVE normally treats blanks as the delimiters between arguments.
Both leading and trailing blanks are stripped off the arguments, so any number
of blanks may intervene between arguments. Also, the EXECUTIVE "folds" all
lower case letters to upper case. However, if an argument is enclosed in
quotes on the command line, then the entire quoted string is passed as a single
argument, including blanks (if any), without folding alphabetic characters. The
quotes themselves are stripped off. For example, if the command line was:

FIND "Now is the time for all good men”

then: NCARG will be 1
CARG[1] will be "Now is the time for all good men”

Command line arguments from the EXECUTIVE make a very useful way to pass
file names or numeric values to a program. For example, here is a program
segment which opens an input file specified on the command line for reading:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-57

PROGRAM PROCESS
5 Program segment to open a file passed as the first command line arg.

INCLUDE LIBRARY

WORD INFILE ;Input file handle
BYTE LINE{[81] ;Buffer to hold a line from file
BEGIN

IF NCARG <> 1

ABORT "#C***Error: PROCESS expects 1 argument which is a file name.”
INFILE = OPEN(CARG[1])
IF INFILE = O ;jopen error?

PUT NL, "*** Error: "

CHOOSE IOERROR ;error code from OPEN

2
PUT CARG[l],"” is not a legal file name.”
3
PUT "Disk drive not ready.”
4
PUT CARG[1l], " file not found.”
ELSE ;sunusual error of some kind
PUT "Can”t open ",CARG[1]
ABORT

WHILE GETLF (INFILE,LINE) ; read lines until end of file

0f course, you could make the error processing simpler if you wished, or
make it more sophisticated (perhaps by giving the user a chance to try another
file name), as is appropriate to the application.

EXTERNAL VARIABLES FOR ADDRESSING SPECIAL MEMORY LOCATIONS

In BASIC you use PEEK and POKE to examine or set special memory locations in
your computer. With PROMAL, you can write the equivalent of PEEK and POKE as
follows:

BASIC PROMAL
X=PEEK(nnnn) X=M[nnnn]
POKE nnnn,X M[nnnn]=X

where nnnn is the address of interest. The array M is predefined in the
LIBRARY to be an array of bytes encompassing all memory, so M[O] is the first
byte of memory, and M[65535] is the last byte of memory.

However, there is an even better way to replace those PEEKS and POKES which
is both more readable and more efficient. You can give those special memory
locations a variable name of type BYTE, by declaring them to be EXTermal to
your program. For example for the Apple II:

EXT BYTE HIRESON AT $C057
defines a variable named HIRESON of type BYTE which will be assigned the

address $C057. This is the Apple "soft switch” for enabling graphics mode.
Once defined, you can enable hi~res mode by merely saying,

Copyright (C) 1986 SMA Inc. Rev. C

3-58 Systems Management Associates, Inc. PROMAL LANGUAGE

HIRESON=TRUE
which conveys a lot more meaning than POKE -16297,1.
INTERFACING TO COMMODORE 64 SPECTAL MEMORY LOCATIONS

PROMAL is very well suited for taking advantage of the special hardware
features of the Commodore 64, such as sprites, music synthesis, and color. It
is far easier to program these fun~filled features with PROMAL than BASIC. In
BASIC, you depended on a lot of incomprehensible PEEKS and POKES to access the
special registers in the VIC-2 video chip and the SID sound synthesizer. With
PROMAL, you can give these registers a variable name and manipulate them just
like any other variable. This kind of variable is called an EXTERNAL variable,
because it is located outside the PROMAL program.

For example, the BASIC statement,
POKE 53281,7

sets the screen background color to yellow. With PROMAL, you might choose to
do the equivalent function like this:

CON YELLOW = 7
EXT BYTE BACKGROUND AT 53281 ;Screen Background color reg.

BACKGROUND = YELLOW

Once you have defined the address of the variable BACKGROUND, you can use
it just like any other PROMAL variable.

Creating animation with sprites is much easier with PROMAL. For example,
suppose you wanted to have a tank moving horizontally on the screen as one
sprite and a bomb falling vertically as a second sprite. You might do this as
follows:

EXT BYTE XCAR AT $DO0OO ;X position of sprite O
EXT BYTE YCAR AT $D0O1 ;Y position of sprite O
EXT BYTE XBOMB AT $D002 ;X position of bomb

EXT BYTE YBOMB AT $D003 ;Y position of bomb

XCAR = XCAR + CARSPPEED ;move car to right

YBOMB = YBOMB + BOMBSPEED ;move bomb down (+ is down)

LAY

In this case the address of each external variable was specified in
hexadecimal, which is frequently more convenient.

You can also directly manipulate screen memory or color memory as a PROMAL
array. For example, suppose you wanted to clear the standard screen, and then
"paint” 16 bars across the screen, each in a different color:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-59

PROGRAM RAINBOW
INCLUDE LIBRARY

CON SCREENSIZE = 1000 ; # of bytes in screen memory
EXT BYTE SCREEN [] AT $0400 ; C-64 screen memory location
EXT BYTE COLOR [] AT $D800 ; Color RAM

WORD I

BEGIN

FILL SCREEN, SCREENSIZE, =~ ~ ; £fi1l the screen with blanks
FOR I = 0 TO 15

FILL SCREEN+40*I, 40, $AO ; one line of reverse-video blanks
FILL COLOR+H40*I, 40, I ; set corresponding color for line
END

Notice that an external array declaration does not specify the size of the
array inside the brackets. This is because PROMAL does not need to reserve any
space within the program for this array (and because PROMAL does not do any
bounds—checking on array references because this would adversely affect
execution speed). The procedure FILL is a built-in LIBRARY subroutine which
fills a portion of memory with a specified byte. Its first argument is the
starting address, the second is the number of bytes to fill, and the last
argument is the fill character.

Just for fun, let”s compare the above program segment to its equivalent
BASIC program:

90 SC=1024: SZ=1000: C0=55296
100 FOR I=SC TO SC+SZ: POKE I,32: NEXT

110 FOR I=0 TO 15
120 FOR J=40*I TO 40*I+39: POKE SC+J,160: NEXT
130 FOR J=40*I TO 40*I+39: POKE CO-+J,I: NEXT
140 NEXT I

If you run the BASIC program and the PROMAL program above, and time how
long each takes to clear and paint the screen, you will find:

BASIC....about 14 seconds.
PROMAL...about 0.1 seconds.

This is another reason why PROMAL is much better than BASIC for animated
graphics. PROMAL is much faster. While not every PROMAL program will be 140
times faster than its BASIC counterpart as in this example, speed increases of
20 to 100 times or more are commonplace. Also, the larger and more complex the
program, the greater will be the relative speed improvement compared with
BASIC. Using the built-in LIBRARY subroutines wherever possible will speed up
your PROMAL programs even more, as well as making them smaller and easier to
debug.

Several PROMAL demonstration programs making extensive use of the graphics
and sound capabilities of the Commodore 64 can be found on the Commodore disk.
You can learn a lot about PROMAL from studying these samples and improv-
ing them or changing them to suit your own taste.

Copyright (C) 1986 SMA Inc. Rev. C

3-60 Systems Management Associates, Inc. PROMAL LANGUAGE

PROMAL INTERFACE TO MACHINE LANGUAGE

Many BASIC programs have to resort to calling machine language subroutines
for some specialized functions. Usually you need machine language routines
because (1) BASIC is too slow, or (2) BASIC can”t do what you wanted. Because
PROMAL 1s so much faster than BASIC, and because it provides bit-level opera-
tors, BYTE data types, and EXTernal variables, you may never need any machine
language at all with PROMAL.

If you do decide you need to call a machine language routine, PROMAL makes
it much easier to do than BASIC. PROMAL provides a clean interface to machine
language, both for routines you write and for ROM resident routines in your
computers operating system. You can call any machine language routine in ROM
without writing any machine language interface code at all. You can call
machine language routines by name, with passed arguments, just like regular
PROMAL routines. You can even specify the contents of the hardware registers
and test the results when the machine language routines return (including the
flags). You can embed machine language routines inside PROMAL programs using
DATA statements or load them from separate files under program control. You
can also call all the built-in PROMAL LIBRARY routines from your machine
language routines.

Appendix I describes how to use and write machine language routines, with
examples.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-61

CHAPTER 7: STRINGS AND ARRAYS REVISITED

Earlier you saw how to declare and use strings and arrays. This section
provides additional, more detailed information on using strings and arrays,
especially multi-dimensional arrays and arrays of strings.

STRINGS

PROMAL always stores a character string as an array of bytes, one character
per byte, plus a zero byte terminator indicating the end of the string.
Strings are usually manipulated by specifying the address of the first
character of the string. This is very convenient, since referring to an array
name automatically generates a reference to the address of the first element.
For example:

WORD I

BYTE BUF[8l] ; Input line string

GETL BUF ; Input line from keyboard as string
I=BUF ; I points to string

Assuming that this program was executed and that the user entered "Hello™
from the keyboard, the memory for the variables might look like this, assuming
some arbitrary addresses for the variables (shown in hex):

5B04 S5B44 Variable I points to BUF
5B94
: /F
5B44 48 | 65 | 6C 6C | 6F | 00 | xx | xx Variable BUF = "Hello”
]/ L
I I

The "xx" in the diagram above means "don”t care” or "undefined”.

A big advantage of this representation of a string is that you can use the
same array to either refer to the whole string, or to access single characters
from the string. For example:

PUT BUF

will display "Hello", because the PUT procedure is passed the address of the
string ($5B44 in the diagram above). Anytime you write the name of an array
without any subscripts, the compiler uses the starting address of the array.
You could extract a single character from BUF because it is an array of bytes.
For example:

PUT BUF[1]

Copyright (C) 1986 SMA Inc. Rev. C

3-62 Systems Management Associates, Inc. PROMAL LANGUAGE

will display the character "e", the second character of the array (the first
character is in BUF[0]). Alternatively, you could write PUT (BUF+1)@<, which
would give the same result, because the expression will extract the value of
the byte at $5B45 and print it. On the other hand, PUT BUF+l would display
"ello”, because the value $5B45 would be passed to PUT instead of the contents
of $5B45.

Remember that you can”t use an assignment statement to copy a string from
one variable to another (you need to use the MOVSTR procedure), but you can
assign the address of a string to a word variable using an assignment
statement. Therefore the the statements:

WORD I

BYTE BUF[81]
GETL BUF
I=BUF

PUT I

would cause whatever line was typed to be printed out. However, if these
statements were followed by:

MOVSTR "Gone.", BUF
PUT I

then "Gone.” would be printed, because I contains the address of BUF.

Similarly, you can”t compare two strings with the ordinary comparison
operators. For example:

DATA WORD BUF1l
DATA WORD BUF2
IF BUF1l = BUF2 ; Wrong!

PUT "Strings are the same”

"Hello”
"Hello"

will never print anything because the string given by BUFl will never have the
same address as the string given by BUF2, even though the contents of the
strings are the same. This should be written as:

IF CMPSTR (BUF1, "=", BUF2)
PUT "Strings are the same"

ADDRESS OF AN ARRAY ELEMENT VERSUS CONTENT OF AN ARRAY ELEMENT

It 1s very important to understand the difference between the address of an
array and the value of an element in an array. Remember that almost all the
built-in Library functions and procedures for string handling expect the
address of the string for an argument (if the description of the routine says
it expects a string, this means the address of the string). If you pass a
single character where a string address is expected, you might create big
problems! Here”s an example:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-63

BYTE BUF[81]
GETL BUF[O] ; This is wrong!

PUT NL, BUF

Here the programmer simply intended to read in a line from the keyboard into
the array BUF starting at the first element. The program compiles and appears
to work, but always prints out garbage. In fact, sometimes it crashes the
computer. Why?

The problem is that GETL expects the address of the buffer to receive the
input, but the expression BUF[0] evaluates as the value of the first character
of the buffer. In other words, whatever character is in BUF[0] when the call
is made (some garbage value between O and 255) is passed to the GETL routine as
the address of where you want the input line to go. GETL obliges by putting
the input line someplace in the first 256 bytes of memory - but not in the BUF
array. When BUF is printed by the PUT statement, it shows garbage, because it
had never been set! Because the first 256 bytes of memory is "zero page"” and
holds critical operating system and PROMAL information, overwriting it may
cause the computer to crash, necessitating a re-boot.

How do you fix this? 1In this case, the easiest way is simply to write:
GETL BUF

without the subscript, since PROMAL will always use the address of the array if
you write its name without subscripts.

But what if you don”t want the line to go right at the beginning of the
array? Suppose, for example, you have a two dimensional array such as:

BYTE SCRN [81, 25] ; 25 lines of 80 characters each

Now suppose you want to input a line from the keyboard into the third row of
the array. Here is how you do this:

GETL #SCRN[0, 2] ; Read line from keyboard to 3rd row

The # operator tells the compiler to generate the address of the specified
array element rather than the value of that element. The third element
subscript is 2 instead of 3 because the first element is always O, not 1.

More importantly, remember that the last element is 24, not 25. If you try to
read in the 25th line using:

GETL #SCRN[O, 25], 80 ; Wrong! Out of bounds!
GETL will oblige you by reading the line into memory over whatever happens to

be in memory after the end of the SCRN array! This will have unpredictable and
invariably unpleasant results.

Copyright (C) 1986 SMA Inc. Rev. C

3-64 Systems Management Associates, Inc. PROMAL LANGUAGE

To summarize, if a PROMAL Library routine (or any PROMAL subroutine for that
matter) expects a string, you need to specify an address. If in doubt about
how to make an address, place the # operator in front of the variable. If X
is an array, then the following three statements are exactly equivalent:

PUT X
PUT #X
PUT #X[0]

All three statements will print the string which starts at the location of the
X array (and is terminated by a zero byte). The following statement is not
equivalent:

PUT X[0]

This statement prints only the first character of the string, because the
expression will evaluate to the value of the first byte of the array X (which
is assumed to be an ASCII character code). PUT is one of the few routines
that can accept a single character or a string. If the argument is less than
256, PUT assumes the argument is a single ASCII character and prints it. If
the argument is greater than 256, PUT assumes the argument is the address of a
string to be printed.

SEQUENCE OF MULTI-DIMENSIONAL ARRAY ELEMENTS IN MEMORY

When using multi-dimensional arrays, note that the array elements with the
first subscript will be adjacent in memory, so you should have the column
subscript first and the row subscript second. For example:

BYTE PAGE [9,25] ; Room for 25 lines of 8 chars each

PUT PAGE [0,5] ; display single character on 6th line, first col
PUT #PAGE [0,5] ; display entire string of 6th line

Subscripts for the page array are allocated like this in memory:

L

.l7,0lo0,1 | 1,1 }2,1]. 6,24 | 7,24

J

L4
.
/

0,0 | 1,0 | 2,0

T

/

/ 4
L .

L -]

7 14

Another way to look at this is to say that an array declared as:
WORD STUFF [10, 50]

declares 50 groups of 10 words each, mot 10 groups of 50 words each. This
distinction becomes important if you use BLKMOV to move part of the array or
FILL to clear part of the array.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-65

ARRAYS OF STRINGS

Sometimes, especially for sorting, you may wish to access an array of
strings. Using an array of strings 1s usually more efficient than using a two
dimensional array of bytes. The basic idea here is to use an array of type
WORD which contains pointers into a singly-dimensioned array of type BYTE.

This is especially true if you are simply going to sort the strings, because
when a string is out of sequence, you can just exchange the pointers instead of
exchanging entire strings. The sample program SORTSTRING.S provides a general
purpose string sort routine which can sort an arbitrary array of strings passed
as an argument.

Here is a program fragment showing how to develop an array of strings by
reading them from the keyboard or a file. Input is terminated on end of file
(CTRL-Z from the keyboard).

WORD STRING[100] ; Array of strings (pointers into BUF array)
BYTE BUF[4100] ; Storage for up to 100 strings of 40 char each
WORD 1

WORD NSTRING ; Actual number of strings (mot exceeding 100)

NSTRING=0

I=BUF

WHILE GETLF(STDIN, I, 40) ; Read string to address I
STRING[NSTRING]=I ; Install pointer in string array
I=1+41 ; Starting addr of next string
NSTRING=NSTRING+1

At the end of this program fragment, memory might look like this, assuming
the lines read were "First”, "Second”, etc.

5FDO STRING[O]
5FF9 STRING[1]
N N
5FDO SFF9
V- -
F i r s t |$00] x I < S e c o n .o
—\ —N

The SORTSTRING demo program uses a similar technique, but makes more
efficient use of the BUF array. You may wish to use the sorting routine
provided in SORTSTRING for your own programs.

Copyright (C) 1986 SMA Inc. Rev. C

3-66 Systems Management Associates, Inc. PROMAL LANGUAGE

PRESETTING GLOBAL VARTABLES TO ZERO

Unlike BASIC, PROMAL does not assign any initial value to variables declared
in your program (except DATA, of course). Often you may wish to simply set all
or a large number of variables to zero at the start of your program. Rather
than writing assignment statments for each variable explicitly, here is a trick
which will zero a block of variables. Assume you have a group of variables
declared like this:

WORD FIRSTVAR

BYTE LASTVAR [1]

where FIRSTVAR is the first variable you want to zero and LASTVAR is a dummy
variable you add after the last variable declared. At the start of your
program, use:

FILL #FIRSTVAR, #LASTVAR-#FIRSTVAR, O ; Zero all variables

This will set all the variables from FIRSTVAR up to (but not including) LASTVAR
to zero. Don”t forget the # operators! Also note that LASTVAR is an array.
This is necessary in the Commodore and Apple versions of PROMAL because the
PROMAL compiler segregates scalar and array variables. It assigns addresses
for all the scalar variables first (in the order declared), and then all the
arrays (in the order declared). DATA variables are part of the code area of
your program, not part of the data, so you don”t have to worry about
accidentally zeroing the value of any DATA identifiers.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-67

CHAPTER 8: THE LOADER

INTRODUCTION TO THE PROMAL PROGRAM LOADER

PROMAL for Apple and Commodore 64 gives you, the programmer, the ability to
control the loading and execution of programs. Your PROMAL program can load
and run other PROMAL or machine language programs, or pieces of programs called
overlays. Your program can also largely control where programs are loaded into
memory, and specify what action should be taken when a program or overlay
completes its task. Programs can call subroutines in other programs and use
global variables in other programs previously loaded, and you can explicitly
select which subroutines and variables can be used.

These capabilities are provided by the built in library procedure LOAD,
which is used to control the loading, execution, and disposition of compiled
programs and overlays. This procedure is extremely powerful, much more
powerful than the simple “"chaining” capability provided by BASIC and some other
languages. To use it effectively requires an understanding of the loading and
execution process as used by PROMAL, plus some new terminology. The remainder
of this section deals with the LOADer. You may wish to skip over this section
until you are familiar enough with PROMAL to be writing large programs.

DEFINITIONS

The following definitions are relevant to this section. The meaning of
these terms will become clearer as the discussion develops.

A Module is the object file produced by the PROMAL COMPILER (with no error
messages), with a .C extension, or a relocatable machine language program as
generated by the RELOCATE program (discussed in Appendix I).

An Entry Point is the place where execution begins in a module. In a PROMAL
source program, the entry point is represented by the BEGIN statement following
the last procedure or function in the source program.

A Logical Program is a collection of one or more modules. which, taken
together, comprise a logically complete program for some purpose. A logical
program may have several modules, each residing on disk in a separate file. As
a minimum, a logical program has one module.

A Program is a compiled PROMAL program. Normally it performs a complete
task by itself and is composed of an arbitrary number of procedures and
functions, with exactly one entry point, which is at the BEGIN statement
following the last procedure or function. The program source file begins with
a PROGRAM statement, is compiled from one or more source files, and the
resulting output module is contained in a single object file with a .C
extension.

Copyright (C) 1986 SMA Inc. Rev. C

3-68 Systems Management Associates, Inc. PROMAL LANGUAGE

An Overlay is a piece of a complex logical program which is kept on disk
until it is needed, and is then loaded into memory and executed under program
control. The overlay source file begins with an OVERLAY statement, and is
otherwise similar to a program. It has an arbitrary number of procedures and
functions and exactly one entry point, which is at the BEGIN statement
following the last procedure or function. It must be compiled separately from
the rest of the logical program which is associated with it, from one or more
source files, and the resulting output module is contained in a single object
file with a .C extension.

Loading is the process of taking a PROMAL module from disk and copying it
into memory, making any adjustments (called relocations) to the program
which are needed to correct addresses in the program or interface to other
modules, and transferring control of execution to the program, if desired.

Chaining is a special kind of loading where the program being loaded
replaces the program which called the loader.

BREAKING UP A LOGICAL PROGRAM INTO MODULES

There are several reasons why you might want to have a logical program
composed of several modules instead of a single, monolithic program:

1. The program is too large to fit in memory all at once.

2. The program is composed of logically separate modules (for instance, an
accounting system might have a main menu with separate modules for receivables,
payables, order processing, report generation, etc).

3. The program uses a logically-related group of subroutines which are not
frequently changed and therefore do not need to be re-compiled (for example,
the PROMAL graphics package or real functions).

4. The program takes too long to compile in its entirety.

5. The program uses large machine language routines (this is discussed in
Appendix 1).

HOW THE PROMAL LOADER WORKS

The PROMAL LOADer is a built-in procedure in the Library, called the same
way as other library routines. You have already seen the PROMAL loader
working, at least indirectly. When you type the name of a program you want
executed from the EXECUTIVE, the EXECUTIVE calls the LOAD procedure to run your
program. When your program finishes, it returns through the LOADer to the
EXECUTIVE at the point from which it was called.

Your programs can in turn load and run other programs or overlays, by
specifying the name of the program to run, and optionally some flags indicating
how the program should be run. Briefly, the LOADer performs these tasks:

1. Looks to see if the specified program or overlay is already in memory,
and if so, executes it beginning at the entry point. Otherwise, it:

Copyright (C) 1986 SMA Imc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-69

2. Locates the specified module on disk and determines how much memory is
needed for your program and its variables. If there is not enough room, it
unloads other programs (unless the module is an overlay) until there is enough
room.

3. The memory image of the module is copied from disk into the available
memory space.

4. The loader then reads tables which follow the memory image on disk to
determine what adjustments are necessary to the memory image. These
ad justments are called relocations, and are needed to install the correct
addresses for branch instructions and subroutine calls. The loader can also
adjust address references to other modules already loaded (using EXPORTS and
IMPORTS, discussed later).

5. The loader then begins execution of your program at the entry point.

6. When your program completes (by coming to the END of the main program,
calling EXIT or ABORT, or encountering a runtime error), the loader temporarily
regains control. It normally transfers control back to the program which
called the loader at the statement following the call to the loader. However,
if your program called ABORT or encountered a runtime error, coantrol is passed
directly back to the EXECUTIVE instead.

The program which calls the LOADer to execute another program is called the
parent of that program. The new program is called the offspring of the program
that called the loader. The loader keeps track of the modules currently in
memory by a series of tables. These tables have room enough for up to six
modules to be resident in memory at once, plus the EXECUTIVE and EDITOR. These
modules may be all part of one logical program, completely separate programs,
or any combination.

The LOADer also uses several pointers for memory management. The most
important of theses are called LOFREE and HIFREE. LOFREE always points to the
first byte of unused memory, and HIFREE always points to the byte after the
last unused byte of memory. These pointers always point to a page boundary in
memory (that is, the address is of the form $XX00). Normally the LOADer
allocates programs from the bottom of available memory up, and variables from
the top down. Normally variables from one module can occupy the same memory as
variables for another program since the variables have no initial value and the
programs are not related. However, the key word OWN on the PROGRAM or an
OVERLAY declaration of a program can be used to force the loader to allocate
the variables immediately after the program, not shared with any other
programs. OVERLAYs always have their variables allocated immediately after the
overlay code.

The following memory diagram shows a series of programs being loaded from
the EXECUTIVE:

Copyright (C) 1986 SMA Inc. Rev. C

3-70 Systems Management Associates, Inc. PROMAL LANGUAGE

HIFREE -> -~
Prg A Prg A Prg A& C)
Vars. Vars. Vars.
HIFREE ->
HIFREE ->
I LOFREE ->
I PRGC
M LOFREE ->
E Prg B Vars Prg B Vars
M
0 PRGB PRGB
R LOFREE ->
Y
PRGA PRGA PRGA
LOFREE ->
(a) (b) (c) (d)
Time —>

Time is represented on the horizontal axis and memory on the vertical axis,
with the highest addresses at the top. The diagram represents the memory
configuration for the Apple. The Commodore 64 configuration is somewhat more
complicated (see Appendix G), because the Workspace is also managed by the
LOADer, but the principle is the same. 1In this diagram, there are initially no ~
programs in memory (except the EXECUTIVE/EDITOR, not shown). Then PRGA is
executed (part b of the figure), which is a normal module. PRGB is then
executed. PRGB has OWN on its program line, so its variables are allocated
after the code for PRGB instead of sharing its variable space with PRGA.
Finally, PRGC is run, which is another normal program, and shares its variable
space with PRGA. Since PRGC requires more variable space than PRGA, HIFREE is
lowered by the loader. HIFREE will always point to the start of the variables
for whatever program requires the largest block of shared variable space.

In this example, all the programs were small enough to fit in memory at
once. If PRGC had been too large to fit, the loader would first unload PRGB
and its variables and try again. If there was still not enough room, it would
unload PRGA. When a program is unloaded, the LOADer simply deletes its table
entry and moves the LOFREE pointer down (and the HIFREE pointer up, if
possible), to recover the space. It does not clear the memory recovered.

HOW TO CALL THE LOADER

The declarations needed to access the LOADer are in a file called PROSYS.S
on the PROMAL system disk. Therefore you should have:

INCLUDE PROSYS
near the top of any program which will be calling the loader (or, if you wish,

you can extract the definitions from PROSYS and insert them directly into your
program with the EDITor).

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-71

The loader is a built-in procedure in the PROMAL library, which you call
with a statement of the following form:

LOAD Progname [,Bitflags]

where Progname is a string containing the desired module name (without the file
extension), and Bitflags is an optional argument of type BYTE which contains
several flags, described shortly. If the Bitflags argument is not specified,
it defaults to 0, for a normal load-execute-return sequence. The loader also
sets a special variable called LDERR (also defined in PROSYS), as follows:

LDERR # Meaning

0 No error, module was successfully loaded/executed.

1 Module was not found in memory or on disk (or the name is
illegal)

2 Not a valid PROMAL module (e.g., not a successfully compiled
program).

3 Not enough free memory to load program.

4 Module required not loaded or relocation error (e.g., the

module to be loaded calls a subroutine in another module
which is not loaded).

For example,

PROGRAM MYPROG
INCLUDE LIBRARY
INCLUDE PROSYS
BEGIN
LOAD "YOURPROG"
IF LDERR <> O
ABORT "#C Unable to load YOURPROG"

END

will cause the module YOURPROG.C to be loaded into memory (if it is not already
there) and executed. After YOURPROG ends, control will return to the IF
statement following the call, which tests for a loader error (such as file not
found). I1f, however, YOURPROG called ABORT or encountered a runtime error,
control would never return to the IF statement above, but would return directly
to the EXECUTIVE instead.

LOADER OPTIONS USING BIT FLAGS

The second, optional argument of type BYTE can be used to specify a variety
of options which control the loading process. This byte is treated by the
LOADer as several one-bit TRUE/FALSE flags. These flags are given names in
PROSYS, defined as follows:

Copyright (C) 1986 SMA Inc. Rev. C

3-72

Systems Management Associates, Imc. PROMAL LANGUAGE

Name Definition

Meaning to LOADer

LDCHAIN $01
LDPRCLR $02
LDRELD $04
LDRECLM $08
LDNOGO $10
LDUNLD $20

Chain to program. If TRUE (1), the calling module
should be unloaded and replaced with the new module.
When the new module ends, control should return

to the parent of the calling module.

Pre-clear memory. If TRUE (1), all programs in memory
(including the caller) should be unloaded before
loading the specified program. Control will be
returned to the EXECUTIVE. This option is usually used
to guarantee the maximum available memory for a
program.

Re-load module. If TRUE (1), the specified module
should be reloaded from disk, even if it already

is in memory. If FALSE (0), it will not be reloaded
from disk unless it is not already loaded or the
memory-resident copy has been corrupted. Note that
specifying LDCHAIN=1 or LDPRCLR=1 also implies
LDRELD=1 automatically.

Reclaim memory on exit. If TRUE (1), then the
specified module should be unloaded from memory

after it completes execution. This option is normally
used for overlays to make room for other overlays

in the same memory space. If 0, the module will
remain loaded on completion and can be re—executed

by a subsequent LOAD without having to access the disk.

Do not execute. If TRUE (1), then the specified
module will be loaded into memory (if it is not
already loaded) without executing it. This option
is normally used to insure that a module is loaded
and ready for later execution. It is also used to
control the sequence of loading of multiple modules
in a complex logical program. If O, the specified
module will be executed.

Unload. 1f TRUE(1l), then the specified module is
unloaded instead of loaded. No other action takes
place and all other bit flags are ignored. Note

that any program loaded above the specified module

will also be unloaded. 1If the calling module is itself
unloaded as a result of this process, control will
return to the parent program instead. This option

is normally used to free up additional memory.

The bit flags above can be combined in any sensible combination. For

example:

LOAD "HISPROG", LDCHAIN + LDRECLM

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-73

will remove the calling program from memory, load and execute HISPROG, then
remove HISPROG from memory and return control to the parent of the original
caller (probably the EXECUTIVE).

LOAD "NEXTCOMD", LDPRCLR-+LDNOGO

will unload all programs from memory, load NEXTCOMD without executing it, and
return control to the EXECUTIVE (you might want to do this to setup the next
program to be run in memory).

USING VARIABLES, PROCEDURES AND FUNCTIONS IN OTHER MODULES

One of the most powerful features of the PROMAL LOADer is that when a module
is loaded and executed, it can call selected procedures and functions and
access selected variables in other modules which are already loaded. It
cannot, however, reference procedures, functions, or variables in modules which
have not been loaded yet. This is a logical extension of the rule that
functions, procedures and variables must be defined before they are
referenced. It is up to you, the programmer, to determine which procedures,
functions, and variables will be made available to other modules. This is done
using EXPORTs and IMPORTs.

EXPORTS AND IMPORTS

In a PROMAL source program, the key word EXPORT can be used in front of any
declaration of a constant, data declaration, variable, procedure, or function
to designate an item which should be made available to other modules which wish
to use it. If your program contains amy EXPORTs, it must also have the
keyword EXPORT on the PROGRAM (or OVERLAY) line. OWN should also be specified.

For purposes of illustration, let us assume we will have a logical program
composed of two separate modules. The first module is a collection of
subroutines which you frequently use, called SUBPKG, and the other module is a
particular application program called MYPROG, which will use some routines in
SUBPKG (and in addition has some procedures, functions and global variables of
its own). Assume you wish to compile the subroutine package and MYPROG
separately, because SUBPKG is already well-debugged and is fairly large.
Therefore during development of MYPROG you will not have to re—compile SUBPKG
each time you make a change to MYPROG, saving time. Here is a skeletal view of
the source for SUBPKG:

PROGRAM SUBPKG OWN EXPORT

INCLUDE LIBRARY

WORD I

EXPORT WORD CLEARANCE

EXPORT CON WORD POOLSIZE=500

EXPORT REAL POOL[POOLSIZE]

REAL THRESHOLD

EXPORT DATA REAL PI = 3.1415926535

EXPORT DATA WORD ERRMSGS [] =

"Pool exhausted”, "Undefined pool element”, "Illegal pool element”,0

Copyright (C) 1986 SMA Inc. Rev. C

3-74 Systems Management Associates, Inc. PROMAL LANGUAGE

EXPORT PROC ADDTOPOOL ; Item
ARG WORD ITEM

END

éﬁ&C REAL BESTGUESS

END

é).(E’ORT FUNC BYTE CHECKERROR
END

éééIN

END

This example illustrates how a subroutine package might make selected
identifiers available for use by other, separately compiled modules. In this
case, the names CLEARANCE, POOLSIZE, POOL, PI, ERRMSGS, ADDTOPOOL, and
CHECKERROR will be exported. The names I, THRESHOLD, and BESTGUESS will not be
available for use by other modules. In other words, the subroutine BESTGUESS
can be called by other routines in this module (PROGRAM SUBPKG), but not by
other separately compiled modules.

When a program contains EXPORTs, the PROMAL COMPILER writes the definitions -
of all the exported items to a special text file at the completion of
compilation. This text file will have the same name as is on the PROGRAM
declaration in the source file, but with a .E extension. For example, the
program above would cause the compiler to generate an export file called
SUBPKG.E, which might look like this:

IMPORT SUBPKG ;10/17/85
EXT FUNC BYTE CHECKERROR AT $0562
EXT PROC ADDTOPOOL AT $0250
EXT DATA WORD ERRMSGS [4] AT $000D
EXT DATA REAL PI AT $0007
EXT REAL POOL [500] AT $0000+$4
CON WORD POOLSIZE = $01F4
EXT WORD CLEARANCE AT $0002

This file tells the definitions of the exported identifiers, relative to the
start of the SUBPKG module. It is not necessary to understand the exact
meaning of the individual lines. The top line tells the name of the exporting
program and the compilation date.

IMPORTING DEFINITIONS

Once the export file has been written by the COMPILER, you may INCLUDE it in
the compilation of another, separate module, to import all the desired
definitions. For example, another separately—-compiled program which uses the
SUBPKG module might look like this:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE Systems Management Associates, Inc. 3-75

PROGRAM MYPROG

INCLUDE LIBRARY

INCLUDE SUBPKG.E

WORD K

PROC AJUSTPOOL

BEGIN

POOL[K] = PI/4.

ADDTOPOOL

END

BEGIN

IF K > POOLSIZE
PUT NL,ERRMSGS[0]

END

Notice that this program uses the procedure ADDTOPOOL, the data items PI and
ERRMSGS, and the constant POOLSIZE without ever explicitly declaring them.
This is possible because the INCLUDE SUBPKG.E will cause the definitions to be
imported. Please note that you must specify the .E extension on the INCLUDE
statement; otherwise, the compiler will look for the file SUBPKG.S instead by
default.

EXECUTING THE LOGICAL PROGRAM WITH SEPARATE MODULES

After compiling MYPROG, you will have two separate modules which work
together: SUBPKG.C and MYPROG.C. If you attempt to execute MYPROG.C from the
EXECUTIVE, you will get the message:

NOT LOADED OR RELOC ERROR: SUBPKG

This is because the SUBPKG module must be loaded before the MYPROG module which
calls it, and you haven’t loaded it. To solve this problem, you could type:

UNLOAD
GET SUBPKG
MYPROG

which would unload any existing programs (to make sure there”s enough room for
both modules), load the SUBPKG module, and then load and execute the MYPROG
module. The LOADer is able to relocate all the references to routines in
SUBPKG correctly because (1) it knows where it loaded SUBPKG into memory, and
(2) it knows the definitions of the references to the exported items in SUBPKG
as a result of the compilation of MYPROG.

Copyright (C) 1986 SMA Inc. Rev. C

3-76 Systems Management Associates, Inc. PROMAL LANGUAGE

In the example above, it is important to understand that the exported
routines in SUBPKG can be called from the MYPROG module, but that no routines
in MYPROG may be called from SUBPKG, even if you EXPORT them. This is because
the module doing the exporting must always be loaded before the module doing
the importing, and it is clearly impossible for both modules to be loaded
first!

USING A BOOTSTRAP TO CONTROL LOADING

If you have an application program with several modules which need to be
loaded in a certain order, you may want to write a bootstrap program, whose job
is to load all the needed modules in the proper sequence and then run the main
program. Typically a bootstrap program might do this:

1. Display a signon message and any information (such as a menu of choices)
relevant to the program, that the user can read while the rest of the program
is loading from disk.

2. Load the modules needed in the desired order, using the LDNOGO option
on each LOAD call to prevent execution.

3. Load and execute the main module.

In some cases, you may even want to use a two-stage bootstrap loader, where
the first stage bootstrap loader signs on and then LOADs the second bootstrap
stage loader with the LDPRCLR option to insure all possible memory is available
for the application. The second bootstrap then loads all the modules needed to
get the program going, in the correct order to resolve all the dependenciles.

In some cases you may also use the bootstrap loader to directly manipulate
the LOFREE pointer before LOADing some modules to reserve certain areas of
memory. For example, on the Apple II using graphics you may wish to load part
of your logical program below the 8K graphics page from $4000 to $6000, and
part above it. The following memory diagram, with program fragment to the
right, illustrates this (and other examples may be found in the PROMAL GRAPHICS

TOOLBOX Manual).

After programs BOOTD, MYSUBS, and MYPROG have been compiled (in that order),
then executing BOOTD from the executive will cause BOOTD to load the SGD and
WGS modules, as shown in (b) above, then sets LOFREE to $6000 under program
control to reserve the Apple Hi-Res screen area, and finally loads the MYSUBS
and MYPROG module to begins execution of MYPROG. Naturally you should adjust
the LOFREE pointer only with a good understanding of what you are doing!

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LANGUAGE

Systems Management Associates, Inc.

3-77

LOFREE ->
MyProg
MySubs
LOFREE ->
Hi-Res Hi-Res
Page 2 Page 2
$4000 ->
(unused) (unused)
WGS WGS
SGD SGD
LOFREE ->
BootD BootD BootD
LOMEM ->
(a) (b) (c)

USING OVERLAYS

PROGRAM BootD

INCLUDE PROSYS

LOAD "SGD",LDNOGO

LOAD "WGS" ,LDNOGO
LOFREE=$6000 ;end hires
LOAD "MySubs”,LDNOGO
LOAD "MyProg"

END

PROGRAM MySubs OWN EXPORT
INCLUDE SGD.E

INCLUDE WGS.E

EXPORT PROC MyProc

END

PROGRAM MyProg
INCLUDE SGD.E
INCLUDE WGS.E
INCLUDE MySubs.E
MYPROC

LI)

END

In the previous example, separate compilation was used primarily as a

convenience.

Sometimes, it is a necessity.

This usually happens when a

logical program is simply too large and complex to fit into the available

memory space all at once.
overlays.

When this happens, the usual solution is to use
A logical program which uses overlays will have one or more modules

which remain resident in memory throughout execution, and will switch other
modules in and out of memory as needed.

organized like this:

A typical overlaid program might be

PROGA

AN

OVLA

OVLB

This tree diagram indicates that the logical program has a root module,

PROGA, and two mutually-exclusive overlays, OVLA, and OVLB.

By mutually

exclusive, we mean that only one of the overlays will be in memory at any given

time.

Therefore the overlays can all share the same memory space, 8O that the

total space needed will only be equal to the size of the largest overlay,
instead of the sum of the overlays.

Copyright (C) 1986 SMA Inc.

Rev. C

3-78 Systems Management Associates, Inc. PROMAL LANGUAGE

As far as the source code for an overlay is concerned, the only difference
between a program and an overlay is that the first line of the program should
contain the key word OVERLAY instead of PROGRAM, for example:

OVERLAY OVLA

The OVERLAY keyword also has the effect of including the OWN keyword on the
program declaration line. Otherwise, the loader would allocate the variables
belonging to the overlay right oa top of the variables used by the rest of the
logical program, probably producing a disaster.

As far as the loader is concerned, there is only one difference between a
PROGRAM and an OVERLAY. The LOADer will mot automatically unload any modules
to make room for an overlay. If it did, there would always be the possibility
that the loader would have to unload the calling module to make room for the
overlay. This is contradictory to the normal use of overlays, which normally
return to the parent module when completed.

PROGRAM PRGC OWN EXPORT
INCLUDE PROSYS

e« s

LOFREE -> LOAD "OVLA", LDRECLM
LOFREE -> ces
A LOAD "OVLB"
I OVLA OVLB -
M END
E LOFREE ->
M OVERLAY OVLA OWN
0 PRGC PRGC PRGC INCLUDE PRGC.E
R ves
Y LOMEM -> END
(a) (b) (c)
PROGRAM OVLB OWN
Time —> INCLUDE PRGC.E

END

In our example program with 2 overlays, the memory diagram might look as
shown above, with the program skeleton to the right.

Note that the LDRECLM option was specified on the call to the LOADer.
This is the normal way to load an overlay which will be replaced by another
overlay later. Remember that the LOADer will not unload anything (including
another overlay) to make room for an overlay; therefore you will probably want
to specify LDRECLM to insure that the overlay is unloaded when it is
completed. Of course, there is always the possibility that the root module
might want to call the same overlay again. In this case, you might want to
consider leaving the overlay in memory when it completes. If you need it
again, the LOADer won”t have to actually load it. 1If you need to replace it
with a different overlay instead, you can unload it explicitly using the
LDUNLD option, before loading the desired overlay.

Copyright (C) 1986 SMA Inc. Rev. C

SN

PROMAL LANGUAGE Systems Management Associates, Inc. 3-79

The sample program fragment above had only two overlays. In a complex
application, there might be several overlays, or even two layers of overlays,
as shown by the tree below:

PRGA
OVLA OVLB OVLC
OVLAl OVLA2 OVLC1 OVLC2 OVLC3

In this case, the overlays OVLA, OVLB and OVLC might export variables and
subroutines to the five overlays at the bottom of the diagram. In this case,
you would need to have the keyword EXPORT on the OVERLAY declaration:

OVERLAY OVLA EXPORT
CONSIDERATIONS FOR THE EXECUTIVE AND EDITOR

This section tells you how it is possible to load larger programs under
program control than it is possible to LOAD using the EXECUTIVE GET command, by
overwriting the space usually reserved for the EDITor. The system pointers
referred to below are defined in PROSYS.S. Further memory map information is
included in Appendix G.

As was indicated before, the LOADer always considers the free, allocatable
space to be between LOFREE and HIFREE. The EXECUTIVE and EDITor both occupy
the same address space, which is OSORG through MEMLIM (about 11.5K bytes), but
only one or the other of these programs occupies this space at any one time.

For the Apple II, a copy of the EDITor and the EXECUTIVE is kept in the
extra 64K memory bank, and each is copied back into the normal address space at
O0SORG when needed (this does not apply for applications programs generated
using the GENMASTER program in the Developer”s package). Since the EXECUTIVE
or EDITor are always copied into main memory when needed, all the space,
including that used by the EXECUTIVE or EDITor, is available for allocation for
your programs by the LOADer (about 25K). If you use the GET command to load a
program which overlaps OSORG, however, it will be immediately destroyed when
the EXECUTIVE is copied back into memory when the GET command is completed.

The Workspace for the Apple II is kept in the extra 64K bank, so it is of no
concern.

Copyright (C) 1986 SMA Inc. Rev. C

3-80 Systems Management Associates, Inc. PROMAL LANGUAGE

Apple II Commodore 64
HIFREE --> {-- MEMLIM {-- MEMLIM
EXECUTIVE =HIMEM EXECUTIVE
or or
EDITor EDITor
<-- OSORG <{-- 0OSORG
Edit vars
$§ free §§ HIMEM --> <-- WLIM
memory Workspace
| HIFREE --> <-- WORG
LOFREE --> <-- LOMEM
0§ semory 9
memory
LOFREE --> <-- LOMEM

Memory with no programs loaded

For the Commodore 64, the situation is somewhat more complicated. The
Editor is kept in the 12K byte section of RAM under the ROMs from $D000 to
$SFFFF when the EXECUTIVE is active. When any program is executed, the
EXECUTIVE is swapped with the EDITOR. The EXECUTIVE is therefore "hidden”
under the ROMs when your programs run, and the EDITOR occupies the space from
OSORG to MEMLIM. When control returns to the EXECUTIVE, it is swapped with the
EDITor again. For the Commodore, the Workspace is also allocated near the top
of "free memory”.

For large loglcal programs on the Commodore 64, you may want to let the
LOADer use the space normally set aside for the EDITOR for your program(s).
This can be done by using a bootstrap program (as described above), which
should be the only program loaded (you can use a two-stage bootstrap to
guarantee this). This bootstrap program might have the following form:

PROGRAM BOOTBIG OWN
INCLUDE LIBRARY
INCLUDE PROSYS

WPTR=WORG
WEOF=WORG ; Make workspace empty
WSIZE=0 ; No workspace usable

EDRES=FALSE ; EDITor will no longer be ther
HIFREE=MEMLIM ; Reclaim Editor~s space

It would then Load and execute your programs, described in the section on
bootstrap programs, above.

When your program returns control to the EXECUTIVE, the EXECUTIVE will move
back into memory at OSORG. If you subsequently use the EDITor, it will
automatically be re-loaded (from disk, for the Commodore 64).

Copyright (C) 1986 SMA Inc. Rev. C

.

PROMAL LANGUAGE Systems Management Associates, Inc. 3-81

A GENERAL PURPOSE COMMODORE BOOTSTRAP FOR BIG PROGRAMS

Here 1s a bootstrap program which can be used to load and run a program
which is too large to run on the Commodore 64 without overwriting the EDITOR.
The program to be run must have OWN on the PROGRAM line. The Workspace will be
cleared and the EDITor overwritten. To use the bootstrap, first give an UNLOAD
command, and then type:

BOOTBIG Progname
from the EXECUTIVE, where Progname is your large, compiled program.

PROGRAM BOOTBIG OWN ;Commodore 64 only boot big program
; Kills workspace and EDITor
INCLUDE LIBRARY
INCLUDE PROSYS
BEGIN
IF NCARG <> 1
PUT NL,"BOOTBIG ABORTED: No name given"
ABORT "#CUsage: BOOTBIG Progname”
HIFREE=MEMLIM ;The max memory please
WORG=MEMLIM ;No workspace
WPTR=MEMLIM
WEOF=MEMLIM
WLIM=MEMLIM
WSIZE=0
EDRES=FALSE ;EDITor not resident
LOAD CARG[1] ;Load & execute
IF LDERR <> O
ABORT "#cBOOTBIG LOAD ERROR $#H",LDERR
END

REMINDERS FOR SUCCESSFUL USE OF OVERLAYS AND SEPARATE COMPILATION

1. The root module or modules need to export any definitions needed by the
overlays, and the overlays each need to INCLUDE the exports (don~t forget the
.E extension).

2. Each overlay must start with:
OVERLAY Name [EXPORT]
and must be compiled separately.

3. Overlays may call routines and use variables exported from the root
module(s), or other overlays already loaded. The root module cannot contain
calls to routines or reference variables declared in the overlays. The only
way to enter an overlay is by a call to LOAD, which will transfer control to
the entry point of the overlay.

4. Remember that if you alter one module, no matter how trivial the change,
you must re—compile all modules which access it. This is entirely the
programmer s responsibility; there is no way for PROMAL to check it for you.

If you fail to do this, the LOADer will relocate the program incorrectly,
probably resulting in mysterious crashes when your program runs. One way to

Copyright (C) 1986 SMA Inc. Rev. C

3-82 Systems Management Associates, Inc. PROMAL LANGUAGE

check for this is to look at the date which the compiler writes on the first
line of the export file (.E extension). If this date is later than the
compilation date on any of the modules which INCLUDE it, you need to recompile
those modules.

5. 1If you manipulate LOFREE or HIFREE, remember that the low order byte
must always be O (i.e., always points to a page boundary).

6. You should always check the value of LDERR after any call to LOAD,
and print an appropriate diagnostic message if an error occurs.

7. Be sure to INCLUDE PROSYS (or copy the definitions from PROSYS.S
directly into your source program) for any program using the loader.

8. The LOAD procedure depends on the underlying operating system, memory
map and computer hardware for its operation. Therefore you should not expect
programs using LOAD or EXPORT to necessarily be completely portable to other
kinds of computers or operating systems, just because PROMAL is available on
that computer.

9. If you EXPORT anything, you must have EXPORT on the PROGRAM (or OVERLAY)
line, or you will get an "ILLEGAL EXPORT" error when the COMPILER encounters
the first EXPORT declaration. A PROGRAM declaration should also have OWN
specified (or else the variables will be assigned the same addresses as any
other module not specifying OWN).

10. Exporting scalar variables may increase the memory usage of your
program somewhat.

11. A maximum of six modules may be in memory at once (8 with a program
generated with GENMASTER in the Developer”s package).

12. For the Commodore 64, using LOAD with the LDPRCLR option, the LOADer
will set HIFREE back to HIMEM after unloading all programs, to preserve the
space normally occupied by the EDITor. If you want the EDITor space to be
available for loading too, you need to set HIMEM to MEMLIM before calling the
LOADer (Caution: this will cause the Workspace (if any) to be moved up to the
top of memory too, and it will be clobbered when the EXECUTIVE swaps back in).
Your program should restore HIMEM before exiting back to the EXECUTIVE.

13. If you use multiple modules and have an ESCAPE in one module to a
REFUGE in a separate module, if you exit from the module with the ESCAPE via a
normal END, the program will still return to the parent program of the original
module.

Copyright (C) 1986 SMA Inc. Rev. C

.

PROMAL LIBRARY

Systems Management Associates, Inc.

PROMAL
(PROgrammer s Micro Application Language)
LIBRARY MANUAL

For Apple II and Commodore 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, North Carolina 27609
(919) 878-3600

Rev. C - Sep- 1986

Copyright (C) 1986 SMA Inc.

Rev. C

4-2 Systems Management Associates, Imc. PROMAL LIBRARY

PROMAL LIBRARY

The PROMAL system contains a LIBRARY of predefined procedures and func-
tions which are automatically loaded into memory when PROMAL boots up. This
library provides input, output and utility routines which greatly ease the
programmer”s job. To use any or all of the LIBRARY routines, you simply need
to add the statement:

INCLUDE LIBRARY

near the start of your program. This statement tells the COMPILER to read the
definitions for the standard library. This is just a list of external proce-
dures and subroutines. You can display the list with a TYPE L command from the
EXECUTIVE.. The INCLUDE LIBRARY statement does NOT make your program any
larger. The library routines are always present in memory; the INCLUDE LIBRARY
statement merely tells the compiler what the names are and where they are.

Once you have defined the routines in the LIBRARY with the INCLUDE
statement, you may freely use them in your program. You call LIBRARY routines
in the same manner as other PROMAL routines. Unlike normal PROMAL routines,
however, most LIBRARY routines can be called with a variable number of argu-
ments, some of which are optional. For example, the LIBRARY function PUT can
have one or more arguments. In most cases, the optional arguments have a
default value, which will suffice for most cases. For special cases, you can
specify additional arguments which modify the way the routine works.

Table 1: LIBRARY Summary

Name Avail.* Description

ABORT AC L Abort program execution, optionally displaying message.
ABS AC L Absolute value of REAL value.

ALPHA AC L Test if character 1s alphabetic.

BLRMOV AC L Block move.

CHKSUM AC L Compute 16 bit checksum of memory region.

CLOSE AC L Close an open file or device.

CMPSTR AC L Compare strings.

CURCOL AC L Determine current cursor column.

CURLINE AC L Determine current cursor line.

CURSET AC L Position cursor on the display.

DIR AC L Display file names matching a pattern

DIROPEN A P Open disk directory for reading.

EDLINE AC L Edit a line on the screen.

EXIT AC L Exit from program, optionally with message.

FILL AC L Fill a memory block with a constant.

FKEYGET AC L Get a current function key definition.

FKEYSET AC L Define a function key expansion string.

GETARGS AC L Split command line into arguments. ’/\
GETBLKF AC L Block-read from file.

GETC AC L Input one character from keyboard with echo to screen.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY

Systems Management Associates, Inc.

4-3

GETCF
GETKEY
GETL
GETLF
GETPOSF

GETTST
GETVER
INLINE
INLIST
INSET

INTSTR
JSR
LENSTR
LOAD
LOOKSTR

MAX
MIN
MLGET
MOVSTR
NUMERIC

ONLINE
OPEN
OUTPUT
OUTPUTF
PROQUIT

PUT
PUTBLKF
PUTF
RANDOM
REALSTR

REDIRECT
RENAME
SETPOSF
SETPREFIX
STRREAL

STRVAL
SUBSTR
TESTKEY
TOUPPER
WORDSTR
ZAPFILE

AC
AC
AC
AC
A

AC
AC
AC
AC
AC

AC
AC
AC
AC
AC

AC
AC
AC
AC

AC
AC
AC
AC

AC
AC
AC

AC

AC
AC
AC
AC
AC
AC

[l -l i [l B ol wmoo g [l ol -l [alia N ol - B o [qnilia - BN oS - BlLA |l Y

[l ol o 2 =

Input one char. from a file or device.

Input character from keyboard, no echo to screen.

Input one line from the keyboard.
Input one line from a file or device.
Obtain current file positiom.

Test if T device is ready (serial port)
Return PROMAL version and machine code.
Input a line with screen editing.
Search linked list.

Test if a character is in a string.

Convert signed value to a string.

Call machine language subroutine.
Return length of string.
Load/unload/execute program or overlay.
Search a list of strings.

Return the largest of two or more arguments.
Return the smallest of two or more arguments.
Load machine language program or memory image.
String copy or substring or concatenate strings.
Test if character is numeric.

Get ProDOS volume name for specified disk drive.
Open a file or device for input/output.
Formatted output with many options.

Formatted output to a file.

Exit from PROMAL system.

Output text to the display.
Block-write to file.

Output text to a file or device.
Obtain a pseudo-random number.
Convert a REAL value to a string.

Redirect standard input/output to file/device.
Rename a file.

Set desired position in a file (random access).
Set the path name for directory searches.
Convert a string to a REAL numeric value.

Convert a string to a numeric value.
Search for one string in another.

Test if a key is pressed on keyboard.
Fold lowercase letter to upper case
Convert an unsigned value to a string.
Delete a file.

* Note: Avail. meaning: First column indicates machine availability, A=Apple
II, C=Commodore 64.

L=LIBRARY, P=PROSYS.

Second column indicates the required INCLUDE file,

Copyright (C) 1986 SMA Inc.

Rev.

c

4-4 Systems Management Associates, Inc. PROMAL LIBRARY

A few unusual or system~dependent routines are defined in a separate
file called PROSYS.S. These routines are also always resident in memory, but
in order to use them you need to add the statement:

INCLUDE PROSYS

near the beginning of your program. This file also defines some
less-frequently-needed system variables.

The LIBRARY routines are summarized above. The "Avail.” column indicates which
computers are supported (Apple or Commodore) and which INCLUDE file is needed
in order to use the routine (LIBRARY or PROSYS).

HOW TO USE THE LIBRARY ROUTINE DESCRIPTIONS

The following section provides a detailed description of each routine in
the LIBRARY, in alphabetical order. The USAGE line gives the syntax for
calling the routine. Words shown in CAPITAL LETTERS are required to be entered
as shown (although they do not have to be typed using upper case letters).
Words shown in lower case with the first letter capitalized are user-supplied
arguments. These arguments can be variables or constants or more complex
expressions. Arguments shown in square brackets, [and], are optional
arguments which may be included or left off at the programmer”s discretion.

The description of the routine will tell what actions are taken if the optional
arguments are not supplied. Ellipsis (...) are used to indicate an arbitrary
number of repetitions of an optional argument. For functions, the USAGE line
will show an assigoment statement with the type of result returned indicated by
the variable name. For example:

USAGE: Bytevar = GETC [(#Variable)]

shows that the function GETC has one optional argument which must be enclosed
in parentheses if given, and returns a function result of type BYTE. The #
symbol is used in the USAGE line to emphasize that the optional argument must
be the address of the variable, not its value. :

Some routines may have more than one optional argument, in which case some
or all may be specified. It is permissable to refer to the same LIBRARY routine
with different numbers of optional arguments specified in the same program.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-5

PROC ABORT ABORT PROGRAM

USAGE: ABORT [Arglist]

ABORT is a procedure which does not return to the calling program but
instead exits to the EXECUTIVE. Optionally, it may contain any arguments that
are legal for procedure OUTPUT, which will be output to the display.

EXAMPLE 1:

INCLUDE LIBRARY
DATA WORD OLDFILENAME = "MYFILE.T"
BEGIN

ABORT "CAN”T FIND FILE #S", OLDFILENAME

will display an error message on the display and abort to the PROMAL EXECUTIVE.
See OUTPUT for a description of the arguments which may be used.

FUNC ABS ABSOLUTE VALUE

USAGE: Realvar = ABS (Value)

Function ABS returns the absolute value of a real number. The function
returns type REAL. ABS(X) returns X if X is positive and -X if X is negative.

EXAMPLE 1:

INCLUDE LIBRARY

&
>

L X
REAL Y

>

Y

ABS(X-1.)/2.

NOTE:

1. In PROMAL version 2.0 and earlier, ABS was not included in the the standard
LIBRARY, but was in file REALFUNC.S instead. For version 2.1 and later, it is
in the LIBRARY for improved convenience, performance, and compatibility with
IBM PROMAL.

Copyright (C) 1986 SMA Inc. Rev. C

4-6 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC ALPHA TEST IF CHARACTER IS ALPHABETIC

USAGE: Bytevar = ALPHA(Char)

Function ALPHA returns TRUE if the argument is alphabetic. The argument
Char is expected to be type BYTE (not a string!). Both upper and lower case
letters will return TRUE.

EXAMPLE 1:

INCLUDE LIBRARY
BEGIN

CHAR=GETC

IF ALPHA(CHAR)

PROC BLKMOV COPY BLOCK OF MEMORY

USAGE: BLKMOV #From, #To, Count

BLKMOV is a procedure for copying a block of memory to another location.
fFrom is the starting address. Count is the number of bytes to copy. #To is
the destination starting address. The block being copied can overlap the
destination without a problenm.

EXAMPLE 1:

INCLUDE LIBRARY

WORD VALS [200]
BYTE BUF[40]
WORD I

BEGIN

BLKMOV $0400, BUF, 40
copies 40 bytes (decimal) starting at $0400 to BUF.
EXAMPLE 2:

BLKMOV #VALS[I], BUF, $8

moves 8 bytes (4 words) starting at the Ith word of VALS to BUF. Note the #
operator before VALS which is required for proper operation.

Copyright (C) 1986 SMA Inc. Rev.

o

PROMAL LIBRARY Systems Management Associates, Inc. 4-7

FUNC CHKSUM COMPUTE CHECKSUM OF BLOCK OF MEMORY

USAGE: Wordvar = CHKSUM(#Start, Size)

Function CHKSUM computes the 16 bit checksum of a block of bytes in memory
starting at address Start. Size is the number of bytes to checksum. The
returned value is the sum of all the bytes, modulo 65536.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE ARRAY{1000]

WORD ARYCHK

ARYCHK = CHKSUM(ARRAY, 1000)

IF CHKSUM(ARRAY,1000) <> ARYCHK
PUT NL,"ARRAY has been modified!"”

PROC CLOSE CLOSE FILE OR DEVICE

USAGE: CLOSE Handle

CLOSE is a procedure which closes a specified word file Handle. The
argument Handle must be the handle for a previously opened file.

EXAMPLE 1:

INCLUDE LIBRARY

WORD INPUTFILE ;File handle
BEGIN

INPUTFILE=OPEN(INPUTFILE)

CLOSE INPUTFILE ;Done with file

It is not normally necessary to close files in a program since all open files
will be closed automatically by the EXECUTIVE when exiting from a program. If
you are planning to generate stand-alone application programs which will be run
without the EXECUTIVE (as described in the PROMAL DEVELOPER”S GUIDE), then you
should be careful to close all files, since they will not be automatically
closed. Also if you work with several files in a program, it is a good idea to
close a file as soon as it is no longer needed, since a limited number of files
may be open at once. A power failure or other system failure may leave a

file written to disk incomplete unless it has been closed. Be careful not to
close a file which you have already closed previously.

Copyright (C) 1986 SMA Inc. Rev. C

4-8 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC CMPSTR COMPARE STRINGS

USAGE: Bvar = CMPSTR(Stringl, Op, String2 [,Fold [,Limit]])

Function CMPSTR compares two strings. Stringl and String2 are the address—
es of the two strings to be compared, and Op is a string (mot a character!)
specifying which compare operation is desired, chosen from:

K K=" on =t =" Y

Fold is an optional Boolean (BYTE) argument defaulting to FALSE which, if TRUE,
will cause lower case letters to be considered as equal to their upper case
equivalents. Limit is an optional argument specifying the maximum number of
characters to compare in the string, defaulting to 255. The collating sequence
for the comparison is the ASCII character set. Two strings are equal if and
only if they are the same length and have the same content (or equivalent if
Fold is TRUE). If two strings of different lengths match up to the end of the
shorter string, the longer string is considered greater.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE LINE[81]

GETL LINE

IF CMPSTR (LINE, ">", "M")

tests if the string LINE is greater than "M".
EXAMPLE 2:

DATA WORD KEYWORD="DRAW","MOVE","ERASE","QUIT",0

I=0
REPEAT
IF CMPSTR (LINE, "=", KEYWORD[I], TRUE, LENSTR(KEYWORD[I])
I=I+1
UNTIL KEYWORD[I]=0

tests if the string LINE matches the Ith keyword of a table, up to the length
of the keyword. (Note: See function LOOKSTR for a better way to do this).

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY

Systems Management Assoclates, Inc. 4-9

RETURN CURRENT COLUMN OF CURSOR

USAGE: Bytevar = CURCOL

Function CURCOL re

turns the current column number of the text cursor on the

screen. The leftmost column is column O, not column number 1.

EXAMPLE 1:

INCLUDE LIBRARY

?A

CON MAXCOL = 79 ;
?

?C

CON MAXCOL = 39 ;
0

BEGIN

IF MAXCOL-CURCOL <
PUT NL
PUT STRING

Screen width-1, Apple

Screen width-1, Commodore

LENSTR (STRING) ; won"t fit entirely on current line?

FUNC CURLINE

RETURN CURRENT LINE NUMBER OF CURSOR

USAGE: Bytevar = CURLINE

Function CURLINE r
screen. The topmost 1

EXAMPLE:

INCLUDE LIBRARY
BYTE SAVELOC
BEGIN
SAVELOC=CURLINE
CURSET 0,0

PUT "Error, please
CURSET 0,SAVELOC

eturns the current line number of the text cursor on the
ine is line 0, not line number 1.

;Save line we“re on

;Move to home position

try again.”

;Back to where we were, col 1.

Copyright (C) 1986 SMA Inc. Rev. C

4-10 Systems Management Associates, Inc. PROMAL LIBRARY

PROC CURSET SET CURSOR POSITION

USAGE: CUORSET Column, Line

Procedure CURSET sets the screen cursor to a specified column and line.
Column is the desired column, and Line is the desired line number. The home
position on the screen (the upper left hand cormer of the screen) is location
(0,0) not (1,1).

EXAMPLE 1:
INCLUDE LIBRARY
BYTE I
BEGIN
CURSET 0,I

moves the cursor to the first column of text row I on the screen.

USAGE: Intvar = DIR(Pattern [,Mode])

Function DIR displays the names of any files in a disk directory. For the
Apple 1I, Pattern is the desired directory name. No filenames or wildcards are
recognized. For the Commodore 64, Pattern is a filename string which may
include wildcards * and ?. The Pattern may optionally have a drive number
prefix and a file extension (which can also be a wildcard). The * wildcard
matches ANY string and the ? wildcard matches any single character. The
function returns an INTeger value indicating the number of files which matched
the Pattern (including subdirectories for the Apple) if positive or 0, or minus
an error code if negative. The absolute value of the error code has the same
meaning as for IOERROR for function OPEN. Mode is an optional argument,
defaulting to 1. If Mode is 1 or unspecified, a normal display of file names
is made. If Mode=0, then the directory will be tested for matching entries and
Intvar returned, but nothing will be displayed. Altermatively, Mode can be an
open file handle. In this case, the output is directed to this file or device
instead of the screen.

For the Apple II, the format of the output display will be the same as for
the FILES command in the EXECUTIVE if the output is to the screen, or will be
one filename per line for any other file or device. For the Commodore 64, the
format of the output display will be the same as for Commodore BASIC. The
pattern matching is performed by the Commodore ROMs resident in the disk drive,
and therefore operates as described in the Commodore disk manual. In particu-
lar, you should note that a pattern of "*.S" will not match all the files
ending in ".S", but will instead match ALL the files on the disk. This is
because Commodore has chosen to implement the "*" wildcard to mean, "match
anything at all” (including ".").

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-11

EXAMPLE 1 (for COMMODORE 64):

INCLUDE LIBRARY

BEGIN

IF DIR("OLDFILE.D")=1 ; file exists?
PUT NL,"Want to use existing file?" ...

EXAMPLE 2 (for Apple II):

INCLUDE LIBRARY
DATA WORD SUBDIR="ACCOUNTS/" ; Sub-directory in current prefix.
WORD NUMACCTS

NUMACCTS=DIR(SUBDIR) ; Display file name in our sub-directory

NOTE:
l. For the Apple, any file name part will be ignored. For example,
"2:ACCOUNTS/MYFILE.T" is equivalent to "2:ACCOUNTS/".

FUNC DIROPEN APPLE 11 ONLY OPEN DIRECTORY FOR READING

USAGE: Handle = DIROPEN(Dirname [, Mode])

Function DIROPEN is used to open a disk directory for reading on the Apple
II. Dirname is a string specifying the directory name. Mode is the optional
access mode character, which must be “R” (read access) if specified. Opening a
directory for writing is not permitted by ProDOS. DIROPEN returns a file
handle (type WORD) as in a normal OPEN function, if successful. Once opened,
the directory can be read like an ordinary file. Please consult the ProDOS
reference manual for information on directory organization.

EXAMPLE 1:

INCLUDE LIBRARY
INCLUDE PROSYS
DATA WORD PATH = "2:"
WORD DIRHANDLE
BEGIN
DIRHANDLE = DIROPEN(PATH)
IF DIRHANDLE = O
PUT NL,"Can”t open directory for drive 2"

Copyright (C) 1986 SMA Inc. Rev. C

4-12 Systems Management Associates, Imc. PROMAL LIBRARY

NOTE:

1. You will need to INCLUDE PROSYS near the beginning of your program in order
to use DIROPEN.

2. Although DIROPEN is only available on the Apple, you may open a Commodore
64 directory using the OPEN function (see OPEN).

3. The file PRODOSCALLS.S contains examples of a way to get or set file
attributes on the Apple without reading the directory.

FUNC EDLINE EDIT LINE ON SCREEN

USAGE: Bytevar = EDLINE(String [,Limit [,Mode [,#Col]]])

Function EDLINE is used to allow on-screen editing of a single line of text
in the same way as 1s supported by the PROMAL EXECUTIVE. Strimg is the address
of the string to be displayed and edited in place. String should be the
address of a buffer large enough to hold at least Limit+l characters. Limit is
an optional parameter defaulting to 80 which is the maximum number of charac-
ters acceptable in the line. Mode is an optional argument defaulting to $00
which controls several options based on individual bits in Mode, as follows:

Bit 0 = 1 (Mode=$01) means display the line in reverse video (highlighted).

0 means display the line in normal video.
Bit 1 = 1 (Mode=$02) means return "raw” function key codes from the keyboard.

0 means expand the function keys to their curreant definitions (see

FKEYSET) . -

Bit 2 = 1 (Mode=$04) means return "strange" control keys (explained below).

0 means ignore “"strange” control keys.
Bit 3 = 1 (Mode=$08) means initially display cursor at the column specified

in the BYTE variable Col, if specified, otherwise at the first
character.
0 means initially display cursor after last character.

The last optional argument, #Col, is ignored unless bit 3 of Mode is 1. 1In
this case, #Col is the address of a variable of type BYTE which contains the
desired starting column for the cursor. If the specified column is greater
than the length of the line, the cursor will be positioned immediately after
the last character. On exit from EDLINE, the variable Col is updated to the
position of the cursor at the time of exit from EDLINE.

Mode bits may be combined. For example Mode=$09 enables reverse video and
positions the cursor at the start of the field instead of the end (assuming no
#Col argument is specified).

Function EDLINE returns a byte which is the terminator entered. For normal
Mode, this will be a carriage return ($0D). However, if bits 1 and/or 2 of
Mode are 1, it could be a function key, cursor up/down key, control key, etc.
"Strange” control keys are defined as those control keys which are not allowed
for line editing, or keys returning a value greater than $7F other than
function keys. See Appendix B for key code values. For the Apple, function
keys are defined as either Apple key in conjunction with a number key 1 though
8. g

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-13

When EDLINE is called, it will display the String passed (which can be
null), starting at the current cursor position. It will then output enough
blanks so that a total of Limit characters are displayed. This is particularly
useful when bit O of Mode is set to 1 to select reverse video, since EDLINE
will display a reverse video "box" indicating the allowable "field size" on the
screen. EDLINE will then position the cursor after the last character of the
string (assuming bit 3 of mode is not set) and wait for keyboard input. All
line editing keys allowed by the PROMAL EXECUTIVE can be used in the same
manner with EDLINE, including CTRL-B to recall a prior line entry. See Table 1
of the PROMAL USER’S GUIDE for a complete list of supported editing keys. The
String will be edited "in place”.

Note that during input, the cursor is held "captive” in the limits of the
line, making it suitable for various kinds of data entry. By setting Mode
appropriately, EDLINE can become the basis of an editor or field-oriented data
entry system. By setting bits 2 and 3 (Mode=$08+$04) and specifying #Col, you
can detect, for example, when a "cursor up” key is entered (by the value
returned by the function), and what column the cursor was in at the time (by
the value returned in Col). You could then call EDLINE again to edit a string
which 1s on the line above the present line on the screen, with the same
arguments, and the cursor would appear initially in the same column as on the
previous line.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE DUMMY

BYTE BUFFER[S81]

BEGIN

MOVSTR "ERASE " ,BUFFER

DUMMY=EDLINE(BUFFER) ; let user complete or change the command

This program fragment will display the word "ERASE" on the screen, followed by
a blank and the cursor. The user could then complete the command as desired.

EXAMPLE 2:
INCLUDE LIBRARY

BYTE LINE[41]

BYTE COL

BYTE KEY

MOVSTR "This is a line to be edited.”, LINE
COL=3

CURSET 8,0

KEY = EDLINE(LINE, 40, $OF, #COL)

Copyright (C) 1986 SMA Inc. Rev. C

4-14 Systems Management Associates, Inc. PROMAIL, LIBRARY

This program fragment will display the specified string starting at the 8th
column of the first line on the screen, in a reverse video "box" 40 characters
long (which will wrap around to the next line on the Commodore 64), and will
position the cursor on the "s" in "This”. The line can then be edited by the
user in the usual manner. When a "strange” key (such as cursor up or down) is
entered, EDLINE returns the edited string in LINE, sets KEY to the key code for
the strange key, and updates Col to the cursor position at the time the key was
pressed.

NOTE:

1. It is possible, with care, to change almost all of the choices for editing
keys for EDLINE, as well as the cursor blink rate. You can also disable CTRL-C
(for the Apple) or other editing keys if you wish. See Appendix G.

PROC EXIT EXIT FROM PROGRAM

ey oy e en -

USAGE: EXIT [Arglist]

EXIT is a procedure which does not return to the calling program but
instead exits to the EXECUTIVE (or to the parent program if this program was
LOADed by another). Optionally, the call may contain any arguments that are
legal for procedure OUTPUT, which will be output to the display.

EXAMPLE 1:

INCLUDE LIBRARY
BEGIN

EXIT "Program Complete.”

This will display a message on the display and exit to the PROMAL EXECUTIVE.
See procedure OUTPUT for a description of what arguments may be used.

e ey e i e i e A A i i i A P D e i el S D T D D D S D D D D D A o il e i e el T

USAGE: FILL #From, Count [,Byteval]

FILL is a procedure which fills a block of memory with a specified value of
type BYTE. #From is the desired starting address. Count is the number of
bytes to fill. The optional argument Byteval is the value to be placed in each
byte, defaulting to $00. FILL operates much faster than a programmed loop.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-15

EXAMPLE 1:

INCLUDE LIBRARY
BEGIN

* 00

CON BUFSIZE = 500
BYTE BUF[BUFSIZE]

éiLL BUF, BUFSIZE
zeroes the array BUF of size BUFSIZE bytes.
EXAMPLE 2:

BYTE MYSTRING[20]

FILL MYSTRING, LENSTR(MYSTRING),” ~

blank fills the string MYSTRING up to its present length.

When using FILL to zero an array of type WORD or INT, remember that the size

needed for the second argument should be twice the array dimension (six times
for REAL).

PROC FKEYGET GET A CURRENT FUNCTION KEY DEFINITION STRING

USAGE: FKEYGET Keynumber, #String

Procedure FKEYGET sets a string to the currently-defined function key
substitution string. Keynumber is the desired function key number, from 1 to
8. #String is the address of a buffer at least 32 characters long to receive

the desired string.
EXAMPLE 1:
INCLUDE LIBRARY

BYTE KEYDEF[32]
WORD 1
BEGIN
PUT NL,"The current function key definitions are:"
FOR 1=1 TO 8
FKEYGET I,KEYDEF
OUTPUT "#C#I = #s",I,KEYDEF

Copyright (C) 1986 SMA Inc. Rev.

c

4-16 Systems Management Associates, Inc. PROMAL LIBRARY

NOTE:

1. To define function key strings, see FKEYSET.

2. TFor programs created with the optional GENMASTER utility of the optional
Developer”s system, function key definitions are initially null strings until
defined by calls to FKEYSET.

USAGE: FKEYSET Keynumber, String

Procedure FKEYSET is used to define a function key substitution string of
up to 31 characters. Keynumber is the desired function key number, 1 to 8.
String is the desired function key substitution string.

Once the function key substitution string is defined, pressing the function
key in the PROMAL EXECUTIVE, or during data eantry to a GETL, EDLINE, or INLINE
call, will cause the defined string to replace the current line. Up to 31
characters may be defined. Only normal, displayable characters ($20 through
$7E) should be used.

EXAMPLE 1:

INCLUDE LIBRARY
BEGIN

FKEYSET 2,"COMPILE 2:MYPROG"
defines function key F2 to be "COMPILE 2:MYPROG".

NOTE:

1. On the Apple II, function keys are activated by holding down either Apple
key and pressing a number key 1 through 8.

2. You can ignore function keys in EDLINE/INLINE/GETL by using FKEYSET to set
the key definition to a null string (e.g., FKEYSET 1,"").

3. You can cause the function keys to return thelr original key code in
EDLINE/INLINE/GETL by using FKEYSET to define a string consisting of the key
code (see Appendix B) followed by a zero byte (e.g., FKEYSET 1,"\85" for the
Commodore 64 F1l key).

4. TFunction key settings defined in a program remain in effect when control is
returned to the EXECUTIVE.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-17

FUNC GETARGS SPLIT A COMMAND LINE INTO ARGUMENTS

USAGE: Bytevar = GETARGS(Argline, #Ptrlist [,Limit [,Sep]])

Function GETARGS is used to parse a line into a list of strings, one string
for each argument. Argline is the string argument which is to be separated
into arguments. #Ptrlist is the address of an ARRAY of WORD variables. The
function will return a list of pointers to the arguments in this array. Limit
is an optional argument specifying the maximum number of arguments which may be
returned. Sep is an optional BYTE argument defaulting to ~ ~, which specifies
what character is to be considered the separator of arguments. The GETARGS
function will modify the Arglime string in place, by installing a O byte at the
end of each argument, replacing the first separator (usually a blank) after
each argument. Each entry in the pointer list will be filled with a pointer to
the first non-blank character of the argument. The returned value of the
function is a BYTE variable indicating the number of arguments returned in the
pointer 1list.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE ARGLINE([81]
WORD ARGLIST[8]

BEGIN
MOVSTR "MYFILE 6 YOURFILE", ARGLINE
N = GETARGS(ARGLINE,ARGLIST)

will return N=3, and set ARGLIST[O]="MYFILE", ARGLIST[1]="6", and
ARGLIST[2]="YOURFILE". 1In an actual application, ARGLINE would typically

be read from the keyboard instead. The effects of GETARGS on the ARGLINE array
in memory are illustrated below (0 indicates $00 terminator):

MlY|F|z{L]|E 6] |Ylolulr|F|z|L|E|O] Before GETARGS call
ARGLIST[O] ARGLIST[1]
[_. I—-ARGLIST[Z]
MlYjr|z|L]E]O 6lojy|olulr|F|T|L|E|0] After GETARGS call
NOTE:

1. Since the Argline string is modified in place, if you alter any of the
strings returned in ARGLIST, you should be careful not to make them larger or
they will affect the content of neighboring strings.

Copyright (C) 1986 SMA Inc. Rev. C

4-18 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC GETBLKF READ A BLOCK FROM A FILE INTO MEMORY

USAGE: Wordvar = GETBLKF(Handle, #Start, Maxsize)

Function GETBLKF does a block read from a file or device. Handle is the
file handle of the previously opened file (see OPEN for more information on
file handles). #Start is the desired address where the data should be
installed in memory. Maxsize is the maximum number of bytes to read. Wordvar
is returned as the number of bytes actually read. If Wordvar is less than
Maxsize, then end-of-file was encountered before Maxsize bytes could be read.
GETBLKF does not recognize any record boundaries or delimiters except
end-of-file. It is the complementary function to PUTBLKF.

It is the fastest way to read data from disk.

EXAMPLE 1:

INCLUODE LIBRARY

WORD SCREENFILE ;File handle

WORD READSIZE ;# bytes actually read
BEGIN

LI

SCREENFILE=0OPEN("SCREENDATA.D") ;Open for reading

IF SCREENFILE=0 ;Open error? : I
ABORT "#CCant read SCREENDATA.D file!"

READSIZE=GETBLKF (SCREENFILE,$0400,1000)

reads 1000 bytes (decimal) from the file "SCREENDATA.D" into memory starting at
location $0400.

NOTE:
1. The predefined (in the LIBRARY) variable DIOERROR can be checked after a

GETBLKF operation to test for possible errors, 1f desired. If DIOERROR=0, the
read was completed normally. 1If DIOERROR = 2, a disk read error occurred (in
which case GETBLKF will return as much as could be successfully read before the
error).

2. When using GETBLKF to read data into memory starting at a particular
element of an array, be sure to specify the # operator to indicate that you
want the address of the array element, not the value. For example,

READSZ = GETBLKF(HANDLE, #BUF[I,0])

3. IMPORTANT: For Commodore 64, GETBLKF is the only Library routine which uses
DYNODISK, if it is enabled. You must not mix GETBLKF calls with other,
non-DYNODISK read calls (such as GETLF or GETCF) on the same file while
DYNODISK is enabled. Also, do not mix GETBLKF calls with DYNODISK off and
DYNODOISK on in the same file. To disable DYNODISK from within a program, set
C64DYNO to O (defined in file PROSYS.S).

TN
~

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-19

FUNC GETC RETURN ONE CHARACTER FROM KEYBOARD

USAGE: Bytevar = GETC[(#Variable)]

GETC is a function (not a procedure!) which gets one character from the
keyboard and displays it on the screen. It has one optional argument which 1is
the address of a variable to receive the character entered. It returns an
argument of type BYTE, which is the character read. The same character will be
installed in the variable whose address is the argument, if present. The
optional argument allows a convenient way to save the character and test it in
the same statement. GETC blinks the cursor while waiting for a key to be
pressed, and echoes the key to the screen.

CAUTION: If you use the optional second argument, be sure to specify the #
operator in front of the variable to receive the character. Otherwise, the
character will be installed somewhere in the first page of memory, correspond-
ing to whatever value happens to be in that variable at the time, possibly
corrupting the PROMAL system.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE NAME[41]

WORD I

BEGIN

I=0

WHILE ALPHA(GETC(#NAME[I]))
I=1+1

NAME[I]=0

This fills the buffer NAME with characters from the keyboard until a non-alpha-
betic character is entered, and terminates it with a $00 byte to make it a
string. Alternatively, the form without an argument could be used:

I=0
REPEAT
BUF [I]=GETC
I=I+1
UNTIL NOT ALPHA(BUF[I-1])
BUF[I]=0

NOTE:

1. GETC processes the Alpha lock key (CTRL-A) intermally.

2. GETC treats CTRL-Z as end-of-file from the keyboard and therefore returns
$00 instead of $1A for CTRL-Z.

3. If you wish to get a key without keyboard echo, see GETKEY.

4. 1If you wish to test if a key is pressed without walting for ome, see
TESTKEY.

5. It is possible to change the cursor blink rate. See Appendix G.

Copyright (C) 1986 SMA Inc. Rev. C

4-20 Systems Management Associates, Inc. PROMAL LIBRARY

USAGE: Flagbyte = GETICF(Handle, #Variable)

GETCF is similar to GETC but accepts input from a file or device. The
first argument is a WORD varlable which is the file Handle (see OPEN for
information on file handles). The second argument specifies the address of
the variable to receive the character. GETCF returns FALSE if end-of-file is
encountered and TRUE otherwise. Be sure to remember to specify the # operator
on the second argument.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE CHAR

WORD INFILE
WORD COUNT

BEGIN

e e ’

COUNT=0
INFILE=OPEN(CARG[1])
WHILE GETCF(INFILE,#CHAR)
COUNT=COUNT + (CHAR=",") ; bump count if is ~,~
OUTPUT "#C#S contains #W commas.",CARG[1],COUNT

This will read the file specified on the command line and display a count of
all commas in the file.

NOTE:

1. GETCF is not limited to reading text files. It will correctly return all
256 possible values which can be read from a file, including $00.

2. 1If the handle is STDIN (the keyboard), then characters are processed as
described for GETC above, and GETCF returns TRUE when CTRL-Z is entered.

3. On the Apple after GETCF returns, DIOERR will be O normally and 2 if a disk
read error occurred, if you wish to check it.

FUNC GETKEY RETURN ONE CHARACTER FROM KEYBOARD WITHOUT ECHO

1 s 2 s " e S s ey D D il e T et D S

USAGE: Bytevar = GETREY[(#Variable)]

GETKEY is a function (not a procedure!) which gets one character from the
keyboard without displaying it on the screen. It has one optional argument
which is the address of a variable to receive the value input. It returns an
argument of type BYTE, which is the character read. The same character will be
installed in the variable whose address is the argument, if present. The
optional argument allows a convenient way to save the character and test it in
the same statement. Appendix B gives the key codes returned by GETKEY.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-21

CAUTION: If you use the optional second argument, be sure to specify the i
operator in frout of the variable to receive the character. Otherwise, the
character will be installed somewhere in the first 256 bytes of memory,
corresponding to whatever value happens to be in that variable at the time,
possibly corrupting PROMNAL or the operating system.

EXAMPLE 1:

INCLUDE LIBRARY
PUT NL,"Press any key when ready, or * to exit.”
IF GETKEY = “*~

ABORT "#cProgram terminated.”

NOTE:

1. GETKEY processes Alpha-lock (CTRL-A) internally.

2. GETKEY returns CTRL-Z as $1A, without special treatment.
3. You may alter the cursor blink rate. See Appendix G.

PROC GETL GET LINE OF TEXT FROM KEYBOARD

USAGE: GETL {#Buffer [,Limit]

Procedure GETL inputs a line from the keyboard, allowing all editing
(backspace, etc.) supported by the PROMAL EXECUTIVE prior to the carriage
return. GETL has one required argument which is the address of the buffer to
receive the line. A second optional argument can be used to specify the
maximum number of characters to be read. The default limit is 80 characters.
The line will be returned as a string, with a $00 byte replacing the carriage
return at the end of line. The carriage return is not returned. Therefore the
buffer for the default GETL should be 81 bytes long to allow for the full
input.

EXAMPLE 1:

INCLUDE LIBRARY

BEGIN

é%iE LINE[81] ;Input line buffer
BEGIN

GETL LINE

This inputs a line from the keyboard into the LINE buffer.

EXAMPLE 2:

Copyright (C) 1986 SMA Inc. Rev. C

4-22 Systems Management Associates, Inc. PROMAL LIBRARY

BYTE PAGE [41,25] ; Array of 25 lines of up to 40 chars each
WORD I

GETL #PAGE[0,I], 40

This reads a line form the keyboard into the Ith line of the PAGE array, up to
40 characters long.

NOTE:

1. Table 1 in the PROMAL LANGUAGE MANUAL lists the line editing keys.

2. Due to buffer size limits, the maximum line size allowable for the
Commodore 64 is 80 characters, and 127 characters for the Apple II.

3. It is possible to alter the cursor blink rate and the editing keys used by
GETL. See Appenix G.

4. GETL always clears a space on the screen large enough to enter Limit
characters by outputting blanks from the present cursor position, before
accepting input (at the original cursor position). This may cause the screen
to scroll if the initial cursor position was within Limit characters of the end
of the screen.

FUNC GETLF GET LINE OF TEXT FROM FILE OR DEVICE

USAGE: Flagbyte = GETLF(Handle, #Buffer [, Limit])

Function GETLF (not a procedure!) inputs a line from a file or device
specified by the file Handle, which is the first argument. See OPEN for more
information on file handles. The second argument is the address of the buffer
to receive the line. An optional third argument can be used to specify the
maximum number of characters to be returned. If the line contains more than
Limit characters, the entire line is read up to and including the carriage
return, but only the first Limit characters are copied into the buffer. The
line will be terminated by a $00 byte and will not include the carriage return.

The returned value of the function is TRUE normally and FALSE (0) if
end-of-file was encountered before any bytes could be read from the file or
device.

EXAMPLE 1:

INCLUDE LIBRARY

WORD INPUTFILE

BYTE LINE[41] ; Input buffer

BEGIN

INPUTFILE=OPEN("MYFILE.T")

IF INPUTFILE=0 ; open error?
ABORT "#CCan”t open MYFILE.T - Program Aborted”

WHILE GETLF(INPUTFILE,LINE,40) ;only 40 chars max please
PUT NL,LINE

~

This will display the first 40 characters of every line of file MYFILE.T.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-23

NOTE:

1. Due to buffer size limitations, a maximum of 127 characters can be read

for a line. On the Commodore 64, if the Handle is STDIN (the keyboard), this
is reduced to a maximum of 80 characters. To read lines larger than 127
characters from a file, you could use GETCF instead, installing characters in
your own buffer one at a time, checking for a carriage return.

2. 1If the Handle is STDIN (the keyboard), the alpha-lock character (CTRL-A)
will be processed internally, and CTRL-Z will be treated as end-of-file if it
is the first character of the line.

3. When using GETLF to input starting at a particular element of an array,

be sure to specify the # operator to indicate the address of the element. Like
all PROMAL routines processing strings, the GETLF procedure expects the address
of the desired destination for the string.

USAGE: Wordvar = GETPOSF(Handle [,#Segvar])

Function GETPOSF returns the relative position of the next byte to be
read/written in a file. Handle is the file handle of a previously OPENed
file. Wordvar is returned as the relative offset from the beginning of the
file in bytes, from O to 65535. #Segvar is an optional address of a word
variable to receive the high order 16 bits of the relative offset. It is
necessary to specify #Segvar only if the file is more than 64K bytes long and
you wish to know the full offset into the file. GETPOSF should not be used for

devices.

A common use of GETPOSF is to save the current file position for a file
which has been partially read but must be closed temporarily for some reason
(such as changing disks during a single-drive copy operation), and then
restoring the file to the same position so that you can continue reading.

EXAMPLE 1:

INCLUDE LIBRARY
WORD CURPOSN

WORD FILE
FILE=OPEN("MYFILE.D",R)
CURPOSN=GETPOSF(FILE)
CLOSE FILE

FILE=OPEN("MYFILE.D",R)
SETPOSF FILE,CURPOSN

. s

NOTE:
1. This function is not supported on the Commodore 64 because the Commodore

hardware and ROMs to not support it.

Copyright (C) 1986 SMA Inc. Rev. C

4-24 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC GETTST GET T DEVICE STATUS -
USAGE: Bytevar = GETTST (I0flag)

Function GETTST tests if the T device (serial port) is ready to send or
receive a character. 1IOFlag is O to test the input status and 1 to test the
output status. The function returns TRUE if the serial port is ready and FALSE
if not. When testing the input status, GETTST returns TRUE if a character has
been received. When testing the output status, the function returns TRUE if
the transmitter is empty (the last character, if any, has been sent).

Appendix F contains additional information on GETTST and related topics.
EXAMPLE 1:

INCLUDE PROSYS ;Where GETTST is defined

WORD COM ; File handle for serial port

BYTE CHAR ;s Received character

COM = OPEN("TI", “B”) ; Open serial port for input/output

IF COM=0

ABORT "f#CUnable to open serial port”
TDEVRAW=$80 ;Enable "raw" serial input mode (see Appendix F)
REPEAT
IF GETTST(O) ;Character received from serial port?
CHAR=GETCF(COM) ;Get it
PUT CHAR ;Display it

UNTIL TESTKEY sDo it until any key is pressed

CLOSE COM ;Close the serial port
NOTE:

1. You will need to have INCLUDE PROSYS near the start of your program in
order to use GETTST.

FUNC GETVER OBTAIN PROMAL VERSION CODE
USAGE: Wordvar = GETVER

Function GETVER returns a WORD value indicating the version of PROMAL which
is running. There are no arguments. The low byte of the returned code 1is the
version number as two hex digits (for example, $21 for version 2.1). The high
order byte indicates the target machine for the PROMAL runtime package, as
follows: $01 = Commodore 64, $02 = Apple II, $03 = IBM PC small memory model,
$04 = IBM PC large code memory model. Additional codes may be defined as
PROMAL becomes available on other target machines.

TN

EXAMPLE 1:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-25

INCLUDE LIBRARY

INCLUDE PROSYS ; Where GETVER is defined

IF GETVER:> <> $02 ; Make sure we're on an Apple
ABORT "#cThis program runs only on Apple II”

NOTE:
1. You will need to INCLUDE PROSYS near the start of your program in order to
use GETVER.

FUNC INLINE INPUT LINE OF TEXT FROM SCREEN

USAGE: Bytevar = INLINE(String [,Limit [,Mode]])

Function INLINE is the same as EDLINE, except that the String to be edited
in place is automatically set to null at the start of the routine. The String
argument should be the address of a buffer large enough to hold Limit+l
characters. Please see EDLINE for a full description.

FUNC INLIST SEARCH LINKED LIST

USAGE: Wordvar = INLIST (String, Listend [,Fold [,Limit [,Safety]]])

Function INLIST is a special purpose routine for advanced programmers. It
searches a linked list of a specific form for an entry matching a string. If
the string is not found, O is returned. Otherwise, the address of the matching
string is returned. String is the string desired. Listend is a pointer to the
end of the list, as shown below (i.e., the link to the first name to try is the
word at Listend-2. The optional argument Fold is a flag, defaulting to FALSE,
which if set to TRUE indicates that lower case alphabetic characters should be
considered as matching their uppercase equivalents. Limit is an optional
argument defaulting to 255, indicating the maximum number of characters
required to match in String. Safety is an optional argument defaulting to 8192
($2000) indicating the maximum number of entries to test before giving up.
Safety prevents the function from "hanging up"” forever if the linked list is
corrupted. The assumed format of the linked list is as follows:

Copyright (C) 1986 SMA Inc. Rev. C

4-26 Systems Management Associates, Inc. PROMAL LIBRARY

{-—-LISTEND

Address of last entry string (2 bytes)

String for last entry (N bytes)

EXAMPLE 1:
; This example shows how to builld a simple Symbol Table for a
compiler, assembler, etc. using a linked list, where each entry
is a variable-length name and its associated definition (value).

3
.
b

H
INCLUDE PROSYS ; where INLIST is defined

WORD SYMTAB [1000] ;space for linked list
WORD LISTEND ;ptr to next unused entry

PROC PUTST ;NAME, VALUE

; Install NAME, VALUE into symbol table linked list.
ARG WORD NAME ; string to install
ARG WORD VALUE ; assocliated definition of name
WORD STPTR
BEGIN
MOVSTR NAME,LISTEND ; install name
STPTR=LENSTR(NAME)+LISTEND+1 ; after name string
M{STPTR]=VALUE:< ; install low byte of value
M[STPTR+1]=VALUE:> ; ...hi byte
M[STPTR+2]=LISTEND:<
M[STPTR+3]=LISTEND:>
LISTEND=STPTR+4 ; next available location
END

FUNC WORD GETST ; NAME

;5 Returns value stored in symbol table for NAME
ARG WORD NAME ; name to look up in symbol table
WORD ENTRY
BEGIN
ENTRY=INLIST(NAME,LISTEND) ; search list for name
RETURN (ENTRY+LENSTR(ENTRY)+1)@+ ; = value of NAME
END
; Initialize start of list for symbol table...
SYMTAB[O0]=0 ; end of list sentinel
LISTEND=SYMTAB+2 ; starting address

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-27

NOTE:

1. A "real" symbol table manager would need to check for errors such as no
more room in the buffer, symbol not found, etc.

2. You will need to have INCLUDE PROSYS near the front of your program to use
INLIST.

e e i e e o s 2t 2 2. e e e T o A D < A S A A e e o D A o U R AP o S e A B A A S A O T T D D) T D R S S 0 S 8 o

FUNC INSET TEST IF A CHARACTER IS IN A STRING OR SET

USAGE: Bytevar = INSET(Char, String [,Meta])

Function INSET returns the position of a specified character in a string.
Char is the desired character, String is the string to search. Meta is an
optional argument character, which is usually -—“ if specified. If Meta is
specified, then the Meta character can be used to denote a range of characters.
Bytevar is returned as O if the character is not found in the string, or as the
index to the matching character plus onme if the character is found in the
string.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE CHAR

BYTE I

BEGIN

éﬁAR=’A'

I = INSET(CHAR, "ABC")

This returns I=1 because the A matches first character of the string.
When Meta is not specified, INSET is often used to find a particular delimiter
in a string:

EXAMPLE 2:

WORD LINE
LINE="100, SPRING INVENTORY"

PUT LINE+INSET(”,”,LINE)
This will display:
SPRING INVENTORY
because the INSET function returns the number of characters to skip over to get

beyond the comma. A different use for function INSET is to test for membership
of a byte in a set of bytes:

Copyright (C) 1986 SMA Inc. Rev. C

4-28 Systems Management Associates, Inc. PROMAL LIBRARY

EXAMPLE 3:

BYTE LINE[80]

IF INSET(LINE[L], "A-Za-z0-9.","-")

tests to see if the character LINE[I] is alphabetic, numeric, or a period. The
Meta argument is specified as “-”, so "A-Z" will be matched by any character
between A and Z inclusive. If LINE[I] was any character between "B~ and ‘Y~
inclusive, INSET would return 2 (the position of the =" plus one).

e ———

PROC INTSTR CONVERT SIGNED INTEGER VALUE TO STRING

USAGE: INRTSTR Value, #Var [,Radix [,Minfield [,Padding]]]

Procedure INTSTR takes a signed value and generates the ASCII string
representing the value. Value is the desired value to encode and #Var is the
address of the buffer to receive the ASCII characters. Radix is the optional
base to be used, defaulting to 10. Minfield is the minimum field width to
generate, defaulting to O. Padding is an optional character (not string!)
argument which is the padding character desired to fill out the buffer to the
minimum field width, defaulting to blank.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE BUF[8]

INT MYNUM

BEGIN
MYNUM=568-11
INTSTR MYNUM, BUF

PUT NL,BUF
This will display:

557
EXAMPLE 2:

INTSTR $FFFE, BUF, 10, 4
will install the string * -2" into BUF.
NOTE:
1. If a minimum field width is specified, the number will always be right-jus-
tified in the field. If more characters are required to output the number than
are specified for the minimum field width, they will be encoded without any
error indication.

2. To counvert an unsigned (BYTE or WORD) variable, use procedure WORDSTR
instead. To convert a REAL value, use procedure REALSTR instead.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-29

PROC JSR CALL MACHINE LANGUAGE SUBROUTINE

USAGE: JSR [Address [,Areg [,Xreg [,Yreg [,Flags]]11]

Procedure JSR calls a machine language subroutine at a specified address,
optionally loading the 6502 (or 6510 or 65C02) processor’s hardware registers
with specified values before the call. Address is the address of the desired
routine. Areg, Xreg, Yreg, and Flags are optional arguments which specify the
desired values to be installed in the A, X, Y, and flags (processor status
word) registers, respectively. All register arguments should be type BYTE.
Naturally the address must be type WORD. It is possible to sample the values
returned in the registers from the machine language program.

Please see Appendix I for a detailed explanation and examples of JSR.

NOTE:
1. You will need to INCLUDE PROSYS near the beginning of your program in order
to use JSR.

FURC LENSTR RETURN LENGTH OF STRING

- - -

USAGE: Bytevar = LENSTR (String)

LENSTR is a function which returns a BYTE result indicating the length of
the String which is the argument.

EXAMPLE 1:

INCLUDE LIBRARY

BYTE NAME [20]

BYTE SIZE

BEGIN

ﬁé&STR "Hello™, NAME

SIZE=LENSTR (NAME)

This sets SIZE=5. The size does not include the $00 byte terminator.

NOTE:
1. You may find frequent need of a statement similar to:

IF LENSTR(LINE) > O

where LINE is an array of bytes holding some string. This can be more
economically written as:

Copyright (C) 1986 SMA Imnc. Rev. C

4-30 Systems Management Associates, Inc. PROMAL LIBRARY

IF LINEEK

which is equivalent, since if a string is non-null, the first character can’t
be the string terminator.

PROC LOAD LOAD, UNLOAD, OR EXECUTE PROGRAM OR OVERLAY

USAGE: LOAD Progname [,Bitflags]

The LOAD procedure loads, unloads, and executes programs and overlays on the
Apple II and Commodore 64. Progname is the desired program or file name.
Bitflags is an optional BYTE argument consisting of several 1-bit flags used to
control the action taken by the LOADer. Please see the Chapter 8 of the
PROMAL LANGUAGE MANUAL for details and examples.

NOTE:
1. You will need to INCLUDE PROSYS near the start of your program in order to
use LOAD.

FUNC LOOKSTR SEARCH A LIST OF STRINGS

e o 2l s s el ol Tl s o A

USAGE: Intvar = LOOKSTR (String, Plist [,Nstr [,Fold [, Limit]]])

Function LOOKSTR searches an array of strings, trying to match a given
string. String is the desired string to try to match, Plist is the starting
address of a list of pointers to strings, terminated by a $0000 word. Nstr is
an optional argument specifying the maximum number of strings to search. Fold
is an optional argument, which if set TRUE, will cause lower case alphabetic
characters to be considered equal to their upper case equivalents. Limit is an
optional argument specifying the maximum number of characters to compare within
each string. Intvar is returned as -1 if the string did not match, or as the
array index to the string that did match.

EXAMPLE 1:

INCLUDE LIBRARY
INT I

BYTE COMD [20]

DATA WORD KEYWORDS []="MOVE","DRAW","ERASE","DASH","REDRAW","EXIT",0
BEGIN

MOVSTR "ERASE",COMD

I=LOOKSTR(COMD,KEYWORDS)

This will return I=2, because the string in COMD matches the third euntry in the
list.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-31

USAGE: Wordvar = MAX (Vall,Val2[,...])

Function MAX returns the largest of two or more arguments of type WORD
(unsigned). It is normally used to find the larger of two or more addresses.
Do not use it with type REAL arguments.

EXAMPLE 1:

INCLUDE LIBRARY
WORD I

WORD J

WORD K

BEGIN

J=1000

K=$D000

I=MAX(J,K, $C000)
This will return I=$D000.

NOTE:

1. Each value to be tested must be explicitly included in the function

call. You cannot find the largest value in an array by merely calling MAX with
the array name as an argument. The following example shows how a loop can
perform this function.

EXAMPLE 2:

WORD LARGEST

WORD MYARRAY[100]

WORD I

BEGIN
=0 ; Dummy to initialize

FOR I = O TO 99 ; Find largest value in array
T = MAX (MYARRAY[I], LARGEST)

=

Copyright (C) 1986 SMA Inc. Rev. C

4-32 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC MIN RETURN THE SMALLEST OF TWO OR MORE VALUES

USAGE: Wordvar = MIN (Vall,Val2{,...})

Function MIN returns the smallest of two or more arguments of type WORD
(unsigned). Do not use it with type REAL arguments. It is normally used to
find the lesser of two or more addresses.

EXAMPLE 1:

INCLUDE LIBRARY
WORD I

DATA WORD BOUND []= 100,200,300, 400,500,600
BEGIN

1=351

I=MIN(I,BOUND[3])

This will return I=351, because 351 is smaller than 400.

FUNC MLGET LOAD MACHINE LANGUAGE PROGRAM

USAGE: Wordvar = MLGET (Filename [,Loadaddress])

Function MLGET loads a machine language program. On Commodore 64 systems
it is expected to be in standard Commodore format for a machine language PRG
file. For Apple II systems it is expected to be a standard Apple BSAVE type
file. Filename is a string containing the desired file name. Loadaddress is
an optional load address. If not specified or 0, the load address will be the
address at which the program was saved. The function returns a word result
which will be $0000 if an error occurred, or the address of the last byte
loaded if successful.

You may load as many programs as needed by making multiple calls. No
checks are made to see if the loaded program conflicts with other memory usage,
and the memory allocation pointers (LOFREE, HIFREE, etc.) are not adjusted. It
is your responsibility to insure that an appropriate location is used.

Please see Appendix I for more information.

EXAMPLE 1:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-33

INCLUDE PROSYS

WORD ENDPROG ; Last address
DATA WORD MLPROGNAME = "MLROUTINES" ; File name
BYTE DUMMY
REPEAT
ENDPROG = MLGET (MLPROGNAME) ; Load Machine Lang. support routines

IF ENDPROG = O
PUT NL,"Cant load file " ,MLPROGNAME
PUT NL,"Please insert Master diskette and close drive door."
PUT NL,"Press any key when ready.”
DUMMY = GETC
UNTIL ENDPROG <> O

NOTE:

1. For Commodore 64, file names for MLGET must match the desired name exactly,
including upper and lower case and character set selection.

2. For Apple II, remember that many Apple programs load at $2000 before
relocating themselves to their final destination. In this case you may need a
BUFFERS HIRES command before loading to help protect PROMAL from being
overwritten.

3. You will need to INCLUDE PROSYS near the beginning of your program in order
to user MLGET. :

4. For Apple I1I, the default load address is found in the AUX TYPE field of
the directory entry. See the ProDOS Technical Reference Manual for details.

PROC MOVSTR COPY OR JOIN STRINGS OR EXTRACT SUBSTRING

USAGE: MOVSTR FromString, ToString [,Limit]

MOVSTR is a procedure which is used to copy strings, to concatenate
strings, or to extract substrings (i.e., replaces the LEFTS$, MID$, and RIGHTS
functions found in BASIC). FromString is the address of the string to copy-.
ToString is the address of the destination. Limit is an optional argument
specifying the maximum number of characters to copy.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE LINE[81]
BYTE SAVELINE[81]
BYTE KEYWORD[5]
BEGIN

MOVSTR LINE, SAVELINE
This copies the string LINE to the buffer SAVELINE.

EXAMPLE 2:

Copyright (C) 1986 SMA Inc. Rev. C

4-34 Systems Management Associates, Inc. PROMAL LIBRARY

MOVSTR " today.", LINE+LENSTR(LINE)

This concatenates the string literal today.” to the end of the string LINE.

EXAMPLE 3:
MOVSTR LINE, KEYWORD, 4

This extracts the first 4 characters of the string LINE and installs them in
the string KEYWORD. The Limit argument does not include the O byte string
terminator. The destination string may overlap the source string without
problems.

EXAMPLE 4:

MOVSTR LINE,LINE+l
LINE[0]="A"

This inserts the character “A” at the beginning of the string LINE.

NOTE:

1. MOVSTR always installs a O byte terminator at the end of the copied string.
Therefore you should always allow room for it.

2. When specifying a particular element of an array for the source or
destination , be sure to include the # operator to indicate the address of the
element instead of the value (e.g., #BUF[I] is correct).

FUNC NUMERIC TEST IF A CHARACTER IS A DIGIT

USAGE: Bytevar = NUMERIC (Char)

Function NUMERIC returns TRUE if the argument is an ASCII numeric digit and
FALSE otherwise. The argument is expected to be type BYTE (not a string!).

EXAMPLE 1:

INCLUDE LIBRARY

WORD VAL

BYTE CHAR

BEGIN

VAL=0

WHILE NUMERIC(GETC(#CHAR))
VAL=10*VAL+(CHAR-"0")

o0 e

This accepts a series of keystrokes until a non-digit is entered, and sets VAL
to the numeric decimal value entered.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-35

FUNC ONLINE AVAILABLE ONLY ON APPLE II GET VOLUME NAME OF DISX

USAGE: Bytevar
or
Bytevar

ONLINE (Slot, Drive, #Buf)

ONLINE (0, Unit, #Buf)

Function ONLINE tests if an Apple disk drive (including /RAM disk) is ready,
and if so, installs the ProDOS volume name in a specified buffer. 1In the first
form, Slot is the Apple slot number (1 to 7), Drive is the drive number (1
or 2), and #Buf is the address of a buffer of at least 18 bytes which will
receive the volume name. The function returns TRUE if the drive is ready and
FALSE otherwise (in which case IOERROR holds a code indicating the reason as
described in the OPEN function, which will normally be 2 for illegal unit, 3
for not ready, or $28 for non-exisitent). If the first argument is O, then the
second argument is interpreted as a ProDOS unit number (sometimes called a
device ID), which is a byte with the following format: Bit 7 is the drive
number bit (O=drive 1, 1= drive 2); and bits 4-6 are the slot number (0-7);
bits 0-3 are 0. The volume name is returned in the specified buffer as a
PROMAL string. The name will have a leading and trailing “/”, for example
" /USER.DISK/".

EXAMPLE 1:

INCLUDE LIBRARY
INCLUDE PROSYS
BYTE VOLNAM [18] ; Buffer for diskette volume name
WORD HANDLE
IF ONLINE(6,2,BUF) ; have second floppy disk?
FILE = OPEN ("2:SCRATCH.T",”W”) ;Open file on drive 2
ELSE
FILE = OPEN ("1:SCRATCH.T",”W")
IF FILE=0
ABORT "#cCan”t open SCRATCH.T for writing”

NOTE:

1. The /RAM device is normally configured for slot 3 drive 2 and may be tested
in with ONLINE.

2. You will need to INCLUDE PROSYS near the front of your program to use
ONLINE.

Copyright (C) 1986 SMA Inc. Rev. C

4-36 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC OPEN OPEN FILE OR DEVICE

USAGE: Wordvariable = OPEN (Filename [,Mode [,Nocheck [,Typelll])

OPEN is a function (not a procedure!) which opens a specified file or
device for input or output. The first argument is a string which is the
desired file or device name. The second argument is optional and is a charac-
ter (not a string!) specifying the desired access Mode, chosen from the
following:

-

Read access

Write access

Append (write, beginning at end of file) access

“ Both read and write (Not available on Commodore 64 except as noted
below for use with the command channel or T device).

)
\

A}
)

-

R
%)
A
B

The default access mode is “R”. The remaining optional arguments Nocheck
and Type are normally omitted, and are used for opening special
system—dependent file types. These system—dependent options are discussed
below.

The function OPEN returns a non-zero file handle of type WORD if the open
was successful, and O if it was not. This file handle (also sometimes called a
file descriptor) should be saved in a WORD variable. After opening the file,
you can refer to the file for I/0 operations by simply using this handle. The
handle is required as the first argument for other library routines which
operate on files.

If OPEN returns O, indicating that the file could not be opened, then the
pre—defined variable IOERROR indicates the reason, as follows:

TOERROR Meaning (If function OPEN returns 0)

0 No error. Normal.

1 Illegal access mode character.

2 Illegal file or device name.

3 Device not ready (or volume not found on Apple II).

4 File not found (for R mode access).

5 File already exists (for W mode access).

6 Can“t open another file (e.g., no more disk buffers) .
7 Write protected (for A or W access).

8 or more Other (system dependent, see your computer manual).

You should always test for an unsuccessful open.

EXAMPLE 1:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-37

INCLUDE LIBRARY
WORD INPUTFILE ;input file handle
BYTE LINE[81] ;input line buffer
BEGIN
INPUTFILE=0OPEN("MYDATA.D")
IF INPUTFILE=0

ABORT "Can”t open input file!"”
WHILE GETLF (INPUTFILE,LINE)

The example above could be expanded for better error processing as follows:
EXAMPLE 2:

INPUTFILE=OPEN("MYDATA.D",”R")
IF INPUTFILE=0 ; open error?
CHOOSE IOERROR
3
PUT NL,"Disk not ready.”
4
PUT NL,"MYDATA.D file not found."
ELSE
OUTPUT "#CDisk error #I",IOERROR
ABORT "#CProgram aborted.”

NOTE:

1. The Commodore 64 firmware limits the maximum number of open files to three,
of which only one may be open for writing or appending. If using relative
files (see Appendix M), at most one sequential file may be open, and DYNODISK
should be off. DYNODISK uses up one buffer inside the 1541 drive.

2. For the Apple II, the maximum number of open files is governed by the
number of available buffers (see the BUFFERS command in the PROMAL USER”S
GUIDE).

3. For the Apple and Commodore, the file handle points to a data structure
maintained by PROMAL. The first part of this data structure is the file name,
as a PROMAL string. Therefore, if you wish to display the name of a
successfully opened file, you can simply output the file handle, for example:

PUT NL,"Now reading file ", INPUTFILE

4. Devices such as the printer, modem, workspace, etc. are opened in the same
manner as files. For example:

EXAMPLE 3:
WORD PRTR

PRTR = OPEN ("P","W")

IF PRTR = O
PUT NL,"Printer is not ready.”
ELSE

PUTF PRTR, NL,"This will be printed.”,NL

Copyright (C) 1986 SMA Inc. Rev. C

4-38 Systems Management Associates, Inc. PROMAL LIBRARY

This opens the printer and outputs a line to it. Be sure to always send a
final NL to the printer; most printers do not actually print until they receive
a carriage return.

5. For special comnsiderations for opening and using the T device (modem), see
Appendix F. The INTERFACING chapter of the PROMAL LANGUAGE MANUAL contains
additional information on opening files and devices, including the printer.

Opening Special System-Dependent Files

The optional argument Nocheck is a flag, which, if TRUE, allows files to be
opened which do not conform to the standard PROMAL naming conventions and file
types. When Nocheck is TRUE, you can open any file allowed by the underlying
operating system, and no default file extension will be added to the name.
This allows your PROMAL programs to read BASIC program files, machine language
files, word processor files, etc. If you specify Nocheck as TRUE, you may
also optionally specify the argument Type, which is an argument of type BYTE
specifying the type of file desired. This argument is system—dependent.

For the Commodore 64, it can be any of the following:

‘P~ for PRG type files (BASIC and machine language files)
“S” for SEQ type files (Sequential files)
“U” for USR type files (User files).

The default type is “S”. For example:
CH64HANDLE = OPEN("BASIC PROG",”R”,TRUE, P7)

opens a file named "BASIC PROG” of type PRG for reading.
C64HANDLE = OPEN("WordProcData"”,”W”,TRUE,"U")

opens a file of type USR for writing.

You can also open to read a directory, open a direct access channel, or the
command/error channel. The Type argument should not be specified in this
case. For example:

C64DIR = OPEN("1:$",”R”,TRUE)

opens the directory on drive l. Do not attempt to open a directory for
writing. After opening a directory, the contents read will be the sector
contents of the directory (minus the track and sector links to the next
sector), starting with the BAM. Consult Anatomy of the 1541 Disk, by Abacus
Software, for further information on the format of the directory. 1t is
recommended that GETBLKF be used to read the data.

EXAMPLE 4 (COMMODORE 64):

WORD C64DA ; Handle for DA file

BYTE CHAN ; C64 channel # for DA file
C64DA = OPEN("#",”B”,TRUE)

CHAN = (C64DA+LENSTR(C64DA)+2)@<

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-39

This opens a direct access file. CHAN is needed so that it can be embedded in
the commands to read and write blocks. GETBLKF and PUTBLKF are the best
commands to use to read and write the data. Note that the file is opened in
“B” mode, so both reading and writing are permitted. Consult the Commodore 64
Programmer”s Reference Guide or the Abacus book for more information.

EXAMPLE 5 (COMMODORE 64):

EXT BYTE C64DYNO AT $ODE3 ; From PROSYS.S file
WORD C64CMD ; File handle for command/error chamnel
BYTE BUF[81l] ; Holds reply from error channel
DATA WORD FMTCMD = "NO:TrashDisk,r8"
C64DYNO=0 ;Disable DYNODISK
C64CMD = OPEN("%", “B”,TRUE)
PUTBLKF C64CMD, FMICMD, LENSTR(FMTCMD)
IF GETLF(C64CMD,BUF)
PUT NL,BUF,NL

This opens the Commodore 64 command/error channel, immediately issues a
command to format the disk, and displays the error message from the error
channel. Internally, PROMAL will use channel 15 for drive 0: (device 8) and 14
for drive l: (device 9). Error messages are best read using GETLF. Commands
must be sent using PUTBLKF (not PUTF or OUTPUTF). Before sending commands to
the disk command channel, you should disable DYNODISK, because the commands you
send may cause the disk to destroy the special DYNO code in the disk drive.
Internally, PROMAL always leaves the command/error channel(s) open all the
time; closing and opening an error channel makes the appropriate "connection”
through the file handle.

PROMAL assigns Commodore channel 3 to the Printer and 2 to the T device
(serial port). The secondary address for the printer can be selected by
setting the variable C64PSA before the open (see Appendix G). Channel 1 is
reserved for the DIR function. Files are assigned channels of 4 and up, with
secondary addresses the same as the channel. Therefore if you wish to use a
channel for some special purpose in a machine language program, you should
choose a channel like 9 or 10 to avoid a possible conflict. Do not close
the Commodore command/error channel. Do not attempt any direct serial bus
activity from a machine language program with DYNODISK enabled.

Since DYNODISK uses one extra buffer inside the 1541/1571 drive, under some
circumstances you may be able to open fewer files with DYNODISK enabled. Under
no circumstances should a file be opened with DYNODISK enabled while any other
device other than a single disk drive is connected to the serial bus. Failure
to observe this precaution will probably result in a "hung"” system.

Copyright (C) 1986 SMA Inc. Rev. C

4-40 Systems Management Associates, Inc. PROMAL LIBRARY

For the Apple II, you do not have to specify the Type of file in Read mode;
any type of file can be opened when Nocheck is TRUE. For write mode, the file
type should be specified. The values for common ProDOS file types are:

BAD $01 PCD $02 PTX $03 PDA $04
TXT $05 BIN $06 FNT $07 FOT $08
BA3 $09 DA3 $0A WPF $OB S0S $0C
RPD $10 RPI $11 DIR $OF CMD $FO
PRML $F8 (U8) INT S$FA IVR $FB BAS $FC
VAR $FD REL $FE SYS S$FF

For further information, consult the ProDOS Technical Reference Manual. For
example,

ATTHANDLE = OPEN("BASPRG", R”,TRUE)

opens the file BASPRG for reading. BASPRG could be a Basic program (or any
other type of file).

AITHANDLE = OPEN ("LETTER",”W”,TRUE, $05)
This opens file LETTER of type TXT for write access.

For the Apple II, attempting to open a locked file for “W” access will be
treated as a write-protect error. However, opening a locked file or write
protected disk for append mode cannot be detected as an error until an actual
attempt is made to write the file. Therefore you should always check DIOERR
after the first write operation in append mode. The file PRODOSCALLS.S
contains examples which show how to lock or unlock a file.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-41

PROC OUTPUT FORMATTED OUTPUT TO SCREEN

USAGE: OUTPUT Formatstring [, item...]

Procedure OUTPUT displays formatted output on the screen. Formatstring is
a string which governs how the output will be displayed, and how any optional
arguments which follow the format string will be interpreted. The special
character # is used as a field descriptor inside the format string. Field
descriptors indicate what kind of output is desired, chosen from the 1list
below:

#nl Output signed decimal integer, right justified in a field n characters
wide, with leading blank fill. Display "-" after leading blanks if
negative (no "+" if plus). If n is omitted, use minimunm field width
needed to display value.

#nW Output unsigned decimal word, right justified in a field n characters
wide, with leading blank fill. If n omitted, use minimum field width
needed to display value.

#nH Output unsigned hex word, right justified in a field n characters wide,
with leading O fill. If n is omitted, use minimum field width needed
to display value (no leading zeroes).

#nB Output n blanks (1 if n omitted).

#nS Output single character or string, left justified in a field of n
characters with trailing blank padding.

#nC Output one ASCII character whose value is n decimal. If n is omitted,
then output the newline character (ASCII CR, $0D). #0C is not allowed.

#nE Output scientific notation REAL using a field of n characters (n

defaults to 12 if omitted); n must be between 7 and 16.

#n.dR Output a REAL number using a field n characters wide, with d decimal
places shown; n must be between 3 and 12, and d must be less than
(n-1).

For each field descriptor in the string there must be a corresponding argument
following the string (except for #nB and #nC). The value m is optional, and
defaults to O except as noted above. The maximum value for n is 253. Up to a
total of 254 characters may be output by the entire procedure call. Hex output
will show leading zeros; other numeric output will not. To output the charac-
ter "#" literally in the format string, use ##.

For #nI, #aoW, #nH, and #nS field descriptors, if the value to be output
will not fit in the specified field width, extra characters will be output
sufficient to display the entire value. For instance, trying to display the
value 20000 using a #3W field descriptor will display all five digits, not just
3. However, if fewer digits are needed, blank “"padding” will be output to make
up the difference. For #n.dR output, remember that you must specify a field
width wide enough for the sign and the ".", even if you know the answer will be
positive (a blank will be displayed). If you try to output a value using #n.dR
which is too large to be displayed, PROMAL will first try to display the number
using #nE format instead (with the same n as you specified). Failing that, it
will print asterisks instead of a value. It is usually a good idea to pick a
larger value for n than you really think you will need when using #n.dR format
output.

Copyright (C) 1986 SMA Inc. Rev. C

4-42 Systems Management Associates, Inc. PROMAL LIBRARY

EXAMPLE 1:

INCLUDE LIBRARY
WORD N

BEGIN

N=723

OUTPUT "The answer is #W days.”, N
This will output to the display:

The answer is 723 days.
EXAMPLE 2:

BYTE LINE[81]
LINENO=20
MOVSTR “BEGIN",LINE

OUTPUT "#C#4H#5B#S" ,LINENO,LINE
will display (after a carriage return):
0014 BEGIN
EXAMPLE 3:

INCLUDE LIBRARY
REAL X

DATA REAL PI = 3.1415926535

X = PI * 100000. / 3.

OUTPUT "PI=#10.4R, X=#13E", PI,X

will display:
PI= 3.1416, X= 1.047198E+06

NOTE:

1. The format string is always required, and the number of arguments
after the format string must agree with the number of field descriptors given
in the format string (excluding #nB and #nC). You may not simply OUTPUT
variable names without a format string to display their value!

2. You may output single characters (type BYTE) as well as strings (type
WORD) using the #nS field descriptor.

3. The output forms for REAL output will display with rounding based on
digits beyond the displayed field. However some decimal fractions such as .005
are not exactly representable in binary format (so, for example, .005 is really
.00499999999,...). Therefore a value of exactly .005 may be displayed as .00
instead of .0l with a #n.2R field specification.

4. Some useful forms of the #nC field descriptor are:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-43

#C or #13C Start a new line (carriage return)
#12C Clear the screen and home the cursor
#15C (Apple) or #18C (Commodore) Start reverse video

#14C (Apple) or #146C (Commodore) End reverse video

More information on formatted output is given in the INTERFACING chapter of
the PROMAL LANGUAGE MANUAL. The BUDGET.S demo program on the PROMAL disk
i{llustrates how to use formatted output for preparing tabular output data.

PROC OUTPUTF FORMATTED OUTPUT TO FILE OR DEVICE

USAGE: OUTPUTF Handle, Formatstring [, item...]

Procedure OUTPUTF operates in the same manner as procedure OUTPUT above,
except that the first argument must be a file Handle of a previously opened
file or device, which is to receive the output.

EXAMPLE 1:

INCLUDE LIBRARY
WORD I

BEGIN

1=100

PRTR = OPEN ("P", W)

OUTPUTF PRTR,"#C#10B#I days.#C", I
This will output to the printer:
100 days.

A carriage return will be written after the line, because of the #C field
specified at the end of the Formatstring. Note that it is important to
remember to send a final CR to the printer, because most printers accumulate
characters in a buffer until a carriage return is received. If no final CR is
received, the last line will never be printed.

EXAMPLE 2:

WORD OUTFILE ; Output file handle
REAL NETWORTH ; Total net worth in §
OUTFILE=OPEN(CARG[1l], “W”) ; Open specified output file
IF OUTFILE=0

ABORT "#cUnable to open output file #S",CARG[1]

OUTPUTF OUTFILE, "#cYour current net worth = $#8.2R", NETWORTH

Copyright (C) 1986 SMA Inc. Rev. C

4-44 Systems Management Associates, Inc. PROMAL LIBRARY

NOTE:

1. More information on output to files and devices is given in the INTERFACING
chapter of the PROMAL LANGUAGE MANUAL. More examples of output formatting are
given for PROC OUTPUT, above.

2. On the Apple II, you may test DIOERR if you wish after writing to a file.
DIOERR is set to O normally, 1 if the disk is full, and 3 for a disk write
error.

PROC PROQUIT EXIT FROM PROMAL SYSTEM

USAGE: PROQUIT

Procedure PROQUIT causes an immediate exit from the PROMAL environment. For
the Commodore—64, the computer is reset, re-starting BASIC. For the Apple II,
the ProDOS "Quit™ call is executed as described in Apple”s ProDOS Technical
Note #7, which will result in a prompt for a new path name and complete prefix
for the next system program to be executed. PROMAL does not close any files
prior to exiting. However, for the Apple II, PROMAL will restore the /RAM disk
using the Apple-presecribed method if it was disabled on startup.

EXAMPLE 1:

INCLUDE PROSYS

PROQUIT ; Permanently exit PROMAL

NOTE:

1. You will need to INCLUDE PROSYS near the beginning of your program in order
to use PROQUIT.

2. Once you exit PROMAL, it must be re-booted to resume. There is no "warm"
entry point.

PROC PUT OUTPUT CHARACTERS OR STRINGS TO THE SCREEN

USAGE: PUT item [, item...]

PUT is a procedure for outputting text (including control characters) to
the display. PUT may have one or more arguments. Each argument may either be
a single character or the address of a string.

EXAMPLE:
PUT "Hello, world!",13

outputs the string "Hello world!" followed by a carriage return (13 decimal).
No carriage return is automatically added before or after the PUT is executed;
it must be explicitly indicated. This allows lines of output to be generated
using as many separate PUTs as needed.

——

EXAMPLE 1:

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4—-45

INCLUDE LIBRARY

WORD PHRASE1

PHRASEl= “"Abe Lincoln"

PUT cr,"” The answer was ",PHRASEl, " or "
PUT "Harold Robbins.”

This will output the sentence:
The answer was Abe Lincoln or Harold Robbins.
on a new, single line.

NOTE:

1. PUT treats any argument between $00 and $FF inclusive as a single character
to be output, and all other values as a pointer to a string of characters to be
output. Strings must be terminated by a $00 byte.

2. You may not use PUT to display the value of numeric values. Use OUTPUT to
perform this function.

3. If you wish to output a string starting at a particular element of an array
of bytes, don"t forget the # operator (for example, PUT #PAGE[O0,I]).

Otherwise, only a single character will be printed (for the reason given in
note 1 above).

4. PUT 12 will clear the screen. PUT $12, X, $92 will output X in reverse
video on the Commodore 64. PUT $0F, X, $OE will output X in reverse video on
the Apple II.

5. PUT N can be used to change text colors on the Commodore 64, where N is as
follows: $05=WHT, $1C=RED, $1E=GRN, $1F=BLU, $81=0RG, $90=BLK, $95=BRN,
$96=LTRED, $97=GRYl, $98=GRY2, $99=LTGRN, $9A=LTBLU, $9B=GRY3, $9C=PUR,
$9E=YEL, $9F=CYN.

6. More information about PUT is contained in the INTERFACING chapter of the
PROMAL LANGUAGE MANUAL.

PUTBLKF WRITE MEMORY BLOCK TO FILE OR DEVICE

USAGE: PUTBLKF Handle, #Start, Size

Procedure PUTBLKF does a block write to a file or device. Bandle is the
file handle of the previously opened file. #Start is the address of the
first byte to be written. Size is the size of the block to be written, in
bytes. The output will be an exact match of the contents of the memory block;
no conversions take place, and no terminators or delimiters are added. PUTBLKF
and GETBLKF may be used to save and restore memory images, such as arrays or
buffers or complete screens.

EXAMPLE:

Copyright (C) 1986 SMA Inc. Rev. C

4-46 Systems Management Associates, Inc. PROMAL LIBRARY

INCLUDE LIBRARY
WORD OUTFILE
BYTE BUFFER[300]
BEGIN
OUTFILE=OPEN(CARG[1],”W") ;open file name given on command line
IF OUTFILE=0
ABORT "Can”t open file!"
PUTBLKF OUTFILE,BUFFER,300 ;save buffer contents to file

writes the contents of the BUFFER array to the file specified as the first
argument on the command line.

EXAMPLE 2:

INCLUDE LIBRARY

CON REALSZ = 6 ; # bytes for each REAL variable

REAL ELASTICITY [100] ; Elasticity matrix for stress analysis
WORD TEMPFILE ; Temporary file

WORD 1 ; Index to ELASTICITY matrix

TEMPFILE=0PEN ("TEMPFILE.MEM", “w7)

PUTBLKF TEMPFILE, #ELASTICITY[I], REALSZ*(100-1) ; Save end of matrix

This saves an exact memory image of the REAL values ELASTICITY[I] through
ELASTICITY[99] inclusive to file TEMPFILE.MEM. No conversion to ASCII takes
place (i.e., TEMPFILE.MEM is not a text file).

NOTE:
1. If you wish, you may test DIOERR after a PUTBLKF to check for disk errors.
DIOERR=0 normally; l=disk full (works for W device too); 3=disk write error.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-47

PROC PUTF OUTPUT CHARACTERS OR STRINGS TO FILE OR DEVICE

USAGE: PUTF Handle, item [,item...]

Procedure PUTF is similar to PUT except the first argument must be a file
Handle for a previously opened file or device.

EXAMPLE:

INCLUDE LIBRARY

WORD OUTFILE

DATA WORD FILENAME = "1:MYFILE.D"

BYTE LINEOBUF[20]

BYTE LINE[81]

BEGIN

OUTFILE=0OPEN(FILENAME, W") ;File name specified in DATA stmt.

PUTF OUTFILE,LINENOBUF,” ~,LINE,NL

This outputs the string LINENOBUF, a blank, the string LINE, and a carriage
return to the output file MYFILE.D on drive 1.

NOTES:

1. See PUT above for more information about valid arguments.

2. More information on using PUTF to output to files or devices (including the
printer) is given in Chapter 6 of the PROMAL LANGUAGE MANUAL.

FUNC RANDOM RETURN A RANDOM VALUE OF TYPE WORD

USAGE: Wordvar = RANDOM [(Seed)]

Function RANDOM returns a pseudo random number of type WORD, uniformly
distributed between 1 and 65535. If the optional non-zero argument Seed, of
type WORD is specified, it will be used as the seed to generate this and any
succeeding random numbers.

EXAMPLE 1:

INCLUDE LIBRARY
WORD DIEROLL
BEGIN

DIEROLL = RANDOM 7 6 + 1
This sets DIEROLL to a random number between 1 and 6 inclusive.

NOTE:

Copyright (C) 1986 SMA Inc. Rev. C

4-48 Systems Management Associates, Inc. PROMAL LIBRARY

1. RANDOM uses a fast, feedback-shift-register method for generating random
numbers, suitable for games, etc. It does not generate random numbers of type
REAL.

PROC REALSTR CONVERT REAL VALUE TO STRING

USAGE: REALSTR Realval, #Buffer, Fieldwidth [,Decplaces]

Procedure REALSTR is used to convert a REAL numeric value to an ASCII
string representing its value. Realval is the desired value to convert.
#Buffer is the address of the string to receive the ASCII numeric representa-
tion. Fieldwidth is the desired number of characters to represent the number.
Decplaces is an optional argument specifying the desired number of decimal
places to be displayed. If Decplaces is omitted, the number will be converted
using scientific notation. Fieldwidth and Decplaces should be expressions of
type BYTE or WORD.

Fieldwidth must be specified between 3 and 12 if Decplaces is specified
(for normal output), or between 7 and 16 if Decplaces is not specified (for
scientific notation output). If Decplaces is specified, it must be less than
or equal to the field width minus two. This is because the field width must
always include room for a sign and the decimal point itself. If the sign of
the value to be printed is +, a blank will be output instead. If the sign of
the value is negative, a “-" will be output immediately to the left of the
leftmost digit (with any necessary blank padding).

If Decplaces is specified, but the value is too large to fit in the
specified format, REALSTR will first attempt to convert the number in scienti-
fic notation in the specified field width. 1If it is still too large, the
number will not be printed, and the field will be filled with asterisks (*).

EXAMPLE 1:

INCLUDE LIBRARY
REAL COST

REAL OVERHEAD

REAL PROFIT

REAL GROSS

BYTE BUFFER[10]

BEGIN

GROSS=1299.95

COST=557.44

OVERHEAD = .18*GROSS

PROF IT=GROSS~-COST-OVERHEAD
REALSTR PROFIT,BUFFER,7,2

PUT NL,"Our profit = $",BUFFER
This will display:

Our profit = $ 508.52

Copyright (C) 1986 SMA Inc. Rev. C

N

PROMAL LIBRARY Systems Management Associates, Inc. 4-49

EXAMPLE 2:

REAL XVAL
XVAL=-0.0000005543

REALSTR XVAL,BUFFER,12
This will install "-5.54300E-07" in BUFFER.

If the format of the output from REALSTR does not exactly meet your needs,
it is usually simple to write a procedure to manipulate the converted output
into the format you do want. For example, the following program fragment will
pad BUFFER with leading asterisks, such as might be used in a program to write
checks:

WORD PRINTER ;File handle
REAL AMOUNT
BYTE BUF[10]
WORD I
PRINTER=OPEN("P",W)
AMOUNT=887. 50
REALSTR AMOUNT,BUF,9,2
1=0
WHILE BUF[I]=" ~
BUF[I]="*"
I=I+l
PUTF PRINTER,”$”,BUF

This would print:

$*%%%887.50

PROC REDIRECT REDIRECT INPUT OR OUTPUT

USAGE: REDIRECT #STDIN [,Handle]
- or -
REDIRECT #STDOUT [,Handle]

Procedure REDIRECT is used by advanced programmers to redirect one of the
two standard I/0 paths available in PROMAL: STDIN (standard input), or STDOUT
(standard output). Each of these paths is a global variable of type WORD,
defined in LIBRARY, and is initialized to point by default to the keyboard
device for input or the screen device for output. Handle is a file handle of a
previously opened file or device. The REDIRECT procedure sets the standard
path to point to the open file or device. If the Handle argument is not given,
the default redirection is made back to the keyboard or screen. If the handle
is specified, it must be open and must have the appropriate mode (direction)
for the specified STDxxx (e.g., you can’t redirect STDOUT to the keyboard). A

Copyright (C) 1986 SMA Inc. Rev. C

4-50 Systems Management Associates, Inc. PROMAL LIBRARY

violation of either of these requirements generates a runtime error. Only the
two global variables above can be redirected. The EXECUTIVE will automatically
redirect STDIN and STDOUT back to the default devices at program termination.

EXAMPLE 1:

INCLUDE PROSYS ; Where REDIRECT is defined
WORD OUTFILE
OUTFILE=OPEN("SCREENFILE.T","W")

REDIRECT #STDOUT,OUTFILE

PUTF STDOUT,"This will go to SCREENFILE.T",cr

NOTE:

1. You will need to INCLUDE PROSYS near the beginning of your program to use
REDIRECT.

2. This function is used by the EXECUTIVE to redirect input and output.

FUNC RENAME RENAME A FILE

USAGE: Bytevar = RENAME (Oldfile, Newfile)

Function RENAME is used to change the name of an existing file. Oldfile is
a string specifying the old file name, as described for OPEN. For the Commo-
dore 64, it may optionally include a drive prefix and file extension. For the
Apple 1II, it may optionally include a drive prefix and pathname. Newfile is a
second string specifying the desired new name, which must be unique. If the
drive or prefix is specified for Newfile, it is ignored, and the drive number
or prefix for Oldfile will be used. It can change the file extension, however.
The function returns O normally or an error code as described for OPEN.

EXAMPLE 1:

INCLUDE LIBRARY
BYTE RENAMERROR
BEGIN
RENAMERROR=RENAME ("TEMP" ,CARG[1])
IF RENAMERROR
PUT NL,"Attempt to rename TEMP.C to ",CARG[l]," failed."

NOTE:

1. For the Commodore 64, a default file extension will be applied unless
NOFNCHK (Defined in file PROSYS.S) bit 7 is 1 (set to $80). If NOFNCHK bit 7
is set, non~SEQ files or files with lower case letters can be renamed.
Normally, NOFNCHK is O, which matches only upper case file names and applies a
default extension if none is specified.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-51

2. For the Apple, setting bit 7 of NOFNCHK will allow renaming a file or
subdirectory with no file extension.

PROC SETPOSF NOT AVAILABLE ON COMMODORE 64 SET FILE POSITION

USAGE: SETPOSF Handle, Position [,Segment]

Procedure SETPOSF sets the relative position of the next byte to be read/-
written in a file. Handle is the file handle for a previously opened file.
Position is a WORD value giving the desired file position. If the desired file
position is greater than 65535 (64K), then Segment should be specified as the
high order 8 bits of the complete 24 bit file position. The first byte of the
file is byte 0. 1If the position specified is greater than the current end-of-
file, then the file will be positioned to end-of-file instead, without any
error indication. Therefore if you wish to use SETPOSF for implementing a
random~access file organization, you should initialize the file when it is
created by writing dummy records to the file until it has reached the desired
maximum size.

A common use of SETPOSF is to determine a file”s size. To do this, open the
desired file, then use SETPOSF to set the file to a position known to be larger
than end-of-file. Then use GETPOSF to read the true end of file position. An
example for function GETPOSF, above, jllustrates a second common use of
SETPOSF .

EXAMPLE 1:

INCLUDE LIBRARY
CON RECSIZE=80
BYTE RECORD[RECSIZE+l] ; Current record contents
PROC GETRECORD ; File, RecNum
; Read record # RecNum from File into Record
ARG WORD FILE ; Open file handle
ARG WORD RECNUM ; Desired record #
BEGIN
SETPOSF FILE,RECNUM*RECSIZE
IF GETBLKF(FILE,#RECORD,RECSIZE) < RECSIZE
PUT NL,"***Tried to read beyond end of file on file #s",FILE
OUTPUT "#C***Record requested = #W",RECNUM

CLOSE FILE
ABORT "#CFile closed, program terminated.”
END

The above example shows a routine to read a random record into memory from a
database file, given the record number and file handle, for a file of up to
64K bytes.

Copyright (C) 1986 SMA Inc. Rev. C

4-52 Systems Management Associates, Inc. PROMAL LIBRARY

FUNC SETPREFIX NOT AVAILABLE ON COMMODORE 64 SET PATHNAME

USAGE: Bytevar = SETPREFIX(Dirname)

Function SETPREFIX attempts to set the current pathname to the specified
volume or directory name string, Dirname. If successful, it returns TRUE. If
the specified directory is not on line, FALSE is returned and the current path
remains unchanged. The string specified by Dirname must end with a /. 1If a
leading / is not specified, the Dirname will be appende to the current prefix.

EXAMPLE 1:

INCLUDE LIBRARY
DATA WORD VOLNAME = "/ACCOUNTS/" ;Desired volume name
IF SETPREFIX(VOLNAME)
RECEIVEABLES
ELSE
PUT NL,"Can"t find ", VOLUME," disk”

FUNC STRREAL CONVERT NUMERIC STRING TO REAL VALUE

USAGE: Bytevariable = STRREAL (String, #Variable)

STRREAL is a function which decodes (converts) a string into a numeric
value of type REAL. The first argument is the address of the desired string.
The second argument is the address of the REAL variable to receive the value
represented by the string. The string may have any number of leading blanks
and optionally a leading minus sign (-). The string may express the number in
normal notation or scientific notation (E-format). Conversion proceeds until a
character is encountered which cannot legally be part of the number (such as a
trailing blank, end-of-line, comma, etc). The function returns a result of
type BYTE which is an index to this delimiter. A returned value of O indicates
no legal digits were encountered, probably indicating an error condition.

EXAMPLE:

INCLUDE LIBRARY
BYTE LINE[81]

REAL VELOCITY

BYTE INDEX

BEGIN

GETL LINE

INDEX=STRREAL(LINE, #VELOCITY)
IF VELOCITY < 0.0

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-53

This would read a line from the keyboard and install the value of the number
typed into the variable VELOCITY. Some examples of acceptable input are shown
below:

0 3.14 9070 .077 7856.004 -200000 -5.56333308E-11

CAUTION: Be sure to remember to specify the # operator in front of the
REAL variable to recelve the value.

A general purpose numeric input routine, INPUTR, 1is described in Chapter 5
of the PROMAL LANGUAGE MANUAL and is provided on disk file INPUTR.S.

FUNC STRVAL CONVERT NUMERIC STRING TO WORD OR INT VALUE

USAGE: Bytevar = STRVAL (String, #Variable [,Radix [,Maxfield]l])

STRVAL is a function which decodes (converts) a string into a numeric
value. STRVAL may have two to four arguments. The required arguments are
String, the desired string, and #Variable, the address of a WORD or INT
variable (mot BYTE or REAL!) to receive the value represented by the string.
Radix is an optional conversion base defaulting to base 10, and Maxfield is an
optional maximum field width defaulting to 255 characters. The value to be
converted may be signed or unsigned. The string may have any number of leading
blanks. Conversion proceeds until Maxfield characters are used from the string
or until a character is encountered which cannot legally be a digit in a number
in the specified or default base. A byte variable is returned as an index to
this delimiter.

EXAMPLE 1:

Assume that the following program segment inputs the line, " 123,456" from the
keyboard (without the quotes):

INCLUDE LIBRARY

BYTE LINE[81]

WORD XDIST

WORD YDIST

BEGIN

GETL LINE

BINDEX = STRVAL (LINE,#XDIST)

This will install the value 123 decimal in XDIST and set BINDEX=4. If desired,
additional statements could determine that the delimiter was "," and so decode
any additional values (such as the 456):

EXAMPLE 2 (continued from Example 1 above):

IF LINE[BINDEX]=",~
BINDEX=STRVAL (LINE+BINDEX+l, #YDIST)

Copyright (C) 1986 SMA Inc. Rev. C

4-54 Systems Management Associates, Inc. PROMAL LIBRARY

EXAMPLE 3:
Assume BUF contained "BDF30A". Then:
BINDEX=STRVAL(BUF, #PC,16,3)

would set PC to $OBDF and return BINDEX=3, because a maximum field width of
three characters was specified. Base 16 decoding was specified. Any radix
between 2 and 36 can be used.

NOTES:

1. Be sure to remember to specify the # operator in front of the variable
name to receive the numeric value. If you forget it, the value will be
installed in memory at whatever address happens to be in that variable at

the time!

2. If you wish to input a number of type BYTE, first use STRVAL with a
destination of type WORD, and then copy the low byte to the final destination.
If you use STRVAL to decode directly to a BYTE variable, the following byte in
memory will also be affected.

3. If you wish to input a number of type REAL, use function STRREAL.

4., 1If the function returns O (no digits), the variable is also set to O.

5. 1If frequent numeric input is anticipated from the keyboard, you may wish
to use the following function (which can be found as file INPUIW.S on a PROMAL
disk), which displays a specified prompt and returns a WORD value typed from
the keyboard: : .

FUNC WORD INPUTIW ; Prompt
; Output PROMPT, accept line of numeric input from keyboard,
s return the numeric value.
ARG WORD PROMPT ; Desired prompting message
WORD TEMP ;s Temporary value
3
bl

BYTE INDEX ; Number of digits input

OWN BYTE BUF[10] ; Buffer for keyboard input

BEGIN

REPEAT
PUT NL,PROMPT s Display prompt
GETL BUF,10 3 Input line
INDEX=STRVAL(BUF,#TEMP) ; Convert to numeric value
IF INDEX=0 3 Invalid entry?

PUT NL,"Please enter a numeric value."
UNTIL INDEX > O
RETURN TEMP
END

The following example illustrates the use of this function:

WORD ILINE

WORD MAXLINE

BEGIN

ILINE = INPUTW("What line do you wish to go to? ")
IF ILINE > MAXLINE

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-55

FUNC SUBSTR LOCATE SUBSTRING IN STRING

USAGE: Bytevar = SUBSTR(Wantstring, Trystring [,Fold [,Max [,Limit]]])

Function SUBSTR searches a string Trystring for the presence of another
string, Wantstring. Fold is an optional argument defaulting to FALSE, which,
if TRUE, causes lower case letters to be treated as matching upper case
letters. Max is an optional argument specifying the last character position in
Trystring at which the match can start, defaulting to LENSTR(Trystring). For
instance, if Max is 1, then the match must occur starting with the first
character of Trystring. Limit is an optional argument specifying the number of
characters in Wantstring which must match, defaulting to LENSTR(Wantstring).
For example, if Limit=2, then SUBSTR will consider a match made if the first
two letters of Wantstring are found in Trystring. The function returns zero if
no match is found, or an index to the character plus ome if it is found.

EXAMPLE 1:

INCLUDE LIBRARY
DATA WORD ASTRING
DATA WORD WSTRING
BYTE TRYL

BYTE TRY2

BYTE TRY3
TRY1=SUBSTR(WSTRING,ASTRING)
TRY2=SUBSTR(WSTRING,ASTRING, TRUE, 20,4)
TRY3=SUBSTR(WSTRING, ASTRING, TRUE, 10)

"PROMISE ME PROMAL FOR MY BIRTHDAY"
"PROMAL"

nou

will set TRYl to 12, TRY2 to 1, and TRY3 to O.

FUNC TESTKEY - TEST IF A #EY IS PRESSED

USAGE: Bytevar = TESTKEY [(#Char)]

Function TESTKEY tests if a key is pressed on the keyboard. If not, it
returns 0. If a key is pressed, it is returned as the value of the function
and also is installed in the optional character address if specified. The
character is not echoed to the display. The key code returned will be ASCII as
given in Appenidx B. Testkey does not display or blink the cursor.

EXAMPLE 1:

INCLUDE LIBRARY
BEGIN
REPEAT

NOTHING
UNTIL TESTKEY

Copyright (C) 1986 SMA Inc. Rev. C

4-56 Systems Management Associates, Inc. PROMAL LIBRARY

This waits for any key depression without echoing it to the screen.

NOTE:

1. CAUTION: be sure to remember to specify the # operator in front of the
variable name to receive the key value.

2. The Commodore 64 "Kernal” ROM software does not support ongoing keydown
detection. Therefore calling TESTKEY in a loop will not return another non-0
result until the previous key is released on the Commodore. However, the space
bar will auto-repeat at about 10 "hits" per second.

3. For the Apple II, all keys auto-repeat after a brief pause.

FUNC TOUPPER CONVERT LOWER CASE CHARACTER TO UPPER CASE

USAGE: Bytevar = TOUPPER (Char)

TOUPPER is a function which takes a single argument of type BYTE and
returns an argument of type BYTE. 1If the argument is a lower case letter, the
returned value is the upper case equivalent; otherwise, the argument is
returned unchanged.

EXAMPLE 1:

INCLUDE LIBRARY

PUT NL,"Do you wish to accept your mission? "
IF TOUPPER(GETC)="Y" ; accept "y~ or “Y~
TAKEMISSION

EXAMPLE 2:

FUNC WORD UPPERSTRING ; String
; Convert all lowercase chars to uppercase in string.
;5 Return same string, updated in place.

ARG WORD STRING s String to convert to uppercase
WORD 1 s Address of character in string
BEGIN
I=STRING s Addr of 1lst char of string
WHILE I@< ; Not end of string
M[I}=TOUPPER(IE<) ; Convert if is lowercase
I=1+1 s Address of next char
RETURN STRING
END
NOTE:

1. The argument for TOUPPER must be a single character, not a string.

Copyright (C) 1986 SMA Inc. Rev. C

PROMAL LIBRARY Systems Management Associates, Inc. 4-57

PROC WORDSTR CONVERT UNSIGNED VALUE TO STRING

USAGE: WORDSTR Value, #Buf [,Radix [,Minfield [,Padding]]]

Procedure WORDSTR is the inverse function of STRVAL. It takes an unsigned
value and generates the ASCII string representing the value. Value is the
desired value to encode and #Buf is the address of the buffer to receive the
ASCII characters. Radix is the optional base to be used, defaulting to 10.
Minfield is the minimum field width to generate, defaulting to 0. If a minimum
field width is specified, the number will always be right—justified in the
field. If more characters are required to output the number than are specified
for the minimum field width, they will be encoded without any error
indication. Padding is an optional character (not string) argument which is
the padding character desired to fill out the buffer to the minimum field
width, defaulting to blank.

EXAMPLE 1:
INCLUDE LIBRARY
BYTE BUF[8]

BEGIN
ADDR=$FFFF-1

WORDSTR ADDR, BUF
This will install the string "65534" into BUF.
EXAMPLE 2:
WORDSTR $BD, BUF, 16, 4, “0~
This will install "OOBD" into BUF.
NOTE: .

l. If you wish to convert a real number, use procedure REALSTR. To convert a
signed integer, use procedure INTSTR.

FUNC ZAPFILE DELETE FILE

USAGE: Bytevar = ZAPFILE (Filename [,Wildflag])

Function ZAPFILE deletes a file (or optionally, a group of files).
Filename is a string argument specifying the file to be deleted. For the
Commodore 64, it can have an optional drive number prefix. For the Apple II,
it may have a pathname. The optional argument Wildflag is a byte value
defaulting to FALSE. If TRUE, the Filename argument can include the wildcard
characters ? and *. 1In this case, all files matching the pattern will be
deleted. Wildcards are not supported for the Apple II. The function returns 0
if successful and an error number as described for OPEN if not. However, an
attempt to delete a file which does not exist is not considered to be an error,
because this is the way the Commodore ROMs work. If you wish to flag an

Copyright (C) 1986 SMA Inc. Rev. C

4-58 Systems Management Associates, Inc. PROMAL LIBRARY

attempt to delete a non-existent file as an error, you can do it by first doing
a DIR to determine if it exists and issuing an error message if it doesn’t.

For the Apple II, ZAPFILE can be used to delete a subdirectory, provided it has
no files left in it (see note 2 below).

EXAMPLE:

INCLUDE LIBRARY

BYTE ZAPERROR

BEGIN
ZAPERROR=ZAPFILE(CARG[1])
CHOOSE ZAPERROR

0
PUT NL,CARG[l]," deleted.”
2
PUT NL,CARG[1],"” is not a legal file name.”
7
PUT NL,"Not deleted, disk is write-protected.”
ELSE

PUT NL, "Not deleted, error.”

NOTES:

1. For Commodore 64, if you want to delete a file which is not type SEQ, does
not have a file extension, or has any lower case letters, you will have to set
the NOFNCHK flag to $80 (defined in file PROSYS.S).

2. For the Apple II, setting NOFNCHK=$80 will allow file names with no
extension or empty subdirectories to be deleted. NOFNCHK is defined in file
PROSYS.S

Copyright (C) 1986 SMA Inc. Rev. C

ASCII TABLE Systems Management Associates, Inc. A-1

APPENDIX A

ASCII CHARACTER SET TABLE
Hex Dec. Char. Hex Dec. Char. Hex Dec. Char. Hex Dec. Char.
00 0 NUL 20 32 space 40 64 @ 60 96 °
01 1 SOH 21 33 ! 41 65 A 61 97 a
02 2 STX 22 34 " 42 66 B 62 98 b
03 3 EIX 23 35 # 43 67 C 63 99 ¢
04 4 EOT 24 36 $ 44 68 D 64 100 d
05 5 ENQ 25 37 % 45 69 E 65 101 e
06 6 ACK 26 38 & 46 70 F 66 102 £
07 7 BEL 27 39 ~ 47 71 G 67 103 g
08 8 BS 28 40 (48 72 H 68 104 h
09 9 HT 29 41) 49 73 I 69 105 i
OA 10 LF 2A 42 % 4 74 J 6A 106 j
OB 11 VT 2B 43 + 4B 75 K 6B 107 k
0C 12 FF 2C 44 , 4C 76 L 6C 108 1
0D 13 CR 2D 45 - 4D 77 M 6D 109 m
OE 14 SO 2E 46 . 4E 78 N 6E 110 n
OF 15 SI 2F 47 / 4F 79 O 6F 111 o
10 16 DLE 30 48 O 50 80 P 70 112 p
11 17 ©DCl 31 49 1 51 81 Q 71 113 ¢
12 18 DC2 32 50 2 52 82 R 72 114 r
13 19 DC3 33 51 3 53 83 S 73 115 s
14 20 DC4 34 52 4 54 84 T 74 116 t
15 21 NAK 35 53 5 55 85 U 75 117 u
16 22 SIN 36 54 6 56 86 V 76 118 v
17 23 ETB 37 55 7 57 87 W 77 119 w
18 24 CAN 38 56 8 58 88 X 78 120 x
19 25 EM 39 57 9 59 89 Y 79 121 y
1A 26 SUB 3A 58 : S5A 90 z 7JA 122 =z
1B 27 ESC 3B 59 ; 58 91 [7B 123 {
1IC 28 FS 3¢ 60 < 5¢ 92 \ 7C 124 |
1D 29 GS 3D 61 = 5D 93] 7D 125 }
1E 30 RS 3E 62 > 5B 9% ~© 7E 126 ~
1F 31 US 3F 63 ? 5F 95 7F 127 DEL
Notes
1. DC1l and DC3 are also known as XON and XOFF, respectively.
2. The Commodore 64 character set ROMs do not support all characters. The
following replacements are made:
$5C (92) \ 1is replaced by £ (Pound sterling currency symbol)
$5F (95) _ 1is replaced by « (Left pointing arrow)
$60 (96) - 1is replaced by - (Horizontal bar - not the minus sign)
$7B (123) { 1is replaced by + (Cross - not the plus sign)
$7C (124) | 1is replaced by f] (left half checkerboard)
87D (125) } 4is replaced by | (vertical bar)
$7E (126) ~ 1is replaced by §§ (checkerboard)
Copyright (C) 1986 SMA Inc. Rev. C

A-2

Systems Management Associates, Inc.

ASCII TABLE

This page is intentionally left blank

Copyright (C) 1986 SMA Inc.

Rev. C

PROMAL KEY CODES

Systems Management Associates, Inc.

B-1

Key Legend

{—- (left arrow)

1/t
2/
3/ ¢#
4171 %
5/ %
6/ &
7/ °
8/ (
9/)
0

+

British currency £

CLR HOME
INST DEL

H X &S o

WO HG

* D

up arrow
RESTORE

Q= owmp

APPENDIX B

PROMAL KEY CODES
RETURNED BY FUNCTIONS GETKEY & TESTKEY (HEX)

Table B-1: Commodore 64

Plain Shift
5F SF
31 21
32 22
33 23
34 24
35 25
36 26
37 27
38 28
39 29
30 30
2B DB
2D DD
5C A9
13 93
14 94
71 51
77 57
65 45
72 52
74 54
79 59
75 55
69 49
6F 4F
70 50
40 BA
2A co
5E DE
61 41
73 53
64 44
66 46
67 47

CTRL

06

90
05
1C
9F

9c
1E
1F
9E
12

81
95
96
97

98
99
9A
98
29

30
A6
DC
A8

93
94

AB
B3
Bl
B2
A3

B7
B8
A2
B9

A4
DF
DE

BO

AC

BB
A5

Remarks

(next to 1 key)

BLK
WHT
RED
CYN

PUR
GRN
BLU
YEL
RVS ON

RVS OFF

(pounds ster.)

Copyright (C) 1986 SMA Inc.

Rev.

c

B-2 Systems Management Associates, Inc.

PROMAL KEY CODES

Table B-1 continued: Commodore 64

Key Legend Plain Shift CTRL c= Remarks
H 68 48 08 B4
J 6A 4A 0A B5
K 6B 4B 0B Al
L 6C 4C 0oC B6
/] 3A 5B 1B 5B
3 /] 3B 5D 1D 5D
= 3D 3D 1F 3D
RETURN 0))] 8D - 8D
Z 7A 5A 1A AD
X 78 58 18 BD
c 63 43 03 BC
v 76 56 16 BE
B 62 42 02 BF
N 6E 4E OE AA
M 6D 4D 0D A7
» 1 < 2C 3C - 3c
/> 2E 3E - 3E
/17 2F 3F -— 3F
CRSR up down 11 91 - 91
CRSR <= = 1D 9D - 9D
f1 / f£2 85 89 - 89
£3 / £4 86 8A - 8A
£5 / £6 87 8B - 8B
£7 / £8 88 8C - 8C
space 20 20 - 20
RUN STOP 03 83 * 83
Notes
CTRL/RUN STOP aborts program to the PROMAL EXECUTIVE.
SHIFT/C= switches mode (upper & lower <--> upper & graphics)
Codes shown assume upper & lower case mode.
Alpha-lock (CTRL-A) affects GETKEY but not TESTKEY codes.
Copyright (C) 1986 SMA Inc. Rev. C

PROMAL KEY CODES

Systems Management Associates, Inc.

B-3

Table B-2: Apple 11

Key Legend Plain Shift CTRL “Apple Shift/Apple
ESC 1B 1B 1B 98 9B
1/ 31 21 31 Bl Al
2/ @ 32 40 32 B2 co
3/ # 33 23 33 B3 A3
4/ $ 34 24 34 B4 A4
5/ % 35 25 35 B5 A5
6 /" 36 5E 1E B6 DE
7/ & 37 26 37 B7 A6
8/ * 38 2A 38 B8 AA
9/ (39 28 39 B9 A8
0/) 30 29 30 BO A9
-/ 2D SF 2D AD DF
=/ + 3D 2B 3D BD AB
DELETE 7F 7F 7F FF FF
TAB 09 09 09 89 89
Q 71 51 11 Fl D1
W 77 57 17 F7 D7
E 65 45 05 E5 c5
R 72 52 12 F2 D2
T 74 54 14 F4 D4
Y 79 59 19 F9 D9
U 75 55 15 F5 D5
1 69 49 09 E9 c9
0 6F 4F OF EF CF
P 70 50 10 FO DO
A 61 41 01 El ClL
S 73 53 13 F3 D3
D 64 44 04 E4 C4
F 66 46 06 E6 cé
G 67 47 07 E7 c7
Copyright (C) 1986 SMA Inc. Rev. C

B-4 Systems Management Associates, Inc. PROMAL KEY CODES

Table B-2 Continued - Apple II

Key Legend Plain Shift CTRL Apple Shift/Apple
H 68 48 08 ES8 c8
J 6A 4A 0A EA CA
K 6B 4B OB EB CB
L 6C 4C 0C EC cc
VA 3B 3A 3B BB BA
-/ 27 22 27 A7 A2
RETURN oD 0))) 1)) 8D 8D
z 7A 5A 1A FA DA
X 78 58 18 F8 D8
C 63 43 03 E3 C3
v 76 56 16 F6 D6
B 62 42 02 E2 c2
N 6E 4E OE EE CE
M 6D 4D 0D ED CD
, [< 2C 3C 2C AC BC
/D 2E 3E 2E AE BE
/ /7 2F 3F 2F AF BF
Y A 60 7E 60 EO FE
<—- 08 08 08 88 88
--> 15 15 15 95 95
down arrow 0A 0A 0A 8A ~ 8A
up arrow 0B 0B 0B 8B 8B
NOTES:

Alpha lock (CTRL-A) affects GETKEY but not TESTKEY.

Copyright (C) 1986 SMA Inc. Rev. C

ERROR MESSAGES Systems Management Associates, Inc. Cc-1

APPENDIX C
ERROR MESSAGES AND MEANINGS
Arranged alphabetically (including punctuation)

% ERROR: ALREADY LOADED
You have attempted to GET a program which is already in memory. If
this is deliberate, UNLOAD the program first and then re-issue the GET
command.

*%% ERROR: DEVICE NOT READY
Usually this indicates that the disk drive door is not closed. Also
check for a disconnected or off-line printer or disk drive, unformatted
disk, etc. On the Apple II, this error probably indicates that you
changed diskettes without issuing a PREFIX command to select the new
volume (PREFIX * can fix this).

*%% ERROR: DISK ERROR
This uncommon error message indicates a hardware read or write error on
the disk. Check for a disk drive turned off or not connected, etc. It
may indicate that your diskette has become damaged or that the disk
drive heads need to be cleaned. It may also indicate that part of the
operating system has been wiped out in memory by an errant program, Or
similar difficulties. It may also indicate an attempt to append a
write-protected disk or locked file.

*%% ERROR: FILE DOES NOT EXIST
You have issued a command to the EXECUTIVE to act on a file which does
not exist on the currently selected disk. Remember that the default
file extension is ".C". If you are trying to act on a file which does
not have a file extension remember to enclose the name in quotes (case
sensitive on the Commodore 64). For the Commodore 64 COPY command, if
the file is not type SEQ, the type must be specified after a comma
inside the quotes, for example "BASICPROG,P". On the Apple II, you may
have switched disks without a PREFIX * command.

%%% ERROR: FILE ALREADY EXISTS
You have issued an EXECUTIVE command which tried to write a new file
with the same name as an existing file. If this was deliberate, DELETE
the existing file and try again. Remember that the default file
extension is .C. For file names without extensions, the name should be
enclosed in quotes.

*%% ERROR: ILLEGAL COMMAND SYNTAX
You have issued an EXECUTIVE command with arguments which do not
conform to the requirements. Consult the PROMAL USER”S GUIDE for the
proper command syntax.

Copyright (C) 1986 SMA Inc. Rev. C

c-2 Systems Management Associates, Inc. ERROR MESSAGES

%% ERROR: ILLEGAL FILE/DEVICE NAME
You have issued a command with an illegal file or device name. Check
the file naming conventions described in the first part of the PROMAL
USER”S MANUAL. For non-conforming files, you must enclose the file
names in quotes when using the EXECUTIVE. For the Apple, make sure you
are not trying to copy between two disks with the same volume name.

*%% ERROR: ILLEGAL OPEN DIRECTION
You have issued a command which tries to output to an input-only
device, or visa-versa.

%% ERROR: NOT ENOUGH FREE DISK
You have issued an EXECUTIVE command which has tried to write a file to
disk larger than the remaining disk space, or, there are no more free
buffers (Apple II) or channels (Commodore 64) available.

*%** ERROR: NOT IMP.
The command you have issued is not implemented on your version of
PROMAL.

***% ERROR: WRITE PROTECTED

kkk

kkhk

hkk

You have issued a command which attempted to write or alter a
write-protected disk (or a locked file on the Apple). If you wish,
remove the write protect sticker or UNLOCK the file and try again.

RUNTIME ERROR: O DIVIDE
Division (or %) by zero, or an arithmetic overflow has occurred. If
this error occurred during compilation, then a REAL literal number was
specified which was out of range. The largest REAL number is
approximately 1E+37.

RUNTIME ERROR: I-O ILLEGAL DIRECTION
A library routine was called to input or output to a file or device
which was opened in a different mode; for example, trying to input from
the printer.

RUNTIME ERROR: ILLEGAL / UNOPEN FILE HANDLE
A library routine expected to find an open file handle for the first
argument, but did not find one. Check for a missing file handle where
required. Check to make sure you have properly opened the file or
device and have saved the file handle in a WORD type variable. Make
sure you have not already closed the handle. An OPEN function call
should always be tested for success. If the function returns 0, it was
not successful.

*** RUNTIME ERROR: ILLEGAL # ARGS - LIB. CALL

k%

A library PROC or FUNC or machine language routine was called with an
invalid number of arguments. Check the LIBRARY MANUAL for the correct
arguments required.

RUNTIME ERROR: ILLEGAL ARG, LIB. CALL
A library routine was called with an invalid or out-of-range argument.
Make sure you are using the appropriate type arguments (e.g., not using
a REAL where a WORD is expected). Check the LIBRARY MANUAL for
restrictions on arguments.

Copyright (C) 1986 SMA Inc. Rev. C

ERROR MESSAGES Systems Management Associates, Imc. c-3

%% RUNTIME ERROR: ILLEGAL I-0 REDIRECTION
An illegal I-0 redirection has been made. Only STDIN, STDOUT, and
STDJOB may be redirected, and they must be redirected to an open file
or device. Check for a missing # in front of STDIN or STDOUT. See
REDIRECT in the LIBRARY MANUAL for further information.

% RUNTIME ERROR: ILLEGAL OPCODE
A program has attempted to execute a non—existent instruction. Make
sure you are not trying to use REAL arithmetic after a NOREAL command.
It can also be caused by a program destroying itself by writing data
into its code space. Check for bad pointers, arrays out of bounds,
using a value where an address is required, etc. If this error occurs
during compilation, you have attempted to compile a program using REAL
data after executing a NOREAL command.

*%% RUNTIME ERROR: M/L BREAK
A machine language BRK ($00) instruction has been executed. If this is
not expected, it is often a symptom of a piece of a program (probably
the PROMAL library) having been zeroed by an errant program. It may
also reflect an erroneous definition of an EXTernal routine or failure
to load a required software package.

*%% RUNTIME ERROR: PROMAL BREAK
A PROMAL PROGRAM (possibly the EDITor or EXECUTIVE) has encountered a
$00 instruction at the indicated address. This usually indicates that
an program bug has caused part of the program to become zeroed out.
Check for bad pointers, arrays out of bounds, using a value where an
address is required, etc.

%% RUNTIME ERROR: REQ“D PROGRAM NOT LOADED
A required software package is not in memory. Check to see if you are
trying to use REAL arithmetic after a NOREAL command. It may also
reflect a defective EXTernal declaration. If this error occurs during
compilation, you are trying to compile REAL data after a NOREAL
command . ‘

*%% RUNTIME ERROR: STACK ERROR
The stack has overflowed. This may indicate that you have a routine
which calls itself indefinitely or a recursion error. It may also
indicate subroutines nested too deeply or with too many arguments
passed. If this error occurred during compilation, you have a
statement with an expression which is too complex to compile due to
stack limitations (for example, 12 levels of parentheses). This may be
aggravated by having many levels of indentation, and by using function
calls in the expression. In this case, use intermediate temporary
variables for sub-expressions to reduce the complexity of the
statement.

Copyright (C) 1986 SMA Inc. Rev. C

Cc-4 Systems Management Associates, Inc. ERROR MESSAGES

ERROR 1:

Illegal character here
The compiler has encountered a character which cannot legally be
present at this point in the statement. Check for a missing or extra
punctuation mark. If the source file was created by something other
than the PROMAL EDITor, check for an embedded tab, linefeed, or other
invisible control character (DUMPFILE may help find it).

ERROR 2:

Illegal character constant
A character constant must be a single character enclosed by single
quotes (7). Check for missing quote or more than one character. The

, o,

quote character itself can be written as .

ERROR 3:

Illegal string comstant
A string constant must be enclosed on both ends by double quotes (").
It may not cross a line boundary. Check for unbalanced quotes. The

double quote character can be written inside a string as .

ERROR 4:

PROGRAM or OVERLAY expected
Your program must start with a PROGRAM statement (or OVERLAY
statement). Make sure you are compiling the right file.

ERROR 5:

<{Name> expected
The compiler expected to find an identifier (name) at this point in the
statement. Make sure you are not trying to use a reserved word as a
name.

ERROR 6:

Duplicate name
The identifier has already been declared previously. Make sure you are
not trying to define a name that is already defined in the LIBRARY,
INCLUDE file, etc. Also make sure that you don”t have a variable that
duplicates a procedure, function or data name, or visa-versa. In some
circumstances, this error may refer to an identifier on the line above
the one shown.

ERROR 7:

= expected
The compiler expected to see an "=" operator at this point in the
statement. Make sure that you are not trying to use a simple
(un—-subscripted) variable as an array, or as a procedure name.

ERROR 8:

Constant expected
The compiler expected to see a constant at this point in the
statement. Be sure you are not trylng to use a variable name where a
constant is required. Remember that you may not have constants of type
REAL. Also check to make sure that the value specified for the
constant is not out of range (Note: the offending constant may be
slightly beyond the row of asterisks on the compiler error message).
For example, $100000 is an out of range comnstant.

Copyright (C) 1986 SMA Inc. Rev. C

ERROR MESSAGES Systems Management Associates, Inc. C-5

ERROR 9:

] expected
The compiler expected to find a right bracket at this point in the
statement. Remember that square brackets, not parentheses, are used to
delimit PROMAL array subscripts. Check for a missing comma. Remember
that you should not specify the size of a DATA or EXTernal array.

ERROR 10:

Illegal data type
The expression does not meet the required data type. Remember that in
a DATA declaration defining a string, the type is WORD, not BYTE,
because the result is a pointer to the string. Also remember that a
FOR-statement index must be a simple variable of type WORD. The
choices on a CHOOSE statement must match the type of the expression
following the CHOOSE exactly (you may need a type cast to make a small
numeric constant match a word or integer variable, for example 1l:+),
and may not be type REAL. Finally, keep in mind that the boolean
operators AND, OR, NOT, and XOR operate only on type BYTE.

ERROR 11:
Illegal subscript
Subscripted variables may not be used for local variables or arguments.

ERROR 12:

Variable name expected
The compiler expected to find a variable name at this point in the
statement. Make sure that you are not trying to use a reserved word,
procedure, function name, or constant for a variable. DATA names may
not be the destination for an assignment statement.

ERROR 13:

) expected
The compiler expected a right parentheses at this point in the
statement. Check for too many or too few arguments on a function call,
or missing or unbalanced parentheses. Also make sure you are not
trying to enclose the argument list for a procedure call in
parentheses.

ERROR 14:

Illegal expression
The expression does not follow the syntax diagram in Appendix P of the
PROMAL LANGUAGE MANUAL. Check for an illegal sequence of operators,
missing punctuation, etc. Note that the indirect operators (6, @+,
@-, @.) may not appear after the variable name for an assignment
statement (use the global array M instead).

ERROR 15:

is illegal here
The # address operator cannot be used here. The address operator
cannot appear on the left hand side of an assignment statement, nor can
it be applied to anything except a variable. The # operator must
directly precede the variable name.

Copyright (C) 1986 SMA Inc. Rev. C

C-6 Systems Management Associates, Inc. ERROR MESSAGES

ERROR 16:

Type name expected o
The compiler expected to see BYTE, INT, WORD, or REAL at this point in
the statement. The type indicator must precede the variable or
function name.

ERROR 17:

BEGIN expected
The statement is illegal at this point in the program. If you have a
declaration, check the first word for spelling. If this is an
executable statement, you must have a BEGIN statement first.

ERROR 18:

End of line expected
This is a general error message indicating that the compiler could not
construct a legal statement with what you have at this point in the
line. Check for: too many arguments on a procedure call, subscripts on
a simple variable, etc. Also be sure you didn”t forget the ";" which
must precede a comment.

ERROR 19:

,» expected
The compiler expected a comma at this point in the statement. Check
for too few subscripts on an array reference, or too few arguments on a
function or procedure call.

ERROR 20:
Illegal type name here
The type (BYTE, INT, WORD, or REAL) indicated is inconsistent with

prior usage.

ERROR 21:
Not in WHILE or REPEAT loop
The BREAK or NEXT statements may only be used inside a WHILE or REPEAT

loop.

ERROR 22:

Statement expected
This is a general error message indicating that the compiler was
expecting an executable statement but did not find one. Check for a
missing END statement in a prior procedure or function or a misplaced
declaration.

ERROR 23:
Wrong # of arguments
The procedure or function call has too many or too few arguments.

ERROR 24:

Indentation error
The statement starts with the wrong indentation. Each level of
indentation must be exactly two blanks. A statement following a
conditional statement must be indented. If this is a statement
terminating a conditional block such as an ELSE or UNTIL, it should
not be indented as far as the line immediately above it. Each choice
of a CHOOSE statement should be at the same level of indentation as the

Copyright (C) 1986 SMA Inc. Rev. C

ERROR MESSAGES Systems Management Associates, Inc. c-7

original CHOOSE keyword; the statements executed for each choice should
be indented one level. Check also for a missing ELSE for a choose
statement, which is always required.

ERROR 25:
UNTIL expected
A preceding REPEAT statement is not balanced by an UNTIL at the same

level of indentation.

ERROR 26:

Unexpected end of file
The compiler reached end-of-file without having reached the END
statement in the main program. Check for a missing END statement or
INCLUDE statement.

ERROR 27:

Undefined
The identifier indicated has not been previously declared or defined.
All variables, constants, procedures and functions must be declared
before they are referenced. Check for a missing INCLUDE LIBRARY or
other INCLUDE statement, or for a spelling error.

ERROR 28:

Illegal FOR variable
The index variable for a FOR-loop must be a simple (non-subscripted)
variable of type WORD.

ERROR 29:

TO expected
The compiler expected the keyword TO to appear at this point in the FOR
statement.

ERROR 30:

[expected
The compiler expected to find a left bracket at this point. Remember
that square brackets, not parentheses, are used to delimit PROMAL
arrays. Make sure you are not trying to use an array name on the left
side of an assignment statement without specifying which element of the
array should get the result.

ERROR 31:

PROC or FUNC expected
The compiler expected to see the keyword PROC or FUNC at this point in
the declaration. This error can also be caused by a missing type
indicator (BYTE, INT, or WORD) on an EXTernal variable declaration.

ERROR 32:
AT expected
The COMPILER expected to find the keyword AT at this point in the

declaration.

ERROR 33:
Illegal refuge
The keyword REFUGE must be followed by a constant of value 0, 1, or 2.

Copyright (C) 1986 SMA Inc. Rev. C

Cc-8 Systems Management Associates, Inc. ERROR MESSAGES

ERROR 34:
Illegal REAL constant
A literal number is incorrectly formed. Check for the letter O or 1

instead of zero or one, missing .7, etc. On the Commodore 64, check
for cross or bar characters instead of + or -.

ERROR 35:

Non-REAL expected
An expression of type REAL is not legal at this point. Subscripts must
be type WORD. CHOOSE statements may not have an expression of type
REAL. CON declarations may not be REAL (use DATA instead).

ERROR 36:

Illegal import
You have more IMPORT files than are allowed (maximum is 6), or have an
erroneous declaration in an imported block.

ERROR 37:

Illegal <import var> :> = ...
You may not use the high-byte operator (:>) on an imported variable
appearing on the left hand side of an assignment statement.

ERROR 38:

Illegal export
The declaration cannot be EXPORTed. Only constants, variables, data,
procedures and functions can be EXPORTed. You may not EXPORT EXTernal
declarations. Check for missing EXPORT keyword on PROGRAM line. —

ERROR 39:
Too many dimensions
PROMAL arrays may have a maximum of eight dimensions.

ERROR 40:

Demo compiler can”t IMPORT/EXPORT
The compiler on the PROMAL DEMO diskette does not support EXPORT
declarations or INCLUDE files of IMPORTs. You must use the full
compiler for these features.

ERROR 129:

Compilation cancelled
This is not an error message, but indicates that compilation was
terminated by the operator in response to a prompt.

ERROR 130:

Not enough free memory
The COMPILER cannot find enough free memory for its tables. UNLOAD
some programs and try again. On the Commodore-64 using the standard
compiler, you will not be able to compile unless the workspace is
clear (but you can with the demo compiler). On the Apple II, if you
have issued a BUFFERS HIRES, you will need to give a BUFFERS 3 command
before compiling.

Copyright (C) 1986 SMA Inc. Rev. C

ERROR MESSAGES Systems Management Associates, Inc. c-9

ERROR 131:

Cannot open object file
The compiler cannot open the object file for writing. Check for a
write-protected diskette or full diskette. On the Apple, check for a
locked file or diskette change without PREFIX command.

ERROR 132:

Cannot open source file
The compiler could not find the specified source file, or could not
successfully open it for reading (for example, drive not ready). Check
for spelling errors. The default extension for source files is ".S8".
On the Apple, check for disk changed without PREFIX * command.

ERROR 133:

Cannot open list file
The compiler could not open the listing file for writing. Check for
device not ready, write—protected disk, disk full, etc. The default
extension for the list file is ".L".

ERROR 134:

Cannot open export file
The compiler could not open the export file for writing. Make sure
that the disk is not write-protected or full (or the file locked on the
Apple). The Commodore 64 may not be able to open the export file if
you have a listing enabled (due to limitations of the 1541 drive).

ERROR 135:

Cannot open include file
The compiler cannot find or cannot open the specified INCLUDE file for
reading. Make sure the desired file is present on the disk. The
default file extension is ".S". On the Apple II, this may be caused by
not having the proper prefix (volume name). Also, you may have to
increase the number of buffers on the Apple if you have a listing file,
export file, and/or nested INCLUDE files.

ERROR 136:

No source file, Workspace empty
No source file name was specified on the COMPILE command, and the
Workspace is empty. You need to specify a filename to be compiled.

ERROR 137:
Illegal COMPILE argument
The COMPILE command has an illegal argument. See the PROMAL USER”S

GUIDE for the correct command syntax.

ERROR 138:

File name duplicates another argument
One of the output file names specified on the COMMAND line 1is the same
as one of the input files, including the extension.

ERROR 139:
Can”t write to L device
The L device was specified as an output file for the compiler. This is

not permitted.

Copyright (C) 1986 SMA Inc. Rev. C

Cc-10 Systems Management Associates, Inc. ERROR MESSAGES

ERROR 140:

Can“t write to Workspace
The W device was specified as an output file for the compiler. This is
not permitted.

ERROR 141:

String buffer overflow (Use B option)
The string buffer (literal pool) used by the compiler has overflowed.
UNLOAD all programs and use the B option on the COMPILE command. If
you have already done this, use the B=Solf option to incrzase the size
of the literal pool (See USER”S GUIDE).

ERROR 142:

Forward Reference overflow
The forward reference table used by the compiler has overflowed.
UNLOAD all programs and use the B option on the COMPILE command. If
you have already done this, use the B=Solf option to increase the size
of the forward reference table.

ERROR 143:

Object buffer overflow (Use B option)
The object buffer used internally by the compiler has overflowed.
UNLOAD all programs and use the B option on the COMPILE command.

ERROR 144:

Symbol table overflow (Use B option)
The internal symbol table used by the compiler has overflowed. UNLOAD
all programs and use the B option on the COMPILE command. if you have
already done this, use the B=Solf option to increase the size of the
symbol table.

ERROR 145:
Too many ELSEs
Your program has an IF with more ELSEs than the compiler can handle, or

nested loops greater than it can handle.

ERROR 146:

Too many nested loops
Your program has loops nested to a greater depth or complexity than the
compiler can handle.

ERROR 147:

INCLUDEs overnested
You have an INCLUDE statement inside an INCLUDE file, which requires
opening more files than the Commodore 64 disk or Apple ProDOS will
allow.

ERROR 148:

Unbalanced ? (conditional comp.)
You have a ? in column 1 of a statement initiating a conditionmal block
which is not balanced by a matching ? terminating the conditional
compilation block. Conditional compilation blocks may not be nested.

Copyright (C) 1986 SMA Inc. Rev. C

ERROR MESSAGES Systems Management Associates, Inc. Cc-11

ERROR 149:

lst sector rewrite error
For the Commodore 64, this indicates a hardware or firmware disk drive
failure or incompatibility. Don”t use 2-sided mode on a 1571.

ERROR 150:

B option not in Demo compiler
The B compiler option is not supported in by the PROMAL DEMO COMPILER.
You must use the full compiler (on the System Disk) to use the B
option.

ERROR 151:

Demo compiler line limit exceeded
The Demo compiler can only compile files with up to 400 lines,
excluding comments (but including the LIBRARY). You need to use the
full compiler on the PROMAL system disk.

ERROR 152:
Disk write error
The compiler encountered a disk error while writing a file.

ERROR 153:
Disk full
There was not enough room to write the file on the disk.

xxxx ISN“T A TEXT FILE
You have tried to EDIT a file named xxxx which the EDITor thinks is not
a text file. Check to see if you are trying to edit a compiled program
or data. It may also indicate that the file has lines longer than 125
characters. TFor the Apple II, it may indicate that the file was
prepared with a word processor which sets bit 7 of each character to
1. If this is the case, you can fix the file by using the CLEARBIT7/
demo program.

NO BUFFER SPACE
The EDITor could not find enough free space for its buffer. To correct
this, type UNLOAD (and WS O if you are not using the Workspace on the
Commodore 64), and try again.

NOT A PROMAL OBJECT FILE: xxxx
You have attempted to execute a file which is not a compiled PROMAL
program or a relocatable machine language program. All PROMAL programs
must be successfully compiled before they can be executed. This error
usually occurs when you try to execute a program which was compiled
using the B option but had compilation errors. It can also occur if
you attempt to execute a version 2.0 module on a version 1.X PROMAL

system.

NOT ENOUGH FREE MEMORY
The specified program or overlay could not be loaded because there is
not enough free memory. If it is a program on the Commodore 64, you
will need to set the Workspace size to O and try again. If it is an
overlay, you need to unload all programs and restart the main program.
If the problem persists, your program may simply be too large.
Consider modifying it to use overlays, or, use the NOREAL command if

Copyright (C) 1986 SMA Inc. Rev. C

C-12 Systems Management Associates, Inc. ERROR MESSAGES

appropriate, to free up more memory. Remember that your variables also
require memory; you should consider reducing the size of your arrays.
For the Commodore 64, you can gain a lot of space by using a bootstrap
loader to set HIFREE and HIMEM to MEMLIM and then loading your program
as described in the section on the LOADer.

NOT LOADED OR RELOC ERROR: xxXxX
You have attempted to load or execute a program or overlay which
imports from the indicated program or overlay, without having that
program or overlay loaded first. UNLOAD memory and use the GET command
to load any programs needed. You may wish to write a bootstrap program
as described in the LOADer section of the PROMAL LANGUAGE MANUAL to
load the required modules automatically. If the program name shown is
the same as the program you are trying to execute, then there is not
enough free memory to relocate your program after loading it. You need
to unload other programs or free up additional memory as described
above.

OK TO CLEAR WORKSPACE (Y/N)?
This Commodore 64 message is not an error message but a warning. It is
given if you specified the B option on the compiler, but there is
something in the Workspace. If you reply with a Y, the compiler will
clear the workspace and proceed. Otherwise, it will abort.

PROGRAM OR OVERLAY NOT FOUND: xxxX
You have issued an EXECUTIVE command which is not a built in command,
nor is it in memory or on disk. Check for spelling errors, and make
sure you have the correct diskette. Remember that ".C" will be the
default file extension. For the Apple II, you may have changed disks
without using the PREFIX command to set the new volume name.

xxxx TOO LARGE TO EDIT
The specified file name, xxxx, is too large to EDIT in the available
memory space. To correct this, type UNLOAD to free additional memory
and try again. If you are not using the Workspace on the Commodore 64,
you should also issue a WS O command. If you have already done all
this, your file may be too large to EDIT. You can split it into two
files using the SPLIT Utility, and then edit each file separately.

USER BREAK
This is not necessarily an indication of an error, but shows that the
program was aborted by the user (by CTRL-STOP on the Commodore 64 or by
CTRL-C or CTRL-RESET on the Apple).

Copyright (C) 1986 SMA Inc. Rev. C

LOCATING ERRORS Systems Management Associates, Inc. D-1

APPENDIX D
LOCATING RUNTIME ERRORS AND VARTABLES IN MEMORY

The PROMAL nucleus provides runtime checking for many errors such as
division by zero, illegal arguments on Library routines, etc. A typical
runtime error message would be:

% RUNTIME ERROR: ILLEGAL # ARGS - LIB CALL
AT $72B2

This tells you that you attempted to call a Library routine with too many or
too few arguments. But where in your program did this occur? The absolute
address is given in the error message as $72B2. To find the offending state-
ment in your listing, proceed as follows:

1. Execute a MAP command from the EXECUTIVE.

2. Locate your program”s starting address (e.g. "AT 7100") in the MAP
display.

3. Subtract this value (using hex arithmetic) from the address displayed
with the error message. The result is the relative address from the start
of your program, for example $72B2 - $7100 = $01B2.

4. Using your program listing, find the statement (not a variable or data
declaration) with an address (shown in the column to the left of the
statement) that spans the calculated address. This statement (or possibly,
the preceding or next statement) is the one where your error occurred.

You can use a similar technique to DUMP the value of shared global varia-
bles and global scalar variables (but not local variables). Shared global
variables are arrays of any type, or REAL variables (both simple and arrays).
Global scalar variables are non-array BYTE, INT and WORD variables which are
not declared inside a PROC or FUNC.

To locate a global scalar variable, add the address shown to the left of
the variable”s declaration on the listing to the address shown as the starting
address for variables in your map display. For example, if your listing shows:

8 BYTE MYVAL
and the MAP for your loaded program shows:

MYPROG (PRO.) 9/ 3/85 CHKSUM 4B9D
AT 7100-73FF (VARS: AlO00-A2FF)

then add $08 to $Al00, giving $A108. This is the absolute address of your
variable, MYAL = $A108. Note that if the variables start at an address above
the "SYSTEM SPACE" location on the Apple II, you will not be able to DUMP the
correct value of your variable because the EXECUTIVE has re—used that address
space.

Copyright (C) 1986 SMA Inc. Rev. C

D-2 Systems Management Associates, Inc. LOCATING ERRORS

Locating an array or REAL variable is slightly more complex. Use the SIZE
command (or the summary at the end of the listing) to determine the number of
bytes of scalar variables used by your program. For example, if the SIZE
command displays:

MYPROG (PRO.) 9/ 3/85 VER.2
CODE $20BA, GLOB VARS $01CO, $09

then your program has $09 bytes of scalar variables. Add this number to the
address shown in the listing for your variable, and add that result to the
starting address of variables shown for the map command. For instance, using
the above example, if your listing shows:

6A WORD VALUES [5]
then the absolute address of VALUE[O] is at $A173 ($6A + $09 +$A100).

When displaying the value of variables, remember that WORD and INT vari-
ables are stored with the low order byte first and the high order byte at the

next higher address.

REAL variables occupy 6 bytes each, in the following format:

L T

S<=-Exp=—><~=—- Mantissa >

Addr: +0 +1 +2 +3 +4 +5

This format is based on the IEEE standard singie precision data format, but
is extended with 2 additional bytes in the low order mantissa to increase the
accuracy from 6 to 11 significant decimal digits. It uses a binary
representation where:

S = 1 bit sign (l=negative value)
Exp = 8 bit exponent (biased by $7F, O if number=0.0)
Mantissa 39 bit mantissa normalized between 1.0 and 2.0,
with an implied 1 bit & binary point to left of mantissa.

If you are not familiar with floating point representations, you may wish
to consult an "elementary" book on computer arithmetic, or the IEEE Floating
Point Standard before attempting to interpret the value.

Note for numerical analysts: The PROMAL floating point routines do not
support gradual underflow. Any number with an exponent of zero is considered
zero. Also, rounding-to-even is not supported (but rounding is). This is of
no consequence to normal users.

Copyright (C) 1986 SMA Inc. Rev. C

PRINTER SUPPORT Systems Management Associates, Inc. E-1

APPENDIX E
PRINTER SUPPORT
COMMODORE 64 PRINTER SUPPORT

PROMAL supports standard Commodore Printers using the serial interface.
All Commodore and Commodore—compatible printers we tested worked without any
special effort as the "P" device with PROMAL. Parallel printers using Cardco
(Model C through G+) or similar adapters should also function normally.

Printers (or printer interfaces) often have special modes selected on the
basis of the “"secondary address”. The following three variables can be used to
control your printer:

EXT ASM BYTE C64PSA AT $ODF3 ; Desired secondary address (default 7)
EXT ASM BYTE C64PUL AT $ODF4 ; Bit 7=1=flip case (default=$80=yes)
EXT ASM BYTE C64PDV AT $ODF5 ; C-64 printer device # (default 4)

You should set these variables to the desired choices before OPENing the P
device. The C64PUL variable controls whether or not lower case and upper case
alphabetic characters should be reversed before output to the printer. This is
normally needed because PROMAL uses standard ASCII characters but most
Commodore-compatible printers expect "Commodore ASCII". If your printer

prints alphabetic characters in the wrong case, you can use a SET DF4 0 command
from the EXECUTIVE, or in your BOOTSCRIPT.J file.

The standard Commodore device number for the printer is 4. However, 1f you
have a second printer on the serial bus or are using a plotter, you may wish to
open the P device to a different device number. You can do this by installing
the desired device number in the byte at $ODF5 (C64PDV).

The Commodore 1525 printer does not support form feeds, so listings will not
be properly paginated, but 1526 printers will work properly.

It has been reported that some versions of the Commodore 1526 printer have
intermittent problems when used with the 1541 disk drive. These problems are
characterized by a serial bus "lockup”, which may cause the system to hang
inexplicably or to display error number 40 or 41. This problem has nothing to
do with PROMAL and will also appear with other software. Rather, this is a
problem with the Commodore ROMs in the printer and/or disk drive. If you
experience these problems, you may want to contact Commodore dealer and request
that he upgrade your system to the latest level ROMs. If in doubt, you can
find out what ROMs you have in your printer by performing the 1526 self-test.
If the prints "CBM COMMODORE 1526/MPM-802 PRINTER - REV 07C", then you have the
latest printer ROMs. At the time of publication of this manual, our best
information is that the latest ROMs are as follows:

1541 Disk Drive ROM part number 901229-05
1526 Printer ROM part number 325341-08

(Our sincere thanks to Mr. A. Ryan of Ontario who provided this information).

Copyright (C) 1986 SMA Inc. Rev. C

E-2 Systems Management Associates, Inc. PRINTER SUPPORT

APPLE I1 PRINTER SUPPORT

PROMAL supports standard Apple printers or compatible printers. For the
IIe, the printer card should be installed in slot 1 and conform to the stan-
dards for Apple Pascal. For the Apple IIc, the printer should be attached to
the printer port (port 1) in the usual fashion.

You can control whether or not PROMAL should automatically send a LF after
every CR to your printer by the setting of the following variable:

EXT BYTE APLPALF AT $ODF3 ; Bit 7=1=send LF after CR

If your printer double spaces when it should single space, set this variable to
0. This can be done from the EXECUTIVE or a JOB file with a SET DF3 O

command. If it prints one line on top of the other, set it to $80. When
outputting graphics or speciual escape sequences, you may need to turn this off
(so a $0D graphic data byte won"t be interpreted as a CR and cause a suppious
$0A linefeed data byte to be sent to the printer).

Also, if your computer is a IIc or is connected by a serial interface, you
will need to set another variable to O to perform graphics or escape
sequences. This is not a PROMAL variable, but a global Apple variable that
controls the ROM output routines in the Apple:

EXT BYTE PRESCCH AT $0638+3$CO+l ; Serial command enable flag, Apple

PRESCCH = 0 ; Disable Apple ROM processing of serial printer output

This will keep the Apple from processing escape sequences to the serial port
internally, and will pass them straight through to the printer.

PROMAL automatically configures an appropriate printer driver for your
computer during boot-up. In very rare cases, 1f you are using a printer card
which does not follow the Apple standard, you may have to supply your own
printer driver. In this case, See APPENDIX G, which tells the location of a
pointer to a table of addresses for the printer driver input and output
vectors. The table pointed to consists of a WORD holding the address of the
initialization entry point, followed by a WORD holding the addres of the output
entry point (will be called with character in A).

Copyright (C) 1986 SMA Inc. Rev. C

DATA COMMUNICATIONS Systems Management Associates, Inc. F-1

APPENDIX F
DATA COMMUNICATIONS SUPPORT

PROMAL provides support for serial data communications using RS-232C
asynchronous data transmission by the T device. Input and output for EXECUTIVE
commands can be redirected to the modem in the same way as to the printer or
other device. More frequently, a PROMAL program will perform input and output
to the T device. This makes it relatively easy to handle roughly 90 percent of
your telecommunications needs. This section assumes you have a basic working
knowledge of the fundamentals of data communications, such as baud rate,
parity, etc. If you don”t, you may wish to consult a reference book, such as
RS-232 Made Easy by Martin D. Seyer. You may also need to consult the documen-
tation for your particular modem or RS-232 adapter.

You can specify the baud rate, parity, number of data bits, and number of
stop bits desired for the T device before opening it. This can be done either
using the TMODE utility program, or by setting values into memory directly from
a program.

TMODE UTILITY

The TMODE utility is a PROMAL program provided on disk, which has the
following command syntax:

TMODE [Baud [Parity [Databits [Stopbits]]]]

1f no arguments are given, it displays the current values. Baud is the desired
baud rate, (default is 300 when PROMAL is started). Legal values can be 110,
300, 600, 1200, 2400, 4800, or 9600. You may also abbreviate 300 as 3, 9600 as
96, etc. When PROMAL is booted up, the initial baud rate is set to 300. The
second optional argument is Parity, which should be specified as E, 0, N, M, or
S for even, odd, none, mark or space, respectively. The initial default is
none. The third argument is Databits which should be 7 or 8. The initial
default is 8. The final optional argument is Stopbits, which should be 1 or

2. The initial default is 1. Most systems use 1 stop bit except at 110 baud.
Optional arguments which are not specified remain unchanged.

The values specified by the TMODE command will take effect the next time the
T device is opened (or used in an EXECUTIVE command). The values set by TMODE
may also be set directly from a program, discussed below.

PROGRAMMING THE T DEVICE
For many applications, programming the T device is very simple. You just

need to open it and then input or output to it the same way you would a file.
For example:

Copyright (C) 1986 SMA Inc. Rev. C

F-2 Systems Management Associates, Inc. DATA COMMUNICATIONS

WORD MODEM ; File handle for T device
BYTE BUFFER[81] ; Input buffer for T device
MODEM=OPEN("T",”B”) ; Open T for input & output
IF MODEM=0 ; Trouble?

ABORT "#CCan”t open T device"
PUTF MODEM, NL,"This is transmitted over the modem.",NL
IF GETLF(MODEM, BUFFER, 80)

PUT BUFFER,NL ; Display line received from modem

The primary added complexity of dealing with a modem is handling the
situation where no data is received when it is expected. To handle this, a
status routine is provided, to tell you when data is ready to read. In
addition, global variables are provided to allow selecting different
communications parameters under program control. These definitions are given
in the file PROSYS.S and are summarized below:

EXT ASM FUNC BYTE GETTST AT $0FC6 ; TRUE if ready. Arg=0 input,l=output.

3=110, 6=300,7=600,8=1200,A=2400,C=4800,E=9600
O=none, l=odd, 2=even, 3=mark, &4=space

0=8 bits, 1=7, 2=6, 3=5

0=1 stop bite, 1=2 stop bits

EOF char. (CTRL-Z default), unless TDEVRAW set
Auto line feed, $00=no, $80=out,$40=1in,$CO0=both
"Raw" mode flag, $80 = no EOF or LF processing
Status byte from last operation (see below)

EXT BYTE TBAUD AT $0ODE9
EXT BYTE TPARITY AT $0DEA
EXT BYTE TDATAB AT $ODEB
EXT BYTE TSTOPB AT $ODEC
EXT BYTE TEOFCH AT $ODED
EXT BYTE TDEVALF AT $ODEE
EXT BYTE TDEVRAW AT $ODEF
EXT BYTE TDEVST AT $0DFO

Ve Me Wi We ws We we Ve

Function GETIST requires one argument which is either O (to test the input
status of the T device) or 1 (to test the output status). The function returns
TRUE if the serial device is ready and FALSE otherwise. For input, it will
return TRUE when at least one character has been received and can be read. For
an example of how to use GETTST, see file TINYTERM.S.

The variables TBAUD, TPARITY, TDATAB, and TSTOPB can be used to set the same
values which are set or displayed by TMODE, from within a program, for example:

TBAUD=$08
TPARITY=2

This selects 1200 baud with even parity. The desired values should be set
prior to opening the T device. See the SRECEIVE.S and SSEND.S files for
examples of how to set these variables.

TEQOFCH is used to determine what character should be treated as End-of-File
for input from the T device, defaulting to CTRL-Z ($1A). The default value
allows a remote serial device to be used for input to the EXECUTIVE by
redirecting input to the T device. TEOFCH is particulary significant for
programs which use GETBLKF to read from the T device (generally not
recommended).

Copyright (C) 1986 SMA Inc. Rev. C

DATA COMMUNICATIONS Systems Management Associates, Inc. F-3

In a program, you will often not want any character interpreted as end of
file. This can be done by setting the TDEVRAW flag to $80 (nmot to TRUE!),
which causes the T device to pass all characters straight through. The TDEVALF
byte is the "auto line feed” flag. Setting bit 7 to 1 causes the T device
driver to add a line feed ($0A) automatically after every CR (s0D) is sent.
This may be needed it you have a serial printer or another computer connected
to the serial port. Setting bit 6 of TDEVALF to 1 causes the driver to discard
incoming linefeeds. If the TDEVRAW flag is $80, both TDEVALF and TEOF are
ignored.

DETAILED INFORMATION FOR APPLE II T DEVICE

The Apple II T device driver supports the Apple Super Serial card and true
compatible cards, and the Apple Ilc serial port 2. For maximum flexibility,
the PROMAL device driver manipulates the 6551 chip hardware directly.
Therefore it does not support the Apple Pascal escape—sequences for selecting
communication attributes, etc. (which are unsuitable for many applications).
PROMAL does not support buffered T device input using interrupts, because
of the incompatibility of some serial cards. This means that your application
program may have difficulty "keeping up” with an incoming stream of characters
from the T device at higher baud rates if it does extensive screemn output or
other time-consuming activities. Expert programmers with serious telecommuni-
cations applications may wish to write their own interrupt service routine,
following the guidelines in the Apple Reference Manual. For this reason, or
in order to support incompatible cards, PROMAL leaves "hooks"” for writing your
own T device drivers. If your serial card does not have a 6551 chip with its
data register at $COA8, you will have to write your own driver to use the T
device.

The WORD at $ODF1l (Apple only!) is a pointer to a table of WORDs containing
the addresses of the initialization, status, input, and output routines,
respectively, used by the PROMAL T device. All are machine language routines.
The INIT routine has no arguments and returns nothing. The STATUS routine
expects A=0 for input or A=l for output, returns the status in A, and the carry
bit set if ready. The INPUT routine has no arguments and returns the character
in A. The OUTPUT routine expects the character in A and returns nothing.

The TDEVST byte is set by any status, input, or output calls, as follows:

Bit O = Parity error Bit 4 = Transmit buffer empty
Bit 1 = Framing error Bit 5 = DCD not state

Bit 2 = Overrun error Bit 6 = DSR not state

Bit 3 = Receive buffer full Bit 7 = Interrupt flag

We have successfully used the T device on the Apple at the full 9600 baud
with the built in drivers (for example, the SSEND and SRECEIVE programs).
Naturally, this depends on your program. For example, if you attempt to access
disk or have another time-consuming activity while characters are received, you
will lose characters. In this case you should either arrange to have
transmission halted temporarily (for example, using XON-XOFF protocol), or use
a machine language buffered interrupt service routine.

Copyright (C) 1986 SMA Inc. Rev. C

F-4 Systems Management Associates, Inc. DATA COMMUNICATIONS

DETATILED INFORMATION FOR COMMODORE 64 T DEVICE

The Commodore 64 uses the standard "Kernal” ROM support for RS-232, and is
therefore subject to the same limitations. Opening the T device causes a 512
byte buffer to be allocated at LOFREE (an open error may indicate that there is
not enough room for this), and LOFREE is moved up accordingly. This buffer is
filled and emptied by the non-maskable interrupt routine in ROM. The RS-232
device is always opened in Commodore "“3-line"” mode; "X-line" is not supported
due to problems in the Commodore firmware. For the Commodore, the T device
driver will return an end-of-file indication on input if the buffer is empty or
the Break detected bit is set in the status.

When using a modem (as opposed to direct connection through an RS-232 level
shifter such as the Commodore 1011A), you will need to do additional
programming to control the special modem functions. For example, to use the
model 1660 300-baud modem, you will need to access the parallel port (user
port) to go "off hook" after you open the T device. The TINYTERM program
illustrates how to do this. For other modems or features such as dialing, you
will need to consult your modem manual.

In general, we recommend you do not exceed 600 baud on the Commodore,
although we have had success with 1200 baud provided that a long "burst” is not
send to the Commodore at the full 120 characters per second. Naturally, this
depends on the ability of your program to keep up.

The TDEVST byte reflects the status after any input, output, or status call
to the T device, as follows:

Bit 0 = Not functional Bit 4 = Not functional
Bit 1 = Framing error Bit 5 = Not functional
Bit 2 = Receiver buffer overrun Bit 6 = Not functional
Bit 3 = Recelver empty / Transmitter full Bit 7 = Break detected

SSEND AND SRECEIVE PROGRAMS

The files SSEND.S and SRECEIVE.S on the PROMAL disk are source programs for
transmitting files between computers with PROMAL, at speeds of up to 9600
baud on the Apple or 1200 baud on the Commodore 64. The files do not have to
be text files; any kind of PROMAL file can be sent.

The programs provided form a complementary pair. SSEND transmits a speci-
fied file using an error-correcting protocol, and SRECEIVE receives the file on
another computer and installs it on disk. The programs can be used to transfer
any size file at up to 9600 baud between computers in close proximity without a
modem, by using a simple "null modem” cable between serial ports, as shown
below. If used with a Commodore 64, we suggest you limit transmission to 600
baud.

The diagram below illustrates how to wire a direct-connect cable (null
modem), with pin connections for the Apple Ilc 5 pin connector on port 2, or
the Commodore 64 RS-232 adapter model 1011A or similar level shifter.

Copyright (C) 1986 SMA Inc. Rev. C

DATA COMMUNICATIONS

Systems Management Associates, Inc.

F-5

Computer A Computer B

Apple IIC Commodore RS-232 RS-232 Commodore Apple IIC
DIN-5 64 1011A signal signal 64 Port DIN-5
Pin # Pin # Name (#) Name (#) Pin # Pin #

1 6 DIR (6) —————- DSR (20) 20 5

2 3 ™ (3) ——=——-- RD (2) 3 4

3 7 GND (7) ——————- GND (7) 7 3

4 2 RD (2) —=m———- TD (2) 2 2

5 20 DSR (20) —-————- DTIR (6) 6 1

Two remote computers can also exchange files at the maximum baud rate
supported by the modem used (typically 300 or 1200 baud). When using a modem
instead of a direct connection, some modifications may need to be made to the
program to send modem control commands (such as to answer the phone). These
modifications are entirely dependent on the type of modem being used. Consult
your modem manual for further information.

To transmit a file, start the receiving computer”s program first, for
example:

SRECEIVE MYFILE.T 1200

will receive a file called MYFILE.T at 1200 baud. Then start the transmitting
computer”s program (at the same baud rate, of course):

SSEND MYFILE.T 1200

The file will be transmitted in 1K blocks with a verification "handshake" after
each block is correctly received. If a block is garbled in transmission, the
receiving program requests a retransmission of that block. The program exits
when the entire file is received.

The source code for SSEND and SRECEIVE has comments which explain the
operation of this simple communications protocol in detail. You may freely
incorporate any part of these programs in your own projects.

TINYTERM

The TINYTERM program provided in source form on the PROMAL disk is a
tiny terminal emulator program which provides the basic functions necessary to
access a remote computer using an external modem. This program provides a
"bare bones” communication program which can be used to communicate with many
remote time sharing services, such as Compuserve. It is not intended to
provide the functionality of commercially available communication packages, but
is a simple program to illustrate the use of T device. Advanced users may
enjoy enhancing it to a full communications package, perhaps adding the
ability to upload and download disk files, etc. You may need to modify the
program somewhat for use with your modem. We recommend 300 baud operation.

Copyright (C) 1986 SMA Inc. Rev. C

F-6 Systems Management Associates, Inc. DATA COMMUNICATIONS

TN

T DEVICE NOTES

Data communications professionals know that programming serial data
transmission is seldom as easy as it looks. It is important to understand that
while the RS-232C document defines a "standard"” way for computers to
communicate, it is an extremely general standard with many possible
variations. Not only can parameters such as baud rate and parity be selected
in a wide variety of permutations, but there is no standard way for programs to
address the modem itself. The port addresses for the modem are different on
each computer, and are even different on various serial boards or attachments
for the same computer. There is no agreement about what commands should be
sent to the modem to make it perform its special functions (such as dialing or
going "off hook"). Worse yet, there are a maddening variety of software
"protocols” in use which govern the way information should be transferred
between devices attached with a serial interface.

All these factors make it impossible to make a “"one size fits all” driver
for the T device. In implementing the T device, we have tried to make it easy
to use for the vast majority of cases, and not impossible for the rest. It is
entirely the responsibility of the programmer to insure proper data
communications for any particular piece of communications equipment. This
should be considered part of the application program.

Copyright (C) 1986 SMA Inc. Rev. C

MEMORY MAP Systems Management Associates, Inc. G-1
APPENDIX G
MEMORY MAP
COMMODORE 64
EDITor or
Application EXECUTIVE Auxilliary RAM
running running under ROMs
{-or->
$FFFF --> {-- $FFFF
CTRL-B Buf.
& FKEY defs
<-- S$FEOO
Commodore Commodore / | EXECUTIVE
"Kernal” "Kernal” / or
ROMs ROMs EDITor
and swap
I/0 ports I/0 ports area
MEMLIM —-> <-- $D000
=3$D000 L Buffer /
/ $FEOO through S$FFFF of the
EDIT EXEC vars / swap area is used for
code function key definitions
(*see note) EXECUTIVE and CTRL-B buffer.
code
OSORG —->
=A200 EDIT vars
(approx) (scratch) *Note: An application program can
{-- HIMEM also use the space between OSORG
Shared vars and MEMLIM for program or variable
{-- WLIM space.
Moveable
Workspace A total of about 33K bytes is
(W) Buf. available for user programs,
HIFREE —> {-- WORG exclusive of all buffers,
Free runtime package and library
Space requirements, etc. If NOREALS
LOFREE —--> is executed (discard REALs),
Programs about 2.5K of additional space
& is available (moves LOMEM down).
OWN vars
LOMEM --> See the LOADer section for
=34F00 PROMAL further information.
(approx) Runtime
System RAM All memory partitions shown here
$0000 --> are on exact page boundaries.

Copyright (C) 1986 SMA Inc.

Rev.

c

G—-2 Systems Management Associates, Inc. MEMORY MAP

COMMODORE 64

Address Description

0000 - 0001 6510 On-Chip I-0 port

0002 - 0010 Available (Used by BASIC only)
0011 - 0015 Reserved for PROMAL enhancements
0016 - 0019 Used by PROMAL

001A - 002A Used by C-64 Kernal

002B - 0042 Used by PROMAL

0043 - 0056 Used by C-64 Kernal

0057 - 0089 Used by PROMAL

008A - O0F2 Used by C-64 Kernal

00FB - OOFE Available

OOFF Used by C-64 Kernal

0100 - OLFF Hardware Stack
0200 - 0333 Used by C-64 Kernal
0334 - O3FF Available for M/L programs (see note 2)

0400 - 07E7 Screen memory
07F8 - O7FF Sprite data pointers

0800 - O8FF Floating point stack
0900 - O9FF Heap for Local Variables
0AO0 - OAFF Scratchpad for 1I/0, encode/decode, etc.

OBOO - ODFF PROMAL System Data Area, see PROSYS.S for details. Reserved.

OE0O0 - 43FF PROMAL Vectors, Jump Table, Nucleus, Library, & DYNODISK drivers.
4400 - 4EFF PROMAL REAL processing routines, or Allocatable user memory.
4F00 - AIFF (Approx.) Allocatable memory for user programs & workspace.

A200 - CFFF (Approx.) EDITor/EXECUTIVE space, or user programs & variables.

DOOO - FDFF (Approx.) EDITor/EXECUTIVE swap area and L device (RAM)
FEOQO - FFFF Function key defs and CTRL-B buffer (RAM)

D000 - FFFF C-64 Kernal ROMs, VIC, SID, and IO.

Notes:

1. All addresses subject to change without notice.

2. $0334 - $036F reserved for PROMAL hi-res graphics package.

3. File PROSYS.S contains definitions of many system locations.

4. See the Chapter 8 of the PROMAL LANGUAGE MANUAL and Appendix H for further
information on memory allocation.

Copyright (C) 1986 SMA Inc. Rev. C

MEMORY MAP Systems Management Associates, Inc. G-3
APPLE I1
Application EXECUTIVE EDITor
running running running
{-or-> {~or->
$FFFF ——>
PRODOS PRODOS PRODOS
PROMAL sys. PROMAL sys. PROMAL sys.
MEMLIM -->
=HIMEM EXEC vars
=3$8E00
EDIT
Shared EXECUTIVE code
variables code
<-- OSORG
EDIT vars =$6100
{-- HIFREE
Free Auxiliary 64K
Space Memory bank
{-- LOFREE
Programs PRODOS
& {-- $BEOO
OWN vars
LOMEM --> EXECUTIVE
=32900 Disk Bufs. swap area
(Approx)
PROMAL
Runtime
EDIT swap
System RAM area
$0000 -->
WLIM >
Approximately 25K bytes =$5B00
available for user Workspace
programs, exclusive of buffer
all buffers, runtime
package, library routines WORG -——>
etc. About 2.5K additional =$1200 CTRL-B Que.
can be freed up by $1100 —->
executing NOREALS (discards F-key defs.
REAL arithmetic), and up $1000 -->
to 2K additional can be L Device
freed up by selecting $0800 ——>

fewer than 3 PRODOS disk

buffers (BUFFERS command).

Copyright (C) 1986 SMA Inc.

Rev.

c

G—4 Systems Management Associates, Inc. MEMORY MAP
APPLE 11

Address Description

0000 - OOOE Available

O00OF - 0049 Apple II Monitor

004A - 004D Available

004E - 0055 Apple II Monitor

0056 - OOAF Used by PROMAL

OOBO - OOFF Available

0100 - OLFF Hardware Stack

0200 - 027F Apple input buffer, used for scratch

0280 - 02BF Apple input buffer; Scratch path name buffer for PROMAL
02C0 - 02FF Apple input buffer, used for scratch

0300 - O3EF Available (See note 2)

03F0 - O3FF Apple II Vectors

0400 - O7FF Text and low-resolution graphics display buffer

0800 - 08FF Floating point stack

0900 - O9FF Heap for local variables

0AOO0 - OAFF Scratchpad for I/0, encode/decode, etc.

OB0OO - ODFF PROMAL system data area (see PROSYS.S file). Reserved.
OEOO - 10FF (approx) PROMAL Vectors, Jump Tables, tables, etc.

1100 - 1BFF (approx) PROMAL REAL processing, or Buffers / allocatable space
1C00 - 1CFF (can vary) File descriptor table

1D00 - 28FF (can vary) Disk buffers (3) for ProDOS

2900 - 8BFF (can vary) Allocatable memory for user programs & variables
6100 - 8BFF System space for EXECUTIVE & EDIT. Programs may overwrite.
8EO0 - BEFF PROMAL nucleus and library routines.

BFOO - BFFF ProDOS page

CO000 - FFFF Apple I/0 & system memory.

Auxiliary (bank-switched) memory:

0800
1000
1100
1200
6000

Notes:
1. All addresses subject to change without notice.

2.

OFFF
10FF
11FF
5BFF
BEFF

Reserved for L device (library text).
Reserved for function key strings.
Reserved for CTRL-B buffer.
Workspace buffer.

Swap area for EDIT and EXECUTIVE.

$0334 - $036F reserved for PROMAL hi-res graphics package.

3. File PROSYS.S contains many definitions of system locations.

4. NOREAL command causes allocatable space to start at 1E00 normally.

5. BUFFERS command can change allocatable space.

6. Developer”s version allows applications without auxiliary (bank switched)
memory or 80 column card to run (see Developer”s guide).

Copyright (C) 1986 SMA Inc. Rev.

C

MEMORY MAP

Systems Management Associates, Inc. G5

IMPORTANT SYSTEM DATA AREA ADDRESSES

The following global variables are more precisely defined in the file
PROSYS.S unless otherwise noted.

Address Description

OBBO-OBBB LDNAME - Command name of last LOAD attempt

OBCO LDNOCHK - Flag, $80 if bypassing checksum check during loading
0C00-0C03 STDIN, STDOUT File handles (defined in LIBRARY.S file)

0Cco8 TOERROR - Error code from disk functions (LIBRARY.S)

0COB BFILTYP - System—dependent file type for OPEN.

0cocC DIOERR - Disk I/0 error, O=ok,l=full,2=read err,3=wrt err.

0COD DFEXT - “C”, default file extension for PROMAL files.
0C12-0C15 DATE - Day, Month, Year-1900, 1 byte each

0Ccl16-0Cl17 LOMEM - Start of Allocatable Memory

0C18-0Cl19 LOFREE - Next available address for program load, $XX00
OC1A-0C1B HIFREE - First address not allocatable for programs, $XX00
0C1C-0ClD HIMEM - End of normally allocatable memory + 1, $XX00

OClE LDERR - Loader error return code, $00=success

OC1F NLT - Number of loaded modules, including EDITor, EXEC.
0Cc22-0C23 RANDWD - Seed for random number generator (non-zero)

0C2B-0C2C OSORG -~ Starting address for EDITor/EXECUTIVE, $XX00

0C2D-0C2E MEMLIM - End of usable memory (if EDITOR discarded, C—64).
0C51-0C52 MLP - Address of subroutine called by PROC JSR

0C53-0C57 REGA, REGX, etc. — Registers for GO command or BRK

OCF2 NOFNCHK - Flag, if TRUE defeat default file extension

OCFF BLINKD - Blink delay for cursor. >$7f=solid, O=invisible.
0D00-0D50 CLINE - Current Command line, complete (LIBRARY.S)

0D51 NCARG - Number of arguments passed on command line (LIBRARY.S)
0D52-0D73 CARG - Array of pointers to arguments on comd. line (LIBRARY.S)
0D74-0DC4 COMD - Command line split into argument strings

0DC5-0DCC WORG, WPTR, WEOF, WLIM - Pointers for Workspace (see also ODDB)
ODCD-ODCE LORG, LPTR, LEOF, LLIM - Pointers for Library (under ROMs, C—64)
ODDB-ODDC WSIZE - Current Workspace size '

ODDD-ODDE GVORG — Address of start of all shared variables, $XX00

ODE9 TBAUD - T baud (3=110,6=300,7=600,8=1200,$A=2400,$C=4800,$E=9600)
ODEA TPARITY - T device parity (0=none,1=odd,2=even,3=mark,4=space)
ODEB TDATAB - T device data bits (0=8,1=7,2=6,3=5)

ODEC TSTOPB - T device stop bits (0=2,1=2)

ODED TEOFCH - T device end-of-file char for input (default=CTRL-Z)
ODEE TDEVALF - T linefeed, bit 7=l=add on output, bit 6=l=strip on input
ODEF TDEVRAW - T Raw mode flag, $80 = pass all chars through as is
ODFO TDEVST - T device status for last operation, system dependent
ODF6 DRTERR - Copy of runtime error (See Developer”s Guide)

ODFD PBLKCNT - # bytes actually written on last PUTBLKF

ODFF ALPHALK - Keyboard Alpha lock flag, $80 = upper case only

1000 BKEYDEL - Key for delete with pullback

1001 BKEYINS - Key for begin insert mode

1002 BKEYJS - Key for jump to first char of line

1003 BKEYJE - Key for jump to last char of line

1004 BKEYCEL - Key for clear to end of line

1005 BKEYALK - Key for alpha lock toggle

Copyright (C) 1986 SMA Inc. Rev. C

G-6 Systems Management Associates, Inc. MEMORY MAP
1006 BKEYCAN - Key for cancel line

1007 BKEYBT - Key for backtrack prior line

1008 BKEYBS =~ Key for backspace

1009 BKEYTAB - Key for tab (indent)

100A BKEYRT =~ Key for cursor right

100B BKEYLFT - Key for cursor left

100C BKEYFK]1 - Key for first function key

100D BKEYFKL - Key for last function key

100E BKEYEOF - Key for E-O0-F from keyboard

Note: All addresses subject to change without notice.

System addresses for Commodore 64 only:

0C68-0C6A
OCFB
ODEO
ODE1
ODE2
ODE3
ODF3
ODF4
ODF5

PREFIX = Current drive prefix string

EDRES - Flag, $80 if EDITOR is in memory, $00 if not

C64DDVO - C-64 disk device # for logical drive 0 (default=8)
C64DDV1 - C-64 device # for drive 1 (9 for 1541, 8 for MSD)
C64N1541 - Flag, $80 = permanently disable DYNODISK

C64DYNO - Flag, $80 = DYNO on , $00 = DYNODISK off

C64PSA - Secondary Address for Printer OPEN (See Appendix D)
C64PUL - Printer upper/lower case switch flag (See Appendix D)
C64PDV - Device number for printer (See Appendix D)

System addresses for Apple II only:

0C68-0CA3
ODEO
ODE5
ODE6
ODF1-0DF2
ODF3
ODF4-0DF5

ODFB-ODFE

Notes:

PREFIX - Current volume & pathname (ends with “/7)

ABORTCH - Program abort character (default=CTRL-C, $00=none)
RAMUNIT - /RAM unit number, normally $BO=slot 3 drive 2
DSLOT -~ Slot for l:, 2: drive, normally 6

TDEVTBL -~ Address of T device driver table (see Appendix F)
APLPALF - Auto line feed flag for printer ($80=yes, $00=no)
APLPJT - Pointer to printer driver vector table (points

to Init ptr word, Output ptr word (A=char)
Pointer to disk buffers.

DSKBUFS

1. All addresses subject to change without notice.
2. File PROSYS.S contains the definitions of these and other system

locations.

Copyright (C) 1986 SMA Inc. Rev.

c

RN

MEMORY ALLOCATION Systems Management Associates, Inc. H-1

APPENDIX H
DYNAMIC MEMORY ALLOCATION

The PROMAL COMPILER and EDITOR use un-allocated memory for scratch buffer
space, and under some circumstances use the Workspace and (in the case of the
COMPILER "B" option on the Commodore 64) the space normally occupled by the
EDITOR for buffer space. With care, user-written programs may also do this.

Refer to the Memory Map of the System Area in Appendix G to understand the
variables referred to in this discussion, which are defined in file PROSYS.S.
Additional information is contained in the section on the LOADer.

When a user program begins execution, it can safely use all memory between
LOFREE and HIFREE for buffer space. This is the area shown as "FREE SPACE" by
the MAP command.

On the Commodore 64, you may also safely use the Workspace for a buffer 1if
it is empty. The Workspace exists between WORG and WLIM-1. If WEOF = WORG,
then the Workspace is empty. In any event, the space between WEOF and WLIM-1
is unused (this is the "FREE WORKSPACE" area shown by the MAP command).
Naturally these pointers will change if you write the Workspace in your
program. They may also move if you use the LOADer to load a program or overlay
which does not OWN its variables (not recommended). You can "force" the
Workspace clear by setting WEOF and WPIR to WORG.

On the Commodore 64, if you want to use the space occupied by the EDITOR
for a buffer, you may do so. This is the space between HIMEM and MEMLIM. If
you specify "OWN" on the PROGRAM line of your program, for example,

PROGRAM MYPROG OWN

then you may use memory between WLIM and MEMLIM. This is because specifying
"OWN" on the PROGRAM statement forces the PROMAL EXECUTIVE to allocate your
global variables at the end of your program rather than at the high end of
memory as it normally would. If using the EDITor space, you should set the
EDRES flag to O (defined in PROSYS.S). The EDITor will be reloaded from disk
if needed later.

Note: This applies only while in a user—program. This area of memory is
absolutely vital to the EXECUTIVE when it is running.

By using the NOREAL command and using all the above techniques, it is
possible to free up more than 34K bytes of contiguous space for a user program
and data on a Commodore 64.

On the Apple II, about 28K can be made available for programs and variables
by using a NOREAL command.

Copyright (C) 1986 SMA Inc. Rev. C

Systems Management Associates, Inc.

MEMORY ALLOCATION

This page is intentionally left blank

Copyright (C) 1986 SMA Inc.

Rev. C

MACHINE LANGUAGE Systems Management Associates, Inc. I-1

APPENDIX I
CALLING MACHINE LANGUAGE ROUTINES FROM PROMAL

This Appendix describes how to call machine language subroutines from a
PROMAL program. If you are not familiar with 6502 machine language program—
ming, you may want to skip this section. Because PROMAL is functionally very
close to machine language, it is normally not necessary to use any machine
language programming at all with PROMAL. However, if you want to use machine
language routines, a clean interface is provided. You can even pass arguments
to a machine language routine, just like a PROMAL subroutine.

The way you call machine language routines depends on what you want to do.
We might categorize the usual needs as follows, in order of increasing complex-
ity:

1. Call a ROM routine that is built in to your computer.

2. Call a small routine you wish to embed in DATA statements as part of
your PROMAL program.

3. Call a separate subroutine package, possibly with many routines and
passed arguments.

These cases are well-supported with PROMAL. We will address each in order.

PROMAL has a very powerful way of calling machine language routines. It is
especially useful for calling ROM-resident routines, such as the Commodore
Kernal routines or Apple II Momitor. Virtually any 6502 machine language
subroutine can be called directly from PROMAL with this method. This includes
subroutines which expect arguments passed in registers, or return values to the
caller in registers. This method can also be used to call machine language
subroutines embedded in PROMAL DATA statements. The key to this extremely
powerful and simple capability is the built-in JSR procedure, described below.

DECLARATION: EXT ASM PROC JSR AT $0FB4 (defined in PROSYS.S)
USAGE: JSR [Address [,Areg [,Xreg [,Yreg [,Flags 11111

Procedure JSR calls a machine language subroutine at a specified address,
optionally loading the 6502 processor”s hardware registers with specified
values before the call. Address is the address of the desired routine. Areg,
Xreg, Yreg, and Flags are optional arguments which specify the desired values
to be installed in the A, X, Y, and flags (processor status word) registers,
respectively. All register arguments should be type BYTE. Naturally the
address must be type WORD.

In order to use the JSR procedure, you will want to include the following
declarations in your PROMAL source program (or INCLUDE PROSYS, since PROSYS.S
contains all these definitions):

Copyright (C) 1986 SMA Inc. Rev. C

1-2 Systems Management Associates, Inc. MACHINE LANGUAGE

EXT ASM PROC JSR AT $0FB4 ; entry point
EXT WORD MLP AT $0CS51 5 Subrt. addr.
EXT BYTE REGA AT $0C53 ; A

EXT BYTE REGX AT $0C54 ; X

EXT BYTE REGY AT $0C55 s Y

EXT BYTE REGF AT $0C56 ; Flags

These lines declare the location of the built-in procedure JSR, and the
memory locations of coples of the processor register contents to be used. These
will be explained presently.

Here is how JSR works. When your PROMAL program executes a JSR statement,
the Address argument is copied into MLP, and any additional arguments are
copied into REGA, REGX, REGY, and REGF, in that order. The 6502 registers are
then loaded as follows:

REGA into the A register
REGX into the X register
REGY into the Y register
REGF into the flags (processor status word)

and a machine language jump to subroutine is performed to the address in MLP.

When the called machine language program returns (with an RTS instruction),
the contents of the registers will be saved in REGA, REGX, REGY, and REGF
before resuming execution of the next PROMAL statement. Your program can
therefore examine the contents of the registers at the time of return. This is
important since many machine language routines return values in the registers.

Any optional arguments on your JSR statement which are not specified are
not changed. Therefore, for instance, if you JSR to one machine language
routine and then JSR to a second routine with no registers specified, the
registers will contain the values returned by the first routine.

Some examples should illustrate the simplicity of this method. The
examples below refer to Commodore 64 "Kernal" machine language routines, as
defined in The Commodore 64 Programmer”s Reference Manual. All the examples
assume you have added the declaration lines given above.

EXAMPLE 1:
;3 Call SCREEN Kernal routine - returns X=columns, Y=rows...
JSR $FFED ; Kernal "SCREEN" routine
OUTPUT "#C SCREEN IS #W COLUMNS BY #W ROWS",REGX,REGY

This program fragment calls the machine language routine at $FFED without
specifying any registers. It then prints the contents of the X and Y registers
which were returned by the subroutine.

Copyright (C) 1986 SMA Inc. Rev. C

MACHINE LANGUAGE Systems Management Associates, Inc. I-3

EXAMPLE 2:

CON CHKIN = $FFC6 ; Kernal
CON CHRIN = $FFCF ; I/0

CON CLRCHN = SFFCC ; routines
BYTE LINE[81]

WORD I

BEGIN

JSR CHKIN, 0,15 ; channel 15

I=0

REPEAT
JSR CHRIN input char
LINE[I]=REGA install char
I=1+1 next location

end of line?
replace CR with end of line
release channel

UNTIL REGA=CR
LINE[I-1]=0
JSR CLRCHN

PUT NL,LINE,NL
END

we Me Vs e we we

This program fragment reads a line from the disk error channel and prints it on
the screen. It will normally display:

00, OK,00,00

The JSR CHKIN calls the Kernal CHKIN routine, passing 0 in the A register and
15 in the X register to select channel 15. The loop repeatedly calls CHRIN,
which returns the character read from the disk drive in register A. The value
returned in register A is then installed in a string. When a CR is received
from the drive, the channel is closed, the string terminator added, and the
line displayed using an ordinary PUT call. Note that when using Commodore
channels like this you should be careful not to mix normal PROMAL 1/0 calls at
the same time your channel is open, because PROMAL uses Commodore channels to
do its I/0, and only one channel can be selected at a time. Also, channel 15
is always open to the Command/Error channel of the disk drive. If you open
your own channels, you should use channels and secondary addresses of 8 or 9 to
avoid conflicts with normal PROMAL disk files. Be sure to close them, too!

NOTES ON JSR USAGE

1. When you call JSR, the address is also an optional argument, although it
is usually specified. If no arguments are specified, a call is made to
whatever address is in MLP. 1In this way, you can call one out of a number of
possible subroutines selected from a table, by putting the desired address in
MLP before each JSR call.

2. If a machine language routine executes a BRK (breakpoint) instruction,
the address of the breakpoint and registers are stored in these same locations
before control is returned to the Executive.

3. For the Commodore 64, Do not attempt to call any routines in the BASIC
ROM because PROMAL switches the BASIC ROM out of the Commodore 64 memory map.

Copyright (C) 1986 SMA Inc. Rev. C

I-4 Systems Management Associates, Inc. MACHINE LANGUAGE

4. For the Commodore 64, the file REL FILES.S on the PROMAL System disk
and DISKETTE.S on the optional Developer”s disk contain many illustrations of
how to use JSR to perform I/0 using the Kernal. For the Apple, PRODOSCALLS.S
illustrates several examples of JSR usage.

5. The REGF register contains a copy of the processor flags. You can test
the flags returned by using the following statements:

IF REGF AND $01 ;3 true if the Carry flag is set
IF REGF AND $02 ; true if the Zero flag is set
IF REGF AND $80 ;3 true if the Minus flag is set

CALLING A MACHINE LANGUAGE ROUTINE EMBEDDED IN DATA STATEMENTS

Many BASIC programs have machine language subroutines embedded in DATA
statements. These instructions are READ and POKEd into some unused area of
memory and then executed with a USR or SYS statement. You can also embed a
machine language routine (or routines) in PROMAL DATA statements, and execute
the code using JSR. It is quite a bit simpler than BASIC though, because you
do not need to use a loop to READ it and POKE it first.

There are two ways to set up an embedded machine language routine, depend-
ing on whether your routine is address-dependent or address-independent. An
address independent routine is one which will execute correctly regardless of
the address at which it 1s loaded. An address-dependent routine will only
execute properly at the address for which it was assembled. This distinction
is important because, in general, your compiled PROMAL program (and therefore —~
your data statements) will not be loaded into memory at the same location every
time.

If your routine is address-independent (runs anywhere), then you can
execute your machine language routine by simply using procedure JSR to call it
by name. If your program is address-dependent, then you will have to insure
that it is executed every time in a known location. The easiest way to do this
is to use procedure BLKMOV to copy it to a known location and then JSR to this
known location. This method is equivalent to the READ-and-POKE loop method
used in BASIC.

A machine language routine will be address-dependent if it contains any
references to addresses within the routine itself. For example, if your
routine does JMPs or JSRs to labels that are part of the routine itself, it
will not be address-independent. The same applies for a LDA of any data in the
routine. Conditional branches are okay, though, because they are coded as
displacements, not absolute addresses.

Copyright (C) 1986 SMA Inc. Rev. C

MACHINE LANGUAGE Systems Management Associates, Inc. I-5

EXAMPLE:

BYTE LINE[81]
WORD I

DATA BYTE TOLOWER [] =

$C9,7A", ; TOLOWER CMP #7A~
$90,6, ; BCC SKIP
$C9, $5B, ; CMP #727°+1
$BO, 2, ; BCS SKIP
$69, $20, ; ADC #7a”-"A"
$60 ; SKIP RTS

BEGIN

PUT "ENTER A LINE: "

GETL LINE

1=0

PUT NL,"IN LOWERCASE ONLY = "
WHILE LINE[I] ; not end of string?
JSR TOLOWER, LINE[I] ; convert char
b
s

I=1+1 ; bump pointer to next char
PUT REGA ; show returned result

PUT NL

END

The program fragment above illustrates a call to an address—independent machine
language subroutine embedded in data statements. For simplicity, a trivial
routine was selected, which simply converts a character passed in the A
register to lower case if it is upper case and returns it in A. The line,

JSR TOLOWER, LINE[I]

calls the embedded machine language routine, no matter where the program is
loaded, passing the character desired in the A register. Of course, the actual
conversion to lower case could be done much simpler with the PROMAL statements,

IF LINE[I] >= A" AND LINE[I] &= "2~
LINE[I] = LINE[I] + $20

but this is, as we said, simply for illustration.

If your machine language routine is address—-dependent, you will need to
copy it to some unused memory area and then execute it, for example:

CON MYSUB = $0334 ; Where to put M/L sub

DATA BYTE MYSUBCODE [] =

«e+ ; (put hex code for routine here)

DATA BYTE SUBEND [] = O ; dummy byte to compute loc. of end of code
BLKMOV MYSUBCODE ,MYSUB, SUBEND-MYSUBCODE ; Copy routine to known loc.

JSR MY5UB

Copyright (C) 1986 SMA Inc. Rev. C

I-6 Systems Management Associates, Inc. MACHINE LANGUAGE

In this example you should assemble your routine for a starting address of
$0334, of course.

WRITING MACHINE LANGUAGE EXTERNAL PROCEDURES AND FUNCTIONS

For medium or large assembly language packages, embedding machine language
programs in data statements is not practical. For this situation, there are
two more ways to interface PROMAL to your assembly-language routines. Both of
these methods involve writing a separate assembler program and assembling it.
The resulting machine language program is then loaded from disk by your PROMAL
program and executed when needed. Your assembly package can have any number of
subroutines, which may be either procedures or functions, and are called by
name, just like a PROMAL routine.

There are two ways your machine language routine can be loaded into memory.
The simpler but less powerful way is to use function MLGET, described below, to
load your program at a specified address in memory. MLGET can load machine
language programs generated by virtually any assembler for your computer. The
only trouble is, you have to find a place to put your program. Since PROMAL
allocates memory dynamically for programs, you will have to choose carefully to
avoid assembling your program for a location which may be occupied by some
other program. There are a few "holes" in the memory map, discussed below,
where you can locate your machine language routine using this method. However,
if your program is large, you should probably not use MLGET to load your
program.

The second method is extremely powerful. This is to create a relocatable
machine language PROMAL module, which can be executed by simply typing its name
from the EXECUTIVE, or can be loaded under program control with the LOAD
procedure. PROMAL 2.0 provides a utility program on the PROMAL diskette called
RELOCATE, which has the ability to turn any assembly program into a relocatable

program. Your program does not have to be address—independent. It can be used
with virtually any assembler. If you don”"t have an assembler, one is provided
that runs under PROMAL, on Volume 1 of the PROMAL Public Domain User Library
(available from SMA). By using RELOCATE, you can have a machine language
module which will run properly at any address which the PROMAL loader can find
available for it. This technique is described at the end of this section.

NON-RELOCATABLE MACHINE LANGUAGE ROUTINES USING MLGET

The biggest problem of a standard machine language routine is where to put
it. As you know, PROMAL programs are relocatable, and the EXECUTIVE
automatically finds a spot for them in memory. Unfortunately, 6502 machine
language programs are not generally relocatable, and will only work properly at
the address they were assembled for. Although the PROMAL EXECUTIVE can load a
non-relocatable machine language program into memory with the GET command, it
won't keep track of where it is, and may allocate a PROMAL program (or
variables) right over the top of it if care is not taken.

If your machine language routine is short, one best place to put it is at
$0334 to $O03FF. This area is available on both the Apple II and Commodore 64.
However, the optional PROMAL HIRES GRAPHICS PACKAGE uses this area for global
variables, so you should avoid using this area if you will be using hi-res
graphics in your application. If your routine(s) take more than 200 bytes,
you“ll have to find another spot. If you are certain your program won”t need

Copyright (C) 1986 SMA Inc. Rev. C

TN

MACHINE LANGUAGE Systems Management Associates, Inc. 1-7

to do REAL operations, you can use the 256 bytes at $0800 for your machine
language program (this area is used for allocating local REAL variables and
performing REAL arithmetic).

For large machine language routines, you may want to pick a spot in the
"unused” area shown by the EXECUTIVE MAP command. Be aware that this area
expands and contracts as programs are loaded or unloaded, and that the EDITOR
or COMPILER will use this area for buffer space. Therefore you will have to
reload your machine language code from disk after you use the EDITOR or
COMPILER. PROMAL allocates programs from the bottom of available memory up,
and allocates global variables (for arrays and global REAL variables) from the
top of available memory down. To find a safe spot, first UNLOAD any un-needed
programs. Then GET your PROMAL program into memory. Then use the MAP command
to determine where the "available space” starts. Round this address up to a
nice round number to leave room for future growth of your program, and use this
for the address of your machine language program segment. For example, if the
free space goes from $5F00 to $7A00, you might want to pick $6000 as the
starting address of your M/L code. Appendix G gives a PROMAL memory map.

Once you have decided where to assemble your program, the next problem is
where to put your "zero page” variables. The only zero page locations you
can use with complete safety are:

Available zero page for Commodore 64

$02 - $10 (not used by PROMAL, but used by BASIC)
$FB - $FE (the same space that is free for BASIC)

Available zero page for Apple II

$00 - $OE, $4A- $4D, $BO - SFF

As you already know if you“ve done much 6502 machine language programming, the
Commodore 64 system software uses up almost all of page 0. Unfortunately, this
situation is not greatly improved with PROMAL.However, if you just need some
scratch space for pointers and the like, you can use the following locations:

Scratch zero page locations for Commodore 64

$16 - $19 ; Used for scratch by PROMAL
$36 - $41 ; Used for scratch by the LIBRARY routines
$57 - $66 ; Used only for REAL arithmetic - free if no REALs needed

Once you have settled on where to put your program and zero-page variables,
the hard part is over. Calling your machine language routine from a PROMAL
program is very easy. All you have to do is declare the name of the routine
and where its entry point is, for example:

EXT ASM PROC MYROUTINE AT $0334
EXT ASM FUNC BYTE TESTIT AT $0337

Copyright (C) 1986 SMA Inc. Rev. C

1-8 Systems Management Associates, Inc. MACHINE LANGUAGE

These declarations define two external assembly language (ASM) routines located
at $0334 and $0337. It is not necessary to define what arguments (if any) will
be passed to these routines. The compiler will accept any number of arguments

when calling an EXT ASM routine.

PROMAL calls EXT ASM routines with a 6502 JSR instruction. If your routine
is declared as a PROC and doesn”t require any arguments, you can simply write
it like any 6502 subroutine and just return when you are done via an RTS. More
often, though, you will want to receilve one or more arguments from the calling
PROMAL routine.

PROMAL passes arguments on the hardware stack. All arguments are passed
as 2-byte quantities, even if the argument evaluates as type BYTE (the high
order byte will be O in this case). Passing REAL arguments to assembly
language routines is not recommended. On entry to your routine, the Y register
will contain the number of arguments passed on the stack. These arguments were
pushed on the stack before the JSR, so they are logically "underneath” the
return address. Generally you will want to pop off the return address and save
it, then pull off the arguments (the last argument will be popped first) and
save them in variables of your own. When the routine is done, you should push
the saved return address back on the stack and return. You don”t have to
preserve any registers.

The following example shows how to write an assembly-language procedure
with one argument expected to be passed from the PROMAL calling program:

H Sample assembly language procedure MYPROC with 1 argument...

*=$0334 ; in unused plece of memory...
MYPROC PLA
STA RA ; save return addr. low...
- PLA
STA RA+L ; & hi byte
PLA
STA ARGl+1 ; save passed argument hi
PLA
STA ARGl ; & low byte

3 Operate on ARGl as desired here...then...
LDA RA+1
PHA ; put return addr back on stack
LDA RA
PHA
RTS return to caller
RA *=%+42 ;3 save for return address
ARG1 *=k=2
.END

we

Here is the companion PROMAL declaration and a sample call:

EXT ASM PROC MYPROC AT $0334

MYPROC X+1 ; pass X+l to m/1 routine

Copyright (C) 1986 SMA Inc. Rev. C

MACHINE LANGUAGE Systems Management Assoclates, Inc. I-9

If your machine language subroutine is to be a function, it should return
its value on the top of the stack. If it is type BYTE, it should only return a
byte on the stack, otherwise it should return two bytes.

To assemble your routine you can use any Assembler or Machine Language
MONITOR which produces a standard Commodore machine language PRG file or Apple
11 BSAVE type file respectively as output. An assembler which rums under
PROMAL is available in the PROMAL public domain library. Some of the small
Machine Language Monitors such as the version of C64MON which loads at $8000
can be run directly from PROMAL for the Commodore 64. Others will have to be
run from BASIC. Once you have saved your object file on disk, you can load it
into memory from the PROMAL EXECUTIVE with the GET command or by using the
MLGET function. When using GET, enclose the name of the file in quotes to
indicate that it is a machine language file instead of a PROMAL program. Also
be careful to type the name exactly as it is stored in the directory (usually
with upper case letters). For example:

GET "MYPROG”

will load the machine language file "MYPROG" into memory at whatever address it
was saved. Note that the MAP command will not show the location where this
program is loaded. Alternatively, your application can load the machine
language file itself, using the built-in function MLGET, described in below.
This is the preferred method.

Let us now look at a slightly more complex example. This example illus-—
trates a machine language function with one required argument of type WORD and
one optional argument of type BYTE, defaulting to - 7 if not specified:

H Assembly Language function MYFUNC (WORD [,BYTE])

*=30334
MYFUNC PLA
STA RA ; save return address
PLA
STA RA+HL :
LDA #° ° ; default if only 1 arg specified
cepy i#2
BNE MYFUNC2 ; branch if only 1 arg specified
PLA ; else discard dummy hi byte
PLA ; get byte argument specified
MYFUNC2 STA ARG2 ; save default or specified 2nd arg
PLA
STA ARGl+l ; save hi byte of arg 1
PLA
STA ARGl ; save low byte of arg 1
H operate on arguments as desired here...then...
PHA ; push result to be returned to caller
LDA RA+L
PHA ; push return address
LDA RA
PHA
RTS ; return to caller

Copyright (C) 1986 SMA Inc. Rev. C

I-10 Systems Management Associates, Inc. MACHINE LANGUAGE

Here is the companion PROMAL declaration and sample calls:

EXT ASM FUNC BYTE MYFUNC AT $0334

WORD WHERE

BYTE CHAR

CHAR = MYFUNC(WHERE) ; call with default for 2nd arg
IF MYFUNC(WHERE-1,"A7) 5 call with 2nd arg specified

CALLING LIBRARY ROUTINES FROM MACHINE LANGUAGE PROGRAMS

You may call LIBRARY routines from your machine-language subroutines (but
you may not call subroutines written in PROMAL). The address of the desired
routine can be obtained from the listing of the LIBRARY.S file in Appendix Q of
this manual. Pass your arguments on the stack, remembering that passed
arguments are always 2 bytes each. Don”t forget to set the Y register to the
number of arguments you are passing. The following example shows how to
print a message on the screen from an assembly language routine by calling a
library routine:

PUT = SOF15 ; Address of PUT routine (from Library)

; Print an error message and then the character now in the X reg, then CR.

LDA #<ERRMSG

PHA s Push the address of the string to print (low)
LDA #>ERRMSG

PHA s then hi byte

TXA 3 push the character to print after the msg.
PHA

LDA #0

PHA 5 push dummy hi byte (must be O for char.)
LDA #$0D 3 ASCII CR is third argument

PHA

LDA #0

PHA ; another 0 for the hi byte

LDY #3 ; we're passing 3 arguments

JSR PUT ; display all three arguments

ERRMSG DB “Illegal character: “,0 ;0-byte terminates the string

From inspection of the program fragment above, you may have surmised how
the PROMAL LIBRARY routine PUT tells the difference between a single character
argument and a string argument. If the argument is less than 256 (high byte is
0), then it is a single character. If the argument is greater than 256, then
it must be the address of the string to print.

Copyright (C) 1986 SMA Imc. Rev. C

MACHINE LANGUAGE Systems Management Associates, Inc. I-11

LOADING NON-RELOCATABLE MACHINE LANGUAGE PROGRAMS FROM WITHIN A PROGRAM

Function MLGET can be used to load a stanndard Apple or Commodore format
machine language program, such as would be generated by commercial assemblers.
You can specify whether you want the program loaded at the same location it was
saved at, or at another location. Function MLGET is described in the LIBRARY
MANUAL.

MAKING YOUR ASSEMBLY PROGRAMS RELOCATABLE

The RELOCATE program supplied on the PROMAL disk is capable of converting
virtually any assembly language program into a relocatable PROMAL module. The
advantages of doing this instead of simply using MLGET to load a standard,
non-relocatable program are:

1. The program can be executed by simply typing its name from the PROMAL
executive, just like any other PROMAL program.

2. The PROMAL loader will find a free location in memory to run the program
automatically.

3. The program can be loaded under program control using the LOADer.

4. You can import variables and subroutines from your machine language
package to PROMAL programs which call it.

This makes using RELOCATE the most desirable method of preparing large
assembly language modules for use with PROMAL.

To use RELOCATE, follow these steps:

1. Prepare your assembly language source program in the usual way,
following the interfacing guidelines in the preceding section, and the
organizational guidelines suggested in the following section.

2. Assemble your program twice, once with the origin set at some arbitrary
page boundary (greater than $0200), and once with the origin set exactly $0100
bytes higher in memory. Save both resulting object programs. You may use
virtually any assembler you wish. A public domain PROMAL assembler is
available from SMA. The program should consist of a single, contiguous block
of code. Your zero—page variables will not be relocatable, and must be
assigned locations as described in the foregoing section.

3. Execute RELOCATE from the PROMAL EXECUTIVE by typing:
RELOCATE Object Object0100 Objmodule

where Object and Object0100 are the names of the two machine language object
files saved from the previous step, and Objmodule is the name of the desired
PROMAL module to be generated as output. No default extensions are assumed for
the first two file names, which are normally "PRG" type files for the Commodore
and "BIN" type files for the Apple. The last filename will have a .C extension
by default. If you want Objmodule to be an overlay instead of a program (see
the section on the PROMAL loader for more information), you can specify an
optional fourth argument as the single character O (the letter "oh").

Copyright (C) 1986 SMA Inc. Rev. C

I-12 Systems Management Associates, Inc. MACHINE LANGUAGE

4. When RELOCATE finishes, your program is ready to run or load.
ORGANIZING YOUR RELOCATABLE PROGRAM

Your assembly language package can have multiple procedures and functions in
it which can be called from your PROMAL program, complete with passed
arguments. In order for the LOADer to be able to link up your PROMAL program
correctly with your finished relocatable machine language package, we suggest
you follow some simple conventions, which we will illustrate in a skeletal
example program.

To organize your program, decide which routines you will want to call from
your PROMAL program. These should be entered by a jump table at the very start
of your program. These JMPs should be followed immediately by any non-zero
page variables which you wish to make available to the calling PROMAL program
(often none will be needed). For example, if you want to be able to call three
routines, and have one variable which can be accessed by other PROMAL programs:

TEMP = $O00FE ; Temp O-page variable used by this program

*=$1000 ;3 Dummy origin (make it $1100 for 2nd assembly)
FUNCA JMP FUNCAlL ;s Function exported to PROMAL program
PROCB JMP PROCB1 ;5 Procedures exported to PROMAL program
PROCC JMP PROCClL

ANSPTR .WORD 0 ; Variable exported to PROMAL program

FUNCA1 PLA
STA RA ; Save return address
‘e ; etc.
RTS

PROCB1 PLA
STA RA

RTS

PROCC1 PLA
STA RA
RTS
END

Assume that this program has assembled successfully. Now you want to export
the definitions of your routines and your variable ANSPTR to the PROMAL
program(s) which will be using your machine language package. Since the
assembler can”t generate an export file automatically, you can generate a
"fake" export file by hand using the PROMAL EDITor. Assuming our sample
package will be called MLPKG, you could generate this text file with the file
name MLPKG.E:

Copyright (C) 1986 SMA Inc. Rev. C

MACHINE LANGUAGE Systems Management Associates, Inc. I-13

IMPORT MLPKG ;10/16/85
EXT ASM FUNC FUNCA AT $0000
EXT ASM PROC PROCB AT $0003
EXT ASM PROC PROCF AT $0006
EXT WORD ANSPTR AT $0009

Be sure to start the IMPORT line exactly in column 1 and to observe the
indentation for all other lines. The addresses shown after "AT" in each of the
lines should be relative to the start of your machine language program (each
JMP instruction is 3 bytes long). If you use the jump table, you won"t have to
change this export file even if you make changes in the body of your machine
language program later.

You can now INCLUDE MLPKG.E in any PROMAL programs that will call the
machine language package, and compile them. Your PROMAL program should also
have a "bootstrap” program to load the machine language package, as discussed
in the section on the PROMAL LOADer. For example:

PROGRAM BOOTPROG OWN
INCLUDE LIBRARY
INCLUDE PROSYS

LOAD "MLPKG", LDNOGO
LOAD "CALLSML"

e e

END

PROGRAM CALLSML ; main module, calls MLPKG
INCLUDE LIBRARY

INCLUDE MLPKG.E ; Export file from M/L package
WORD MYVAR[100]

WORD I

LI Y

ANSPTR=MYVAR ; Using variable imported from MLPKG
IF FUNCA(23-MYVAR[I]) < 100 ; Calling M/L function
PROCB MYVAR[I+1], MYVAR[I+2] ; & M/L procedure

END

These two programs can then be separately compiled. The final step is to make
our machine language package relocatable:

RELOCATE OBJECT OBJECT100 MLPKG.C

assuming OBJECT is the output file from assembling the program at $1000, and
OBJECT100 is the object file resulting from assembling it at $1100.

To execute the program, type:

BOOTPROG

Copyright (C) 1986 SMA Inc. Rev. C

I-14 Systems Management Associates, Inc. MACHINE LANGUAGE

which will load the relocatable machine language module MLPKG into memory at
some available location, load the main PROMAL program CALLSML into memory above
it, link the function and procedure calls and variable references to the
machine language package, and execute the program.

TECHNICAL NOTES ON RELOCATE

The source code for RELOCATE is provided on a PROMAL diskette. It uses
conditional compilation for the Commodore and Apple II versions. You may
therefore modify it to meet your needs if you have an assembler which produces
object output files which are not compatible with RELOCATE.

The Commodore version assumes the object code files to be used as input to
RELOCATE will be standard Commodore object files of type PRG, such as are
generated by the BASIC SAVE command. This format consists of a word giving the
starting address, followed by a memory image of the object program.

The Apple II version assumes a standard PRODOS object file with a file type
of BIN, such as is generated with a BSAVE command. The Apple version of
RELOCATE is more complex because the information about the starting location of
the memory image is contained in the directory instead of the file itself. See
the PRODOS Reference Manual for details.

The format of the PROMAL relocatable object module which is generated as
output from RELOCATE is as follows:

Position Field Name Description

0 FHEAD Header ID byte, set to $CE

1 FTYPE Module type, $01 for M/L prog, $05 for M/L overlay.

2-3 FHCDBA Nominal code base address (ORG where assembled)

4-5 - Not used, set to 0000.

6-7 FHCDSZ Code size in bytes of memory image. Do not include
this header or relocation table in count.

8-D - Not used, set to O.

E-10 FHDATE Date of assembly, 1 byte each for day, month, year
(year-1900 really), in that order.

11 - Reserved. Set to $04.

12-1D FHCOMD Program name followed by $00 terminator, as it
would appear on a PROGRAM line of a PROMAL program.

1E-1F - Not used, set to 0000.

20-n The actual object code memory image. The size of

this field is given by FHCDSZ above.

n+1l-n+2 Reloc. Table header, set to “R” followed by “A~.
n+3-n+4 Count of number of bytes which follow.
n+5-end List of words of addresses relative to the start

of the memory image above, where relocations must
be made. For example, If the memory image was
assembled to start at $1000 and starts with a

JMP $112B instruction, then the first entry in

the list would be $0002 (indicating the high byte
of the address portion of the JMP instruction will
need to be modified when the program is loaded).

Copyright (C) 1986 SMA Imc. Rev. C

MACHINE LANGUAGE Systems Management Associates, Inc. I-15

The RELOCATE utility can accept a fourth argument of O (the letter O, not
zero), indicating that the output object file is an overlay instead of a
program (the SIZE command will display a type of "AOV" in this case, for
Assembly Overlay).

INTERRUPT SERVICE ROUTINES

Due to limitations imposed by the architecture of the 6502 processor, it is
not practical to write interrupt service routines in PROMAL. However, you may
write and use machine language service routines.

For the Commodore 64, your program should prepare for using interrupts as
follows:

1. Tuirn off interrupts.

2. Save the contents of the interrupt vector at location $0314-0315
in another variable.

3. 1Install the address of your service routine in $0314-0315.

4. Enable interrupts.

5. Your service routine will be entered from initial Kernal interrupt
processing via the vector at $0314. Your service routine may not use
any library routines, Kernmal routines, or any other software. It must
preserve all the registers and the stack. If the interrupt is caused
by the 1/60th second timer, you must do a jump indirect through the
saved vector you extracted in step 2. Otherwise, you must restore the
registers already pushed by the Commodore Kernal and do an RTI.

Because of the heavy usage of interrupts made by the Kernal, we recommend
you avoid interrupts on the Commodore 64 unless absolutely essential.

For the Apple II, you may freely use interrupts in the normal manner.
However, you may not call any Library routines in the service routine, because
they (and the underlying PRODOS system) are not re—entrant. You should observe
all the restrictions detailed in the Apple Reference manuals.

Correct operation of PROMAL with interrupt routines is entirely the
responsibility of the programmer.

Copyright (C) 1986 SMA Inc. Rev. C

I-16 Systems Management Associates, Inc. MACHINE LANGUAGE

This page is intentionally left blank.

Copyright (C) 1986 SMA Inc. Rev. C

FORWARD REFERENCES Systems Management Associates, Inc. J-1

APPENDIX J

RECURSION AND FORWARD REFERENCES

The PROMAL Language fully supports recursion. In fact, the PROMAL COMPILER
(which is a 2800 line PROMAL program) makes extensive use of recursion. To
make full use of recursion, it is sometimes necessary to call a Procedure or
Function before it is defined. This is permitted in PROMAL, as follows:

Prior to the first invocation of the routine to be forward referenced,
declare it as an external (but not ASM), for example:

EXT FUNC BYTE EXP ; Allow forward reference to Expression Parser
EXT PROC STATEMENT ; Ditto for Statement processing routine.

You may then have forward references to the routine, by calling it in
the normal manner, for example:

TYPE = EXP
STATEMENT ASSIGN, BYTETYPE

At the desired location, complete the normal declaration of the Procedure
or Function, for example:

FUNC BYTE EXP

END

PROC STATEMENT
ARG WORD ASGNLOC
ARG BYTE RESULTTYPE

END

Additional calls to these routines may follow their definition in the
normal fashion, if desired. Note that declaring a forward reference in this
manner defeats the compiler”s argument count checking and also its checking for
undefined subroutines, so be careful.

NOTE: If you have the optional Developer”s disk, file XREF.S illustrates an
excellent example of the use recursion for searching a tree.

Copyright (C) 1986 SMA Inc. Rev. C

Systems Management Associates, Inc.

FORWARD REFERENCES

This page is intentionally left blank

Copyright (C) 1986 SMA Inc.

Rev. C

REAL FUNCTIONS Systems Management Associates, Inc. K-1

APPENDIX K

REAL. FUNCTION SUPPORT

A PROMAL Diskette includes a file called REALFUNCS.S which contains the
complete source code for all of the following arithmetic functions:

Name Description Example

ATAN Arctangent (returns angle in radians) Y = ATAN(X)
CoS Trigonometric cosine (angle in radians) Y = COS(X)

EXP Exponential (e to the X power) Y = EXP(X)
LOG Natural logarithm (base e) Y = LOG(X)
LOG10 Common logarithm (base 10) Y = LOGlO(X)
POWER Power (X to the Y power) Z = POWER(X,Y)
SIN Trigonometric sine (angle 1in radians) Y = SIN(X)
SQRT Square root Y = SQRT(X)
TAN Trigonometric tangent (ang. in radians) Y = TAN(X)

These functions all expect arguments of type REAL and return results of
type REAL. They are provided in PROMAL source form instead of as built-in
functions (as in BASIC) because:

1. Many programs do not need any of these functions. If your program
doesn”t need them, you do not have to have them in memory, which makes about
1.5 K bytes of additional memory available for things you do need.

2. If you do need these functions, you can simply put the statement
INCLUDE REALFUNCS

in your program, and they will be included in your compiled program (assuming
you have copied the REALFUNCS.S to your Working diskette used for
compilation). No other declarations are needed to use the functions.

3. If you only need one or two of the functions, you can use the Editor to
extract just the functions you need and insert them into your program. This
saves memory and decreases compilation time compared with including the entire
REALFUNCS.S file. Note, however, that some of the functions call other
functions internally. For example, SIN calls COS and LOG calls LOG2, so be
sure to copy all needed routines.

4. You can examine and study how the source code works. The algorithms
used depend heavily on Hart, et al, Computer Approximations, published by John
Wiley and Sons in 1968 and reprinted in 1978 with corrections. Comments in the
source code identify which algorithm was selected.

Copyright (C) 1986 SMA Inc. Rev. C

K-2 Systems Management Associates, Inc. REAL FUNCTIONS

BASIC users will find most of these functions familiar, except for POWER,
which replaces the BASIC operator "~". The POWER function is defined only for
positive values of the first argument. All the functions are believed to give
better precision than Commodore or Applesoft BASIC, often as much as two
additional significant digits. Through normal range arguments, the functions
can be relied on for about 9.5 significant digits (slightly less for POWER).
Even though these functions provide greater precision and are written entirely
in PROMAL, they usually still execute faster than their BASIC counterparts,
which were implemented in hand-coded assembly language.

NOTE: PROMAL version 2.0 and earlier had function ABS in REALFUNCS.S.
Version 2.1 has ABS in the standard LIBRARY for improved convenience and
performance.

Also included on one of the PROMAL diskettes is a file called FLOOR.S. This
contains the PROMAL function FLOOR, which has the form:

Realvar = FLOOR (X)

where X is a REAL value. FLOOR returns a REAL result which is equal to the
largest integer less than or equal to the REAL argument. For example:

INCLUDE FLOOR.S

REAL X
X = FLOOR (100000.89) ; Returns 100000.0
X = FLOOR (-3.8) ;Returns -4.0

Copyright (C) 1986 SMA Inc. Rev. C

COMPATIBILITY Systems Management Associates, Inc. L-1

APPENDIX L
COMPATIBILITY ISSUES

One of the goals of the designers of PROMAL was to achieve a high degree
of compatibility for PROMAL source programs on different kinds of computers
while at the same time allowing users the freedom to take advantage of the
special features of each supported computer. Obviously this entails some
compromises. To achieve 100 percent compatibility, you can only support the
"lowest common denominator"” between machines. Clearly this is not a
satisfactory approach. Instead, a standard Library of functions was developed,
which is kept as similar as possible on all machines, but with additional
system-dependent functions also provided in additional libraries.

This section describes the major differences between the Apple I11/Commodore
64 versions of PROMAL (hereafter referred to jointly as "6502 PROMAL") and the
IBM PC and compatibles version (hereafter referred to as "IBM PROMAL"). The
information is oriented towards the software developer wishing to "port” an
existing 6502 program to the IBM, but is also useful for going from the IBM to
the 6502.

MAJOR DIFFERENCES BETWEEN 6502 AND IBM VERSIONS OF PROMAL

1. There is no EXECUTIVE in IBM PROMAL. 6502 PROMAL includes an EXECUTIVE
program which is a command shell similar to DOS on the IBM PC. There is no
EXECUTIVE in the IBM version because the DOS shell provides these functioms.
Users of 6502 PROMAL should have little difficulty adjusting to DOS, since
the EXECUTIVE and DOS are fairly similar.

2. IBM PROMAL does not support multiple programs in memory at once, since DOS
does not support it. This generally presents no problem.

3. IBM PROMAL file names are limited to 8 characters plus a three character
extension, because this is the DOS standard. IBM PROMAL supports full DOS path
names.

4. 1IBM text files (including PROMAL source files) have lines terminated by CR,
LF pairs, whereas 6502 PROMAL uses only CR terminators, in keeping with the
conventions of the respective computers. This may cause some initial problems
when porting source files from one machine to the other. When moving source
files from 6502 systems to the IBM, you will need to write a small "filter"
program to insert a linefeed ($0A) after each CR ($0D). More significantly, if
your 6502 program uses statements such as PUT CR,... to generate an end-line,
you will need to edit your source file to change this to PUT NL.... Using NL is
preferred since it is portable between either machine; in the 6502 Library, NL
is defined as a single character, CR. In the IBM Library, it is defined as the
string CR,LF. When using a statement such as OUTPUT "#C...", you do not have
to change the #C since this is defined as the appropriate newline sequence on
either machine.

5. In 6502 PROMAL, the file handle returned by OPEN always points to the name
of the file. This is not true for IBM PROMAL, because standard DOS file
handles are returned, which are small integers, not addresses. This is
normally of no consequence. However, if your program depended on the file

Copyright (C) 1986 SMA Inc. Rev. C

L-2 Systems Management Associates, Inc. COMPATIBILITY

handle pointing to the name you will need to change it.

6. IBM PROMAL does not support the W, L, S, or K devices. However, you can
open a file named "W". If you manipulate WPTR, WEOF, etc. directly in your
program, you will need to change this.

7. 1I-0 redirection operates somewhat differently in IBM PROMAL. DOS provides
the I-0 redirection, not PROMAL. The REDIRECT procedure is not supported. I-0
redirection, when enabled using the > operator on the DOS command line, affects
all screen output, not just output to the STDOUT handle. Also, note that GETLF
(STDIN,...) does not support the PROMAL line editing features from the
keyboard, but only the DOS line editing keys.

8. The LOAD procedure is not supported in the present version 1.9 of IBM
PROMAL. In most cases this should not pose a significant hardship since the
IBM has a much larger memory space available for running your program, so
programs needing overlays in the 6502 version will not need them in the IBM
version. It is possible to have one PROMAL program chain to another program
using the DOSCALL procedure.

9. Naturally, any machine language calls, memory mapped registers, etc. used
in your programs will not be portable.

10. Applications using the T device may need to be altered for use on the IBM
PC. The TMODE utility is not supported; the DOS MODE command replaces this
program. IBM PROMAL supports interrupt driven serial I/O.

11. If your program uses special keys (such as function keys), you will need
to adjust the key codes as specified in Appendix B. Function key string
substitution is still supported in the IBM version, but not from the DOS shell.

12. If your program uses embedded control keys to select reverse video mode,
you will have to change this since the IBM does not support a control sequence
for reverse video (unless you use ANSI.SYS as described in the DOS
documentation). Functions are provided for setting video attributes.

13. The DIR function displays file names in a different format on the IBM PC,
consistent with the DOS DIR command (/W option).

14. The line editing keys for use with GETL, EDLINE, and INLINE are somewhat
different for the IBM version, consistent with normal key conventions for the
IBM.

15. CARG[O] is not defined in the IBM version.

16. OPEN for IBM PROMAL does not have a default file extension (it is .C on
the 6502 version).

17. The RENAME function cannot have wildcards in the IBM version. Complete
path names are supported, and you can rename into a different directory.

18. 1IBM PROMAL 2.1 reserves the following additional key words: LONG, STRUC,
UNION, SIZEOF, SEARCHLIB.

Copyright (C) 1986 SMA Inc. Rev. C

C-64 RELATIVE FILES Systems Management Associates, Inc. M-1

APPENDIX M
RELATIVE FILE SUPPORT ROUTINES FOR COMMODORE 64

PROMAL on the Commodore 64 treats all files as Commodore sequential (SEQ)
type files, including programs, text and data. For many database and business
applications, another type of file structure may be more suitable for rapid
access to data. The Commodore 1541 disk drive has an undocumented but fairly
widely-known ability to create and access files by “"relative records”. Your
local computer store can probably provide books with information on using
relative records with BASIC, such as The Anatomy of the 1541 Disk Drive, by
Abacus Software.

The PROMAL System Diskette contains a file called REL FILE.S which provides
a set of PROMAL routines for using relative files from your program. A totally
complete discussion of relative files is beyond the scope of this manual, but
here is a brief description.

A relative file is organized into a number of fixed-length records. The
size of all records in the file is the same, and is established when the file
is opened. The record size can be from 1 to 254 characters. Records of 20 to
100 characters or so are typically used. For a database application, each
record might be subdivided into fixed-length fields; for example, a customer
name field, address field, etc. Once you have opened the relative file on
disk, you initialize the file. Initializing the file allocates space on the
disk for the number of records you specify and sets each record to “"empty” .

Once you have opened and initialized the file, you may write and read
records by specifying the relative record number desired. Typically this
record number corresponds to a sequential customer number or some other "key"
number by which the file is to be accessed. The first record on the file is
number 1 (not 0), the last record has a relative record number equal to the
highest record number specified at initialization.

The REL FILE.S file has the source for routines to open, initialize, read,
write and delete relative files. Due to internal format differences, you may
not read or write relative files as ordinary sequential files, or by using the
Executive or Editor (exception: you may DELETE or RENAME relative files). 1In
particular, if you try to TYPE or COPY a relative file from the Executive, you
will get a "FILE NOT FOUND" error because the type of the file is not
sequential. Do not use DYNODISK with Relative files.

To use the relative file routines, put the following statement in your
program before the first reference to the routines:

INCLUDE REL FILES

The following subroutines are provided:

Copyright (C) 1986 SMA Inc. Rev. C

M-2 Systems Management Associates, Inc. C—64 RELATIVE FILES

PROC REL OPEN OPEN RELATIVE FILE

USAGE: REL OPEN Filename, Recsize

Procedure REL OPEN opens a relative record file. Filename is a string
containing the desired file name. This may be any legal Commodore filename,
but we suggest you use a legal PROMAL file name with a ".R" extension. Recsize
is an argument of type BYTE specifying the size of each record, which may be 1
to 254. It is the programmer”s responsibility to insure that the file is
opened with the same record size every time.

In planning your record size, remember that the record size should be 1
greater than the actual maximum number of characters you plan to use in the
record, to allow for the Carriage Return (CR) terminator which will be appended
automatically to each record on disk. The 1541 drive only allows one relative
file to be open at a time. REL OPEN must be called prior to any other relative
file routines. -

EXAMPLE:
CON RECSIZE=81 ; Up to 80 chars in a record
DATA BYTE FILE="INVENTORY.R" ; Filename to be opened
REL OPEN FILE,RECSIZE ; Open relative file for I/0
PROC REL INIT INITIALIZE RELATIVE FILE

USAGE: REL INIT Numrecs

Procedure REL INIT initializes a previously opened relative record file and
specifies the maximum number of records to be allocated. Each record is
initialized to "empty” (a null string). Numrecs (type WORD) is the desired
maximum number of records. If this number is large, the initialization could
take several minutes. It is only necessary to initialize a relative file when
it is first created (after opening it) or when enlarging the maximum number of
allowable records. It is not necessary (or desirable) to initialize it each
time you open it. To enlarge the file for additional records, you can call
REL INIT again with Numrecs specifying the new maximum. Records previously
written will not be affected.

EXAMPLE:

CON RECSIZE=81 ; Up to 80 chars in a record

CON NUMRECS=200

DATA BYTE FILE="INVENTORY.R"

REL OPEN FILE,RECSIZE ; open relative file

REL INIT NUMRECS ; Initialize file with null records

Copyright (C) 1986 SMA Inc. Rev. C

C-64 RELATIVE FILES Systems Management Associates, Inc. M-3

PROC REL WRITE WRITE RECORD TO RELATIVE FILE

USAGE: REL WRITE Recnum, Record

Procedure REL WRITE is used to write a particular record in an open and
i{nitialized relative file. Recnum is the desired relative record number (type
WORD), and Record is a string containing the text of the desired record. The
string does not have to include a carriage return; one will be appended when
the record is written to disk. The record written must not be longer than the
record size which was specified when the file was open.

If the record was previously written, the new record replaces it in its
entirety, even if the new record is shorter than the record it replaces. Recnum
must be between 1 and the value specified for Numrecs when REL_INIT was called,
inclusive. The string written should not contain a byte of $FF (255). Natural-
ly it cannot contain any $00 bytes either since this is the string terminator
in PROMAL.

EXAMPLE:
CON RECSIZE=50 ; Up to 49 chars in a record
CON NUMRECS=300
BYTE LINE[81]
BYTE INDEX
WORD RECNUM
DATA BYTE FILE="MYDATA.R"
REL OPEN FILE,RECSIZE
PUT NL,"WRITE WHAT RECORD NUMBER ? "
GETL LINE
INDEX=STRVAL(LINE, #RECNUM)
PUT NL,"CONTENT OF RECORD ?"
GETL LINE
REL WRITE RECNUM, LINE

The program fragment above prompts for entry of a record number and a line of
text to be the desired record. It then writes the record specified.

PROC REL READ READ RECORD FROM RELATIVE FILE

USAGE: REL READ Recnum, #Buffer

Procedure REL READ reads a specified record from an open relative record
file and copies it to a specified buffer. Recnum is the desired record number
(type WORD), between 1 and the value of Numrecs specified when the file was
initialized. #Buffer is the address of the desired buffer to hold the record,
which should be at least as large as the record size specified when the file
was opened. The CR terminating the record on disk is not returned in the
buffer; it is replaced with a $00 byte so the buffer can be treated as a
standard PROMAL string. A record which has never been written will return a

Copyright (C) 1986 SMA Inc. Rev. C

M-4 Systems Management Associates, Inc. C-64 RELATIVE FILES

null string without error.
EXAMPLE:

CON RECSIZE=50 ; Up to 49 chars in a record
CON NUMRECS=300

BYTE LINE[81]

BYTE INDEX

WORD RECNUM

DATA BYTE FILE="MYDATA.R"

REL OPEN FILE,RECSIZE

PUT NL, "READ WHAT RECORD NUMBER ? "
GETL LINE

INDEX=STRVAL(LINE, #RECNUM)

REL READ RECNUM, LINE

PUT LINE,NL

The program fragment above prompts for a record number and displays it on the
screen, followed by a carriage return.

PROC REL DELETE DELETE RELATIVE FILE

USAGE: REL DELETE Filename

Procedure REL DELETE is used to delete an entire relative record file. The
file should be closed when REL DELETE is called. All records will be discarded
and the file space reclaimed for future use on the disk. Filename is a string
containing the name of the file. The message

"0l1, FILES SCRATCHED, 01, 00"
will be displayed on the screen. This is not an error.

EXAMPLE:

REL DELETE "MYDATA.R"

Copyright (C) 1986 SMA Inc. Rev. C

C-64 RELATIVE FILES Systems Management Associates, Inc. M-5

PROC REL CLOSE CLOSE RELATIVE FILE

USAGE: REL CLOSE

Procedure REL CLOSE closes the previously-opened relative record file. No
error occurs if the file is not open. This procedure should be called before
exiting from any program which has opened a relative file, or when done with
the file. Note that it is normal for the red light on the 1541 drive to be on
the entire time a file is open. Because it is important to properly close the
file, it is suggested that CTRL-STOP not be used to exit from a program which
has opened a relative file.

EXAMPLE:
REL OPEN "MYDATA", 40

REL CLOSE

Note that if you INCLUDE both RS_232 and REL FILES in a single program, you
will get some duplicate identifier errors when you compile, because both
packages use and declare some of the same Kernal entry points. To correct this
situation, simply copy whichever of these files is second in your program to
another file, and edit it to delete the duplicate declarations.

The REL_FILE package requires version l.1 or later of PROMAL.
RELDEMO PROGRAM

The PROMAL System disk contains a file called RELDEMO.S. This file is a
simple demonstration program for relative files using REL FILE.S support. It
opens a relative file called "TEST REL.R" for up to 20 records of 40 characters
each, and prompts you to read or write selected records. The first time you
run RELDEMO, you should select “initialize" from the menu before reading or
writing records. A menu option is provided to delete the entire file if you no
longer want it on your disk.

You can study the RELDEMO.S program for more information about using
relative files. Since the REL FILE.S support package is provided in PROMAL
source form, you may also wish to study it to see how to use PROMAL to inter-—
face to the Commodore Kernal routines. Advanced users may even wish to use the
same techniques to write their own direct-access disk routines. If you do
decide to write your own disk-support routines in PROMAL, please note the
following:

1. The PROMAL nucleus always has channel 15 open to the disk command/error
channel. The routine REL CHECK in REL FILE.S provides a way to read the error
channel.

2. PROMAL allocates C—-64 channels in ascending order, with the secondary
address the same as the channel number. You should pick "high" chanunels and
secondary addresses (9 or 10 recommended) to keep out of PROMAL"s way.

Copyright (C) 1986 SMA Inc. Rev. C

M-6

Systems Management Associates, Inc.

C—64 RELATIVE FILES

This page is intentionally left blank

Copyright (C) 1986 SMA Inc.

Rev. C

SYSTEM NOTES Systems Management Associates, Inc. N-1

APPENDIX N
OPERATING SYSTEM NOTES

COMMODORE 64

PROMAL Version 2.0 has full support for two disk drives. These can be
either two 154l-type drives (one as device 8 and one as device 9), or dual
diskette drives such as the SD-2 by Micro Systems Development (MSD), with drive
numbers O and 1 on Commodore device 8. The default drive ig drive O. Files in
drive 1 are designated by a "1:" prefix as part of the file name.

1f a drive number is not specified as a prefix, the default drive is always
drive O (device 8). A prefix of "1:" will access drive 1 (device 9). You
always "boot up" PROMAL from drive 0. When compiling programs with INCLUDE
files, the INCLUDE file name may have a drive prefix.

As shipped from SMA, PROMAL is set up to use one 1541 drive. If you
wish to use a dual drive MSD system, you should disable DYNODISK permanently
and set the device numbers for both drives to 8. This should be done from
BASIC as follows:

LOAD "PROMAL",8
POKE 3553,8 :rem makes logical drive 1 device 8, not 9
POKE 3554,128 :rem defeats DYNODISK permanently

Insert a formatted disk in drive O and type:
SAVE "PROMAL",S8,1
Then put the PROMAL diskette back in and type:

RUN

After the system is booted up, copy the rest of the files to your new disk.
You can use a commercial copier to do this if you wish, or use the COPY
command .

ELAPSED TIME FUNCTION

On the Commodore 64, you can read the "jiffy"” clock using this function, TIME,
which returns the clock reading in "jiffies"” (1 jiffy = 1/60th of a second) as
a REAL number:

EXT BYTE THI AT $AO

EXT BYTE TMED AT $Al

EXT BYTE TLO AT $A2

FUNC REAL TIME

BEGIN

RETURN TMED:4<<8 + TLO +65536.*THI
END

Copyright (C) 1986 SMA Inmc. Rev. C

N-2 Systems Management Associates, Inc. SYSTEM NOTES

APPLE 1II

PROMAL uses the Apple ProDOS operating system. Users who are accustomed to
operating under DOS 3.3 will find a utility program on the ProDOS Utilities
Diskette (available at your Apple Dealer) which can convert your existing text
and data files to ProDOS format so that you may use them with PROMAL.

Some non-PROMAL programs for the Apple produce text files with the high-
order bit of each character set. These files may be converted to standard
ASCII files (as expected by the PROMAL editor and other PROMAL programs) by
using the CLEARBIT7 utility program on the PROMAL System diskette. The command
syntax is:

CLEARBIT7 0ldfile Newfile

where 0Oldfile is the name of the file to be corrected and Newfile is the
desired name for the corrected file to be written. The CLEARBIT7 utility also
truncates any lines longer than 125 characters, so that the resulting Newfile
will be acceptable to the PROMAL EDITOR.

SPECIAL PRODOS FUNCTIONS

The file PRODOSCALLS.S contains a source program fragment suitable for
calling special ProDOS functions (such as testing or setting file attributes)
which are not covered by built in LIBRARY routines. The ProD0OS Technical
Reference Manual contains all the neccessary details.

Copyright (C) 1986 SMA Inc. Rev. C

BACKUP DISKS Systems Management Associates, Inc. 0-1

APPENDIX O

FORMATTING, BACKING UP, & MAKING WORKING DISKS

Apple 11

One of the first things you should do with your all your PROMAL distribution
disks is to make at least one backup copy. Be sure to read the License
agreement before opening your sealed diskette. It is important to make
a copy of your diskettes and only work with the copy, so that in the event that
any files are accidentally deleted, you can always get a new copy from the
original disk. Note that only the Demo disk is bootable. You may make backup
copies for your own personal use subject to the license agreement. Making
copies other than as permitted by the license agreement is a violation of
Copyright Law and is a crime.

For the Apple II, you may back up your PROMAL diskettes using the ProDOS
Utility Diskette which came with your Apple 1Ie or Ilc (available from your
Apple dealer). You should also use this program to format new blank diskettes
before using them with PROMAL. It is a good idea to write the volume name of
every diskette on the label using a soft marker. All disks should have unique
volume names. To make a "working disk" which can boot up PROMAL and do
development, use the ProDOS file copier or the PROMAL COPY or EXTCOPY commands
to copy the following files from the PROMAL disk to your newly-formatted
diskette:

PRODOS

PROMAL. SYSTEM

EDIT.C

EXECUTIVE.C

COMPILE.C ; Either Demo compiler or full
LIBRARY.S

EXTDIR.C

COMPERRMSG.T

EXTCOPY.C ; If desired

All the files above except the full compiler are on the Demo disk.
COMPILE.C, EXTDIR.C, COMPERRMSG.T and EXTCOPY.C are not necessary to boot
up the system, but you will usually want to have them on the disk if you will
be developing any programs. Once your system is booted up, you can develop
programs with a disk which only has COMPILE.C and COMPERRMSG.T (and perhaps
EXTDIR.C) on it, to leave more room for your source and object programs.
Remember to issue a PREFIX * command when changing disks. You may wish to copy
other files such as PROSYS.S or REALFUNCS.S on an as-needed basis.

If you have a /RAM disk, you may want to set up a BOOTSCRIPT.J file to copy
your working files to O:. EXTCOPY is convenient for doing this.

It is a good practice to keep at least one formatted, blank diskette
available at all times, with the Volume name clearly marked on the label. This
will come in handy the first time you type in a big program with the Editor
only to discover there”s no room left on your working disk to save it! To
extricate yourself, save to W and exit to the EXECUTIVE. Then use PREFIX * to
select your blank disk and COPY W Filename to save your file on disk.

Copyright (C) 1986 SMA Inc. Rev. C

0-2 Systems Management Associates, Inc. BACKUP DISKS

Commodore 64:

For the Commodore 64, the DISKETTE utility is a PROMAL program which
provides the following disk and file maintenance services:

1. Duplicate an entire diskette using a single 1541/1571 disk drive, two
1541/1571 drives, or an MSD dual disk drive.

2. Format ("New") a diskette.

3. Copy a file to another diskette.

4. Erase files.

5. Rename a file.

6. Display file names (directory).

7. Change a diskette name or ID.

Several of these services such as copying, erasing, renaming and displaying
the directory may also be done with built-in EXECUTIVE commands. The DISKETTE
utility can copy, delete, and rename files of PRG type or SEQ type, with any
legal Commodore name.

Probably your first use of the DISKETTE utility will be to make a backup
copy of the PROMAL SYSTEM DISK or PROMAL DEVELOPER”S DISK. Be sure to read the
License agreement before opening your sealed diskette(s). It is important to
make a copy of all the PROMAL distribution diskettes and only work with the
copy, so that in the event that any files are accidentally deleted, you can
always get a new copy from the original disk. You may make backup copies for
your own personal use subject to the license agreement. Making copies other —
than as permitted by the license agreement is a violation of US Copyright law
and is a crime.

It is very easy to duplicate the PROMAL SYSTEM DISK, although rather time
consuming because of the slow operation of the Commodore 1541 drive; it takes
about 15-20 minutes to back up a PROMAL distribution disk. However, this is
time well spent. If you are fortunate enough to have a dual drive system, it
only takes 2 minutes. If you have a commercial fast-copier, you may use that.
It 1s a good idea to put a write-protect tab on your PROMAL diskette before
proceeding.

To run the DISKETTE utility, put the PROMAL Demo Disk (or a copy) in the
drive and type this command from the EXECUTIVE:

—-> DISKETTE

The screen will clear and a menu similar to this will be displayed:

Copyright (C) 1986 SMA Inc. Rev. C

BACKUP DISKS Systems Management Associates, Inc. 0-3

PROMAL DISKETTE UTILITY 2.0

MENU

QUIT (TO EXECUTIVE)

DUPLICATE ENTIRE DISK

NEW (FORMAT) DISK

COPY A FILE

ERASE (DELETE) FILE(S)

FILE NAMES DISPLAY (DIRECTORY)
= RENAME FILE

= ALTER DISK NAME OR ID

nowon

mmmEoOo200

YOUR SELECTION?

Press D and RETURN to duplicate an entire disk. Then just follow the
instructions. You will be asked if it is okay to unload the EDITOR to increase
the size of the copy buffer; type Y and return. You may use the RETURN key by
itself for a "yes" reply to questions needing a yes—or-no answer. You will be
prompted when to swap disks if you have a single drive. When your duplicate
disk is finished, the menu will be redisplayed. Press Q and RETURN to exit to
the EXECUTIVE.

MAKING WORKING DISKETTES

For your normal operations, you will not need most of the files supplied on
the PROMAL disks, but will want the PROMAL system so that you can "boot
up" PROMAL from your working disk. The best way to do this is to use the
DISKETTE utility to format a new disk and then copy only the files you want.

To format a disk using DISKETTE, select the N option from the menu and
press RETURN. Again, just follow the directions. When prompted for a 2
character ID, pick any two characters that you have not used when formatting
another disk. It is very important to use a different ID on each of your
disks. This is how the 1541 disk drive DOS figures out when you have changed
disks. If you have two diskettes with the same ID but different contents
and swap them, the directories and files may be corrupted.

After formatting your new diskette, insert your copy of the PROMAL Demo
disk in the drive and select the C option from the menu. Copy the follow-
ing files one at a time using the C option:

PROMAL

EDIT.C

EXECUTIVE.C

COMPILE.C ; Or the "full” compiler from the sealed disk
LIBRARY.S

COMPERRMSG.T

DATE.C

Note that unlike the EXECUTIVE COPY command, you must type the ".C" extension
explicitly when copying files with DISKETTE. Also, since DISKETTE can copy
files with any legal Commodore name (of type PRG or SEQ), you must be careful
to type in upper case letters if the file you want is in upper case (you may
wish to use CTRL-A to lock uppercase alphabetic characters).

Copyright (C) 1986 SMA Inc. Rev. C

0-4 Systems Management Associates, Inc. BACKUP DISKS

The list of files above is the basic working set needed to boot PROMAL and
develop software. You may also wish to copy DISKETTE.C, REALFUNCS.S or other
programs. If you plan to boot up using another disk, then you only need to
copy COMPILE.C and possibly EDIT.C if you will be compiling with the "B" (big
program) option. It is possible to boot up without EDIT.C, COMPILE.C,
COMPERRMSG.T, and DATE.C, but you will normally want these.

The size file which can be copied is limited to the size of the available
buffer space, normally about 26K bytes. You can copy files of up to 64K bytes
using the standard EXECUTIVE COPY command (more if you have 2 drives).

MISCELLANEOUS OPERATIONS

You can also delete and rename files with DISKETTE. When deleting, note
that wildcards are acceptable when you are prompted for a file name to delete.

Be very careful when using wildcards; there is no prompt for a chance to change

your mind! When the deletion is completed, the standard Commodore disk
message will indicate the number of files deleted ("scratched”). For example:

01, FILES SCRATCHED,02,00

indicates two files were deleted (the number after "FILES SCRATCHED", not

before it!). If the message indicates 00 files scratched, you probably spelled

the name wrong (don”t forget you have to add .C explicitly for PROMAL programs
and match upper and lower case exactly).

Copyright (C) 1986 SMA Inc. Rev. C

SYNTAX DIAGRAMS Systems Management Associates, Inc. P-1

APPENDIX P

PROMAL SYNTAX DIAGRAMS

The syntax diagrams on the following pages provide definitive reference for
statement construction in PROMAL. If you are not familiar with syntax diagrams,
then study the narrative which follows while referring to the named diagrams.

HOW TO READ SYNTAX DIAGRAMS

Consider the first path of the STMT diagram, which is the syntax diagram
which shows you how to construct an assignment statement.

The symbols shown inside ovals are keywords or punctuation which must be
typed exactly as shown. The symbols shown in rectangles describe things which
you, the programmer, must supply. The lines connecting the ovals and rectan-—
gles show all the legal paths which you may take. For example, to make an
assignment statement, the first thing you need is a VAR. This is the variable
name to receive the result of the assignment. Exiting from the right side of
the VAR. rectangle, we see that we have a "fork in the road”, meaning we can
take any of the paths. If we go "straight ahead” on the middle track, we come
to an oval with an equals sign in it. Since this is an oval, we would write
the equals sign. Finally, we come to a rectangular box called EXP. This
stands for "expression”, which means we can put any kind of expression there.

We already know about forming expressions. Probably the simplest expression
is just a literal number. Therefore a legal assignment statement could be:

X=0

which sets the variable X to O. We also know that a variable can be used for
an expression, so another legal assignment statement would be:

ZVAL=X

We are assuming that X and ZVAL have been declared previously. We also know
that more complicated expressions can be formed with operators. For example:

CMIN=(ZVAL-1)/2

But how do we find out EXACTLY what is a legal expression on the right side
of an assignment statement? For example, is this legal?

VB=X OR Y

To find out, we consult the syntax diagram which defines an expression. Since
you already know that expressions can be quite complicated and involve many
possibilities, you might expect that the syntax diagram for an expression is
also complicated. In fact, it is the most complex element of the language.
Let”s look at the EXP syntax diagram, which appears deceptively simple.

Copyright (C) 1986 SMA Inc. Rev. C

P-2 Systems Management Associates, Inc. SYNTAX DIAGRAMS

The EXP starts with something called a RELATION. Consulting the syntax
diagram for a RELATION, we find it in turn starts with a SIMPLEXP. This is
getting complicated! A SIMPLEXP can start either with a - sign or a TERM.
Since our case doesn”t start with a — sign, it must be a TERM (if it”s legal).
A TERM starts with something called a FACTOR.

A FACTOR starts with a lot of choices immediately. One of these choices
(on the eighth line down) is "VAR.", which stands for variable. Now we are
getting some place! We know X is a variable, but can our variable X be
followed by the keyword "OR"? Follow the path out of the VAR rectangle, up and
out of the diagram for FACTOR. We have now completed FACTOR, but we remember
that FACTOR was just the start of a TERM, from the diagram above it. Tracing
the path from the FACTOR rectangle we see several choices (*, /, etc.), but
none of them are OR, so we continue to the right, exiting the TERM diagram.

Also, we remember that TERM was encountered in the SIMPLEXP diagram, so we
follow the arrow out of the SIMPLEXP diagram, since there are no paths there
that lead to OR. Returning to the diagram for RELATION after the SIMPLEXP box,
we again find no path leading to an OR, so we exit to the right. Finally, we
come back to the EXP diagram, and following the RELATION rectangle, we find a
path that leads to OR. Therefore we know we can have a variable followed by
OR. Following the path from the OR rectangle, we see we must come to RELATION
again. Therefore we must have another RELATION after the OR. But since we
already know from working our way down to FACTOR before that a relation can be
a variable, we know that our statement is legal since Y is a variable.

Before finally concluding that our statement is legal, though, we must make
sure that nothing else is required to follow what we already have. To do this,
we must trace a path from the exit of the RELATION box to the exit of the EXP
box, and then from the exit of the EXP box in the ASSIGN STMT diagram to the
end-of-line symbol. The end-of-line symbol is shown as a down-pointing arrow
in a circle, symbolically representing a carriage return.

Naturally you won“t consult the syntax diagrams every time you write a
statement! But if in the process of writing a program, if the compiler gives
you an error message, and it is not obvious what is wrong, you can always
consult the syntax diagrams to help find out what the problem is.

As an aside for the technically curious, you might be interested to know
that the PROMAL COMPILER is really just a PROMAL program which tries to match
your source program to the syntax diagrams! Each syntax diagram in this
Appendix is implemented as one subroutine in the compiler. For instance, the
COMPILER contains procedures called EXP, SIMPLEXP, RELATION, TERM, and FACTOR.
Each of the "forks in the road" in the syntax diagram corresponds to an IF
statement in one of these routines. To "parse” your assignment statement, the
ASSIGNSTMT routine calls the EXP routine which calls the SIMPLEXP routine,
etc., in the same manner as we just traced through the syntax diagram. If the
compiler gets to a point where the next thing in your program doesn”t match any
of the choices, it prints an error message.

Now that you know how to read syntax diagrams, which are the "authority” on
what is legal in PROMAL, you can refer to these diagrams whenever you have a
question about the "legality" of a particular PROMAL statement.

Copyright (C) 1986 SMA Inc. Rev. C

Q-2 Systems Management Associates, Inc. DEMO PROGRAMS

DUMPFILE.S

This program is a useful utility which allows you to display the contents of
any file in hex and ASCII, similar to the way the DUMP command displays
memory. Any type of file can be dumped. The command syntax is:

DUMPFILE Filename [Type]

This will display the first 256 bytes of the file. The Type argument is needed
only on the Commodore 64 for file types other than SEQ. No default file
extension is used, so be sure to specify ".C" when dumping compiled programs.
Pressing the RETURN key will display the next 256 bytes. Pressing any other
key will terminate the program. DUMPFILE supports output redirection, so you
can dump a file to the printer. The source and object code for DUMPFILE are on
the Demo disk or the System disk. This program illustrates conditional
compilation, so you must specify COMPILE DUMPFILE V=A on the Apple or V=C on
the Commodore to compile the program. See the comments for more information.

FILECRC.S

This program computes the "Cyclic Redundancy Check"” of a file and displays
it. This is useful for comparing two files to see if they are identical. The
comments in the source file explain the program operation and theory. It
contains good examples of bit manipulation operators.

FIND.S s

This program is discussed at length in the MEET PROMAL! manual. It
searches a file for lines containing a specified string and displays these
lines.

GRAPHDEMO.S (COMMODORE 64 ONLY)

This is a demonstration of high-resolution graphics using PROMAL. The
program is self-explanatory when executed. The source code includes procedures
for defining and clearing the hi-res screen, and drawing points and lines.
These routines can be extracted using the editor for use with programs of your
own design. NOTE: This program does not use or require the GRAPHICS TOOLBOX.
The GRAPHICS TOOLBOX provides much higher performance and is much easier to
use.

INFILTRATOR.S (COMMODORE 64 ONLY)

This is a fairly large and complex demonstration illustrating animation
using screen scrolling, sprites, joystick input, and sound synthesis. You will
need to issue a WS 0 command to edit this file and compile it using the B
option (full compiler). This program is an excellent example of how to make
good use of PROMAL procedures and functions to simplify a complex program.

RELDEMO. S (COMMODORE 64 ONLY)

This program is a simple demonstration of relative files. It is explained
in Appendix M.

Copyright (C) 1986 SMA Inc. Rev. C

P-4 Systems Management Associates, Inc.

SYNTAX DIAGRAMS

GLOBAL DECL.

A 4

o CONS Q)

DATA DEF.

- BYTE ‘
WORD

REAL

I

SUB. DEF.
PROC
FUNC

3
—-)I CON DEF IL
EXT DECL |

GLOBAL DECL

—’I DATA DEF } |
BEGIN

(L

v

INCLUDE FILENAME ()
STMT
LIST

EXP

Copyright (C) 1986 SMA Inc.

Rev.

c

SYNTAX DIAGRAMS Systems Management Associates, Inc. P-5

STMT
— [VAR % o
[PROC NAME }

v

T

——>| IF STMT lr
—>| CHOOSE STMT F

—>[WHILE STMT }

——[REPEAT STMT |-

—)| FOR STMT }
REFUGE CONS
ESCAPE CONS

BREAK

NEXT v
LEXE]

Lﬁﬂﬂﬁy

. J

¥

N

¢

—>(RETURN)
NOTHING ¢

IF STMT

WHILE STMT
WHILE EXP
> = STMT]

r—¢

v

Copyright (C) 1986 SMA Inc. Rev. C

P-6 Systems Management Associates, Inc. SYNTAX DIAGRAMS

CHOOSE STMT EXP

EXP €

<

Rl
» STMT

ELSE €

» STMT

<

v

REPEAT STMT
REPEAT (L)

) STMT
UNTIL EXP

FOR STMT

WORD VAR (=) (L)

> STMT

< R

EXP
RELATION

v

RELATION

RELATION

—{SIMPLEXP }
PLL P o
> SIMPLEXP

v

Copyright (C) 1986 SMA Inc.

Rev. C

SYNTAX DIAGRAMS

Systems Management Associates, Inc.

— SIMPLEX

TERM

FACTOR

FACTOR
— () CHAR J

(") CHAR

FACTOR

TRUE

FALSE

NOT FACTOR

—{CoNs |-

—>[REAL CONS |-

VAR

'——ﬂ FUNC NAME F,

EXP

EXP

CONS.

—

M DEFINED NAME

NUMBER

v

Copyright (C) 1986 SMA Inc.

Rev.

C

P-8 Systems Management Associates, Inc. SYNTAX DIAGRAMS

VAR.
——[VAR NAME] —>
(L) EXP (U
CAST

Copyright (C) 1986 SMA Inc. Rev. C

DEMO PROGRAMS Systems Management Associates, Inc. Q-1

APPENDIX Q

PROMAL DEMO PROGRAMS

A number of demonstration programs are provided on the PROMAL System disk
or optional Developer”s disk, as well as on the Demo disk. Several demo
programs were discussed in the MEET PROMAL! manual. You may compile and run
these demonstrations, and you can use the EDITOR to extract parts of them to
use in your own programs. By studying the programs you can learn many valuable
techniques. Below is a summary of most of the demonstration programs provided.

BILLIARDS.S (COMMODORE 64 ONLY)

This program is discussed briefly in the MEET PROMAL! manual. It makes
extensive use of sprites for animation of a billiards game. It also uses real
math extensively for computing the motion of the balls, and has many conver-—
sions (type casts) between real and byte data types.

BUDGET.S

This is a very simple demonstration program which illustrates how to format
real numbers for output. It uses the file BUDGETDATA.D for data. The file
BUDGETDOC.T provides more information.

CALC.S

This program, when compiled, provides a demonstration program which simu-
lates a four—-function calculator with 26 memories (named A through Z). This
program is discussed in MEET PROMAL!. To start the program, just type CALC,
and follow the directions. The Demo disk has the source code for CALC, which
illustrates how to write a recursive—descent expression evaluator in PROMAL.
This program is only about 180 lines long (excluding comments), yet it can
parse and evaluate arbitrary arithmetic expressions with nested parentheses.

CHECKSUM. S

This program computes the checksum of a specified block of memory. It is
useful for determining if any bytes in a block of memory have changed. The
comments provide further information on operation and theory.

CLEARBIT7.S (APPLE II ONLY)

This program will be found on the System Disk rather than on the demo disk.
It is used to convert text files generated by other Apple II software which
sets bit 7 of each byte to 1, to standard ASCII format for use with PROMAL. It
also truncates lines longer than 125 columns, making files acceptable to the
PROMAL EDITOR. It illustrates how to write a simple file filter in PROMAL.

Copyright (C) 1986 SMA Inc. Rev. C

Q-2 Systems Management Associates, Inc. DEMO PROGRAMS

DUMPFILE.S

This program is a useful utility which allows you to display the contents of
any file in hex and ASCII, similar to the way the DUMP command displays
memory. Any type of file can be dumped. The command syntax is:

DUMPFILE Filename [Type]

This will display the first 256 bytes of the file. The Type argument is needed
only on the Commodore 64 for file types other than SEQ. No default file
extension is used, so be sure to specify ".C" when dumping compiled programs.
Pressing the RETURN key will display the next 256 bytes. Pressing any other
key will terminate the program. DUMPFILE supports output redirection, so you
can dump a file to the printer. The source and object code for DUMPFILE are on
the Demo disk or the System disk. This program illustrates conditional
compilation, so you must specify COMPILE DUMPFILE V=A on the Apple or V=C on
the Commodore to compile the program. See the comments for more information.

FILECRC.S

This program computes the "Cyclic Redundancy Check"” of a file and displays
it. This is useful for comparing two files to see if they are identical. The
comments in the source file explain the program operation and theory. It
contains good examples of bit manipulation operators.

FIND.S s

This program is discussed at length in the MEET PROMAL! manual. It
searches a file for lines containing a specified string and displays these
lines.

GRAPHDEMO.S (COMMODORE 64 ONLY)

This is a demonstration of high-resolution graphics using PROMAL. The
program is self-explanatory when executed. The source code includes procedures
for defining and clearing the hi-res screen, and drawing points and lines.
These routines can be extracted using the editor for use with programs of your
own design. NOTE: This program does not use or require the GRAPHICS TOOLBOX.
The GRAPHICS TOOLBOX provides much higher performance and is much easier to
use.

INFILTRATOR.S (COMMODORE 64 ONLY)

This is a fairly large and complex demonstration illustrating animation
using screen scrolling, sprites, joystick input, and sound synthesis. You will
need to issue a WS 0 command to edit this file and compile it using the B
option (full compiler). This program is an excellent example of how to make
good use of PROMAL procedures and functions to simplify a complex program.

RELDEMO. S (COMMODORE 64 ONLY)

This program is a simple demonstration of relative files. It is explained
in Appendix M.

Copyright (C) 1986 SMA Inc. Rev. C

DEMO PROGRAMS Systems Management Associates, Inc. Q-3

RELOCATE.S

This program converts machine language programs into relocatable form for
use with the PROMAL loader. It is described in Appendix I. This program uses
conditional compilation, so read the comments in the source before compiling.
This program uses include files RELOCAPL.S or RELOCC64.S.

SORTDEMO.S (APPLE II ONLY)
This program is described briefly in MEET PROMAL!. It provides a demon-—
stration of formatted output, file access, printer access, and general tech-

niques.

SORTSTRING. S

This program provides a general shell sort routine for sorting arbitrary
string arrays, and illustrates how to generate an array of strings read from a
file. See the comments in the source file for usage.

SPLIT.S

This is a utility program which can be used to split a text file which is
too large to edit into two smaller files. The file can be split after a
specified number of lines, or before a line containing a specified string. The
command syntax is:

SPLIT Sourcefile Firstfile Secondfile Count
or
SPLIT Sourcefile Firstfile Secondfile String

where Sourcefile is the file to be split, Firstfile is the name of the file to
receive the first part of the file, and Secondfile is the name of the file to
receive the other part of the file. No default file extensions are provided,
so be sure to include ".S" for normal source files. Count is the number of
lines to be copied from Sourcefile to Firstfile; the rest will go to
Secondfile. String is a non-numeric string. The first line containing String
anywhere in the line will be the first line sent to Secondfile when this form
is specified. See the source program file for further information.

SSEND.S and SRECEIVE.S

This complementary pair of programs provides for error—free serial trans-
mission of any type of files between Apple II computers at up to 9600 baud, and
up to 600 baud for Commodore 64. TFiles can be exchanged between Apples and
Commodores, too. The programs are described in Appendix F. The subroutines
provided can be used as the basis for any kind of communications program.

TINYTERM.S
This program is a minimal implementation of a communications program for

communicating over a modem to a time sharing service or bulletin board service.
It is explained in Appendix F.

Copyright (C) 1986 SMA Imc. Rev. C

Q-4

Systems Management Associates, Inc.

DEMO PROGRAMS

This page is intentionally left blank.

Copyright (C) 1986 SMA Inc.

Rev. C

INDEX

A
ABORT (PROC)eececeoss Ceeeetereaaaes 4-5
ABS (FUNC)eveeovnsooennssnsnnnenanns 4=5
ALPHA (FUNC).evveoeesnnnns S
AND operatoreceecceese3 17,3-21/22
ARG statemente...... tesesnseneeses 3-42
Arguments:
-- comd line..l1-14/15,1-21/22,3-56/57
—— definingececececescocessoansss3d=42
—~ passingececvcccscrcarcccnns 3-42/45
—— substituting in JOB file...... 2-31
Arithmetic expressions.........3-17/20
Arithmetic operators.ccsscececs. eese3-17
Arrays:
—- of DATA strings...... .1-27,3-15/16
—— of stringSceccecescsses ceceesss3-65

—— declaring.cesesecevescesess3=-14/15

-- multi-dimensional........3-15,3-64
ASCII character Set.cecescecessossscA-l
ASM routine, declaring..I-7/10,1-12/13
Assembly language subroutines:

—- calling LIB routines from.....I-10

—- interfacing tOeeveesecasees . I-1/15

—— relocatable.eesscssacsseses I-11/15
Assignment statement...... .s.1-19,3-26
AT keyword in EXT statement..l1-29,3-58
ATAN (FUNC)ereevesnoncaconasseasessK-1
Audience, for PROMAL...ccoeecensessl=3

B

Backing up disks...eeeeseccsasss.0-1/4
Batch job capability...........2-30/31
BEGIN statementeccecceesssescesese3d=bl
BILLIARDS.S (sample program).......Q-1l
Blank lines, as commentSeseeceesesl=-16
BLKMOV (PROC)eeescvcacanss cesasanee 4-6
BOOTSCRIPT.J fileeeseoeoeenasensseas2=30
Bootstrap, to control loading.....3-76
BREAK Statementeseeseceessessss3d=31/32
BUDGET.S (sample program).....1-24,Q-1
BUFFERS (APPLE II EXEC cmd).. eees2-15
Built-in functions & procedures...3-36
BYTE, data typeeeeesessesss.1-18,3-8/9

C

CARG variable..1-14/15,1-21/22,3-56/57
CALC.S (sample program)....1-24/25,Q-1

Characters, literal.c.cceeccccsnses 3-10
Characters, string extraction.....3-23
ChecksSum:«sseesess1—13,4—7
Checksum, MAP displayeceeeeecesessl=13
CHECKSUM.S (sample program)........Q-1
CHKSUM (FUNC):cvooeavens Ceeereeeene 4-7

CHOOSE statement... «++3-30/31
CLEARBIT7.S (utility program)..N-2,Q-1
Clearing screen from program.4-43,4-45

CLOSE (PROC)««vvvcsee R ceed =7
CMPSTR (FUNC)eveooeees R R 4-8
COLOR (EXEC cmd)eeeeeesensnnsns ...2-16

Command line args......l-= 14/15 3-56/57
Commands: (see EXECUTIVE, EDITOR)
-- user defined..... esessenene ceee2=4
—— case insensitivity..eeececesees2=4
—- line editing, (TABLE l)......2-5/7
-- notation conventions...... cesee2-9
-- gystem—dependent keyS.eceeacese. 2-7
~— EDITOR (TABLE 5)cscccvessee2~47/49
—— EXECUTIVE (TABLE 2).ceeeccesese2-8
Comment lines...ceoeseseess S R 1
Compatibility with IBM PROMAL....L-1/2
COMPILE (EXEC cmd). .2-56/58
Compiler.. casescnne 2 2,2 -56/60
~ command optionsS...seeeccses 2-56/58
—- cross reference utllity.. 2-60
—= d1al0g.esevescessarseascess2-58/60
—— edit after error.escecssecessss2-59
—— introduction tOeceseseececasss2=56
—— invoking.eeseeseeeosecsssl-11,2-56
~— screen displaySececececvsessscl-ll
Compiling, conditional... «++3-49/50
Compiling, sample program....sss..1-11

Compiling, very large prgrms...2-57/58
CON statement....... seesea ees1-26,3-13
Conditional compilation...... «+3-49/50
Conditional stmts, short—cuts.....3-33
Constants, defininge....... ..1-26,3-13
COPY (EXEC Cmd).ecesoecncnnsssss2-17/19
Copyright Notice..cccese. cevres di,1-2
COS (FUNC)eveveeeoansonnnaones RS |
CS (EXEC cmd)esescneecenns cereeeee2-19

CTRL ~ (Adj. rt.-APPLE II)...1-28,2-48

CTRL \ (Clr. end -APPLE II)...2-5,2-48
CTRL [(Start of line -C64)...2-6,2-48
CTRL A (Alphalock)........1-9,2-6,2-48
CTRL B (Cmd recall)e..ce... .1-9,2-6,2-49
CTRL C (Abort cmd. —APPLE II)......2-7
CTRL D (Del char.-APPLE II)...2=5,2-47
CTRL E (Insert —APPLE II)..... 2-5,2-47
CTRL F (Strt of ln —-APPLE II).2-6,2-48
CTRL I (Indent).ececcaces cesseeess2-48
CTRL J (Adj. rt. —C64).eee.. .1-28,2-48
CTRL K (Clr. end —C64)........2-5,2-48
CTRL L (End of ln -APPLE II)..2-5,2-48
CTRL N (NeXt page)ececcesscsscscss2-48
CTRL O (Adjust left)....... «e1-28,2-49
CTRL P (Previous page)..eseecsess.2-48
CTRL Q (Un-indent -APPLE II)......2-48

CTRL RESET (Abort cmd.-APPLE II)...2-6
CTRL STOP (Abort cmd.=C64).cceceses2-6

Copyright (C) 1985, SMA, Inc.

INDEX

CTRL U (Un-indent ~-C64)....cecee...2-48
CTRL V (Normalize window -C64)....2-49
CTRL W (Set window -C64)........ «e2-49
CTRL X (Clr line)eeese. ceeeeee2=5,2-48
CTRL Y (End of line -C64).....2-5,2-48
CTRL Y (Home —=APPLE II):veecscesse 2-48
CTRL Z (End of file mark)ececeesoee 2-6
CTRL <-- (Del char. -C64).....2=5,2~47
CURCOL (FUNC)eveeeennnnnn ceereennasd=9
CURLINE (FUNC)..... Ceteeenneeanaans 4-9
CURSET (PROC)«vveeeesnonnnnnnoenss 4-10
D

DATA:

~— arrays of striﬁgs........1—27,3—16
-- defining arrays of.........3-15/16

—— definition.cceececeenee ceescse 3-15

== REAL:.ctcecsescesesconssssasscse 3-15

-- statement example.....1-27,3-15/16
Data communications support...... F-1/6
Data typeSeessese. cecoes seceseess3~8/9
Date, entering.ceeeeceesessssess B
DATE (EXEC cmd) cvoesvososvcncsness 2-20
DEL key (C64)ceerenessnnnenss2=5,2-47
Delete key (APPLE IIl)e:eeesecse 2-5,2-47
DELETE (EXEC cmd)ecceeevencenns 2-20/21
Demo diskette, limitations of...... 1-3
Demo programS..ceescseesseccssnos .Q-1/3
Device names (TABLE 4).ccceeecsess2-13
Device numbers (C64)....... voesE-1,N~-1
DIR (FUNC)evevwune cesessasnsenasd-10/11
DIROPEN (FUNC)eeeeeeoeovescnannns 411

DISKCMD (EXEC cmd)ceceseceoesss2=21/22
Disk drives, dual support of.......N-1
DISKETTE utility (C64)..ee.......0-2/4
DUMP command, example....ceoeeessesl-8
DUMP (EXEC cmd) e ceeececscascncane .2-23
DUMPFILE.S (utility program)e...... Q-2
Dynamic memory allocation..........H-1
DYNO (EXEC cmd)eeeesasseonenesal=22/23
DYNODISK:sovoveoeooeseal=5,2-22/23,4-18

E

EDIT (EXEC cmd)scevocecccnces $2-24,2-44

Editor:.....ccceveeeeee 1-9,2-2,2-44/55
—— CHANGE (F6)ccecossovons ..1-26,2-51
== COPY (F7)ecevcecccssnesancsnns 2-52
~- char. sets & modes (C-64)..... 2-55
~— cut & paste operations....... .2-52
—— DEL LN (Fl)eeeeeoeeoeoannnas ..2-49

~— display format...ceeeveeee.2-44/46
-~ EDIT (EXEC cmd)eesveoeosee2=24,2-44
-- edit buffer & workspace....2-54/55
-- editing keys (TABLE 5)..... 2-47/49

entering from EXECUTIVE.......2-44

features ofceeeeeccecnss cenessl=bb
FIND (F5)ceccccees .1-25/26,2-50/51
FKEYs legend after MARK..1-27,2-52
HELP (F7)eeeeececcnnnns ceeeee.2-46

initial screen display..ece....2-45
inserting & deleting lines....2-49
inserting block or file....2-52/53

INS LN (F2)eeeesss ceressreaess2=b9
introduction tOsecesssees eeeel-9/10
invoking.ceeeeooon veo1=9,2-24 2-44
MARK (F3)eeevveeneennns ..1-27,2-52
MOVE (F6)eeveennneenanannnns ..2-52
QUIT displayeeecscesoesss 1-10,2-53
QUIT (F8)eveevoeevnonancanannn 2-53
RECALL (F4)..sss teaeanan +2-49,2-53

sample sessions.....1-9/10,1-25/29
saving block to file.......2-52/53

—— scrolling..cceececscccesenanens 2-46
-~ search & replace....s.e..1-26,2-51
-— gearching..ceeececcecans «+.2-50/51
~— Status ared.ccecscecsscacs seee2=46
~= WRITE (Fb4)eeveonns ceesseses2=52/53
EDLINE (FUNC)eveveeooonoaonns . 4-12/14
EFTOr MeSSageSeessssconsonss eeesC-1/12
Errors:
—— from LOADEr.e¢ccveesesss ceeesse3-71
—— after OPEN.covvoeessosssocsns .4-36

Executing sample program..........1-12
Executive:...ccoeeeeeevocces ceee2=2/43

arguments for commands.2-9,2-12/13
arg passing fm cmd line....3-56/57
commands, search order......... 2-4
commands, summary (TABLE 2)....2-8
entering commandS...ceeeeeee.1-6/7
guided tour of.cceeececesasess 1-6/9
HELP screeNececescccces sevsosesl-8
line editing keys..... cesssee2-5/6
user defined commandS...ece....2-4

EXIT (PROC)eeeeeeanss Cererenenaans 4=14

EXP

(FUNC) evnnnennnns R & |

EXPORT Keywordeeeooeeovoscosss A
EXPORT (.E) filesS.eeerceecens «:3~74/75
Exporting, definition..ececeees 3-73/74
Expressions:

EXT

arithmeticC.e.eesesoccecscses 3-17/20
logical.eeens N 3-21/22
vesesse3-18/20
relational....cc.... cessesansan 3-21
keyword.sessss ceesesssl=29,3-57/59

EXTCOPY (utility command).ceeeesae 2-18
EXTDIR: (utility command)..... 1-7,2-25

example of....... crecessanceeal=25

Extensions, file name...c.sceee00..2-12

Copyright (C) 1986, SMA, Inc.

INDEX

F

FALSE (0)ecececencccsssonenss 1-21,3-21
FILECRC.S (sample program).....e....Q-2
Field spec., formatted output..... 4-41
File descriptorescesceccsces eseseseld-51
File name extensions (TABLE 3)....2-12
File names, rules for:

—- Commodore 64...v... ceeesens «..2-10

-- Apple IIe/IICecececnsaansss2=11/12
Files:

~- converting APPLE II DOS 3.3....N-2

-~ COPY (EXEC cmd)eeeeoccoecss 2-17/19
—~ DELETE (EXEC cmd).ccececcen 2-20/21
- DISKETTE utility...-......-..0"2/4

-- handle, definition of....1-22,3-51
w= JOB («J)ecesesacncasesesess2-30/31
—— Jocked.eeereorsosseseancosensel2=32
—— openingeececececsoss 3-51/52,4-36/40
—~ RENAME (EXEC cmd)e.ececceessss2=39
—— TYPE (EXEC cmd)ecececsssoassse2=bl
FILES (EXEC Cmd)«eeeensoenesess2=24/25
FILL (EXEC cmd)eessceccsces ceeeseel2—26
FILL (PROC)«eeeeensascssoneosssd=l4/15
FIND.S (sample program)....1-15/23,Q-2
FKEY (EXEC Cmd)eeevecocoooesses2-26/27
FKEYGET (PROC).................4-15/16
FKEYSET (PROC)eeecevecsosascnsssssh=lb
FOR statementecesocssccosos .e.+3-29/30
Format string, output spec...3-37,4-41
Formatted output.......3-37/38,4-41/43
Formatting diskS..eeeeeeesesesss.0-1/3
Forward referencesS...e.eeessssssscssJ=l
FUNC, function headere.eeeessaess3-41
Function keys:
—- default setting....1-6,2-3,2-26/27
~— editor”s displayeeceesecescesessl=9
—~ redefining.ccoeeeeese2-26/27,4-16
—— USE Of ceveceesancassosssecesesel=l
Functions & procedures:...1-18,3-36/47
-- arguments ineceesceces veees3-42/45
—— built=inesececccoscoonences .3-36/37
—~ iNETO tOeeecvossocsssnsscsssseald=36
m= REAL.+socoseeevecscsansssnsessK=1/2

G

GET (EXEC cmd).ceecosssssasesss2=27/29
GETARGS (FUNC)eveevvocsevasossoassh=17
GETBLKF (FUNC)eeeevaosososscesnsscb=18
GETC (FUNC)eeevsasasonsesnnoennesab=l9
GETCF (FUNC)eeeeeossonns B A1)
GETKEY (FUNC)eeooesoesss 4=-20/21,B-1/4
GETL (PROC)+evoccvssoossennssssd=21/22
GETLF (FUNC)«eeveenovesnonesessl=22/23
GETPOSF (FUNC) (APPLE II)...cee...4-23

GETTST (FUNC)evveeorens cereneeeesb=24
GETVER (FUNC)soeoeoonooenaossesd=24/25
GO (EXEC cmd)ecevessonccccens ..2-28/29
GRAPHDEMO.S (sample program)....... Q-2
Graphics, Hi-ReS.........1-33,2-15,Q-2
H

Hardware requirementS...ececessecsssl=2
HELP display screen....... ees.1-8,2-29
HELP (EXEC cmd)ecocoonses ceeees2-29/30

Hexadecimal, literal numbers....3-9/10
Hexadecimal, used in EXEC cmds....2-12
Hi-res graphicSececeece.e. 1-33,2-15,Q-2
HOME key (C64)ceeecevocccessnnsans 2-48

I

IBM PROMAL compatibilityeecec... L-1/2
IF statement..... teseesennas oo
IMPORT keywWordeseeeesoeescsasssess3=74
Importing, definitions.........3-74/75
INCLUDE statement..1-11,3-37,3-48,3-74
Indentation.cceeeccecsss .1-20,1-28,3-27
Indirect OperatorsS.....ses.....3-23/24
INFILTRATOR (sample program)..1-32,Q-2
Initialization, PROMAL system....2-3/4
INLINE (FUNC)eeooooeoons eeeeeeesh=25
INLIST (FUNC)eevoeooes ceveeeees h=25/27
Input, NUMETL1Cesvoccocsovsssessld=39/41
Input, simple.cceceveccecccns ...3-38/39
INSET (FUNC)eoeuvenoonooneensssb=27/28
INST key (C64)ccen.e. ceevenees2=5,2-47
INT, data typeececesacoacs ceeeess3-8/9
Interfacing:........ cesssaenas .3-51/60
-- to C64 graphics & sound....3-58/59
Interrupt service routines.sse....I-15
INTSTR (PROC) e v sveencncvsnsocnesssli28
TOERROR:

-~ error code variable...3-51/52,4-36
—— errors, codes foreceeeesaceses4-36
1/0:

—- functions GETLF, PUTF......3-52/53
—— redirection.ececescccscescessseal=ll
-- redirection, example of..1-23,2-14
——- with files STDIN/STDOUT....3-53/54

JOB (EXEC cmd)«eseeveses..2-30/31,2-33
JOB files (eJ)zeeerencseesaeses2=30/31

—-— substitution arguments in.....2-31
JSR (PROC)ceecrvsesonesnvess4=29,1-1/4

Copyright (C) 1985, SMA, Inc.

INDEX

K

Keyboard (K) device.eececeeesneass2-13

Key codeSeeenececencenans cesesann B-1/4

L

LENSTR (FUNC).eeeeun. Ceeeeeeaens 4-29/30

LIBRARY:............ .1-11,2-3,3-51,4-2
—= (L) deviceecveeesoessnossnsoas 2-13

== routine description notation...4-4
-- summary of routinesS..........4-2/3
Line editing, keys (TABLE 1).....2-5/6
LIST statement.cecsecosescasosscsessl—48

Literals:..... cesesecscsecses ee:3-9/12
—— charactersS.eeesscecssccasas eese3-10
—— numbers.eccecese cecetescsonea 3-9/10
~= SEFiNgSeceveereeececcnnnn ..3-10/11

LOAD (PROC)cessevevssns +++3-70/73,4-30

LOADER:...... e seeteessencanes 3-67/82
-- bootstrap program with..... 3-76/77
=~ calling..ccaceeersssacoanes 3-70/73
—— definitions used..... seeeea3-67/68
—= errors fromesesecescsccsccsacss .3-71

-- EXPORTing definitions......3-73/74
-- IMPORTing definitions......3-74/75
-- memory diagram..cecoee...3~70,3-78
—— operation ofceececcseeessss3-68/70
—— options for..ceeececeesvenceessld=72
-— overlayS.ceeees tesecensseseld=77/79
-—- separate compilation....... 3-75/76
Loading, PROMAL diskette.seeveesel=4/6
Loading, programs......2-27/28,4-32/33

Local variables..ceceeeene 1-19,3-45/46
LOCK (EXEC cmd) eeeecscccoass ceesee 2-32
Locked file....... cesessenens 2-32,2-42
LOG (FUNC)eevrerernnn. S o5 1
LOGLO (FUNC)eeereeennnnn R s
Logical operators...cesceseesss «3-21/22
LOOKSTR (FUNC)evvvoveerennnnnns .. 4=30
M
M Arrayeseseessecsssssassncns 3-24,3-44
Machine language programs:
—= calling LIB routines from..... I-10
-- calling with JSR........ 4-29,1-1/4
-- embedded in DATA...... teeesesI=4/6
—— effect Of BRKeceesesnoovsonosnns I-3

-- executing with GO..ve0eee..2-28/29
-- interfacing to.seseessseeessI-1/15
== interrupt service with........I-15
-— loading with GET...........2-27/28
-- loading with MLGET.........4-32/33
-- passing arguments to........1-8/10
—— relocatableccecsssscscccens I-11/15

MACRO (EXEC cmd)eeeeevneeannnes 2-32/33
MAP (EXEC cmd):...... eeeesl=12,2-33/35

-- display screens...1-12/13,2-33/35
Memory allocation:

-- MAP display definitions....2-33/36

-~ dynamicecececccstcencacs cesveee H-1
Memory map, PROMAL intermnal......G-1/6
MAX (FUNC)evervenn. et teeteeanannen 4-31
MIN (FUNC)evevaeenn Ceeeiereeaas .o 4-32
MLGET (FUNC)eeeeeoovevcecoccnns 4-32/33
MOVSTR (PROC)escecevonccnces .. o4-33/34
MSD dual disk support (C64)....... JN-1

N

Names, rules foreeceeeeeesseceeese3=7/8
NCARG variable.sceeeens 1-21/22,3-56/57
NEWDIR (EXEC Cmd)«oevevennnoseeessa2=36
NEXT statement.csecsesecscecsocs eee3-32
NOREAL (EXEC Cmd)«eeevenneeeses2=-36/37
NOT operator..... ceesensns 3~17,3-21/22
Notation, conventionsS...ceeeeeesese2=9
NOTHING statement...... cessessasen 3-32
Null (N) deviceiseceesosassesss2-13/14
Numbers, literal...... ceeseseesa3=9/10
NUMERIC (FUNC)eeeeesseocansns eeessh=34
Numeric inputeeceeseececsssss...3-39/41

0

0, compiler option.sceescccecss .e2-56/57
Object Program..csccececescesscccessl—4
ONLINE (FUNC) (APPLE II)e..... cee.b=35
OPEN (FUNC)++e....1-22,3-51/55,4-36/40
OPEN, error codeSc.cececeocscsccens 4-36
Opening filesS.eeeeeoes, 3-51/52,4-36/40
Operating system notes....ee......N-1/2
Operators:
—— arithmetiCeseecescscsescae ..3-17/18
-- indirect & address.........3-22/23
-- list of all...... B e)
—— 1logicalesecscvsesescansesss3=21/22
~-- relational....... seesnsscseseseld—2]

Options for loader... eee3-72
OR operator.cese.. ceessessl3-17,3-21/22
Output, field descriptors.........4-41
OUTPUT (PROC)eeescccssosesansessh=b1/43
OUTPUTF (PROC) e eevevvonnnennes b=b3/b4
Output:

-~ formatted numeric..3-37/38,4~41/44

—— PROC, example..eseeesssesse3=37/38

-- simple...... P «++3-37
OVERLAY statementesesssss«3=-25,3-77/79
Overlays:

-- definition ofeenvincceccncns

++3-68

Copyright (C) 1986, SMA, Inc.

INDEX

.3-77/179

s e s o

—— usingeseeee sececcsrase
-- guidelines fOTeoveoseesesss3-81/82
-= MEmMOYrYy MaAPecscsss P L
-—- sample program................3—78
OWN variables..... .+3-46,H-1

P

PAthNameSs e eececesssssssssesassssslmll
PAUSE (EXEC Cmd)ececesoosenenssess2-37
POiNterSescescsoscsssscconsacs ..3-22/24
POWER (FUNC)eecooescooocsasccsccane K-1
PREFIX (EXEC cmd)«oeeeeossso.2-11,2-38
Printer (P) deviceeeess.s.2-13,3-54/55
Printer support..................E—1/2
PROC, procedure headereesseceessse3-4l
Procedures & functions:...1-18,3-36/47

—- introduction to.... eseese3-36

-- passing arguments tOeeseess3-42/45

—- local variables in.........3-45/46
ProD0S, special functionSeeceesoss N=2
Program authors...... P TAS & |

PROGRAM statement..... eessaessld=4,3-25

Programs, demos......... ceesasssQ-1/3
- BUDGET........................1—24
—— CALC...cous teeseessssossseeasesl=25
—— FINDeeoeeooooncossananassssal=16/23

PROMAL:
—— definition Ofeeesesecesocsososel=3
—— initializatioN.eesccscoscesss2-3/4
—- loading..... S R T4
-—- signon screenc.... cesssessseasel=b

-- gpecial capabilities..........1—29
-— system components..............2-2
—- vs. BASIC..c.. 1-4
PROMAL language:
-~ applications OFceeresesssoneeneld=2
-- data types...................3—8/9
—~ introduction tO.ceseeececsesess3=2
B T e T4
—— namesS... vees43-7/8
—— reserved WOrdS.eseeeesoeesse3—7,L-2
~— rules fOr.cececescccccccncese .1-18
-- syntax diagrams..seeeeesesssP=3/8
PROQUIT (PROC).. .o bbb
PUT (PROC)eccecsosss .1-10,3-37,4-44/45
PUTBLKF (PROC).................4—45/46
PUTF (PROC)sceevvvecsacnses .. 1-22,4-47

ee s s 0000000

es e s e e e s s s

Q

R

RANDOM (FUNC).00-000-00000000004—47/48
REAL:

—— constants disallowed..eeceeess3-13

mer DATAceeovnncsscccsonanscseonsead=ld

~- data typeeeseeseccs «...3-8/9

= literalSecsvsccccscsoncasnse ..3-10

— OUMDETSeesesensescssssasnseeesl=24

-— variables, internal format.....D-2
REALSTR (PROC)«eeocascesonssssb4=48/49
Recursion & forward references.....J-l
REDIRECT (PROC)................4—49/50
Redirection, I/Oceeveeeeesess1-23,2-14
REFUGE statement..seseeseesssse3-33/34
Relative file support (C64)......M~-1/5
RELDEMO.S (sample program).....M=5,Q-2
RELOCATE utility.oeescecosessesI-11/15
RELOCATE.S (utility program).......Q-3
RENAME (EXEC cmd)eeecoesscocscsssea2-39
RENAME (FUNC)eoecoooess «ees4=50/51
REPEAT statementescsccssccsssscsse3=29
Reserved WOTrdSe.esesesseasseses3=7,L-2
RETURN KeYeeoeooossanananeeess2=5,2-46
RETURN Statementeceeesesesseess3=41/42
Reverse video..ssseesses3-11,4-43,4~45
RS-232 support...................F—1/6
RUNEIME EFTOTS.cecscessssssssssesC=2/3

Runtime errors, locating...e..se....D-1
S
Screen (S) deVicCeescascseosessssnesel—l3

Scrolling, left & righte.....1-20,2-47
Scrolling, up & down..... ceeel=16,2-47
SET (EXEC cmd).................2—39/40
SETPOSF (PROC) (APPLE II)ees.esss.4-51
SETPREFIX (FUNC) (APPLE II).......4-52
Shift operators... eeeeee3—22
Signon displayseeeeseecocassaccesesl=b
SIN (FUNC)eoeeeocasssonsnnsanasssseK=l
SIZE (EXEC cmd)eeececcces veeess2-40/41
SORTDEMO.S (sample prog.)..1-30/31,Q-3
SORTSTRING.S (sample program)......Q-3
SPLIT.S (utility program)...sse.....Q-3
SRECEIVE.S (utility prog.)...F-4/5,Q-3
SSEND.S (utility program)....F-4/5,Q-3
SQRT (FUNC).eoseevevasnsnsansasessaK-l
Stack overflow... «o3-47
Starting, SySteMesseoeesssa1-4/6,2-3/4
SLALEMENtS:ececerecsscossssssss3=25/34

QUIT (EXEC Cmd)eeeossencssnsess2-38/39 —— (=) assignment..esccececacs .ee3-26
—= BREAK: ccoveseaneevssasssssa3=31/32
—~ CHOOSE..vetosessssosnascas .3-30/31
—- ESCAPE & REFUGE.+ ceeeeeeess3-33/34
—~ FOR.sevso eerasaseseane ee+e3-29/30
Copyright (C) 1985, SMA, Inc.

INDEX

= IFeuenenens cereee.a1-21/22,3-26/28
—— NEXTeeeeensosoassnanss cracenne 3-32
—= NOTHING:ceeoeooes seesssscscessd—32
—— PROGRAM::.ceseccosses ceesessescss 3-25
—— REPEAT..itseseoasss crersssanas 3-29
—— RETURNeceeesoscosceacses eeseead3-41/42
~= WHILE...... e eeeenen 1-20,3-28/29
STDIN, SDTOUT file handles.....3-53/54
STOP key (C64).cereesennccnns ceed2=6/7
String operations:........3-45/46,3-23
—— arrays Ofececcceccccses cesveves 3-65
—= COMPArEesesesssnesns ees21-20/21,4-8
~- conversion.......4-28,4=52/53,4=-57
-- editing...... cesecenae 4-12/14,4-25
-— length.eeeeeevenes. ceseccnes 4-29/30
—— MOVEeeeessessossene cesecesssssl=33/34

-~ searching.s......4-25/28,4-30,4-55
STRREAL (FUNC).................4—52/53
STRVAL (FUNC)..... veeessens eees4=53/54
Subroutines:......1-18,3-41/42,3-46/47

-~ passed argumentSe..esossee.3-42/45

-- user defined..... teeseanans 3-41/47
Subscripts, arrays........3-14/15,3-64
SUBSTR (FUNC)eeeoeoen cessenens eeesld=55
Syntax diagrams, how to read..... P-1/2

.nooocooooP-3/8
co-.oco-ooG_5/6

Syntax diagrams........
System data areasS.esee.

T

TAN (FUNC)eeeeeeoans Ceeeeeeeneeeens K-1
Telephone (T) device........2-13,F-1/6
TINYTERM.S (sample program)....F-5,Q-3
TO keywordescsosevercacas cescenenn 3-29
TESTKEY (FUNC)+eeoecoeses 4-55/56,B~1/4
TOUPPER (FUNC)+eueeens ceeeeenesessh=56
Trademarks..... . & T
TRUE (1)eeeees Cesessassassans 1-21,3-21
TYPE (EXEC cmd) cceeceense ssseseese2=bl

U

UNLOAD (EXEC cmd)..co... ceverseases2=b2
UNLOCK (EXEC Cmd) e eeeececcaaasasns 242
UNTIL keyword.coesesoecsvaasaaasns .3-29
Unprintable codes, embedding......3-11
Upper & lower case mode (C64)..... 2-55
Upper case & graphics mode (C64)..2-55
User—-defined commandse.ceceses ceeed2=4
User—-defined subroutines..... ..3-41/47

v
Variables:

—— arrays, declaring....cseesn 3-14/15
-- command line argument..... .3-56/57

—— declarationSesseeeeecesccns 3-12/13
~— external (EXT).ceesess 1-29,3-57/59
— globaleeeeerannns ceeeneea1-19,3-44
—- initializing all to zero......3-66
—— introduction to rules...scee. .1-18
== 10C8lececsecransnsccnsa 1-19,3-45/46
-— locating in memOYYeeeeoeeeons D-1/2
—-— non-initialization of...c.0c. 3-13
~e OWN:eevesasoasosanonnsns seesesa3-46
-—- types supported......... 1-18,3-8/9
Volume names (APPLE II).cccecveeen 2-11
W
WHILE statements...ceoeesscsess.3-28/29
~— example Ofccerecsess vesssessasl=20
WORD data type...... ceeseessl-18,3-8/9
WORDSTR (PROC) evssacessssascessesst=57
Workspace:
-- and edit buffer....cceveenn 2-54/55
-— auto update after edit........2-54
-- changing size of.ccccevcens eee2-43
—- clearing ofceeecrcenceces ceese2-43
-— writing to«see.e P U £ (]
== (W) deviceeveeeeess cerecanesss2—13
WS (EXEC cmd)eceesocossoescnnaccns 2-43
X
XOR Operatoresceeecsecassss3-17,3-21/22
XREF (utility program)..... cescane 2-60
Z
ZAPFILE (FUNC)eeeoeeeoeonannnns 4-57/58

Copyright (C) 1986, SMA, Inc.

e~

PROMAL
(PROGRAMMERS MICRO APPLICATION LANGUAGE)
DEVELOPER"S GUIDE

For Apple II and Commodore 64 Computers

SYSTEMS MANAGEMENT ASSOCIATES, INC.
3325 Executive Drive
Raleigh, NC 27609
(919) 878-3600

Rev. C - Sep. 1986

Systems Management Associates, Inc. DEVELOPER”S GUIDE

TABLE OF CONTENTS

INTRODUCTION .+ <« e e sveesssssscncsnssnsesssanssssssnssnssasssssnssd
GENERAL DESCRIPTION: ««eceosevccosessnossassanssnsoassssscvesnnssd
SPECIAL CONSIDERATIONS:.cessevscnsesvoansaasascosossascssssannnsh
MEMORY MAP DIFFERENCES..es.ceoeessocsosocsnssncsncosvssssssssaes
WORKSPACE (W DEVICE) CONSIDERATIONS..ceseeessessosecooceosnsanes?
SIZING YOUR APPLICATION PROGRAM...e.eeocesosacansossscascssaness8
EXIT, ABORT, AND RUNTIME ERROR PROCESSING..e.ecsessscscccassvosed
SPECIFYING YOUR OWN ERROR RECOVERY.s.oeevosossscocscasesnaosencsll
LOADING MACHINE LANGUAGE RQUTINES..cesueeveosessscssscesscasossall
BUILDING YOUR MASTER DISKETTE . ss«cuvoesosoasnsosasscocssscanasssld
COPY PROTECTION. +svsvsoeseesnssnassnnaossscosssssscssnnnnnnossssl2
MISCELLANEOUS « ¢ ¢ e e s eassssossecrsesssosnssasasnsascsssasssssnasl2

FINAL NOTES-ocoooa.oonc.ooooonou-o-cooncunooo.-oo.o-o.ooo-oo..o013

TABLES & FIGURES

FIGURE 1: Memory Maps...-oooo.oQoo--.ooo-oonooaot.oo.-.on--o;toos

TABLE 1: Runtime Etror COdes..-ouo-uoo-ooooo-.oo.co-o.-oon..oo-.lo

Copyright (C) 1986 SMA Inc. Rev.

c

DEVELOPER”S GUIDE Systems Management Associates, Inc. 3

PROMAL DEVELOPER”S GUIDE

INTRODUCT1ION

With the PROMAL DEVELOPER”S SYSTEM and this manual, you will be able to
generate diskettes containing your compiled PROMAL programs, which can be run
on computers which do mot have the PROMAL system. This will allow you to sell
or distribute your application programs written in PROMAL to users who do not
own PROMAL. As long as the acknowledgement requirements of the License
Agreement are met, no royalties or other payments will be due to SMA, regard-
less of how many copies you sell or distribute.

If you have beep using the PROMAL system, you already know that it is far
superior to BASIC for developing programs, and that programs execute much
faster. As a program author, you will also appreciate a very significant
advantage of PROMAL: since you only need to distribute the compiled object
code, you have a greater degree of security from unauthorized copies or
modifications. You do not have to provide the source code.

By using the DEVELOPER"S SYSTEM, you will be able to make disks which "boot
up” similar to the PROMAL Demo diskette, except that instead of running
the PROMAL EXECUTIVE and EDITOR, your application program will be executed.
You have control over what the programs are named and what program will be run.
Your application can also load any other PROMAL or machine-language programs it
might need.

GENERAL DESCRIPTION

The rest of this manual assumes that you already have a basic working
familiarity with the PROMAL system.

When you "boot up” the regular PROMAL system, you LOAD a file called
“PROMAL" and RUN it on the Commodore 64, or autoboot PROMAL.SYSTEM on the Apple
II. This file contains the PROMAL nucleus and all the routines in the library.
This file is called the runtime package. When this PROMAL runtime package
is run, it automatically loads the EDITOR and EXECUTIVE, as well as the LIBRARY
definitions, and begins execution of the EXECUTIVE.

The PROMAL DEVELOPER”S SYSTEM contains a special version of the runtime
package which loads and runs your application program instead of the EXECUTIVE
and EDITOR. You copy this runtime system and your application program onto a
MASTER DISKETTE using a special program called GENMASTER. You may then dupli-
cate and distribute your master diskette.

For the Apple I1I, your application will autoload on power-up just like
PROMAL. For the Commodore 64, a user will LOAD the runtime package (which you
can name anything you want) from the master diskette and RUN it. The runtime
package will autoload your application program and execute it. No PROMAL
signon message or other indication that this is a PROMAL program will be
displayed; your program will be completely in control. Since there is no
EXECUTIVE or EDITOR, when your program terminates (if it does), it will exit as
described for procedure PROQUIT in the PROMAL Language Manual.

Copyright (C) 1986 SMA Inc. " Rev. C

4 Systems Management Associates, Inc. DEVELOPER’S GUIDE

There is presently no provision for generating Commodore 64 cartridges or
ROM-resident code.

The general procedure you will use for preparing an application program
for distribution is:

l. Write, compile and test your application program using the regular
PROMAL system. :

2. When you are satisfied that: your program {s correct, use the GENMAS~
TER program provided with the Developer”s disk to bind your compiled applica-
tion program with the special runtime package, and copy it to your desired
master diskette.

3. Duplicate the master diskette and distribute it as you see fit. You
must include the acknowledgement notice: “(program) is a licensed PROMAL
application program. PROMAL is a trademark of Systems Management Associates,
Inc., Raleigh, NC.". This notice must appear on the diskette label, in the
documentation, or on an initial screen display of your program.

This manual only addresses Step 2. But before discussing the mechanics of
Step 2, we will examine some of the special considerations which you should be
aware of when preparing an application program for mastering.

SPECIAL CONSIDERATIONS

The main difference between rumning your application under the regular
PROMAL system and as a dedicated application is that you will no longer have
the EXECUTIVE available. Therefore:

1. The user will not be able to issue EXECUTIVE commands.
2. Your program cannot receive command arguments from the EXECUTIVE.

3. Your program cannot EXIT or ABORT to the EXECUTIVE (if you do EXIT or
ABORT, the PROQUIT procedure will be executed).

4. 1If your program encounters a fatal programming error which would
normally abort back to the EXECUTIVE (such as division by zero or calling a
library routine with an illegal number of arguments), it will not return to the
EXECUTIVE. A method is provided for you to recover from these errors within
your application program (discussed below).

5. Since you have no EXECUTIVE to execute selected programs in memory,
only your one application will be in memory at one time (unless you LOAD
additional programs from within your program).

6. The EXECUTIVE automatically closes any open files when you exit a
program in the normal PROMAL environment. Since you have no EXECUTIVE, you
should be sure to close any files that you opened.

Copyright (C) 1986 SMA Inc. Rev. C

DEVELOPER™S GUIDE

Systems Management Associates, Inc.

MEMORY MAP DIFFERENCES

Figure 1 shows the difference between the memory map for a typical compiled
PROMAL program when loaded by the standard PROMAL system (left), and by the

developer”s master disk (right).

disk version does not have the EXECUTIVE or EDITOR in memory.

FFFF
F000
E000
D000
€000
B00O
A000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0000

WLIM —>
WORG -—>
MEMLIM
HIMEM
LOFREE —>
LOMEM -->

Figure 1
Memory Map — Commodore 64
RAM ROM
EDIT
or KERNAL
EXECUTIVE
{-- MEMLIM
EXECUTIVE BASIC
or EDIT
or
user prog
or vars.
<-- HIMEM
VARIABLES
<-- WLIM
WORKSPACE
<-- WORG
HIFREE
available
<{-- LOFREE
PROGRAM
{-- LOMEM
PROMAL
NUCLEUS
SYS. RAM

STANDARD PROMAL

Note: All addresses shown are approximate.
Language manual for locations of the memory pointers. $FEOO-FFFF holds the
Function key definition buffer & CTRL-B buffer (both versions).

The primary difference is that the master

RAM ROM
WORKSPACE] KERNAL
BASIC
VARIABLES
<-- HIFREE
available
PROGRAM
SYSTEM
NUCLEUS
SYS. RAM

DEVELOPER”S APPLICATION

See Appendix G of the PROMAL

Copyright (C) 1986 SMA Inc.

Rev. C

Systems Management Associates, Inc.

DEVELOPER”S GUIDE

FFFF

F000

E000

D000

C000

BOOO

A000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0000

Notes:

1. All addresses shown are approximate.
Language Manual for locations of the memory pointers.

Apple
MONITOR,
PRODOS,
& I-0

PROMAL
NUCLEUS

VARIABLES
(or EXEC)

available
space

PROGRAM

Disk Buf
&
Sys. RAM

Memory Map - Apple II

<-- MEMLIM
HIMEM
<-- HIFREE
<{-- LOFREE
<{-- LOMEM

STANDARD PROMAL

MEMLIM
HIMEM

HIFREE

LOFREE

LOMEM

Apple
MONITOR,
PRODOS,
& 10

PROMAL
NUCLEUS

VARIABLES

avallable
space

PROGRAM

Disk Buf
&
Sys. RAM

{-~ Note 2

DEVELOPER”S APPLICATION

See Appendix G of the PROMAL

2. In the Developer’s version, MEMLIM is 1 page lower than in the normal
version, to allow room for the Function key definitioms (which are normally in

banked memory).

The CTRL-B buffer is in main memory too, but is included in
the Nucleus for the Developer”s version.

Copyright (C) 1986 SMA Inc.

Rev. C

DEVELOPER”S GUIDE Systems Management Associates, Inc. 7

The PROMAL NUCLEUS and SYSTEM NUCLEUS are very similar, except that the
SYSTEM autoloads your application program instead of the EXECUTIVE and EDITOR
when it is started up (NOTE: The developer”s SYSTEM file cannot be used to run
the EXECUTIVE or EDITOR). The application PROGRAM is identical in both cases,
and is simply your compiled PROMAL program.

Your application program will load in the same location as it would with the
normal PROMAL system with no other programs in memory. Your variables will be
loaded in the same way as normal, at the top of available memory (by default),
or immediately above your program code (if you specified OWN on the PROGRAM
line).

The only difference will be that on the Apple, you will have one page (256
bytes) less space at the top of free memory. This is because the Apple
developer”s nucleus supports the function key buffer and backtrack (CTRL-B)
buffer in main memory instead of in bank-switched memory. This permits your
PROMAL application to run on Apple Ile systems without the extra bank-switched
memory. Your programs will also run on Ile computers without 80 column
boards. 1In this case, your programs will run in 40 column mode. If you wish,
your program can test for the presence of an 80 column board as described in
the Apple reference manuals. Your application should not use the Workspace (W
device) on Apple computers without the extra bank-switched memory present.

If your Apple II program does not use function substitution strings, you can
use the page of space for a buffer, etc. To do this, move MEMLIM up one page,
set the key codes for BKEYFKl and BKEYFKL to $00 (see Appendix G), and use the
page immediately below MEMLIM as you see fit.

WORKSPACE (W DEVICE) CONSIDERATIONS (COMMODORE 64 ONLY)

For the Commodore 64, another difference in the memory map is the location
and size of the Workspace. When your application rumns from your master
diskette, the Workspace will be initialized to point to a large (11.5K byte)
area starting at $D000. This will have no effect on your program unless you use
the workspace from your program (the W device). This space is in the RAM of
the Commodore—64 which is "under” the ROM. Reading or writing the W device
automatically performs the necessary “bank-switching” to access this RAM. If
you wish, you may move the location of the workspace from the application
program by manipulating the pointers before starting to use the W device.

The file PROSYS.S defines five global variables associated with the
Workspace:

WORD WORG ($0DC5) points to the start of the available workspace.

WORD WPTR ($0DC7) points to the next byte to be read or written.

WORD WEOF ($0DC9) points to end-of-file (byte after the last byte written).
WORD WEND ($ODCB) points to the byte after the last byte of the workspace.
WORD WSIZE ($ODDB) is the size of the available workspace (=WEND-WORG).

WORG and WEND will not change unless you change them (in the Developer”s
System version). This differs from the standard PROMAL system environment,
where the workspace moves dynamically as programs are loaded and unloaded, and
is also controlled by the WS command of the EXECUTIVE. On either system, WPIR
and WEOF are moved automatically by the W device driver. A workspace with
nothing in it has WEOF = WPTR = WORG.

Copyright (C) 1986 SMA Inc. Rev. C

8 Systems Management Associates, Inc. DEVELOPER”S GUIDE

Suppose you wish to increase the Commodore Workspace size to use all
available memory. Before doing any input/output to the W device, you could
execute these statements:

INCLUDE PROSYS

WORG = LOFREE ; move start of W down to start of free memory
WPTR = WORG ; set workspace to empty
WEOF = WORG

HIFREE = LOFREE ; no more free space now
WSIZE = WEND-WORG

Besides using the available memory for an increased workspace, you could
also use it for loading machine language routines, for dynamically-allocated
buffers, for hi-res screen memory, or for whatever you need. The available
space starts at LOFREE and goes up to HIFREE, just as it does in the standard
system; the available space 1s just bigger. ‘

WORKSPACE CONSIDERATIONS (APPLE II)

The Apple II Developer”s version keeps the same Workspace as the standard
system.

The Workspace in the Apple is in bank-switched memory. Therefore if your
application program is intended to run in Ile computers without any extra
memory (40 column mode), you may not use the W device.

SIZING YOUR APPLICATION PROGRAM

For the Apple II:

Your new Master disk will have on it a copy of the ProDOS system, the PROMAL
runtime system, and your compiled PROMAL application program. You should copy
the PRODOS file onto the master disk after you format it using the ProDOS
Utility disk. The remaining files will be copied onto the master disk when you
run the GENMASTER program.

Your application program will have virtually the same amount of space and
will run at the same location as it does under the standard PROMAL system.
When GENMASTER runs, it will ask you if you wish to include support for REAL
arithmetic in the runtime package. If you say no, this is equivalent to
executing a NOREAL command from the EXECUTIVE, and will reduce the size of the
runtime package by about 2.5K bytes and increase the available space for your
application by the same amount. You will also be asked if you wish to reserve
space for the hi-res graphics page. Answering yes is equivalent to executing a
BUFFERS HIRES command from the EXECUTIVE. Another prompt will allow you to
specify the number of disk buffers, which is equivalent to a BUFFERS command in
the EXECUTIVE. '

Copyright (C) 1986 SMA Inc. Rev. C

DEVELOPER”S GUIDE Systems Management Associates, Inc. 9

The amount of disk space needed will be the sum of the PRODOS file (about
15K bytes), the RUNTIME.SYSTEM file (about 19K bytes), and your compiled
PROMAL application program. You may add any additional files you need to the
master disk after running GENMASTER.

For the Commodore 64:

The GENMASTER program on the DEVELOPER”S DISK will copy the special
runtime package plus your compiled application program onto your new Master
diskette. Actually there are two runtime packages provided, one with and one
without REAL support. The GENMASTER program will ask you which you wish to
use. The standard SYSTEM file is approximately 18K bytes, about the same as
the PROMAL file on the standard PROMAL system. Therefore your program will be
loaded into memory at the same address as the start of allocatable memory in
the standard version (as shown by the MAP command).

If you select the SYSTEM without REAL support, the SYSTEM file will be
reduced by about 2.5K, which will reduce the load time and enable your appli-
cation to be loaded at the same address as in the standard system after
executing a NOREAL command.

GENMASTER will unload the EDITor from memory while it copies the system
nucleus to your master disk. It will be automatically reloaded from disk later
if you need it. You may not use the EDITor, EXECUTIVE, or COMPILER as an
application program for GENMASTER.

The amount of disk space used on your Master disk will simply be the sum of
whichever SYSTEM file you select plus the size of your compiled application
program. You may copy any additional files you need using the EXECUTIVE COPY
command.

EXIT, ABORT, AND RUNTIME ERROR PROCESSING

In the normal PROMAL system, when your program executes to completion (or
executes a call to the EXIT or ABORT library routines), control is returned to
the EXECUTIVE. When you exit from your program on a Master disk generated by
the Developer”s System, you don”t have the EXECUTIVE to go back to, so the
PROQUIT procedure will be called instead. In a dedicated application program,
you may not want to have any exit at all.

This brings us to the subject of error recovery. There are several differ-
ent kinds of runtime errors that can occur during execution of a PROMAL
program. First, there are normal I-0 errors (such as attempting to open a disk
which is not in the drive), which return error indications to your program so
that you may take whatever corrective action is required under program control.
These kinds of errors work precisely the same under either the standard system
or on your master disk system.

However, there is another class of more serious errors, the kind that
"shouldn”t happen” in a debugged program. In the standard system, these kinds
of errors abort back to the EXECUTIVE with an error message. For example, if
you divide by zero, you will get a message that says:

Copyright (C) 1986 SMA Inc. Rev. C

10 Systems Management Associates, Inc. DEVELOPER”S GUIDE

*%% RUNTIME ERROR: O-DIVIDE
AT $47BA
% PROGRAM ABORTED.

-—>

When you run a program from your Master Diskette, you do not have an
EXECUTIVE to abort to. Instead, you can handle these kinds of errors in two
ways: (1) do nothing, in which case a default error message will be printed and
the computer reset; (2) provide your own error recovery using a REFUGE 3, as
described below. If you do nothing and a fatal error occurs, the system
will display an error message similar to this:

FATAL SYSTEM ERROR $0D AT $47BA
PRESS ANY KEY TO RESET COMPUTER

When the user presses a key, the program will exit via PROQUIT. Again,
remember that this only applies to the kinds of errors that would abort a
program, which should not be present in a debugged application. The meanings
of the error code displayed are given in Table 1.

Table 1
Runtime Error Codes
Error # Meaning
1 Machine language breakpoint ($00) encountered. (Note: the address

of the breakpoint and register contents can be found in these
locations: address - $0C51; A - $0C53; X - $0C54; Y - $0C55)

2 PROMAL breakpoint ($00) encountered at the indicated address.
Usually caused by a corrupted program.

3 (reserved)

4 Stack overflow. Generally caused by too many levels of nested
subroutine calls in combination with large numbers of local
variables.

5 Illegal opcode. Usually caused by a corrupted program (array

out of bounds, bad pointer, block move error, etc.)
6 Divide by O (real, integer, MOD or real overflow).

7 Required software package not loaded (for example, floating point
arithmetic without REAL support loaded).

8 Illegal number of arguments on FUNC or PROC. A Library routine
was called with too many or too few arguments.

9 I-0 direction error. For example, trying to open the printer for
read access.

A Illegal argument for FUNC or PROC. The argument for a library
routine is out of range.

Copyright (C) 1986 SMA Imc. Rev. C

DEVELOPER”S GUIDE Systems Management Associates, Inc. 11

B Illegal file handle. Tried to perform I-0 to a file or device
that was not properly opened, or missing or defective file
handle argument.

C I-0 redirection error. Tried to redirect to an unopened or illegal
file or device.

D CTRL-STOP key pressed (Commodore 64) or CTRL-RESET (Apple 1I).

SPECIFYING YOUR OWN ERROR RECOVERY

If you wish, you may provide your own error recovery to recapture control
within your application program after these errors. To do so, define a REFUGE
3 in your program, and control will return to this point on a fatal error. You
can determine what the error was by inspection of BYTE DRTERR AT $0DF6, which
will contain the error code as listed above. CAUTION: You should not add this
error recovery code to your program until your application is otherwise com-
pletely debugged, as it will interfere with normal PROMAL error recovery to the
EXECUTIVE. An example of error recovery is shown in the program fragment
below.

BYTE FATAL_ERROR ; Set false while defining REFUGE, then TRUE
EXT BYTE DRTERR AT $0DF6 ; system runtime error #

; Define runtime error recovery entry point...

FATAL ERROR = FALSE ; Don“t recover while just defining refuge
; Come here on fatal runtime error only..
REFUGE 3

IF FATAL ERROR
OUTPUT "#CUnexpected system error $#h",DRTERR
PUT CR,"Attempting to close all files..."
ees 3 (close files, cleanup whatever you can here)
PUT CR,"Restarting computer now..."
ABORT
FATAL _ERROR = TRUE ; Turn on error recovery now

The purpose of the FATAL ERROR variable in the fragment above is to avoid
executing the recovery code itself while you are merely trying to define its
location by executing the REFUGE 3 statement. Don”t forget that in order for a
REFUGE to be active, it must be executed, not just exist somewhere in your
program.

LOADING MODULES AND MACHINE LANGUAGE ROUTINES

Since you cannot use the EXECUTIVE GET command to load separately compiled
modules or machine language routines, your application will have to load these
programs itself (if it needs any). You should use a bootstrap loader as
described in Chapter 8 of the Language Manual to perform this function. This
also applies to programs in the optional Graphics Toolbox. For machine
language routines, you can use either the LOADer or function MLGET, as
described in Appendix I.

Copyright (C) 1986 SMA Inc. Rev. C

12 Systems Management Associates, Inc. DEVELOPER”S GUIDE

BUILDING YOUR MASTER DISKETITE

A special PROMAL program called GENMASTER is provided on the DEVELOPER’S
DISKETTE. This is an interactive program which is used to copy the PROMAL
runtime nucleus and your compiled PROMAL application program onto the disk you
want to become your Master Diskette (which you should have pre-formatted). For
the Apple version, you should also copy the PRODOS file onto your newly
formatted master disk. You should run the GENMASTER program from the regular
PROMAL system. To run the program, insert the DEVELOPER”S SYSTEM DISKETTE into
the drive, and type:

For the Apple II: For the Commodore 64:
UNLOAD

PREFIX * UNLOAD

GENMASTER GENMASTER

This program is self-explanatory through its prompts. Simply pressing RETURN
will select the default. RETURN can also be used as a "YES" response to
prompts. You will have the opportunity to specify the name of the runtime
system and the program on the new master disk. For the Apple II, the runtime
system name must end in ".SYSTEM" to be acceptable to ProDOS. Once your Master
disk is made, 1t can be booted up like any other program. For the Apple 1I,
the program will auto-boot when the computer is powered on or CTRL-APPLE-RESET
is pressed. For the Commodore 64, you will type:

LOAD "SYSTEM",8
RUN

This of course assumes you accepted the default name of "SYSTEM".
COPY PROTECTION

If you are developing a commercial program, you will want to decide whether
or not you wish to employ some scheme to protect your disk from illegal
copying. This is entirely up to you. PROMAL neither encourages nor discour-
ages the use of copy protection schemes. Generally any protection scheme which
you can use with BASIC or machine language can also be employed with PROMAL, if
you wish. If you wish to employ copy protection, consult your mass disk
duplicating service or books on the subject for available techniques. A
discussion of copy protection techniques or ethics is beyond the scope of this
manual.

MISCELLANEOUS

1. For the Commodore 64, DYNODISK works exactly the same as for the regular
system. If you simply want DYNODISK disabled in your application, you can
apply the same patch to the SYSTEM or SYSTEM NR file as is described for file
PROMAL in Appendix N.

2. For the Apple 1I, the /RAM device will be handled exactly as in the regular
system. Therefore it will be enabled if the users has more than 128K and has

installed the /RAM device. Your application can be booted from /RAM in the
same way as regular PROMAL.

Copyright (C) 1986 SMA Inc. Rev. C

DEVELOPER”S GUIDE Systems Management Associates, Inc. 13

3. 1f you have purchased the optional source code to PROMAL, you may not
include it in whole or in part in any application you sell or distribute, nor
can you include the Compiler (not the Demo Compiler either).

4. If you use multiple modules (as described in Chapter 8 of the PROMAL
Language Manual) and have an ESCAPE in one module to a REFUGE in a separate
module, if you exit from the module with the ESCAPE via a normal END, the
program will still return to the parent program of the original module.

5. For IBM PC PROMAL there is only a Developer”s version (no End-User’s
version), because programs are run under DOS.

6. A Source code listing on disk for the Developer”s Runtime package (as well
as the regular runtime package and library) is available as an option from
SMA. Please call for ordering information.

7. For the Apple, you may wish to have your program ignore CTRL-C instead of
aborting. This can be done by setting the byte at $ODEO to $00.

FINAL NOTES

Check your DEVELOPER”S DISKETTE to see if a file called README.T is present
on the disk (using the FILES command). If so, type this file before attempting
to build your first Master diskette. If present, this file contains additional
information not covered in this manual. Other additional files may also
be provided on the Developer”s disk for informational purposes.

Copyright (C) 1986 SMA Inc. Rev. C

14

Systems Management Associates, Inc.

DEVELOPER”S GUIDE

This page is intentionally left blank

Copyright (C) 1986 SMA Inc.

Rev. C

PROMAL Problem Report Form

Program problems: Registered owners may use this form for reporting problems
with PROMAL system components or with the documentation. To be considered for
review and correction all programming problems must be documented with:

1. Source code of an executable stand-alone program which
re-creates the problem, or;

2. A sequence of commands (from the Editor or Executive) which
re-creates the problem, or;

3. A combination of the above.

If possible and appropriate, printed dumps of memory locations proving or
illustrating the problem should be provided.

Documentation problems: Registered owners are hereby granted permission to
photocopy any pages of the PROMAL manuals containing errors, and annotate those
pages to document the errors. All such photocopied pages must be attached to
this form and returned to SMA, Inc.

Disclaimer: SMA, Inc. has no obligation to address, acknowledge, or correct

any problem reported, nor has any liability for consequential damages resulting
from any problem (see End User Agreement). However, SMA, Inc. is committed to
supporting and improving the PROMAL System as an evolutionary product, and will
make reasonable efforts to insure that documented problems are fixed in future
releases. SMA, Inc. has no obligation to, but may from time to time, publish
fixes, documentation updates, or procedures which resolve reported problems.

Sender: Name PROMAL Version Serial #
Address
City State Zip
Computer Daytime Telephone ()
Problem Component: _ Executive __ Compiler _ Editor __Library __Manual

Problem Description: (Attach additional pages, if needed, and source code):

Mail to SMA, Inc. as shown on reverse side. If one page report then fold and
use this form as a self-mailer. Thank you for your report.

Place
Stamp
Here

From

To: Systems Management Associates, Inc.
3325 Executive Drive, Dept. PMR
P.0. Box 20025
Raleigh, NC 27619 U.S.A.

--—-'-'-—----—.—.'.'r—'—'.r--—.'--—.'.—-—-.—--.'fold here-~=vw=c-vrvevorrrrrrrrorrrrrrrrrrsos

Systems Management Associates, Inc. (SMA), 3325 Executive Drive, Raleigh, North Carolina 27609
END USER AGREEMENT, LICENSE and REGISTRATION FORM

You should carefully read the terms and conditions of this agreement before opening and using your sealed PROMAL Diskette. By
opening the sealed Diskette you indicate your acceptance of this agreement. If you do not agree with these terms and conditions you
should promptly return the Diskette and Manual and all other enclosed materials in unused, undamaged condition; your money will be

refunded. If you accept this agreement please complete the attached registration form, sign it, and return it to SMA. Thank you.

1. Usage agreement: You agree to use the programs and manuals distributed herein
known collectively as “PROMAL" as follows:

— You may use PROMAL on each computer that you as an individual, personally
own, or use in your place of work. You agree not to use PROMAL on a multi-user system,
a local area network, or in a time-sharing or bulletin-board service. You agree to use
PROMAL only in accordance with U. S. Copyright law, and agree to copy the program
only for the purpose of your personal archival storage.

— You may use the example programs or parts thereof as subroutines or parts of
programs that you create for your own personal use. If you have purchased the
PROMAL Developer's System, you may incorporate example code into programs that
you sell or otherwise distribute.

— You may transfer the program to another party if the other party agreesto accept
the terms and conditions of this agreement. All materials, whether machine readable
or printed must be transferred, with you retaining nothing.

2. License for Distribution: If you purchased the PROMAL Developer’s System, SMA
grants you an unlimited license to sell or otherwise distribute' PROMAL “run time”
application programs created by the binding of the PROMAL nucleus with your object
program via the provided utility program. In exchange for this license you agree to
place the following acknowledgement somewhere on the packaging, the diskette, or
within the documentation of every program you sell or distribute: “(your program
name) is a licensed PROMAL application program. PROMAL is a registered
trademark of Systems Management Associates, Inc., Raleigh, NC”

3. Term. This agreement s effective from the time you first open the sealed PROMAL
diskette until you return the original diskette and any copies to SMA, transfer allto a
third party or destroy the diskette(s).

4. SMA's Rights. You acknowledge that the PROMAL system and the printed

Manuals are protected by U.S. Copyright law and that violation of this law could resuit
in legal prosecution and criminal or civil penalties.

5. Limited Warranty. The programs are provided “as is” without warranty of any kind,
either expressed or implied, except that.

SMA WARRANTS THAT THE PROGRAM(S) WILL OPERATE SUBSTANTIALLY IN
ACCORDANCE WITH THE DOCUMENTED FUNCTIONS AND SPECIFICATIONS.

SMA does not warrant that the functions contained in the programs will meet your
requirements or thatthe operation of the programs will be uninterrupted orerror free,
although due care has been taken to insure correct operation. Should the programs
prove to be defective, you (and not SMA or any dealer) may have to assume the entire
cost of all necessary service, repair, or correction.

SMA WARRANTS THE DISTRIBUTION DISKETTE TO BE FREE OF PHYSICAL
DEFECTS IN MATERIAL AND WORKMANSHIP UNDER NORMAL USE FOR A
PERIOD OF THIRTY (30) DAYS FROM DELIVERY TO YOU AS EVIDENCED BY A
COPY OF YOUR PURCHASE RECEIPT.

6. Limitation of remedies. SMA’s entire liability and your exclusive remedy shall be
the replacement of any diskette not meeting SMA’s Limited Warranty. IN NO EVENT
SHALL SMA BE RESPONSIBLE FOR ANY INDIRECT OR CONSEQUENTIAL
DAMAGES, EVEN IF SMA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Some states do not allow the limitation or exclusion of liability for indirect
or consequential damages so the above limitation may not apply to you.

7. General. This agreement will be governed by the laws of the State of North
Carolina. If any provision herein contravenes legal authority in any jurisdiction in
which the agreement is performed, that provision shall be deemed to be deleted but
shall not affect the validity of any other provision of this agreement.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT AND AGREE TO BE BOUND BY
ITS TERMS AND CONTITIONS. YOU ALSO AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US WHICH SUPERCEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR
WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS
AGREEMENT.

REGISTRATION — Sign and Mail to SMA

I have read, understand, and accept the End User Agreement for PROMAL. Please register my copy of PROMAL, Serial
#____lunderstand that as a registered user | will be entitled to purchase future versions of PROMAL at reduced
cost; | may be entitled to receive fixes and other enhancements (if and when provided); and | may be offered special rates on
subscriptions to the PROMAL NEWSLETTER, when available.

Signed: Date: Telephone:
Name: Address:
City/State/Zip

Note: This form may be used as a self-mailer, see reverse side.

.. fold here

Place
Stamp
Here

Systems Management Associates
3325 Executive Drive

P. O. Box 20025

Raleigh, NC 27619

AE-E21 AD-D21
CE~-E21 CD-D21

MANAGEMENT
ASSOCIATES

October, 1986 %gﬁﬁ&ggggDnm
Raleigh, North Carolina 27619
(919) 878-3600

Dear PROMAL Customer:

Thank you for your purchase of the upgrade to Version 2.1 of PROMAL for the
Apple II or Commodore 64. We are sure you will be pleased with the many
improvements made to the system and with the expanded PROMAL manual.

Summarized below are the major changes from PROMAL version 2.0 to version
2.1. This information is pertinent only to users upgrading from version 2.0.
Users upgrading from an earlier version than 2.0 should probably read the new
manual completely due to major changes and improvements which have been made.

IMPROVEMENTS SPECIFIC TO APPLE VERSION

1. Apple PROMAL 2.1 provides full support for /RAM disk (Applied
Engineering Ramworks II etc.) in the normal development mode as well as for .
application programs created with the Developer”s version. When PROMAL is
booted up, it automatically detects the presence of more than 128K of memory,
and, if found, it does not disable the /RAM device. Users of /RAM disks should
have their /RAM device set up so that the first 64K bank of memory is not used
for a /RAM disk but is left available for program use. This is normally no
problem since it is the default setup for RAMWORKS and compatible boards. To
use PROMAL with /RAM, install your /RAM device as directed by the manufacturer
(for ProDOS use), then start PROMAL. For example, to start PROMAL from BASIC,

type:
-/PROMAL/PROMAL. SYSTEM

Note: the prefix must be the correct prefix for the disk you wish to boot.
Technical note: PROMAL detects the presence of an expanded /RAM device by
testing the ID of the device (unit) in the ProDOS page. If it is $BF, then
PROMAL assumes it is a standard 128K system and disables the /RAM device. If
the ID is $BE (as it is for RAMWORKS), then the /RAM device is left intact.

2. Apple PROMAL 2.1 provides a handy way to access disk drives without
having to specify the volume name. For example "1:MFILE" means MYFILE.C in
drive 1. 1:, 2: and O: are supported; O: is the /RAM device. This method can
be used from the Executive and programs as well. Other examples:

PREFIX 2: ; Make the current path whatever is in drive 2:
FILES O: ; Display files in /RAM
COPY COMPERRMSG.T O: ; Copy to /RAM from current prefix

3. The PREFIX command can also be used to select any slot and drive. See
the manual for details.

Page 1 of 4 (over)

DEDICATED TO PERSONAL COMPUTING PRODUCTIVITY

)

4. Apple PROMAL 2.1 has a new function, ONLINE, defined in PROSYS.S which
tests if a specified drive is on-line and returns the volume name.

5. Apple PROMAL 2.1 now supports path names with embedded periods, so you
should be able to access any volume or path name from PROMAL.

6. For Apple PROMAL 2.1, two of the default keys for EDLINE, INLINE, GETL
(and the EXECUTIVE and EDITOR) line editing have been changed:

Jump cursor to First character of line was CTRL-[is now CTRL-F
Jump cursor to Last character of line was CTRL-] is now CTRL-L.

This change was made because CTRL-[is the same code as the ESC key, and
to improve the ease of use. All line-editing key definitions can now be
changed (described below).

7. The W (workspace) device capacity has been greatly increased and is now
a fixed size (the MAP command will display the size).

8. The EXECUTIVE COPY command has been improved. You can now specify a
destination using the 1l: shorthand method. You can also copy from a different
prefix to the current prefix by merely specifying the source path. For
example:

PREFIX 1:
COPY 2:MYFILE

copies MYFILE from drive 2 to drive 1. The form of the COPY command with the
"2" as a second argument indicating two drives is no longer supported.

9. The APPLE EDITor now supports lines up to 125 characters long by
scrolling and has a window feature like the Commodore version. CTRL-V sets the
window to whatever column the cursor is on, and CTRL-W restores the normal left
margin. Lines which have additional text off screen in either direction show
the first or last character of the line in reverse video as an indication that
there”s more outside the viewable 80 column window.

10. A new EXTCOPY utility program is provided for copying files with
wildcards supported.

11. The End User disk has FORMAT, a new disk formatting utility. Type file
README.T on the End User Disk for more information.

IMPROVEMENTS SPECIFIC TO THE COMMODORE 64 VERSION

1. DYNODISK operation has been modified for improved reliability on all
varieties of 1541 and 1571 disk drives. Operational restrictions are the same

as for version 2.0.

2. GETC and GETCF from the keyboard now blink the cursor while waiting for
waiting for input. Also see GETKEY below.

3. Commodore 64 GETLF now supports up to 127 character lines (instead of
80). However, if the source file/device is the keyboard, the limit is still
80.

Page 2 of 4

4. 1In order to make more free memory available, the C-64 DATE command is
now a "transient” command instead of a built—in EXECUTIVE command. This means
that in order for DATE to work, you need a copy of the new DATE.C program on
your boot disk. No error occurs if it is not; the date will just not be set.
Unlike other programs, the DATE program is automatically unloaded after it is
executed by the EXECUTIVE.

IMPROVEMENTS COMMON TO BOTH VERSIONS

1. All known bugs have been fixed.
2. There is more free memory (about 2 pages) available in the new version.

3. A new GETKEY function is provided in the Library. It operates similarly
to GETC but does not echo to the screen. It waits for a keystroke, flashing
the cursor.

4. You can now use the EXECUTIVE COPY command to copy to the S device
(screen).

5. The TYPE command can type lines of up to 127 characters instead of just
80. However, on the Commodore—64, if you TYPE K then a maximum of 80
characters is supported since the keyboard buffer is only 80. The GETLF
function similarly now supports up to 127 characters. The EDITor now supports
lines up to 125 characters long by scrolling.

6. The COMPILER now automatically unloads a program with the same name as
that just compiled if it was in memory. This prevents frustration when you
think you’re executing the new version but the old version is still in memory.

7. The ABS function is now in the standard LIBRARY instead of the
REALFUNCS.S file. If you get a duplicate definition of ABS, you are probably
using an old version of REALFUNCS.S with it still in there.

8. A global variable called DIOERR is defined in the LIBRARY. This
variable reflects disk read/write errors and can be polled after GETCF,
GETBLKF, PUTF, PUTBLKF, OUTPUTF to determine if a disk error occurred.
DIOERR=0 is normal, 1=Disk full, 2=read error, 3=write error. You don”t have
to check DIOERR; its up to you. On the C-64, DIOERR is supported only for
GETBLKF and PUTBLKF for performance reasons. The W device also sets DIOERR=2
if you write more to it than there”s room for (the excess is lost).

9. You now can control the blink rate of the cursor. A new global BYTE
variable BLINKD AT $OCFF controls the blink rate. Setting BLINKD to greater
than $7F will cause a solid, non-blinking cursor. Setting it to 0 will totally
disable the cursor (no cursor visible).

10. INLINE and EDLINE functions now have a new optional third argument
which allows you to specify a starting column (and detect the ending column)
for the cursor position.

11. You can now boot PROMAL without a copy of the EDITor on disk. If you
need the editor later it will load from disk automatically.

12. You can, with care, change the PROMAL line editing keys. See Appendix
G.

Page 3 of 4 (over)

13. The manual has been substantially improved and reorganized. You may
especially wish to read the new Chapter 7 of the Language Manual.

14. Source code is now available as an option for most elements of the
PROMAL 2.1 system. Contact SMA for pricing.

CAUTION

You may not use Version 2.0 GENMASTER, EXTDIR (Apple only), or EDIT
successfully with version 2.1, and visa versa. Be careful not to mix these
programs with prior versions.

We are sure you will find PROMAL 2.1 to be the best program development
system available on your computer. Thank you for upgrading your system.

Systems Management Associates Inc.
3325 Executive Drive
Raleigh, NC 27609
(919)878-3600

