

Advanced
Programming

Techniques
for the

APPLE IIGS
TOOLBOX

Morgan Davis and Dan Gookin

~~~~~I~~f~n?lications,lnc.e 
Greensboro. North Carolina 



Cover design: Lee Noel, Jr. 
Editor: Robert Bixby 

Copyright 1988, COMPUTE! Publications, Inc. All rights reserved. 

Reproduction or translation of any part of this work beyond that permitted by Sections 107 
and 108 of the United States Copyright Act without the permission of the copyright owner is 
unlawful. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 

ISBN 0-87455-130-7 

The author and publisher have made every effort in the preparation of this book to ensure the accuracy of 
the information and programs. However, the information and programs in this book are sold without war
ranty, either express or implied. Neither the authors nor COMPUTE! Publications, Inc. will be liable for 
any damages caused or alleged to be caused directly, indirectly, incidentally, or consequentially by the 
information or programs in this book. 

The opinions expressed in this book are solely those of the authors and are not necessarily those of 
COMPUTE' Publications, Inc. 

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919) 275-9809, 
is a Capital Cities/ ABC, Inc. Company, and is not associated with any manufacturer of per
sonal computers. Apple is a registered trademark and Apple lies is a trademark of Apple 
Computer, Inc. 

APW C is available only to members through Apple Programmer's and Developer's Associa
tion, 290 SW 43rd St., Renton, WA 98055. 

TML Pascal is a product of TML Systems, Inc., 4241 Baymeadows Rd., Suite 23, Jacksonville, 
FL32217. 



Contents 
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v \ 
Chapters 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

2. Programming §uhtleties ............................. ~ 

3. How Programs Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

4. About the Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

5. A Matter of Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

6. The DeskTop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

7. Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

8. Pull-Down Menus ................................ 113 

9. Windows ....................................... 145 

10. Dialog Boxes .................................... 187 

11. Controls ........................................ 241 

12. Interrupts ....................................... 271 

13. Desk Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 

14. ProDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 



Appendices 
A. Apple's Human Interface Guidelines 371 

B. Tool Sets in the Apple IIGS Toolbox . . . . . . . . . . . . . . . . . 384 

C. Error Handling .................................. 391 

D. Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 

E. Event and TaskMaster Codes . . . . . . . . . . . . . . . . . . . . . . . 401 

F. QuickDraw II Color Information . . . . . . . . . . . . . . . . . . . . 408 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 



Foreword 
If you have a solid understanding of machine language, Pascal, or 
C, you'll find Advanced Programming Techniques for the Apple lies 
Toolbox invaluable in helping you to improve your Apple IIGS pro
gramming skills. This book examines in detail the structures and 
procedures necessary to make the Apple IIGS perform for you. Al
though the machine has been available for over a year and a half, 
the programming market for the Apple IIGS is still wide open. Pro
grams that take full advantage of the machine's capabilities have 
only begun to appear. 

"This book is not for the beginner," the authors warn early in 
the first chapter. But intermediate- to advanced-level programmers 
will find Advanced Programming Techniques for the Apple lies Tool
box packed with solid information on this fast-selling machine. This 
book delves into the intricacies of the powerful set of libraries 
known collectively as the Toolbox. 

The program examples given here are ready to be merged with 
your own program code, giving your programs greater flexibility 
within the IIGS operating system. Mirroring the flexibility of the 
machine, this book provides a nonlinear approach that allows you 
to turn to your area of immediate interest, begin learning the things 
you need to know, and produce the program you're trying to write, 
in your choice of languages. Along the way, you'll learn about the 
other languages and the inner workings of the operating system. 

Inside this book is information covering DeskTop applications, 
the mouse, pull-down menus, windows, dialog boxes, controls, 
special applications like interrupts, and the use of ProDOS 16. 
You'll also find a condensed version of Apple's Human Interface 
Guidelines as well appendices packed with technical information. 

Advanced Programming Techniques for the Apple IlGS Toolbox is 
a treasure trove of inside information of all kinds. You'll value its 
insights into this exciting machine. This is the book every interme
diate- to advanced-level programmer needs to enhance his or her 
programming skills. 

v 



.-------Chapter 1 ------. 

Introduction 

To use this book, you should 
have an assembler, or you 
should have a Pascal or C lan
guage compiler. The software 
mentioned in this book are 
the APW (Apple Programmer's 
Workshop) C and machine lan
guage development kit and 
TML Pascal. These programs 
and their associated utilities 



..;__ _________ Chapter 1 ----------

are available at the addresses given on the copyright page. 
This book is intended to be a complement to COMPUTE!'s 

Mastering the Apple !IGS Toolbox, a tutorial on programming the 
Apple IIGS Toolbox. This book goes more deeply into the intrica
cies of using this powerful set of libraries to put a professional pol
ish on applications. It's both a reference and a book of advice on 
designing and building solid programs in machine language, C, and 
Pascal. 

It's assumed that you've read COMPUTE/'s Mastering the Apple 
!IGS Toolbox, or you're already a highly skilled programmer of the 
Apple IIGS. If so, you're ready to begin a challenging and enjoyable 
programming adventure. Keep in mind that this book is not for the 
beginner. 

If you haven't read COMPUTEt's Mastering the Apple IlGS Tool
box, or one of the other worthy introductory texts on this computer, 
you'd be wise to purchase one and read it before venturing further 
into this book. 

This book also assumes you have an Apple JIGS handy to test 
the routines. Your computer should have at least 512K of RAM, 
with one or two disk drives. A color monitor is more interesting to 
look at, but it is not a necessity. 

What This Book Is About 
This book provides programming advice for the Apple IIGS in three 
different languages: machine language, Pascal, and C. A solid un
derstanding of one or more of these programming languages is re
quired to be able to grasp the concepts in this book. You can't 
program the IIGS without them. 

Although the Apple IIGS has the same, decade-old, proven 
BASIC as its ancestors, Applesoft BASIC is not an appropriate lan
guage for writing application programs. In fact, the only way to ac
cess the advanced techniques of the Apple IIGS from BASIC is by 
using in-line machine language, a technique that is not recom
mended, even for the most venturesome programmers. 

If you are a BASIC programmer, you might be interested to 
know that two new BASICs were announced for the Apple lies as 
this book was being prepared. One, from TML Systems of Jackson
ville, Florida, and a second from Apple. (There may be more BASICs 
forthcoming from other developers.) These BASICs are in their 
"beta test" stage at this writing (which means they are not yet 

2 



----------Introduction ----------

ready for general release; they have too many bugs). 
The Toolbox. The key to programming the Apple lies is its 

Toolbox. The Toolbox contains hundreds of routines and functions 
that provide the core of programming. Programming the Toolbox is 
a central part of this book. And examples for programming the 
Toolbox are provided in C, Pascal, and machine language. 

This book is not intended to be a Toolbox tutorial. Instead, it 
was written to acquaint readers, programmers, and Apple enthusi
asts with the finer aspects of programming the machine. 

The scope of this book is limited to these general areas: the 
DeskTop, graphics, low-level tools, and other rarely discussed as
pects of the Apple lies. These areas are well covered and offer an 
in-depth look at the inner workings of the computer. 

Who This Book Is For 
This book will benefit Apple lies owners who understand machine 
language, Pascal, or C. Any one of these languages will do, and, 
after reading a few chapters, you'll probably learn more about the 
others. 

As mentioned above, you'll need an Apple lies with at least 
512K. The lies is currently being sold with 256K. Even Apple ad
mits this isn't enough. Producing a 256K machine was a decision 
made to keep the base unit as inexpensive as possible. Another de
cision based on economy was the choice of the 65816 micro
processor, which is only rated at 2.8 MHz. The engineers could 
have used a faster chip, but it would have added $100 to the price 
of the computer. 

It's recommended that when you buy a memory card for your 
lies, you pack it full of memory. Memory is relatively inexpensive. 
For the cost of 16K of RAM in 1980 you can easily put over 1024K 
(one megabyte) of RAM into your lies. 

Finally, this book is for anyone excited about the Apple lies. 
It's been over a year and a half since the machine was introduced. 
Exciting and interesting programs are only starting to appear. With 
the knowledge you'll gain from this book, you'll soon add your 
own programs to the growing list of applications for the Apple 
lies. 

Unlike COMPUTEt's Mastering the Apple lies Toolbox, this book 
doesn't rely upon complete programs to convey ideas. Instead, only 

3 



----------Chapter 1 ----------

small program examples and snippets of code are used. It's as
sumed you'll be able to put the example pieces together in your 
own way when creating applications. The examples listed in this 
book all work and will function in any program you write. 

Though you may be tempted to dive into programming with
out preparation, you'll gain more if you read the text dealing with 
each program example before cutting and pasting code. While it 
looks easy and simple, the Toolbox routines have interdependent 
relationships with each other. To understand how one tool relies 
upon another, read the text before and after an example. Then you 
should be able to adapt it successfully to your use. 

This book is half reference and half tutorial. The "refertorial" 
approach makes this book modular. You can start reading at any 
point. For example, if you'd like to know how to put a custom icon 
in one of your dialog boxes, turn to the chapter on dialog boxes, 
and you'll find an example. Replace the graphic in the example 
with your own, and you'll have a custom icon. This entire book 
works that way. 

On a larger scale, this book is divided into four major parts, 
each part concentrating on a specific area of programming the Ap
ple IIGS and the Toolbox. Each part is further broken down into in
dividual areas that cover specific topics. Within each area are 
individual examples and routines you can use to help you under
stand and program the Apple IIGS. 

You can read any section that interests you, provided that you 
have taken the time to understand the fundamentals. If any infor
mation overlaps or is covered elsewhere, you'll be directed to the 
proper part and section. Most of the groundwork is covered in this, 
the first section, so naturally, you should take the time to read 
through the introductory material. When you're finished, you may 
proceed through the book at your own pace and in any order. 

The book is divided as follows: 

• The early chapters offer a general introduction. When you're fin
ished reading them, you'll understand how information is pre
sented in this book. For example, one chapter demonstrates how 
Toolbox routines are documented in this book for all three pro
gramming languages. You may skim that section and return to 
read it in detail if a concept in a later chapter confuses you. You'll 
also find a great deal of interesting trivia and general background 
information in this section. 

4 



----------Introduction ----------

• The middle portion of the book covers DeskTop applications and 
using the mouse. It details DeskTop programs, pull-down menus, 
windows, dialog boxes, and controls. This section covers many 
concepts unique to the IIGS. Don't be surprised if you find your
self referring to this part of the book often. 

• The final chapters go into detail on special applications-those fea
tures of the Apple IIGS that don't have a category of their own. 
This part covers such advanced topics such as interrupts and desk 
accessories. At the end of this section is a chapter on ProDOS 16. 
Though unrelated to the Toolbox, ProDOS is as much a part of the 
Apple IIGS as anything mentioned so far. Loading and saving files 
from and to disk and other file-management techniques are men
tioned in the ProDOS chapter. 

• The Appendices provide a reference to the first part of the book. 
You'll find a version of Apple's Human Interface Guidelines in 
Appendix A. While not an exact duplicate, this version highlights 
the most important parts of the Human Interface Guidelines, en
suring that your programs will fall in line with Apple's recom
mendations for all DeskTop applications. 

Interesting trivia surrounding the Apple IIGS is just now rising 
to the surface. Where appropriate, comments and insights have 
been included in the main body of the text, but when they are tan
gential or circumstantial to the topic at hand, they will be set aside 
in boxes. They were included to give a better understanding of Ap
ple IIGS hardware and software construction. 

Conventions Used in This Book 
Every effort has been made to maintain notations and conventions 
used in COMPUTEt's Mastering the Apple IlGS Toolbox. For example, 
the majority of the numbers you'll see in this book are in hexadeci
mal (base-16) notation. All hexadecimal numbers are preceded by a 
$ (dollar sign), and they contain the numbers 1-9 and the capital 
letters A-F, which stand for the values 10-15. 

There are three types of hexadecimal numbers used in this 
book: bytes, words, and long words. 

5 



----------Chapter 1 ----------

A byte value is a two-digit hexadecimal number ranging from 
$00 through $FF (0-255 decimal). A word value is a four-digit 
hexadecimal number ranging from $0000 through $FFFF (0-65535 
decimal). Words are composed of two bytes, the most significant 
byte (MSB) and the least significant byte (LSB). In the word value 
$FACE, $FA is the MSB and $CE is the LSB. 

Long words are new to the Apple II. A long word is an eight
digit hexadecimal number equivalent to two words or four bytes. It 
ranges in value from $00000000 through $FFFFFFFF (0 through 
4,294,967,295 decimal). Long words are composed of two words
the high-order word and the low-order word. In the long-word 
value $00ElOOA8, $00El is the high-order word, and $00A8 is the 
low-order word. Long words are primarily used in the Apple IIGS 
to denote memory locations. Refer to the section on memory ad
dressing in the next chapter for details. 

Though not a type of number (or size), the Toolbox uses logi
cal, or Boolean, values to represent the true or false result of certain 
operations. A true value is any value not equal to 0. Commonly, 
true is set to the hexadecimal word value of $8000. A false value is 
0. 

Logical True = $8000 or any nonzero value 
Logical False = $0000 

When the Toolbox returns a logical true or false value, the ac
tual numbers returned are as listed above. As might be expected, 
there are times when the computer breaks this rule and returns 0 
for true and a nonzero value for false. When this happens, a note 
will be provided to warn you about it. 

One final convention concerns the program listings in this 
book. Line numbers are included with all program listings above a 
certain size. Unless specified, the line numbers are not to be en
tered (when you type in the examples) or considered as part of the 
source. The line numbers are intended for use as references from 
the text. Again, where there are exceptions, they will be noted. 

6 



---------- Introduction ----------

Books Worthy of Note 
At this writing, there are few books on the subject of programming 
the Apple IIGS. However, the books listed below are recommended 
for anyone interested in programming the Apple IIGS: 

• COMPUTE!'s Mastering the Apple lies Toolbox, Dan Gookin and 
Morgan Davis (1987, COMPUTE! Publications, ISBN 0-87455-
120-X). 

• COMPUTE!'s Apple lies Machine Language for Beginners, Roger 
Wagner (1987, COMPUTE! Publications, ISBN 0-87455-097-1). 
Roger wrote the definitive machine language book years ago. This 
book carries on the tradition. 

• COMPUTE!'s Guide to Sound and Graphics on the Apple lies, Wil
liam B. Sanders (1987, COMPUTE! Publications, ISBN 0-87455-
096-3). Though lacking extensive Toolbox programming examples, 
this book contains a wealth of information on fundamental Apple 
lies sound and graphics. 

• Apple lies Technical Reference, Michael Fischer (1986, 1987; 
McGraw-Hill; ISBN 0-07-881009-4). One of the first books to ap
pear on the market, this book is an excellent hardware and soft
ware reference to the Apple IIGS. Some of the material is 
outdated, but it's still worthy. 

• Programming the 65816, David Eyes and Ron Lichty (1986, Pren
tice-Hall, ISBN 0-89303-789-3). The ultimate reference to the 
65816, with programming examples and the best command refer
ence of any microprocessor book. 

7 



....----Chapter 2 ------., 

Programming 
Subtleties 

The purpose of this chapter is 
to acquaint you with some 
things you should know before 
attempting to program the Ap
ple IIGS. This information
background material, plus some 
interesting tidbits-was gath
ered over a long period of time 
during visits to the offices of 

\ 



----------Chapter 2 ----------

Apple Computers and through research in virtually every book 
available on this machine. The material listed here is the distillation 
of this research. (For more detailed explanations, refer to COM
PUTEt's Mastering the Apple lies Toolbox.) 

How the Apple IIGS Is Different from Other Apples 
The Apple II is an "ancient" and honored computer, with a re
spectable lineage dating back just a little over ten years. Generally 
speaking, the Apple IIes is simply the latest incarnation of the Ap
ple II. It has a faster and more powerful microprocessor, better 
graphics, and advanced sound capabilities, but it can run Apple II 
software and accommodate Apple II hardware. It also has a tool set 
of programming routines that allow it to mimic its distant cousin, 
the Macintosh. 

In fact, the Apple IIes is actually one step closer to the Macin
tosh computer than simply an improvement on the older Apple II 
design. While the computer is still compatible, the DeskTop exten
sions, the graphics, and the sound found in the Toolbox routines 
separate the Apple lies from the rest of the Apple II family. 

The Apple lies is an evolutionary computer in terms of design 
and implementation. It's difficult to document. The machine's oper
ation is different now from its operation a few months ago. This 
implies that a shortcut or trick you learn today might not work 
tomorrow. 

Apple is constantly working on the lies. Internal modifications 
are being made, and the firmware and tool sets are constantly be
ing upgraded and modified. Because of this, a warning is offered: 
Do not stray from the standard. 

The Macintosh is another evolutionary machine. The first Mac
intosh, introduced in 1984, could not compare to the powerful ma
chines Apple makes today. While the Apple lies probably won't 
have the same expensive upgrades the Mac had, it will share the 
technological advances of its distant relative. Apple has assured its 
developers that as long as they stick to the standards, their pro
grams will run on all future releases of Apple II computers. 

A good example of programmers not sticking to the standards 
is in the area of the super-hi-res graphics display. Apple has re
peatedly warned against finding the screen's secret location in 
memory. Why? Because it may change in the future. The proper 
way to use the graphics screen is through the Toolbox. Yet, some 

10 



-------Programming Subtleties -------

developers consider the Toolbox routines slow. For this reason, 
they prefer to access the screen directly so their programs will work 
faster. By doing so, they run the risk that in the future they may 
not work at all. 

As long as you adhere to the techniques and programming ex
amples used in this book, you can be assured that your applica
tions will have a long and healthy life-as long as the Apple II 
series stands. According to Apple, it will last forever. 

Here is an abridged history of the Apple computer: The first 
Apple computer, the Apple I, was actually a circuit-board kit 
that sold for $666.66 in July 1976. 

The Apple II, which came in a case with a keyboard and 
power supply, was unveiled at the West Coast Computer Faire 
in April 1977. It came with its own BASIC, 4K of memory, 
color graphics, and game paddles. The Apple II was available 
for sale to the general public in June of 1977 for $1,298. 

In June 1979, the Apple II+ was introduced. It had an 
improved ROM, could handle up to 48K of RAM, and retailed 
for $1,195. In October of that year, the software program 
VisiCalc became available. 

The Apple lie was presented in January 1983. It came 
with 64K, which could be upgraded to 128K. Also included 
was a lowercase keyboard option, as well as an 80-column 
screen. The lie retailed for $1,395. 

The Apple lie portable was introduced in April 1984. A 
marketing genius came up with the slogan "Apple II Forever." 

In September 1986, the Apple lies was introduced. Nine 
years after the first Apple, the IIGS was priced at $999, came 
standard with 256K of memory, a keyboard, a mouse, and a 
mountain of potential. 

Graphics 
The Apple IIGS contains all the graphics modes of its predecessors, 
plus a new high-resolution graphics mode. The super-hi-res screen 
is used for all the IIGS graphics and provides a Macintosh-like envi
ronment. The responsibility for producing these graphics is given to 
the Video Graphics Controller (VGC) chip. 

The VGC has a big job. Not only does it control the super-hi
res graphics screen, it handles the older Apple II graphics modes, 

11 



----------Chapter 2 ----------

as well as dealing with two different types of interrupts. The VGC 
allows the Apple IIGS with a color monitor to have a different text, 
background, and border colors. It also provides foreign language 
character sets and international video output (for European coun
tries). It's a remarkable piece of engineering. 

The following chart shows the Apple lies text and graphics 
screens and their resolutions. The Apple lie and lie are both repre
sented by the lie. The resolution is shown as horizontal pixels by 
vertical pixels. 

Graphics Mode 
Text screen 
Text screen 
Lo res 
Double lo res 
Hi res 
Double hi res 
Super hi res 
Super hi res 

Resolution 
40 X 24 
80 X 24 
40 X 48 
80 X 48 
280 X 192 
560 X 192 

Colors 
2 (16 for IIGS only) 
2 (16 for lies only) 
16 
16 
6 
1 

320 X 200 16 
640 X 200 4 

II+ lie Apple lies 
• • • 

• • 
• • • 

• • 
• • • 

• • 
• 
• 

The SO-column text screen was available to Apple II+ owners 
via a special SO-column card. However, with the introduction of 
the Apple lie, and later the lie, the SO-column text format became 
standard. 

The lo-res mode displayed graphic "bricks" called pixels 
(though a pixel usually refers to a small dot). In the hi-res mode, 
the colors of the pixels and other graphics variations depended on 
a number of things, most of which are too specific to go into in this 
book. (A good book on the subject is COMPUTE!'s Guide to Sound 
and Graphics on the Apple IlGS by William B. Sanders.) 

Super Hi Res 
This book is concerned with the super-hi-res screen on the Apple 
IIGS. It has two modes: low and high resolution. The high-resolu
tion mode has a pixel resolution of 640 X 200. This mode provides 
four colors. However, by using a process known as dithering, more 
colors can be produced on the screen. Also, by altering certain 
attributes of the screen, up to 256 different colors can be produced 
on one super-hi-res screen. 

12 



-------Programming Subtleties -------

Questions almost every computer owner asks are "Where is the 
screen in memory? Is it bitmapped?" 

As explained above, this knowledge will not come in handy. 
However, to be accommodating, a few secrets can be revealed. 

At this writing (it will almost certainly change}, the super-hi
res graphics screen is located in memory bank $El, at offset 
$2000. (Refer to the section on memory management later in this 
chapter for further explanation of this memory reference.) To acti
vate the screen from Applesoft BASIC, you can type the follow
ing (the bracket is the Applesoft prompt): 

)CALL -161 

That will put you in the monitor. Type the following to refer
ence memory bank $El (the asterisk is the monitor's prompt): 

*E1/0000 

Now, activate the super-hi-res mode by putting the byte 
value $Cl into memory location $C029, the New-video register: 

*C029:C1 

That will activate the super-hi-res screen, which implies that 
from here on you'll be typing "in the dark." Text will be invisi
ble. Sometimes a pretty pattern will appear on the screen. Other 
times, the data previously on the super-high-res screen can be 
seen. 

Now, any value poked into memory locations $2000-$9CFF 
will appear on the screen as a pixel, series of pixels, pattern, or 
color. For example, putting the value $00 into memory location 
$60BO might put a black dash near the middle of the screen: 

*60BO:OO 

You can experiment with your own values (within the proper 
range of $2000-$9CFF). When you want to return to normal, you 
must poke a value of $01 back into memory location $C029: 

*C029:1 

Or you can type Control-T followed by the RETURN key. 
Have fun, but remember the warnings. 

13 



----------Chapter 2 ----------

The low-resolution mode of the super-hi-res screen has the 
same vertical resolution (200 pixels) but only half the horizontal 
resolut!9n of the high-resolution mode. It does, however, have 
more colors-up to 16-chosen from over 4096 possibilities. By 
using dithering you can squeeze even more colors out of the low
resolution graphics mode. 

You might hear the 640 mode of the super-hi-res screen re
ferred to as "80 columns," and the 320 mode as "40 columns." 
While this is entirely inaccurate, it does express the appearance of 
the two modes. In fact, by displaying text on the graphics screen 
using different fonts, your actual text-screen size varies from 16 
rows by 63 columns to 32 rows by 132 columns. (Text is displayed 
on this screen using a combination of the QuickDraw II and Font 
Manager tool sets. The size of the text is determined by the font 
chosen.) 

The QuickDraw II tool set in the Apple IIGS Toolbox is respon
sible for all graphics appearing on the screen. Drawing lines, cir
cles, boxes, arcs, and patterns is easy once you learn how to use 
the over-250 routines provided by QuickDraw II. By using 
QuickDraw, you save development time. It eliminates the necessity 
of writing graphics primitives. The basic code has been written for 
you. Also, sticking to the QuickDraw routines ensures that your 
graphics programs will work on and be compatible with all future 
releases of the Apple IIGS. 

Sound 
To make the Apple IIGS more competitive and attractive to the 
marketplace, something had to be done about sound. Sound was 
one thing the Apple II series of computers barely provided. 

For years, Apple II programmers created sound by bit twid
dling. The speaker has a memory location-$C030. By peeking this 
location from Applesoft BASIC or by examining this location using 
assembly language, the speaker could be made to tick (see follow
ing box). A rapid succession of ticks produced a tone. By varying 
the number of ticks and their duration, a chorus of tones could be 
created. This complicated-yet-simplistic method of producing sound 
got the job done, yet there had to be a better way. 

14 



-------Programming Subtleties -------

To tick the speaker in Applesoft BASIC, the PEEK state
ment is used. PEEK returns the byte value of a specific mem
ory location, in this case $C030, which is 49200 decimal: 

A = PEEK (49200) 

The actual value of A can be discarded. By repeatedly 
reading memory location 49200, as well as varying the inter
val between PEEKs, the speaker can produce a variety of 
tones. Note that PEEK's counterpart, POKE, has no audible ef
fect on memory location 49200. 

The following program shows how the PEEK statement in 
Applesoft BASIC can be used to tick the speaker: 

10 FOR X = 1 TO 10 

20 A = PEEK (49200) 

30 FORT = 1 TO 10 : NEXT T 

40 A = PEEK ( 49200) 

60 NEXT X 

The two PEEK statements in lines 20 and 40 tick the 
speaker. Line 30 contains a delay that produces the pitch of 
the tone: Increase the delay, and the pitch deepens; decrease 
the delay, and a higher pitch is produced. The main FOR
NEXT loop between lines 10 and 50 sets the duration of the 
tone. 

The better way turned out to be the Ensoniq 5503 Digital Os
cillator Chip (DOC) included with the Apple IIGS. This is the same 
chip that appears in many of Ensoniq's synthesizers and MIDI 
(Musical Instrument Digital Interface) equipment. 

The DOC contains 32 oscillators. These are paired to form 15 
voices, each capable of producing its own sound (like 15 separate 
instruments in a band). The sixteenth voice is used internally for 
timing purposes. 

Also included with the DOC is 64K of RAM referred to as 
sound memory, or sound RAM. Into this special area of memory can 
be placed various waveform patterns or even digitized samples of 
analog sounds such as a human voice. 

15 



----------Chapter 2 ----------

The DOC can be programm~J:wo levels. Low-level pro
gramming involves reading and writing to the DOC's sound RAM 
and altering its registers directly. This method is complex, yet it's 
oroven. Jn fact, the ma)' ority of the ~J.mle IIGS sound aQQlications proven. n ac , lie rna onty o tne n.pple u Gs souna appllcanon 
available use this technique. The second way to program the DOC 
is using the Apple IIGS Toolbox. This is the preferred way. The ad
vantage of Toolbox routines becomes clear when you consider that 
three lines of code are required to play a note using the Toolbox 
and 30 or more lines of code and data statements would be re
quired to play the same note using low-level routines. But there is 
a problem: The Toolbox sound routines aren't finished. 

Soon, you'll be able to choose from a variety of sounds and 
tones as easily as opening a window. Apple is fast at work com
pleting the sound routines. Unfortunately, they won't be finished 
in time for inclusion in this book. 

16 

The sound lab in the Advam;ed Te,hnologies se,tion of 
Apple Computer is impressive. The goal of the researchers is 
to create a sound environment for computers that is as ad
vanced as the computer's graphics capabilities. While graphics 
have continually progressed, and programming the graphics 
has become easier, sound continues to be an orphan. 

In the lab, they're concentrating on not only making 
sound easier to program, but on how to tailor sound toward 
specific applications. According to one of the researchers, 
"Any computer can go 'beep.' What about other sounds? How 
can they enhance the performance of a piece of software? 
How can sound help a user better interact with a program?" 

Sadly, all this technological magic is being worked out on 
a Macintosh II, not an Apple IIGS. The researchers want you 
to know, however, that all information discovered will be 
shared with the IIGS development team. You may see interest
ing and exciting sound advancements on this computer in the 
near future. 



------...;;;;;..-Programming Subtleties -------

The 65816 Processor 
The actual brain of the Apple IIGS is the 65816 microprocessor. It's 
the latest generation of the 6502 series of processors. This family 
began with the 6502 microprocessor used in the first Apple com
puter. Since that time, the chip has been improved upon. It became 
faster and able to address megabytes of memory and handle 16-bit
wide operations. 

Figure 2-1. Apple IIGS Motherboard with 65816 Pointed Out 

The 65816 is the brain of the Apple IIGs. 

To maintain compatibility with the older 6502 chips (and the 
software that ran on them), the 65816 can emulate a 6502. In the 
emulation mode, it behaves exactly as a 6502 would, with very few 
exceptions. While emulating its ancestor, the Apple IIGS works on 
eight bits of data at a time and can access only 64K of memory. 

Note· that while the 65816 is capable of emulating the 6502, 
older machines using the 6502 cannot run 65816 machine language 
programs. In fact, most of the 65816 machine language instructions 
are not defined for the 6502. Running a 65816 program on one of 
those machines (which would be hard to do in the first place) 
would crash the computer. 

17 



----------Chapter 2 ----------

Figure 2-2. Diagram of 6502 

A ~ Accumulator Rcgis1cr 

X · Index Register 

Y . hllk\ Register 

Always SOl Sf' - Stack Pointer 

PC - Program Counter 

The 6502 chip used in older Apple II machines can only handle eight-bit operations. 

Figure 2-3. Diagram of 65816 

A - Accumulator Register 

X - Index Register 

Y - Index Register 

$00 DP- Direct Page Register 

$00 SP - Stack Pointer 

PC - Program Counter 

PBR- Program Bank Register 

DBR- Data Bank Register 

Stat us Register 

The 65816 can handle 16-bit operations as well as emulate the 6502. 

18 



------- Programming Subtleties -------

When programming, it's possible to switch emulation on and 
off, as well as configure the A, X, and Y registers to either 8 or 16 
bits. In machine language, this is done manually by setting the 
65816 to emulation or native mode and by setting or clearing the 
register configuration bits. If you use the APW assembler, special 
assembler directives must be used to ensure that all following code 
is interpreted properly for the emulation mode. (See the APW man
ual for details.) 

When programming in Pascal or C, emulation or native mode 
selection is taken care of automatically, either by default or through 
certain directives, depending on the software used. It's not neces
sary to ensure the processor is in one mode or the other when pro
gramming in Pascal or C. 

To access the Toolbox, the 65816 must be in its native mode 
and all registers must be configured to 16 bits. 

Apple lie Emulation 
One of the smartest things Apple Computer has done is to ensure 
that the software used on older Apple computers will work on new 
machines. Lack of compatibility has killed more than one 
microcomputer. 

Figure 2-4. Apple IIGS Motherboard with Mega II Pointed Out 

The Mega II: An Apple lie all on one chip. 

19 



----------Chapter 2 ----------

Programs that ran on the Apple II can run on the Apple II+. 
Apple II+ programs run on the Apple lie and lie. And the majority 
of those programs (about 90 percent) still run on a brand-new Ap
ple IIGS. The reason for this is that the Apple IIGS contains a cus
tom chip called the Mega II. The Mega II is an Apple lie all on one 
chip. 

Operation of the Mega II is transparent as far as programming 
the machine goes. While running older Apple II software, the Mega 
II takes charge and causes the machine to be an Apple lie. When 
running Apple IIGS software, the Mega II does handle some opera
tions. For the most part, however, its purpose is to emulate an Ap
ple lie and provide compatibility for older applications. 

The Mega II has an interesting history. Apparently, the 
Mega II took the Apple IIGS design team by surprise. People 
"upstairs" requested that the Mega II (supposedly designed for 
some other project) be used in the Apple IIGS. Because of this 
addition relatively late in the IIGS design, the Mega II chip 
contains many features made redundant by the VGC video 
chip. 

A slightly less-than-delighted design team did successfully 
incorporate the Mega II into the Apple IIGS, and it does per
form its job very well. One question remains: What was the 
original purpose of the Mega II? A one-chip lie or lie, per
haps? Only time will tell. 

Memory Addressing 
The Apple IIGS has an alluring ability to address a tremendous 
amount of memory. This will be particularly attractive to program
mers weaned on 64K (or even 128K) computers. Technically, the 
65816 is capable of addressing 16 megabytes. The way the Apple 
lib :, l b u enllY u e&lg eu, u 1y o rnegally le!> uf rncu.tt~ry a1 \jc 

used for RAM, but that is still more than you're ever likely to need. 
The eight megabytes of memory are divided into 128 separate 

banks of 64K each. The full 16 megabytes represents a total of 256 
banks. Several of those banks are dedicated to the computer's 
ROM, possible ROM upgrades, and the Mega II chip. The memory 
map in Figure 2-5 shows how the memory banks are allocated in 
the Apple IIGS. 

20 



-------Programming Subtleties -------

Figure 2-5. Memory Banks in the Apple IIGS 

$00 $01 $02 . ... $7F $EO $El $FO .... $FD $FE $FF 

Each memory address (location) in the computer's RAM is rep
resented by a bank number and an offset within that bank. For ex
ample, address $000200 indicates memory location $0200 in bank 
$00, the first bank of memory. Memory location $00A8 in bank 
$El is expressed as $ElOOA8. The first byte value represents the 
bank number; the second word value indicates an offset within that 
bank. 

It's assumed that a leading $00 precedes all memory addresses. 
Because $ElOOA8 is not a true long-word value, the actual address 
is $00ElOOA8. However, because the MSB of the high-order word 
is always $00, it's usually left off (or assumed). 

Allocating and controlling all this memory is the job of a very 
special tool set called the Memory Manager. One of the most im
portant tool sets in the Toolbox, the Memory Manager is responsi
ble for divvying up and setting priorities to blocks of memory. It's 
so well implemented that you need not know the exact location of 
a memory block. The Memory Manager takes care of all that for 
you. Blocks of memory can be moved, deactivated, or purged all 
via a call to the Memory Mana~er. 

More details about memory and the Memory Manager can be 
found in Chapter 7. 

21 



----------Chapter 2 ----------

Because the Apple IIGS currently comes only with 256K 
on the motherboard, you'll need to upgrade your machine's 
memory (as has been previously recommended). When you 
upgrade, you'll probably purchase a RAM card that allows you 
to use 256K RAM chips. Eight of these chips are equal to 256K 
of memory. The Apple IIGS considers 256K to be four banks. 

As you add memory, the IIGS automatically assigns that 
memory to banks, beginning with bank $02. (Remember that 
you already have four banks of memory. Banks $00 and $01 
are built-in FPI RAM, and the Mega II RAM and 1/0 are lo
cated in banks $EO and $El.) The typical memory card comes 
with at least four blocks which can each hold 256K of mem
ory, making it capable of holding up to one megabyte of 
memory-16 banks of IIGS memory. 

Memory cards with more than four blocks of 256K may 
cause some problems with future releases of the Apple IIGS. 

According to its designers, a memory card should have a max
imum of four blocks of 256K. But certain hardware developers 
thought they could put more on a memory card. While the 
memory upgrade cards will still function, and the IIGS will be 
able to make use of the extra memory, some problems may 
result. 

The best way to avoid problems when using a memory 
card with more than four blocks of 256K is to assign the extra 
memory as a ramdisk. This can be done using the Control 
Panel's ramdisk. 

For example, the development systems this book was 
tested on contained RAM cards with 1. 75 megabytes of RAM 
on them (six blocks of 256K). With an BOOK ramdisk selected 
(the same size as the IIGS disk drive), the rest of the memory 
fit easily into the four-block maximum, and there were no 
problems. 

Operating Environment 
The operating system for the Apple IIGS is ProDOS 16, a custom 
operating system for the IIGS based on Apple's ProDOS 8 (which 
used to be just ProDOS). ProDOS 16 is very similar to ProDOS 8. 
In fact, updating is as easy as copying the ProDOS 16 files onto 
your old ProDOS 8 disks or hard drive. 

22 



------- Programming Subtleties -------

ProDOS 16 controls disks and manages the file system. It uses 
the same file structure as ProDOS 8 and will even recognize, load, 
and run ProDOS 8 files, such as AppleWorks. However, ProDOS 8 
cannot run the ProDOS 16 files. (And ProDOS 16 will not run on 
an Apple lie, lie, or II+.) 

Incidentally, ProDOS 16 serves as a file-management system 
and isn't a true operating system in the sense that UNIX, MS-DOS, 
or OS/2 are operating systems. In fact, in the old days, all pro
gramming tasks were taken care of by the Apple's built-in BASIC 
interpreter. A program was run by typing its name at the BASIC 
command prompt, prefixed by a hyphen: 

] -APL WORKS.SYSTEM 

Th~ ~l3e¥~ lJA§I~ Eemm~m1 weHla mn th~ }lppl~Wer~§ pre= 
gram, provided an AppleWorks disk was in the disk drive. (Another 
method to run AppleWorks was to place the AppleWorks disk into 
the primary disk drive and reboot the computer.) 

The Apple lies provides a better way to interact with your 
programs. 

Since late 1987, Apple introduced a Finder program, similar to 
the operating environment of the Macintosh. In fact, if you're fa
miliar with the Mac, the IIGS Finder looks like a color version of 
the Mac's. Programs, data files, and file folders (which contain sub
directories) all appear as graphics images on the screen. The Finder 
allows files and programs to be manipulated with relative ease as 
compared to the older, slower ProDOS utilities. And, not only can 
ProDOS 16 and native Apple lies applications be run using the 
Finder, but because Apple also included a copy of ProDOS 8 on 
the Finder disk, older Apple II applications can be run as well. 

Unlike the Macintosh's Finder, however, the Apple II Finder 
does have some limitations. Most notable among them is that not 
all Apple II applications are based on the graphic DeskTop envi
ronment. Older applications-and even some new ones-still use 
the Apple's text screen. Most of the newer applications, including 
examples in this book, will use the graphic environment of the 
DeskTop. 

23 



,....------Chapter 3 -----, 

How Programs 
Work 

One trait most avid computer 
programmers share is a love of 
solving puzzles. Most great pro
grammers are also great puzzle 
solvers. The self-taught com
puter wizard can unravel mys
teries and evoke programming 
incantations that make a ma
chine perform magical feats. 



----------Chapter 3 ----------

These programmers are not satisfied with just getting the job 
done. They want to make code tighter, faster, more ingenious. This 
chapter is directed to them. 

This chapter explains how programs work on the Apple IIGS. 
Of course, if the subject doesn't make any sense, please read on. 
Whether you're a programming wizard or just an apprentice, this 
chapter contains interesting background information on how the 
IIGS works, how programs are loaded, what happens when they 
start, and where they go when they die. It's a chapter full of secrets 
revealed and undercover skullduggery-ideal for the potential pro
gramming prodigy. 

An tici pa tion 
Before you can begin serious programming on the Apple IIGS, you 
will need at least one disk drive and a system disk. The program
ming tips in this book were tested on one of the original computers 
using system disk version 3.1, as well as one of the later ROM 01 
machines, so it should be applicable to your machine. 

Of course, by the time you read this, ROM version 09 and sys
tem disk version 86 might be available. Things change that quickly. 
But don't worry. The information in this book is still good and all 
of it applies. 

When you turn on your Apple IIGS, it looks for the startup slot. 
This is one of the slots on the motherboard into which a disk drive 
should be plugged. A specific startup slot can be specified in the 
Control Panel, or you can set it to scan. When set to scan, the Ap
ple IIGS will scan all slots for the appropriate startup device. 

When scan is selected, the system begins looking for an I/0 
device starting with slot 7 and continues searching down to slot 1. 
For example, if you have a hard disk drive connected to slot 7, that 
will be the startup device. Otherwise, the scan continues with slot 6 
(the old floppy drive slot), slot 5 (the 31/2-inch drive slot), and so on. 

If you have selected a specific slot from the Control Panel, 
your IIGS will look for a startup device in that slot only. This way, 
if you had a disk controller card in slot 6 and you wanted the com
puter to startup from that device, it would do so, regardless of 
what was in the other slots or what devices were plugged into the 
IIGS ports (on the back panel). 

26 



-------- How Programs Work --------

The connectors on the back panel of the computer are 
really considered devices plugged into slots. In fact, if you run 
an old Apple lie diagnostic program, it assumes you have ev
ery slot in the computer filled with specific devices, even 
though your lies may be totally empty inside. 

Once the computer is turned on, its primary job is to find a 
disk drive. Once the disk drive is found, the computer checks to 
see whether a disk is in that I/0 device. If not, or if the disk is of 
alien origin, the following message is displayed along with the Ap
ple character bouncing back and forth across the screen: 

Check startup devlcel 

If a disk is found, the computer checks to see whether it's a 
boot disk, specifically, a ProDOS disk. If it's either a ProDOS 8 or 
16 system disk, the system continues to load ProDOS from disk. If 
the disk is just a data disk (meaning there's no operating system 
present) the following is displayed: 

••• UNABLE TO LOAD PRODOS ••• 

If this or the previous message is displayed, you should insert 
a ProDOS system disk into your disk drive and try again. 

If you do have a bona fide ProDOS disk in the drive, your lies 
will attempt to load ProDOS into memory. For ProDOS 8, this is a 
very simple operation. For ProDOS 16, things are a little more 
complex. 

The ong1na1 a1s1< operatmg system tor the Apple II com
puter was simply called DOS, for Disk Operating System. It 
went through various iterations until its final version, DOS 
3.3, was replaced by ProDOS in early 1983. 

ProDOS was modeled after the SOS operating system Ap
ple developed for the late Apple III computer. SOS stood for 
Sophisticated Operating System. 

SOS introduced the hierarchical file system of volumes 
and prefixes now used by ProDOS. In fact, SOS files and 
ProDOS 16 files have identical structures to a certain extent. 
And because the Apple III Pascal used a file system similar to 
SOS, ProDOS 16 can read Apple III Pascal files as well. 

27 



----------Chapter 3 ----------

Booting ProDOS 8 
Because the Apple IIGS is Apple lie compatible (for about 90 per
cent of the programs, according to the literature), it can load and 
run a ProDOS 8 program just as if it were a lie. Due to this 
compatibility, it's logical to assume that both ProDOS 8 and 
ProDOS 16 are initially loaded from disk in a similar manner. 

The program (actually ROM code) that loads ProDOS into 
memory is called Boot ROM. These instructions are located on the 
disk's controller card. The actual memory location of the Boot ROM 
is in memory bank $00, at location $COOO plus $100 times the slot 
number. So, if slot 6 contains the disk's controller card, the Boot 
ROM is at memory location $COOO plus $100 X 6, or $C600. (All 
memory locations from here on are in bank $00 unless otherwise 
specified.) 

Boot ROM has only one job: to read in the first one or two 
blocks of the disk (or hard disk) into memory. The contents of 
these blocks are copied to memory location $800. With its dying 
breath, the Boot ROM's last job is to perform a JMP instruction to 
the machine language routines (loaded from disk) at the address 
$801. 

The routine loaded from disk is $200 bytes long and occupies 
memory locations $800 through $9FF. If the disk being booted is 
formatted for ProDOS (either version}, the information loaded from 
disk is called the ProDOS Boot Loader. This code will read in the 
rest of block 0, as well as the entire contents of block 1 of the disk. 
However, the information on block 1 is used primarily by the Ap
ple III computer as a means of booting into the SOS operating 
system. 

A block, the smallest unit of storage on a ProDOS disk, 
consists of 512 bytes of information. A sector, the smallest ac
cessible unit of a DOS 3.3 formatted disk, holds only 256 
bytes. 

The Boot Loader's job, like the Boot ROM, is to load more 
information from disk-in this case, the rest of ProDOS. The 
ProDOS Loader searches the disk's volume, or root, directory for the 
file called PRODOS, which contains the ProDOS Relocator. If this 
file cannot be found, the following message is displayed: 

••• UNABLE TO LOAD PRODOS ••• 

28 



-------- How Programs Work --------

It's not unusual to see this when booting data disks. They're 
formatted for use with ProDOS, but aren't meant to be booted. 

If the PRODOS file is found, it's loaded into memory locations 
$2000-$5BFF. And, like the Boot ROM, with the Loader's dying 
breath, it jumps to the machine language routines at address $2000 
which make up the ProDOS Kernel Relocator. 

The ProDOS Relocator is the program that prints the ProDOS 
version number and copyright on the screen. It does a number of 
other interesting things: evaluating RAM, determining the type of 
Apple computer you have, and so on. But its biggest job is to copy 
the ProDOS Kernel, the actual operating-system part of ProDOS, to 
high memory. It also sets up the System Global Page. Incidentally, 
when the Relocator is copying the Kernel image to high memory, it 
makes a grating sound on the computer's speaker. 

Once the relocated Kernel is running, ProDOS 8 scans the vol
ume directory of the disk for a system file with a .SYSTEM suffix. 
If a .SYSTEM file is found-BASIC.SYSTEM, for example-it's 
loaded into memory at location $2000, and then a JMP instruction 
is performed to that address. 

If the .SYSTEM program is in fact BASIC.SYSTEM, the BASIC 
interpreter looks for a BASIC program named STARTUP in the vol
ume directory. If found, that program is loaded into memory, and 
its instructions are executed. 

Thl.s may seem Hke a very complex way ot loading l.n some
thing as simple as a BASIC program. Yet, nearly all microcomput
ers operate this way: First, a small bit of the disk is read, then a 
larger piece, and then, finally, the operating system is loaded into 
memory. It would probably be much more efficient to directly load 
the entire operating system when a computer starts, but not as flex
ible. Imagine all your data disks needing a 30-block boot sector 
simply to display the message, ***UNABLE TO WAD PRODOS***. 

Actually, a better justification for loading ProDOS in 
pieces is to allow the system to run more than one operating 
system. For example, using this method, an alien operating 
system could have its own Boot Loader on the first two sectors 
of a disk. This custom Boot Loader could then look for a spe
cial Loader file on disk-something other than PRODOS. The 
new Loader file could then load itself into memory and the 
Apple IIGS would run a new operating system, such as the old 
Apple Pascal. 

29 



----------Chapter 3 ----------

You'll really appreciate the speed with which ProDOS 8 loads, 
especially after you have encountered the apparently sluggish 
ProDOS 16. 

Booting ProDOS 16 
As they're started, ProDOS 8 and ProDOS 16 are remarkably simi
lar. They have to be similar, so they are compatible and use the 
same disk structure. But bear in mind that although the Apple IIGS 

can boot ProDOS 8 disks and run ProDOS 8 applications, older 
Apple lis cannot run ProDOS 16 nor can they run Apple IIGS 
applications. 

Actually, as far as the computer is concerned, it doesn't 
matter whether the operating system is on disk or not. All it's 
looking for are the first two sectors, which it copies from disk 
into memory beginning at location $800. It then executes the 
instructions beginning at location $801, whether they mean 
something or not. 

As with ProDOS 8, the first thing the Boot ROM does is load 
disk blocks 0 and 1 into memory location $800 in bank $00. The 
next step is also similar. In starting a ProDOS 16 disk, the program 
at $800 (the boot code) looks for a file named PRODOS in the vol
ume directory-the same name as the ProDOS 8 Relocator. If the 
PRODOS file is not found, the ***UNABLE TO WAD PRODOS*** 
message appears. 

These similarities are not remarkable coincidences. This is be
cause a disk formatted for ProDOS 16 will contain exactly the same 
boot code on blocks 0 and 1 as does a ProDOS 8 disk. 

Once the jump is made to memory location $2000 (the 
PRODOS program), the two operating systems behave quite differ
ently. The PRODOS program under ProDOS 8 is the Relocator and 
Kernel-the actual operating system. Under ProDOS 16, the 
PRODOS file loaded at memory location $2000 is just another link 
in a long chain of commands. 

30 

If you try to boot ProQQS 16 gn em Appl~ II other than a 
IIGS, the following is displayed: 

PRODOS 16 REQUIRES APPLE IIGS HARDWARE 



-------- How Programs Work --------

The primary duty of the PROOOS file is to pass execution to 
the Apple IIGS System Loader. But before it does that, it sets up the 
ProOOS 16 quit code by transferring that part of itself to memory 
location $0000 in bank-switched memory. This code, referred to as 
PQUIT, stays in memory permanently and is used when a program 
quits. (The actual memory location is one of those pieces of infor
mation that you don't really need to know. There is no practical 
purpose for knowing that the code is loaded into the $0000 loca
tion, except to impress your friends.) 

The Apple IIGS System Loader file is named P16. It's found in 
the SYSTEM subdirectory on the boot disk. The System Loader 
works closely with ProOOS as well as the Memory Manager to al
locate, relocate, load, and save information between the disk drives 
and memory. As the System Loader (P16) is started, it displays a 
name and version number on the screen, just as ProDOS 8 does. 
See Figure 3-1. 

Figure 3-1. System Loader Display 

APPLE II 

PRODOS 16 Vl.3 

LOADER Vl.3 

29-JUN-87 

COPYRIGHT APPLE COMPUTER, INC., 1983-87 
ALL RIGHTS RESERVED. 

The ProOOS version number appears after booting a system 
disk. V1.3 is the version and release number of ProOOS 16 (P16), 
as well as the System Loader (PROOOS) file. In the above ex
ample, both numbers are the same, though that may not always be 
the case. 

Once ProOOS 16 is in memory, the PRODOS Loader (still in 
memory at $2000) continues its job. It looks in the 
SYSTEM/SYSTEM.SETUP subdirectory. All files in this directory 
are executed, starting with the file named TOOL.SETUP. 

TOOL.SETUP patches or modifies any of the ROM tool sets 
(ID numbers $01-$00). This file must be in the SYSTEM/ 
SYSTEM.SETUP directory, and it is executed ahead of any other 
files in the subdirectory. 

The SYSTEM.SETUP directory contains any file or program 
that needs to be loaded or initialized when the system is started. 
Primarily, two types of files can be included in SYSTEM.SETUP, 

31 



----------Chapter 3 ----------

along with TOOL.SETUP: Permanent Initialization files and Tem
porary Initialization files. 

Permanent Initialization files. Permanent Initialization files 
have a file type of $B6. They're referred to as SIR (STaRtup) files. 
These files are loaded and executed but not shut down like stand
ard applications. They're actually more like subroutines because 
they're always in memory and end with an RTL instruction rather 
than calling the ProDOS Quit command. Permanent Initialization 
files must also be loaded into nonspecial memory and cannot allo
cate any stack or direct-page space. 

An example of a Permanent Initialization file is the 
TOOL.SETUP program that patches the ROM-based tool sets. 
TOOL.SETUP contains adjustments and modifications to the ROM 
tool sets. It's actually an extension of the ROM code. When Apple 
learns of new bugs in the ROM tool sets, they release a new 
TOOL.SETUP file rather than new ROM chips. TOOL.SETUP must 
always be in memory, therefore it's a Permanent Initialization file 
and not a Temporary Initialization file. 

Temporary Initialization files. Temporary Initialization files 
have a file type of $B7. They're referred to as TSF (Temporary 
Startup File) files. These files are similar to Permanent Initialization 
files, except they are shut down when completed, and their mem
ory space is released. But, like Permanent Initialization files, they 
also end with an RTL instruction rather than calling the Quit 
function. 

An example of a Temporary Initialization file is the 
BEEP.SETUP program listed later in this book. BEEP.SETUP re
places the normal system beep sound with a more pleasant noise. 
Once BEEP.SETUP completes its task, it's removed from memory 
(see Chapter 12 for more information on BEEP.SETUP). 

After the SYSTEM.SETUP directory is scoured, and the SIR 
and TSF programs are run, ProDOS looks in the directory SYSTEM/ 
DESK.ACCS to load any desk accessories found there. Classic desk 
accessories (CDAs), with a file type of $B8, are placed into memory 
and can be accessed via the Control Panel. New desk accessories, 
with a file type of $B9, can only be used by DeskTop applications. 
All desk accessories in the SYSTEMjDESK.ACCS directory are 
loaded at this time. 

32 



--------How Programs Work --------

You don't need to keep all your desk accessories in the 
SYSTEM/DESK.ACCS subdirectory-only those you want to 
load. Other desk accessories can be kept in a backup directory 
and then transferred to SYSTEM/DESK.ACCS for use when 
the system is rebooted. 

After the desk accessories are loaded, ProDOS looks for a file 
named START in the SYSTEM directory. The file could be an ap
plications file, or it could be the Finder or Launcher (discussed 
later). If a START file isn't found, ProDOS looks in the volume di
rectory for a file with a suffix of either .SYS16 or .SYSTEM. The 
.SYS16 suffix indicates a ProDOS 16 file, and that program is 
loaded and executed. The .SYSTEM suffix is for a ProDOS 8 
program. 

If the .SYS16 program is found first, ProDOS calls its own quit 
code with the name of the .SYS16 file and executes it. If a .SYS
TEM (ProDOS ,8) file is found first, ProDOS calls a modified 
ProDOS 8 Quit call and executes the .SYSTEM file. However, in 
order to do this, the ProDOS 8 operating system file, P8 must be 
the SYSTEM directory. 

If a SYSTEM/START file-or a .SYSTEM or .SYS16 file in the 
volume directory-does not exist, a fatal error occurs. 

All this is done simply to boot the ProDOS 16 disk, so it's easy 
to see how ProDOS 16 can be accused of booting slowly when 
compared with ProDOS 8. However, given the power of this op
erating system and all the things it enables a programmer to do, it 
is well worth the extra wait. 

ProDOS 16 Disk Contents 
There are so many files on the ProDOS 16 boot disk that, even in 
the minimum configuration, all of them wouldn't fit on one of the 
old-style 140K disks. Most of these files and their duties were dis
cussed in the previous section, but for review (and as a handy ref
erence), they are touched on briefly here. The following programs 
(in alphabetic order) are on a sample system disk named I Aj. Re
member that throughout this section the volume name /A/ is used 
only for reference. Your system disk may have a different name. 

33 



----------Chapter 3 ----------

/ A/BASIC.SYSTEM The ProDOS 8 version of the BASIC interpreter. It 
contains the disk extensions to Applesoft BASIC in ROM. 

j AjPRODOS The System Loader that is responsible for setting up the 
operating system, Toolbox, desk accessories, and generally getting the 
Apple IIGS running. Remember that both ProDOS 8 and 16 use the 
name PRODOS for their System Loader. One way to tell the differ
ence is by looking at the file's size. ProDOS 8 is approximately 32 
blocks in size, whereas ProDOS 16 is significantly larger at approxi
mately 42 blocks. The sizes may vary depending on the release ver-
sion, but ProDOS 16 ·will always be larger. ' 

j A/SYSTEM/ The directory containing important files and folders (other 
directories). 

j A/SYSTEM/DESK.ACCS Contains new and classic desk accessories to 
be loaded when ProDOS 16 boots. Other desk accessories can be in
cluded on your boot disk, but they will be loaded only if they are in 
this directory. 

j A/SYSTEMjLIBS A directory holding system libraries. It appeared on 
the original System Disk, but not on the current (3.1) version. Apple 
may include it on future versions if an application needs library files. 

/ A/SYSTEM/P8 The Pro DOS 8 operating system. If this file is renamed 
PRODOS and copied to the volume directory, the disk will boot as a 
ProDOS 8 disk. 

/ AjSYSTEMjP16 The ProDOS 16 operating system and Apple IIGS Sys
tem Loader. 

/A/SYSTEM/START A program to be run after Pro DOS has finished 
loading (the startup program). It may be an actual application or a 
loader file to launch an application. 

/ AjSYSTEMjSYSTEM.SETUP A directory containing initialization files 
to be run at boot time. 

/A/SYSTEM/SYSTEM. SETUP jTOOL.SETUP A required file used to 
patch tool sets in ROM. 

/A/SYSTEM/TOOLS A directory containing all the disk-based tools for 
the Toolbox. The tool sets appear with the name TOOL followed by 
the three-digit decimal number of the tool set. So the Window Man
ager, tool set ID# $0E, appears in this directory as TOOL014. 

The above are all the files of a typical ProDOS 16 system disk. 
Of course, more files exist depending on the application and version 
of the system disk. Besides DESK.ACCS and SYSTEM.SETUP in 
the SYSTEM directory, the following folders might also be found: 

/A/SYSTEM/DRIVERS A directory containing control files for printers, 
AppleTalk, modems, and a variety of devices. 

34 



--------How Programs Work --------

/A/SYSTEM/FONTS A directory containing a variety of fonts to be 
taken advantage of by programs that use them. The files are named 
after the font they describe, followed by a dot and the point size of 
the font. So, COURIER.lO is a ten-point Courier font, and TIMES.l2 
is a 12-point Times Roman font. 

Two other files you might find on your system disk are these: 

/A/SYSTEM/FINDER A program, run by the /A/SYSTEM/START pro
gram, that contains a DeskTop environment similar to the one found 
'-'.1 -.1 }..-~ 1J. l U ;::t l • 

I A/SYSTEM/LAUNCHER A simple program launcher, run by the 
/A/SYSTEM/START program. This program was around when the 
original Apple lies arrived and the Finder was not yet completed. 

The Finder uses a number of other files on disk, most notably 
! -.-.- .C.:l -- -- - · - · - · . t ' .. ·- - ··-··--... , 

icon files containing the graphic images it uses as icons. The two 
icon files used by the Finder are DIAI.OG.ICONS in the volume di
rectory and FINDER.ICONS in the directory /A/ICONS. (It's per
missible to move the DIAI.OG.ICONS file into the ICONS 
subdirectory to keep your volume directory clean, by the way.) 

If you're writing applications for distribution, you'll have to 
find a way to get the following files and programs on your ProDOS 
16 disk: 

/A/PRODOS 
/A/SYSTEM 
I A/SYSTEM/Pl6 
I A/SYSTEM/SYSTEM.SETUP 
I A/SYSTEM/SYSTEM. SETUP /TOOL.SETUP 

These files are required by ProDOS 16 in order to boot suc
cessfully. However, the startup application will probably require 
tool sets and other support files. 

For example, DeskTop programs may need j A/SYSTEM/ 
FONTS/ (and the fonts) or/ A/SYSTEM/START or the .SYS16 file 
in the volume directory. BASIC programs will need BASIC.SYSTEM 
and P8. And, if your program uses a disk-based tool set, you'll 
need to include it in the j A/SYSTEM/TOOLS directory. 

35 



----------Chapter 3 ----------

If you plan to write and distribute your applications on a 
ProDOS 16 disk, you should know that your system disk and 
its contents contain software copyrighted by Apple. Only very 
wealthy companies can afford to pay the fees required to dis
tribute ProDOS with their programs. For you, as a software 
wizard, it's best to put your applications on a data disk and 
then provide instructions for copying your software to a 
ProDOS disk or to have the user copy ProDOS and the Finder 
to your disk. 

Contact Apple Computer for more information on 
licensing. 

Launching Applications 
Launching a program on the Apple IIGS is different from running 
programs on older Apples. The Apple IIGS offers a very diverse 
environment and, as usual, there are always a few more things go
ing on than meets the eye. Of course, programmers will love to 
take advantage of the new features of ProDOS 16. 

Because this book is about the Apple IIGS, ProDOS 8 is be
yond its scope. There are many worthy texts already available on 
the subject to which the reader is referred. The concentration here 
will be 'on launching (or running) applications under .ProiJO§ 16. 

The first and most bizarre feature of ProDOS 16 is that pro
grams start with a call to the ProDOS Quit function. A program 
starts by quitting. 

To launch a ProDOS 16 application, the program can be one of 
three types: 

• The program named START in the SYSTEM directory 
• Any program with an S16 ($B3) file type 
• Any program with a SYS ($FF) file type 

The SYS file type is a ProDOS 8 application. Even so, the 
ProDOS 16 Loader will recognize this and, as part of the applica
tion's startup, ProDOS 8 will be loaded and executed, allowing you 
to run your ProDOS 8 program. 

Programs can also be launched via the Finder or the Launcher. 
Whichever method is used, the program is loaded into memory and 
control is transferred to that program. 

36 



--------How Programs Work --------

But there's considerably more to the story than that. If you 
have purchased this book and have read this far, you're probably 
interested in knowing the real information on program launching. 

Launching. Your programs are actually loaded via the ProDOS 
16 Quit call. When one application quits and performs the obliga
tory call to ProDOS notifying the operating system that it is fin
ished, the program has the option of immediately running another 
program. 

If a second program is not specified, the ProDOS 16 Quit call 
allows any previously launched programs to be rerun, either by re
loading them from disk or restarting them from memory. 

When the ProDOS 16 Quit function is called, the program 
making the call is basically finished. It can, however, tell ProDOS 
the following: 

• Which program to run next 
• Whether it can be used again after the next program quits 

If the program doesn't specify the next program, ProDOS 
checks to see whether it can return to any other programs previ
ously run, and if not, it executes the special quit code, PQUIT. 

The ProDOS 16 Quit Function 
Programming for ProDOS 16 is different than programming for the 
Toolbox, yet very similar to ProDOS 8. More information on using 
ProDOS is presented in Chapter 14. The ProDOS 16 Quit function 
is number $29. It has two parameters: 

• The pathname of an optional program to run 
• The quit-parameter word 

To call ProDOS on the Apple IIGS, a long jump is made to the 
ProDOS vector in memory bank $E1, offset $A8: 

jsl $ElOOA8 ;Call the ProDOS vector 

The JSL instruction is followed by two values. The first value 
is the function number, and the second is the long address of the 
parameter list: 

Value Size 
Function number Word 
Parameter address Long word 

37 



----------Chapter 3 ----------

The function number is a word-sized value, and the parameter 
address is the memory location of a list of parameters required by 
the call. A sample Quit call in machine language would be 

jsl $ElOOA8 ;ProDOS vector 
de i2'$29' ;Function number $29, Quit 
de i4'Pa.ra.ms' ;Address of Parameters 

Or, if using macros (discussed in Chapter 4): 

_QUIT Pa.ra.ms ;see above 

The information at the address indicated by the label Params 
contains the address of a pathname of a program to run, plus the 
quit parameter word. For example: 

Pa.ra.ms Anop 
de i4'0' 
de i2'0' 

;Memory Address of parameters 
;A long word of zero, no pa.thna.me 
;quit parameter word of zero 

This example w<;mld be used if a program were just quitting 
and not running another program. Using a long word of 0 for the 
pathname tells ProDOS to quit without running another program. 

If the program were quitting and running another program, the 
following parameters might be used: 

Pa.ra.ms Anop 
de i4'Prog' 
de i2'0' 

;The address of Prog's pa.thna.me 
;quit parameter word of zero 

The label Prog, in this case, is the address of the pathname of 
a program to run next: 

Prog de 
de 

11'14' ;must start with a. count byte 
'/GAMES/MONSTER' ;pa.thna.me to run 

In ProDOS, pathnames are always preceded by a count byte 
denoting the length of the path, which follows immediately. If a 
program were to quit with the above Params, the program MON
STER on the GAMES volume would be run. 

This is how one program can run another and how the Finder, 
Launcher, APW shell, TML Pascal environment, and a plethora of 
other shells and operating systems will load and execute programs. 
They'll all do it via the ProDOS 16 Quit call. 

38 



--------How Programs Work --------

The Quit-Parameter Word 
If you don't want to run another program, or if you want to run 
another program and then have control come back to the original 
program, that is where you need the quit-parameter word. 

The quit-parameter word is part of the ProDOS 16 Quit func
tion's parameter list (see above) . Out of the 16 bits of this word, 
only two are used. The rest are labeled forbidden by Apple: 

Figure 3-2. The Quit-Parameter Word 

Status: Used Reserved-set to 0 

Quit: rn '-I ___.___,__J....__...J....__.____._----~...----'--'---'-----'---'---'----' 
Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Bit 15. Bit 15 of the quit parameter controls the quitting pro
gram's User ID (discussed later in this book) and whether or not 
the program will restart after a second program quits. (Each pro
gram has its own, unique ID number.) Bit 14 determines if the pro
gram quitting can be restarted from memory or should be reloaded 
from disk. 

To stop one program, start another, and then return to the 
original program requires some fancy footwork. To assist in this 
ballet, ProDOS maintains something called a Quit Return Stack. As 
each program quits1 it has the option of placing its User ID 
(uniquely identifying that program) onto the Quit Return Stack. 

Likewise, when a program quits, ProDOS checks the Quit Re
turn Stack for a User ID. If found, the program identified by the 
User ID is run again. It's like magic. 

If Bit 15 of the quit parameter is set to 1, the quitting pro
gram's ID number is pushed to the ProDOS 16 Quit Return Stack. 
This means that, once a second program is done, control will return 
to the original program. 

This is how programs like the Finder and Launcher work. 
When you select a program to run, the Finder sets bit 15 of the 
quit-parameter word and calls the ProDOS Quit function to run 
that program. Because this bit is set, the Finder or Launcher's User 
ID is saved on the ProDOS 16 Quit Return Stack. When the pro
gram you've selected is finished, ProDOS checks the Quit Return 
Stack, removes previous program's ID number, and returns to that 
program. 

39 



----------Chapter 3 ----------

If Bit 15 were not set when the first program quits, then what
ever program belongs to the User ID pulled from the Quit Return 
Stack is run. If the Quit Return Stack is empty, control returns to 
the PQUIT code established by PRODOS when the machine was 
booted. 

Bit 14. Bit 14 of the quit-parameter word determines whether 
or not the program making the Quit call can be restarted from 
memory or should be reloaded from disk. If bit 14 is set to 1, the 
program can be restarted from where it sits in memory. If it is reset 
to 0, the program must be reloaded into memory by the System 
Loader. (This is all done by ProDOS. All you do is set or reset the 
bit.) 

So, launching a program on the Apple IIGS starts with a Quit 
call. Quitting programs can specify the name of another program to 
run, as well as determine whether control returns to the original 
program after the second is run. 

Programs may crash when run through a debugger because of 
the way the ProDOS 16 Quit function works in conjunction with 
the Quit Return Stack: When your program makes a ProDOS Quit 
call, the operating system becomes confused because the debug 
program is still running. This causes the system to crash. When 
using the trace mode in DEBUG, place a breakpoint before your 
code to make the ProDOS 16 Quit function call. 

Computer States at Runtime 
When ProDOS passes control to a program via the Quit call, the 
System Loader determines whether the new program is relocatable, 
or must reside at a specific location in memory. When this deter
mination is done, the program is allocated its own space, given its 
own zero page, and enough memory to operate. A number of other 
things can happen, depending on the program and how it was 
loaded. 

Only file types $B3-$BE can be loaded by the System Loader, 
and only file types $B3 and $B5 can be run as programs (and speci
fied by a Quit call). If a file of an unusual type is specified, the Sys
tem Loader reports error $5C, Not an executable file. 



--------How Programs Work --------

Table 3-1. ProDOS 16 Load File Types 

Type Hex Dec Description 
S16 83 179 ProDOS 16 system application file 
RTL 84 180 APW runtime library file 
EXE B5 181 ProDOS 16 shell application file 
STR 86 182 ProDOS 16 Permanent Initialization File 
TSF B7 183 ProDOS 16 Temporary Initialization File 
NDA 88 184 New desk accessory 
CDA 89 185 Classic desk accessory 
TOL BA 186 ProDOS 16 tool set file 
DRV BB 187 ProDOS 16 driver file 

BC 188 System use 
BD 189 System use 
BE 190 System use 

Unlike older ProDOS 8 applications, there is no way to be cer
tain exactly where a program running under ProDOS 16 will be 
put in memory. (ProDOS 8 programs were always loaded at mem
ory location $2000 in bank $00.) However, there are a few guaran
tees made by Apple regarding the state of the system when your 
program takes control. 

As with the Boot ROM, once the Loader places your program 
into memory, control of the machine passes to the first instruction 
of your program. Because the Apple IIGS is a single-tasking com
pUter, meaning it's capal5le of doing only one thing at a Hme, yaur 
program has complete control when it starts. The computer states 
listed in Table 3-2 will be set at the time your application is 
launched. 

Table 3-2. The 65816 Registers Set at Launch 

Register 
A 
X 
y 

s 
D 
p 
PBR 
DBR 
PC 

Type 
Accumulator 
Index 
Index 
Stack pointer 
Direct page 
Processor status 
Program bank 
Data bank 
Program counter 

Value 
The application's User ID 
$0000 
$0000 
The top of stack space 
The bottom of stack space 
All zero, native 65816 mode 
Determined by the Loader 
Determined by the Loader 
Determined by the Loader 

41 



----------Chapter 3 ----------

The addresses pointed to by the S and D registers are in bank 
$00. (The stack and direct page must always be in bank $00.) For 
example, the S register might point to $1 BFF, and the D register 
might point to $1800, defining the stack and direct-page space to 
that $400 byte block. Note, however, that tool sets must request 
their own direct-page space from the Memory Manager (see the 
next chapter). 

The values of the program and data bank registers, as well as 
the program counter will be determined by the Loader and what 
your application requires. There is no guarantee that the program
bank and data-bank registers will be pointing to the same bank of 
memory. 

Other aspects of the system are set as follows: 

• The standard input and output devices used by the Text tool set 
are both set to the Pascal 80-column video screen. These can be 
changed by using the Text tool set commands to specify new in
put or output devices. However, at startup, both are set to the 
Pa.s.cal 80-c:olumn device. a.ls.o loosely referred to as the screen. 

• Memory shadowing is set on for the language card, 1/0 spaces, 
and text pages, and is set off for the graphics pages. Unless you 
are truly an expert, it is not recommended that you alter memory 
shadowing. 

42 



...-------Chapter 4 ------. 

About the 
Toolbox 

The Toolbox is crucial to pro
gramming the Apple IIGS. All 
the routines necessary for pro
gramming the Apple IIGS are 
kept in the Toolbox. But the 
Toolbox is more than a simple 
set of programming routines: 
It's the secret to writing pro
grams and developing DeskTop 



----------Chapter 4 ----------

applications for the Apple lies. Know the Toolbox, and you can 
master the machine. 

This chapter introduces the Apple IIGS Toolbox. The Toolbox 
contains about 1000 unique routines (called functions) that take 
much of the effort out of programming the Apple IIGS. Though the 
name Toolbox is accurate when it describes these routines and func
tions as tools, it might be more fitting to refer to the Toolbox as a 
treasure chest of programming features. 

This chapter won't detail the operation of the Toolbox, but it 
does show how to use the Toolbox to your best advantage. For de
tailed information about the Toolbox, including a complete list of 
the Toolbox function numbers and parameters, refer to a compre
hensive reference, such as that found in COMPUTEt's Mastering the 
Apple I!Gs Toolbox. 

Toolbox Briefing 
The Toolbox contains routines found in the computer's ROM as 
well as some routines that must be loaded from disk into RAM 
(called disk-based tools). The nearly 1000 unique functions in the 
Toolbox are grouped into 28 different categories called tool sets. For 
example, all of the functions related to the manipulation of win
dows are found in the Window Manager tool set, the pull-down 
menu functions are in the Menu Manager tool set, and so on. (See 
Table 4-1 for a complete listing.) 

A tool set can contain as many as 255 different functions. At 
present, the QuickDraw II tool set, the largest by far, contains 206 
unique routines. 

Each tool set function is given a unique identification number. 
The number shows which tool set the function belongs to and 
gives the individual function number within that tool set. Together, 
these two numbers create a two byte (16-bit, or word-sized) num
ber identifying the function. One byte gives the tool set; the other, 
the function number: 

function number (1 byte) tool set number (1 byte) 

The byte representing the function number comes first, fol
lowed by the tool set. It's backwards, but it's consistent. All of the 
functions in the Toolbox are identified this way. For example, the 
Miscellaneous tool set is tool set number $03. A function within 

44 



--------About the Toolbox --------

that tool set, SysBeep, is function number $2C. SysBeep is referred 
to as function $2C03 in the Toolbox: 

function number ($2C), tool set number ($03) 
SysBeep = $2C03 

The tool set 10 is the low-byte value of $03, and the function 
10 is the high-byte value of $2C. Any other function in the Miscel-
laneous tool set will also end with the low-byte value of $03, but it 
will have a different hish-byte valY~ . 

Table 4-1 contains a complete list of tool sets, their names, and 
ID numbers. Note which ones are found in ROM and which ones 
are located on disk. 

Table 4-1. Tool Set Chart 

ID Name Where Comments 
$01 Tool Locator ROM 
$02 Memory Manager ROM 
$03 Miscellaneous tool set ROM 
$04 QuickDraw II ROM $300 bytes direct-page space 
$05 Desk Manager ROM 
$06 Event Manager ROM $100 bytes direct-page space 
$07 Scheduler ROM 
$08 Sound Manager ROM $100 bytes direct-page space 
$09 Apple DeskTop Bus ROM 
$0A SANE ROM $100 bytes direct-page space 
$0B Integer Math ROM 
$0C Text tool set ROM 
$0D RAM Disk ROM Internal use only 
$0E Window Manager Disk Uses Event Manager's direct page 
$OF Menu Manager Disk $100 bytes direct-page space 
$10 Control Manager Disk $100 bytes direct-page space 
$11 System Loader Disk 
$12 QuickDraw II Auxiliary Disk Uses QuickDraw's direct pages 
$13 Print Manager Disk $200 bytes direct-page space 
$14 Line Edit Di<;k $1 00 hytPC< rlirPd -p::!BP " P-""P 
$15 Dialog Manager Disk Uses Control Manager's direct page 
$16 Scrap Manager Disk 
$17 Standard File Disk $100 bytes direct-page space 
$18 Disk Utilities Disk (No information) 
$19 Note Synthesizer Disk (No information) 
$1A Note Sequencer Disk (No information) 
$1B Font Manager Disk $100 bytes direct-page space 
$1C List Manager Disk 

45 



----------Chapter 4 ----------

The tool set ID is the identification number used to reference 
the tool set during calls to functions. For the sake of convenience, 
and to be consistent with Apple's documentation, hexadecimal 
(base-16) notation is used. This also makes it easier to spot the tool 
set number when looking at only a two-byte Toolbox function 
value. 

The names listed in the second column of Table 4-1 are the of
ficial tool set names. The purposes of most tool sets may be easily 
discerned from their names. The Miscellaneous tool set, number 
$03, contains a hodgepodge of important functions that don't fit 
comfortably under the rubric of any of the other tool sets . 

The third column in Table 4-1 indicates whether a tool set is 
located in ROM (built into the IIGS) or whether it is loaded into 
RAM from disk. 

Additional information is listed under Comments, such as how 
many direct pages are required by the tool set. The tool sets often 
need a certain amount of direct-page memory. Its use is similar to 
BASIC's use of zero page: as a scratch pad for temporary storage of 
data and pointers. The amount needed depends on the tool set, 
and its use is discussed in greater detail later in this chapter. 

Opening the Toolbox 
Before the Toolbox can be accessed, the microprocessor must be 
placed into native mode. That is, the computer must be running 
with Apple lie (Mega II) emulation turned off. Additionally, all reg
isters in the 65816 microprocessor must be set to 16-bit widths. 
The following code does this in machine language: 

clc 
xce 
rep #$30 

;clear the carry bit 
;and the emulation bit 
;use 16-bit memory and registers 

Depending on where and how an application has been 
launched, the code above may not be necessary. If the APW or 
ORG4.jM assembler is used, there's no need to establish the size of 
the registers and turn off emulation. However, with other assem
blers and especially for BASIC programs using the Toolbox with 
machine language subroutines, you must perform the above opera
tion. The Toolbox cannot be accessed when the 65816 
microprocessor is in emulation mode. 

46 



--------About the Toolbox --------

With high-level-language compilers you don't need to worry 
about turning off emulation. All ProDOS 16 program launchers 
automatically set the 65816 into native (non-emulation) mode 
before your application starts. 

Calling the Toolbox 
To call the Toolbox using machine language, place the function ID 
(tool set number and function number) in the X register. Push onto 
the stack any parameters passed to the function. Finally, make a 
long jump to the subroutine (JSL) at address $E10000, the Toolbox 
dispatcher. Any parameters returned from the function should be 
pulled from the stack after returning from the function. 

The first Toolbox commandment: Thou shalt not access a 
Toolbox function unless its tool set has been started up. Every 
function in the Toolbox is part of a specific tool set. And before 
that function can be used, its tool set must be started. 

Each tool set has a special function to do this, called the 
StartUp function. This function is always function number $02. So, 
before you can use any function in the Miscellaneous tool set, you 
must call the MTStartUp function, ID number $0203 ($02 for the 
StartUp function and $03 for the Miscellaneous tool set). Once 
StartUp is called, other routines in the tool set can be accessed. 

The specifics of calling the Toolbox, along with step-by-step 
analysis, is provided in COMPUTEt's Mastering the Apple lies Tool
box. Refer to that text if these concepts are new to you. 

To perform the MTStartUp function in machine language, the 
X register is loaded with the 16-bit function ID number, $0203 and 
then a JSL instruction is made to memory location $E10000. (JSL is 
Jump to Subroutine Long, and memory address $E10000 is the 
memory location of the Toolbox.) This is the door through which 
you get to the Toolbox. 

So in order to start this tool set, a machine language program 
would use the following code: 

ldx #$0203 ;MTStartUp 
jsl $El0000 ;start the Miscellaneous tool set 

The short form of this call is 

_MTStartUp ;Start the Miscellaneous tool set 

47 



----------Chapter 4 ----------

This is an APW assembler macro call defined in the 
M16.MISCTOOL macro file (macros and macro files are discussed 
in the next chapter). Throughout the remainder of this book, both 
the long and short (macro) forms of making Toolbox calls in the as
sembler will be used. 

In C, calling the StartUp function is as easy as typing the func
tion name. For example, to start up the Miscellaneous tool set, the 
following is used: 

MTStartUp( ); 

And it's done. The information needed by the compiler to per
form the Toolbox call is contained in an include file. Just use the 
Toolbox function name in your source code, and the function is 
called automatically. Remember to place the following at the top of 
your C source code listing: 

#include <mlsctool.h> 

With Pascal, making a Toolbox call is just as easy. Using TML 
Pascal, the Miscellaneous tool set is started as follows: 

MTStartUp; 

As with C this is simply a statement in your Pascal source 
code. The information is built into the TML Pascal unit file called 
MISCTOOLS.USYM. In the USES portion of your Pascal program, 
you would include this file ~n the following manner: 

USES MlscTools; 

Once the tool set has been started up, an application can use 
its features . For example, the SysBeep function, which beeps the 
speaker, is function number $2C03 of the Miscellaneous tool set. 
To call the system beep procedure in machine language, use the 
following: 

ldx 
jsl 

#$2003 
$El0000 

;the SysBeep function ID 
;call the Toolbox 

or, if using macros: 

_sysBeep ;call SysBeep 

48 



--------About the Toolbox --------

Remember, the StartUp function has already been called. For 
C, the source would be 

SysBeep( ); 

and in Pascal, simply 

SysBeep; 

As mentioned previously, in Pascal each Toolbox function call 
contains its definition in a support file. These files can be included, 
used, or copied into your source file, depending on which language 
your program speaks. For example, with the APW assembler, the 
MCOPY command is used to copy macro definitions from external 
macro libraries into your program. In the C language, the #include 
directive causes the compiler to include a header file defining the 
Toolbox calls, as if it were an extension of your source code. Simi
larly, TML Pascal incorporates unit symbol files which are brought 
into the compilation step with the USES statement. 

These techniques of including, using, or copying are all cov
ered in the next chapter. 

Tool Set Interdependencies 
Many tool sets in the Toolbox call upon other tool sets to perform 
a special operation. This collaboration requires that interdependent 
tool sets-those that rely upon others-must be active and available. 

While your program may only deal directly with the Menu 
Manager, the process of drawing menus relies upon the graphics 
wizardry of QuickDraw II. So your application must start up both 
the Menu Manager and QuickDraw II. To further complicate mat
ters, the order in which the tool sets are started is equally 
important. 

Fortunately, the following table presents a list of the interde
pendent tool sets, the tool sets they need, and the order in which 
they should be started: 

ID Tool Set 
$01 Tool Locator 
$02 Memory Manager 
$09 DeskTop Bus 
$06 Integer Math 
$0C Text tool set 
$0A SANE 
$16 Scrap Manager 

Tool Sets Required (by Tool Set ID) 
None 
$01 
$01 
$01 
$01 
$01, $02 
$01, $02 

49 



----------Chapter 4 ----------

ID Tool Set 

$03 Miscellaneous tool set 
$04 QuickDraw II 
$07 Scheduler 
$08 Sound Manager 
$19 Note Synthesizer 
$11 System Loader 
$12 QuickDraw Auxiliary 
$06 Event Manager 
$0E Window Manager 
$14 Line Edit 
$10 Control Manager 
$OF Menu Manager 
$1 C List Manager 
$15 Dialog Manager 
$05 Desk Manager 
$17 Standard File 
$1 B Font Manager 
$13 Print Manager 

Tool Sets Required (by Tool Set 10) 

$01, $02, $0B 
$01-$03 
$01-$03 
$01-$03 
$01, $02, $08 
$01-$03 
$01-$04 
$01-$05, $09 
$01-$06, $10, $OF 
$01-$04, $06, $16 
$01-$04, $06, $0E, $OF 
$01-$04, $06, $0E, $10 
$01-$04,$06, $0E, $10,$0F 
$01-$04,$06, $0E,$10, $0~ $14 
$01-$04, $0~ $0E, $10, $0~ $14, $15, $16 
$01-$04, $06, $0E, $10, $0~ $14, $15 
$01-$04, $0B, $0E, $10, $0~ $1C, $14, $15 
$01-$04, $12, $06, $0E, $10, $0~ $14, $15, 
$1C,$1B 

For example, if your program uses any functions in the Line 
Edit tool set, it must start up in the following order: tool sets 
$01-$04 (Tool Locator, Miscellaneous tool set, Memory Manager, 
QuickDraw II), tool set $06 (Event Manager), and tool set $16 
(Scrap Manager). 

The First Six Functions 
Consistency has never been highly regarded in the computer pro
gramming world. But the Apple IIGS programmer will be delighted 
to know that the first six function calls in each tool set follow a 
standard format. These functions are housekeeping, or tool set 
management routines, and every tool set has them. 

As shown in the previous section, the StartUp function must 
be called before other functions in a tool set can be used. StartUp is 
just one of the first six functions. 

Apple Computer has reserved tool set functions $07 and $08 
for future enhancements. Until they are placed on the duty roster, 
the next usable function in each tool set is $09. 

50 



--------About the Toolbox --------

The first six function calls in each of the first six tool sets are 
as follows: 
ID Function 
$01 Bootlnit 
$02 StartUp 
$03 ShutDown 
$04 Version 
$05 Reset 
$06 Status 

Description 
Initializes the tool set for the first time 
Starts up the tool set for application usage 
Shuts down the tool set when no longer needed 
Returns the version number of the tool set 
Initializes the tool set after a system reset 
Determines whether the tool set is active or not 

These function names are unique to each tool set since they 
are always prefixed by a short name. For example, the Memory 
Manager uses the letters MM before each of these function names: 
MMStartUp, MMVersion, and so on. The Tool Locator tool set uses 
TL: TLBootlnit, TLStartUp, and so on. 

• Bootlnit must never be called by an application. If the tool set is 
ROM-based, this function is performed when the computer starts 
up. If the tool set is RAM-based (loaded from disk), Bootlnit is 
called after it is first loaded into memory. 

• StartUp: As stated in the previous section, applications must call 
StartUp so that the tool set's functions become available. Some 
tool sets require input parameters for use with the StartUp func
tion. Passing parameters to a Toolbox function is discussed in the 
next section. 

• ShutDown must be called before exiting to the operating system 
when an application is finished with a tool set. The tool set would 
then free up any memory it had allocated and, in general, would 
clean up after itself. 

• Version: An application can determine the version number of a 
tool set by calling this function. It returns a word (16-bit integer) 
result. The high-order byte of the result consists of the major ver
sion number. The low-order byte contains the minor version. If 
the tool set is a prototype, bit 15 of the version number result will 
be set. (In this text when a bit is said to be set, it is made equal to 
1. A reset or cleared bit is one made equal to 0.) 

• Reset occurs when you press Control-Reset or make a DeskTop 
Bus reset call from software. The computer performs the Reset 
function in each of the active tool sets. 

• Status: A program can find out if a tool set has been started by 
making a call to it's Status function. If not active, it returns an 
integer value of 0, otherwise it returns a nonzero value. 

51 



-------------------Chapter4-------------------

Passing and Receiving Arguments from the Toolbox 
The majority of the Toolbox functions require an argument (a value 
or parameter) to be sent to the Toolbox, or they return an argu
ment, or a combination of both. The Toolbox works with three 
types of parameters: bytes, words (two bytes), and long words (two 
words). 

If any arguments are required by a function, they are pushed 
onto the processor's stack before the Toolbox call is made. Argu
ments returned from a function are then pulled from the stack after 
the call. This is demonstrated in the following portion of code 
which obtains the version number of the Miscellaneous tool set: 

pha 
ldx #$0403 
jsl $El0000 
pla 

;push space for the result 
;the MTVersion fUnction 
;call the Toolbox 
;retrieve version information 

The values returned from the stack must have space reserved 
for them before the call is made. This is done by pushing arbitrary 
values onto the stack. These values are replaced with useful infor
mation, pulled from the stack, after the call is made. 

The above function is handled as follows in C: 

Version = MTVersion( ); 

Note that Version must be declared beforehand as a word 
value, an unsigned integer. After the call, the Version variable con
tains the version number of the Miscellaneous tool set. 

In Pascal, the function call is similar: 

Version = MTVersion; 

Remember to declare the variable, Version, as an integer. In 
both Pascal and C, the code for stack manipulation is provided by 
the compiler. 

When starting up the Memory Manager, a word-sized value is 
pushed onto the stack before the call to MMStartUp is made. This 
provides the result space for an ID number: 

pha 
ldx #$0202 
jsl $ElOOOO 
pia 
sta UseriD 

52 

;push space for the result 
;MMSta.rtUp 

;pull the user ID 
;sa.ve it in a safe place 



--------About the Toolbox --------

When MMStartUp is called, not only does it allow access to 
other Memory Manager functions, it also assigns your application a 
unique identification number. You should store the value pulled 
from the stack as your program's User ID. You'll need it later on. 

The Memory Manager is covered in detail in Chapter 7. 

Direct Pages 
Many tools need only a call to their StartUp function to get them 
going. Others require additional information, such as timing infor
mation, graphics modes, the User ID returned by the Memory 
Manager's StartUp function, or a combination of these. 

A few tool sets require a small block of RAM to use as scratch 
space for their functions. This memory buffer is called a direct 
page, and it consists of one page (256 bytes) of RAM. The direct
page memory must exist in the first 64K bank of memory. 

Space for the direct page is allocated using a function in the 
Memory Manager. This function is called NewHandle. Since a pro
gram may use many tool sets and require a large quantity of direct
page space, it's common to allocate one large block of memory for 
use by each of the tool sets requiring direct pages. Therefore, you 
should calculate the total amount of direct-page memory needed 
before using the NewHandle function. See Table 4-1 for the 
amount of direct-page space each tool set requires. 

Once the direct page is established (by some sleight-of-hand 
programming you'll be reading about later), portions of it are di
vided among the tool sets which require them. 

Tools on Disk 
Some tool sets are stored in the SYSTEM/TOOLS subdirectory on 
the ProDOS 16 disk your computer is booted with. Tools on disk 
cannot be accessed until they have been loaded into memory. This 
is accomplished with the LoadTools function of the Tool Locator 
tool set. 

LoadTools uses a list of tool set numbers in memory to load 
corresponding files from disk. It accesses the disk and copies the 
tools into memory. 

When calling LoadTools, an application first pushes a four-byte 
address of the tool list to the stack. For example: 

pea. Toollst 1-16 
pea. Toollst 
ldx #$QEOl 
jsl $ElOOOO 

;push long word address of list 

;Loa.dTools 

53 



----------Chapter 4 ----------

Toolist (above) points to the memory location of the list of tool 
sets to be loaded from disk. The structure of the list of tool sets be
gins with a count word (two bytes) which tells LoadTools how 
many entries there are in the list. 

The count word is followed by several four-byte entries that 
describe the tools to be loaded. The first two bytes constitute a 
word that contains the tool set's ID number. For example, $0003 
would indicate the Miscellaneous tool set. The second two bytes 
a rc a w o r d thll.t Gp e cifieg the minimum ver s:io n o f th P tool. If a pro
gram requires version 1.3 or later of a tool set, $0103 is specified. 
By using a minimum version number of $0000, any version on disk 
will be loaded. 

The following is a sample table showing three tool sets to be 
loaded from disk: the Window Manager (tool set $0E), the Menu 
Manager (tool set $OF), and the Control Manager (tool set $10). 

Toollst de i'3' 
de I'$0E',I'0000' 
de I'$0F',I'OOOO' 
de I'$10',!'0000' 

;count word (3 tool sets) 
;Window Manager 0.0 or newer 
;Menu Manager 0.0 or newer 
;Control Manager 0.0 or newer 

After the LoadTools call is complete, the program can proceed 
by starting up each of the loaded tool sets as needed. 

In C, the method of loading tools from disk starts by globally 
declaring an array of tool sets as a group of unsigned word-length 
integers: 

Word Toollst[] = {3, 
14, 0, 
16, 0, 

16, o}; 

I* Tool count • 1 
/* Window Manager • 1 
/* Menu Manager • I 
I* Control Manager • I 

From within a function in your application, the LoadTools() 
function is called in this manner: 

LoadTools(Toollst); 

If you're using Pascal, the procedure is almost the same, except 
Toolist is defined in the VAR section of the program as a ToolTable 
type, a special record which follows the structure of the tool list: 

Toollst: ToolTable; 

54 



--------About the Toolbox --------

Unfortunately, Pascal forces the values in the Toolist array to 
be assigned at run time within a procedure. This results in longer 
code. Example: 

Toollst.NumTools : = 3; 
Too list. Tools[1). TSNum : = 14; 
Too list. Tools[1).MlnVerslon : = 0; 
Too list. Tools[2]. TSNum : = 15; 
Toollst. Tools[2].MlnVerslon : = O; 
Toollst. Tools(3]. TSNum : = 16; 
Too list. Tools(3).Mln Version : = 0; 

Loa.dTools(Toollst); 

{ Tool count } 
{ Window Ma.na.ger } 

{ Menu Ma.na.ger } 

{ Control Ma.na.ger } 

However, the LoadTools function call is identical in syntax to 
the call in C. 

When Errors Occur 
Calling some Toolbox functions can result in errors. Errors can oc
cur under a variety of circumstances. Not all of them are fatal. 

The way to tell whether there was an error during your Tool
box call is to test the carry flag after the function returns. If the 
carry flag is set, an error occurred, and your program can take ap
propriate action. If the carry flag is clear, no error occurred, and the 
program can continue. 

If an error does occur, the Toolbox places a special error code 
in the A register. This two-byte value describes the error that oc
curred and the tool set called. Unlike the Toolbox function num
bers, the tool set number in an error code is in the upper byte. The 
error number is in the lower byte. For example, if the error returns 
$0110 in the A register, the upper byte ($01) indicates that the er
ror occurred with tool set $01, the Tool Locator. The error code 
($10) is in the lower byte. Error code $10 of the Tool Locator is 
Minimum Version Not Found. (All error codes are documented along 
with the Toolbox functions in COMPUTEt's Mastering the Apple lies 
Toolbox.) This error might occur when the LoadTools function is 
called to load tool sets from disk into RAM. If the minimum ver
sion specified is not found on disk, this error is returned after the 
LoadTools function is called. 

Note that only some of the functions in the Toolbox result in 
actual errors. Some are unable to produce errors, yet may return 
with the carry flag set. An application should only test for errors 
after making Toolbox calls capable of producing errors. 

55 



----------Chapter 4 ----------

Trapping for Toolbox errors in a C program is done by testing 
an external variable called _toolErr (note the underscore). This 
variable is declared as type extern in the types.h header file, which 
should be the first file included by any C program that uses the 
Toolbox. If _toolErr is a nonzero value, it means that the most re
cent Toolbox function resulted in an error. The value in _toolErr is 
the error code. 

Here is a sample error-handling statement in C: 

lf (_toolErr) SysFa11Mgr(_toolErr, nil); 

Care should be taken when handling errors in C by referenc
ing the _toolErr variable. Since this variable is changed after each 
function call, your program should make a copy of _toolErr before 
using any other Toolbox functions. 

TML Pascal programmers handle errors in a similar fashion. To 
see if an error has occurred, the value of a predefined variable 
called IsToolError is tested. The error code is stored in another 
predefined variable called ToolErrorNum. 

Here is a sample error-handling statement in TML Pascal: 

IF IsToolError THEN 
SysFa11Mgr(ToolErrorNum, 'Fatal system error -> $'); 

All the examples for handling errors, shown here, take the 
easy way out. The Miscellaneous tool set includes a function called 
SysFailMgr which brings up the familiar sliding Apple error mes
sage screen. (You see it when you try to boot the Apple IIGS with
out a disk in the drive). 

SysFailMgr is adequate for testing purposes, but it shouldn't be 
m~ed when ~rrorg ceeur in end=user er eommercial applicatiom. 
There are elegant (and user-friendly) ways of handling errors. It 
just takes a little extra effort to incorporate them into your 
programs. 

Closing the Toolbox 
When an application is finished using a particular tool set, it should 
shut it down. This is done by calling the tool set's ShutDown func
tion, number $03. For example, to shut down the Menu Manager, 
the MenuShutDown call is made: 

ldx #$030F ;MenuShutDown 
jsl tElOOOO 

56 



--------About the Toolbox --------

Since an application uses many tool functions throughout the 
running of the program, tool sets are usually shut down all at once 
before the program quits. 

As a rule, tool sets should be shut down in the reverse order 
that they were started up. If, for example, the Miscellaneous tool 
set was shut down before other tool sets, it would cause the appli
cation to crash. 

The Memory Manager is one of the last two tool sets to be 
shut down just before a program ends. Before the MMShutDown 
call is made, all allocated memory handles associated with an 
application should be disposed (that is, those requested for direct
page space). The easiest way to do this is with the DisposeAll 
function: 

lda MemiD 
ph a 
ldx #$1102 
jsl $ElOOOO 

;Identify the blocks 
; ... by their ID numbers 
;DlsposeAll (memory handles) 

This disposes of all memory handles allocated by the applica
tion (identified by the MemiD value). DisposeAll should never be 
used with the UseriD value that was returned by MMStartUp. 

Handles, doled out by the Memory Manager's NewHandle 
function, can be disposed of one at a time. This example demon
strates how easily a handle can be removed from C or Pascal: 

DlsposeHandle(MyHandle); 

When memory handles are disposed, the space they occupied 
is freed and is made available to other applications. More details on 
memory management are discussed in Chapter 7. 

Once all the memory handles allocated by your program are 
disposed, the MMShutDown function can be called. 

Chapter Summary 
The following Toolbox functions were referenced in this chapter: 

Function: $0E01 
Name: LoadTools 

Loads a list of tools from disk into RAM 
Push: Tool List Address (L) 
Pull: nothing 

Errors: $0110 Version Error; possible ProDOS errors 
Comments: The list of tools starts with a count word. 

57 



----------Chapter 4 ----------

Function: $0302 
Name: MMShutDown 

Shuts down the Memory Manager 
Push: User ID (W) 
Pull: nothing 

Errors: none 
Comments: The User ID is obtained when MMStartUp is first called. 

Function: $1002 
Name: DisposeHandle 

Disposes of a handle and the memory block it references 
Push: The Handle (L) 
Pull: nothing 

Errors: $0206 (invalid handle) 

Function: $1102 
Name: DisposeAll 

Disposes of all memory handles associated with an ID 
Push: User ID (W) 
Pull: nothing 

Errors: $0207 (invalid User ID) 
Comments: Do not use with the program's master User ID. 

Function: $0203 
Name: MTStartUp 

Starts up the Miscellaneous tool set 
Push: nothing 
Pull: nothing 

Errors: none 
Comments: This call must be made before any Miscellaneous tools can be 

used. 

Function: $0403 
Name: MTVersion 

Returns the version number of the Miscellaneous tool set 
Push: Result Space (W) 
Pull: Version (W) 

Errors: none 
Comments: MSB is major release; LSB is minor release. 

Function: $1503 
Name: SysFailMgr 

Displays an error message and halts the program 
Push: Error Code (W); C-String Address (L) 
Pull: nothing 

Errors: none 
Comments: A standard message is displayed if the string address param

eter is 0. 

58 



-------- About the Toolbox --------

Function: $2C03 
Name: SysBeep 

Beeps the Apple IIGS speaker 
Push: nothing 
Pull: nothing 

Errors: none 

Function: $030F 
Name: MenuShutDown 

Shuts down the Menu Manager 
Push: nothing 
Pull: nothing 

Errors: none 

59 



r----Chapter 5 __ __, 

A Matter of 
Language 

As stated earlier, this book as
sumes that you have a strong 
background in programming 
languages, either machine lan
guage, Pascal, or C. This isn't a 
tutorial on programming. 

Yet there's more to using a 
programming language and 
developing software than just 



----------Chapter 5 ----------

knowing the meaning of such terms as ASL, print[, or begin. There 
is a wealth of programming information to learn once you under
stand the basics. This information will make you a better program
mer. The purpose of this chapter is to fill you in on some of the 
finer points of programming the lies, no matter which language 
you use. 

This chapter offers programming hints and tips for the three 
languages covered in this book. On the following pages, you will 
find helpful information and suggestions for making programming 
and developing applications for the Apple lies computer much 
easier. 

Take Life a Little Easier 
Because this chapter tries to cover three very different program
ming environments, extra care was taken to ensure that everything 
was presented properly. To do that, this chapter is divided into two 
sections. The first section covers support files for all three lan
guages, and the second deals with each language individually. 

Support files, though they may be referenced by each language 
differently, are common to all three programming environments. 
Most amateurs avoid using support files because they don't under
stand them, which is a big mistake. By taking advantage of support 
files, you can save time and massive headaches. You should take 
the time to learn about support files. 

The second part of this chapter concentrates on each program
ming language individually: The APW Assembler, TML Pascal, and 
C are each given a separate section. The purpose of the second half 
of this chapter is to help you use the language you have chosen to 
its full potential. After reading about Support Files, skip to the sec
tion on the language that interests you. 

Of course, the adventurous reader will want to read every
thing: If you are only fluent in one or two languages, you may be 
surprised to find out what you are missing. 

Support Files 
To smooth the process of writing applications, the makers of APW 
and TML Pascal have created scores of utility and support files. 
These files typically contain defined routines, macros, or subroutine 
libraries. By taking advantage of support files, you can decrease 

62 



-------A Matter of Language --------

development time and, at the same time, make your program easier 
to read and better looking. 

In machine language, support files contain common routines 
and functions written as macros. For example, to avoid the redun
dancy of making Toolbox calls by loading the X register and per
forming a long jump to the subroutine at $£10000 each time a call 
is made, a Toolbox macro support file can be used instead. This 
support file already contains the defined Toolbox calls. All your 
source needs to do is reference the specific support file. 

TML Pascal support routines, which include Apple IIGS Tool
box calls and other Pascal-oriented functions, are stored in sym
bolic unit files . These files end with a .USYM extension on disk. 
The USES keyword tells the compiler to use the unit file that corre
sponds to functions used in your program. 

The #include directive is used to insert a source file into the 
compilation step when compiling a C program. Support files for C, 
called header files, end with a .h extension on disk. Since files used 
with #include can contain any instructions at all, they are far more 
flexible than Pascal's compile-time unit files. 

The following tables illustrate how your source code could 
take advantage of predefined QuickDraw II functions. The follow
ing are QuickDraw II support files, each of which can be referenced 
by your code. 

Language 
APW Assembler 
TML Pascal 
APWC 

Directive 
MCOPY 
USES 
#include 

Support Filename 
M16.QUICKDRAW 
QDintf 
quickdraw.h 

In your source code, the above directives might take on the 
following syntax: 

Language 
APW Assembler 
TML Pascal 
APWC 

Syntax 
MCOPY 2/ AINCLUDE/M16.QUICKDRAW 
USES QDintf; 
#include <quickdraw.h> 

After these statements, your source code could then use the 
QuickDraw II functions defined in the appropriate support file. 
(This will be explained in greater detail below, under each lan
guage's category.) 

When programming high-level languages such as C and Pas
cal, these support files must be included in the compilation phase 

63 



----------Chapter 5 ----------

of your program to use them. Otherwise, you'll receive an unde
fined function call error message. It's best not to argue with the 
compiler if you want your code to run. 

Macros are not required in order to make machine language 
Toolbox calls. The programmer can use the corresponding 65816 
instructions if desired. However, using the macros defined in the 
APW Toolbox support files is accepted and a more common practice 
than writing out the necessary code. 

The most common use for support files is to define Toolbox 
calls. Each tool set in the Toolbox has an associated support file . 
There are several other specialty and utility files, depending on 
your language, which can also be used to simplify writing 
applications. 

Table 5-1 shows the support files that belong to each tool set 
for machine language, C, and Pascal. 

Table 5-1. Tool Set Support Files 

APW Assembler APWC TML Pascal 
Tool Set Name (MCOPY) (#include) (USES) 
Tool Locator M16.l.DCATOR locator.h GSintf 
Memory Manager M16.MEMORY memory.h GSintf 
Miscellaneous Tools M16.MISCTOOL misctool.h MiscTools 
QuickDraw II M16.QUICDRAW quickdraw.h QDintf 
Desk Manager M16.DESK desk.h GSintf 
Event Manager M16.EVENT event.h GSintf 
Scheduler M16.SCHEDULER scheduler.h Scheduler 
Sound Manager M16.SOUND sound.h Sound 
DeskTop Bus M16.ADB 
SANE M16.SANE sane.h SANE 
Integer Math M16.INTMATH intmath.h IntMath 
Text Tool Set M16.TEXTTOOL texttool.h Text Tools 
Window Manager M16.WINDOW window.h GSintf 
Menu Manager M16.MENU menu.h GSintf 
Control Manager M16.CONTROL control.h GSintf 
System Loader M16.l.DADER loader.h Loader 
QuickDraw II Aux. M16.QDAUX qdaux.h QDintf 
Print Manager M16.PRINT print.h PrintMgr 
Line Edit M16.LINEEDIT lineedit.h GSintf 
Dialog Manager M16.DIAl.DG dialog.h GSintf 
Scrap Manager Ml6.SCRAP scrap.h GSintf 
Standard File M16.STDFILE stdfile.h GSintf 
Disk Utilities 

64 



-------A Matter of Language -------

Tool Set Name 
APW Assembler 
(MCOPY) 

APWC 
(#include) 

TML Pascal 
(USES) 

Note Synthesizer M16.NOTESYN notesyn.h NoteSyn 
Note Sequencer Ml6.NOTESEQ 
Font Manager M16.FONT font.h GSintf 
List Manager M16.LIST list.h ListMgr 

Depending on the language you're using, there might be addi
tional support files for working with ProDOS or a shell environ
ment. Check your language's reference manual for more details. 

At the time of this writing, some of the tool sets do not have 
support files, most notably those still being worked on by Apple 
Computer. 

Although TML Pascal's unit symbol files end with a .USYM ex
tension on disk, do not include the extensions in the USES state
ments in your program. 

In addition to th~ above assembler macro files, the APW as
sembler can also take advantage of equate files. These, like macro 
files, are text files that contain some of the constants and symbols 
listed in the Toolbox reference. For example, wAmBooli is a flag 
used by one of the tool sets. If your source code were using 
w AmBooli, as in 

PEA #wAmBooll 

and if the equate file for that tool set were referenced by your 
source code with the COPY directive, then the assembler would re
place wAmBooli with the proper value. 

Table S-2 lists the support files for equates to be used with 
APW source code. Like the macro files, they are found in the 
LIBRARIES/ AINCLUDE subdirectory. 

Table 5-2. Assembler Equate Files 

Tool Set N arne 
Tool Locator 
Memory Manager 
Miscellaneous Tools 
QuickDraw II 
Desk Manager 
Event Manager 
Scheduler 
Sound Manager 
DeskTop Bus 
SANE 

Equate File 
E16.I.DCATOR 
El6.MEMORY 
E 16.MISCTOOL 
E16.QUICDRAW 
E16.DESK 
E16.EVENT 
E16.SCHEDULER 
E16.SOUND 
E16.ADB 
E16.SANE 

65 



----------Chapter .5 ----------

Tool Set Name 

Integer Math 
Text Tool Set 
Window Manager 
Menu Manager 
Control Manager 
System Loader 
QuickDraw II Aux. 
Print Manager 
Line Edit 
Dialog Manager 
Scrap Manager 
Standard File 
Disk Utilities 
Note Synthesizer 
Note Sequencer 
Font Manager 
List Manager 

Equate File 

E16.1NTMATH 
E16.TEXTTOOL 
E16.WINDOW 
E16.MENU 
El6.CONTROL 
E16.lDADER 
E16.QDAUX 
El6.PRINT 
E16.LINEEDIT 
E16.DIAlDG 
E16.SCRAP 
E16.STDFILE 

El6.NOTESYN 

E16.FONT 
E16.LIST 

Note: The Disk Utilities and Note Sequencer equate files were not included in version LO of 
the APW assembler. 

Individual Languages 
The way each language takes advantage of its support files is dis
cussed in the following sections. 

The C Language Environment 
C is an elegant language, but don't let its elegance fool you. It's a 
nuts-and-bolts programming language. C has the detail of machine 
language, while retaining some of the conveniences of the high
level languages. Anyone trained in BASIC and then forced into ma
chine language because of BASIC's crudity and slowness will enjoy 
c. 

The road from your first Hello World C program to a complete 
application on the Apple lies should be smooth. Even though the 
APW C development system isn't as flashy as other programming 
environments, it can be used to develop large and complex applica
tions. In fact, most of the new IIGS programs that originated on 
other computers are written in C, simply because the original 
source code can be moved to the IIGS with only minor modifica
tions, in most cases. 

66 



------- A Matter of Language -------

Support files for APW Care kept in the LIBRARIES/CINCLUDE 
area on your APW program development disk. They all end with .h 
extensions because they are known as header files . This means that 
they should be included in your source code, with the #include di
rective, at the top (or at the head) of your program. 

The following is an example of how to use a support file in a 
C program: 

/* Including Header Flies in C-Kind a Boring • I 
#include <locator.h> /* Include the Tool Locator header file •; 
main() 
{ 

TLStartUp( ); 
TLShutDown( ); 

/* Start the Tool Locator • 1 
/* Shut it down ASAP • I 

All the definitions for the Tool Locator functions are kept in 
the locator.h header file. By including this header file, the 
TLStartUp, TLShutDown, and other Tool Locator routines can be 
accessed by the C program. The same is true for any other tool set 
that your program uses. Include the header file for each tool set 
you intend to use. 

#include <loca.tor.h> 
#include <memory.h> 
#include <misctool.h> 

The MODEL.C program, introduced in Chapter 6, has some 
real-life examples of support files in use. 

The Pascal Environment 
Pascal (not to be confused with UCSD Pascal, an early Apple op
erating system) is famous because of its structure. In fact, most 
educational institutions prefer to teach programming with Pascal 
because it forces the student to think logically and to break a prob
lem down into smaller, easier-to-solve tasks. 

Currently, the only Pascal compiler for the Apple IIGS is the 
one from TML Systems of Jacksonville, Florida. It's more than just 
a compiler. In fact, TML Pascal is a complete and powerful 
program-development system. 

Support files for the APW version of TML Pascal are kept in 
the TOOLINTF area on your APW disk. The regular TML Pascal al
lows you to define where the unit files are stored. They all end 

67 



----------Chapter 5 ----------

with . USYM extensions because they are known unit symbol files. 
Rather than being included as source code as is done in C, unit 
symbol files are USED in TML Pascal. Here's an example: 

{ Using Unit Symbol Files in Pa.sca.l } 
PROGRAM Yawn; 
USES QDintF, GSintF, MiscTools; 
BEGIN 

END. 

TLStartUp; 
TLShutDown; 

The USES section of the Pascal program tells the compiler to 
use the unit symbol files included in the list. The corresponding 
functions for each tool set then become available for your program 
to work with. 

TML doesn't intend to stop with Pascal. At this writing, they 
are about to release a BASIC compiler for the Apple IIGS. 

The Machine Language Environment 
If you're doing machine language development, you're probably 
using APW, the Apple Programmer's Workshop. So far, it's the most 
popular machine language development environment for the Apple 
IIGS. 

To use the APW Assembler effectively, you'll need at least two 
disk drives, or one 31h-inch disk drive and a very large ramdisk of 
about 800K. The APW programs should be on one disk with your 
source code and any other files you need on the other. However, 
the best setup for any serious programming involves a hard disk 
with at least ten megabytes of storage. When this is the case, APW 
and all its files should be put in their own subdirectory. 

The latest version of APW requires at least 768K of RAM on 
your computer, which is 512K more than the 256K that comes with 
the Apple IIGS . 

When developing programs, lt"s best not t put all f y u r 
code into one, huge, cumbersome file. In fact, the best way to pro
gram is to keep your source code in small, separate modules. Not 
only will this help you keep track of updates (by checking the date 
column in a catalog listing), but it will reduce the time it takes to 
patch code. 

The rest of the machine language examples in this book will, 
where applicable, use the modular concept to add pieces to the 

68 



-------A Matter of Language --------

MODEL.ASM program demonstrated in the next chapter. You can 
make decisions about how many modules to make, and what size 
to make them, on your own. 

Modules are added, or chained, to one another by use of the 
COPY directive. For example, if the MODEL.ASM program refer
ences two other modules, DISKIO.ASM and WINDOW.ASM, the 
following directives should be placed at the end of the source code: 

COPY DISKIO.ASM 
COPY WINDOW.ASM 

This will copy the source code from those two files to create 
the final program. 

It is helpful to know that you're not chained to the APW Edi
tor, considered by many to be a simple-minded text editor. By the 
time you read this, there should be several good public domain or 
shareware text editors on the market, any one of which could be 
used to edit APW source files. 

Using APW is similar to using MS-DOS or UNIX. However, 
programs created under APW are not directly executable by the 
Finder or Launcher. You must change their filetype from an EXE 
($B5) to a 516 ($B3) file type. This is done with the FILETYPE 
command at the APW system prompt. For example, 

FILETYPE MODELA 816 

changes the file type of the MODELA program from EXE to 516, 
allowing the program to be run directly from the Finder or 
Launcher. 

Other than that, APW is straightforward and easy to use, con
sidering that you're writing machine language. However, there is 
one more detail about the APW: Machine language programmers 
should pay special attention to the way the APW assembler uses 
macros. 

Macros. Macro is a an abbreviation of macroinstruction. A 
macro is used to represent a number of other statements, like an 
abbreviation. Some complex macros can even make decisions and 
perform evaluations. Yet, you only write the macro instruction 
once. Then, from that point on, you use only the name of the 
macro to reference it. 

You probably won't find any machine language examples in 
any books that don't use macros (other than Mastering the Apple 
IlGS Toolbox, where macros were not used in order to better explain 

69 



----------Chapter 5 ----------

certain concepts). Because of this fact, all the machine language 
source code in this book uses macros. You'll find that macros make 
programs easier to read and easier to write. For this reason, the rest 
of this chapter is devoted to APW machine language macros and 
how to use them. 

Macro etiquette. Macros are most commonly used to make 
Toolbox calls. With the APW assembler, the convention for Toolbox 
macros is to start them with the underscore character as in the fol
lowing example that invokes the MoveTo Toolbox call: 

_MoveTo 

Case is unimportant as far as macros are concerned, unless 
you've specifically told the APW assembler to pay attention to case 
by using the CASE ON directive. Each of the following lines will 
invoke the MoveTo macro (assuming you have not used the CASE 
ON directive): 

_move to 
_MOVETO 
_MoVeTo 

All Toolbox calls have a macro, as defined in the support files 
in the LIBRARIES/ AINCLUDE subdirectory. And all Toolbox mac
ros carry the same name as their Toolbox function, with each pre
ceded by an underscore. 

Aside from the Toolbox calls, several other APW assembler 
macro types are popular. The ones most often seen are these: 

Macro 
Push Long 
Push Word 
Pull Long 
Pull Word 
Str 

Action 
Push a long-word value onto the stack 
Push a word value onto the stack 
Pull a long-word value from the stack 
Pull a word value from the stack 
Create a Pascal string 

There are some distinct advantages to using the PushLong and 
Push Word macros over the PEA instructions. The most common is 
the error that occurs when a memory location rather than a value is 
pushed to the stack (PEA $1234 instead of PEA #$1234). If you use 
the Push Long and Push Word macros, there will be no question 
about which type is being pushed. 

Also, the Str macro eliminates some of the tedious labeling 
that occurs when defining a Pascal string. (Pascal strings start with 

70 



-------A Matter of Language -------

a count byte to tell the program how many characters to expect.) 
Because Pascal strings are used frequently in the Toolbox, the Str 
macro is very handy. 

Macros at work. When the assembler sees your macro, it ex
pands the macro into the code it stands for. This is one of the most 
confusing aspects of using macros. 

Macros make the source code easier to read and easier to de
bug. They help the programmer avoid redundancy by eliminating 
the need to type the same code repeatedly. A beginning machine 
language programmer might assume that using macros tightens up 
code. That's only half true: Macros make your source code tighter, 
but your object code will be just as long as if you didn't use 
macros. 

When your source code is assembled into object code, the mac
ros you use are expanded out into their raw form. So for each 
_MMStartUp the assembler sees, it replaces it with the appropriate 
code: 

ldx #$0202 
jsl #ElOOOO 

Macros can be simple (as above) or complex. For example, a 
macro can look rather innocent in the middle of your source code: 

PushLong #1234 

The PushLong macro is much more complex than _MMStartUp. 
PushLong will be translated by the assembler into the codes de
fined in the macro. Because there can be a number of arguments 
for PushLong (a value, a memory location, or a zero-page location 
plus an offset, the stack plus an offset, and so on), the PushLong 
macro must make a few decisions. 

The actual definition for the PushLong macro is quite complex: 

MACRO 
&lab pushlong &addr,&offset 
&lab ANOP 

LCLC &C 
LCLC &REST 

&C AMID &addr,l,l 
AIF &C=#,.lmmedlate 
AIF &C = [,.zeropage 
AIF C:&offset= O,.nooffset 
AIF &offset= s, .stack 

71 



Chapter 5 

push word &eaddr + 2,8eoffset 
push word 8eaddr,8eoffset 
MEXIT 

.nooffset 
push word 8eaddr+2 
push word &eaddr 
MEXIT 

.immediate 
&REST AMID 8eaddr,2,L:8eaddr-1 

de Il'$F4',I2'(8eREST)I-16' 
de Il'$F4' ,I2'8eREST' 
ME XIT 

.stack 
push word 8eaddr+2,s 
push word 8eaddr+2,s 
MEXIT 

.zeropage 
ldy #&offset+ 2 
push word &eaddr,y 
ldy #&offset 
push word 8eaddr,y 
MEND 

Inside PushLong's definition are conditional branches and 
evaluations to determine exactly what type of long-word value is 
being pushed on the stack. The assembler, when it replaces the 
macro PushLong with the above instructions, will make certain 
evaluations and then use only those instructions to push the proper 
long value onto the stack. 

For example, if 

PushLong #1234 

is specified in your source, the assembler will use the following in
structions from the PushLong macro to push #1234 onto the stack: 

+ ANOP 
+ LCLC 8eC 
+ LCLC &REST 
+&ec AMID #1234,1,1 
+.immediate 
+&REST AMID #1234,2,L:8eaddr -1 
+ de Il'$F4',I2'(1234)1-16' 
+ de Il'$F4' ,12'1234' 

72 



-------A Matter of Language -------

That seems like a very complex procedure to go through just 
to push a long word on the stack, yet some complex decision mak
ing is occurring. For PushLong to be a versatile macro, capable of 
pushing a variety of values onto the stack, it has to be complex. 
Fortunately, the logic and debugging of the PushLong macro has 
been taken care of for you. You need only specify it in your source 
and let the assembler do the rest. 

To see how a macro expands, the TRACE ON directive can be 
listed at the top of your assembler source. By adding the LIST ON 
directive, you'll be able to see your source code as it's assembled 
and, with TRACE ON set, see the macros expanded as well. 

Using macros in your source code. With the APW Assembler, 
macros exist in an external file and are referenced in your source 
code by the MCOPY directive: 

MCOPY [pathname] 

The pathname is the name of a path or file that contains all 
your program's macro definitions. For example: 

MCOPY MYMACROS 

The above instruction directs the assembler to look for any 
macro references in the file MYMACROS. Make sure you have this 
statement at the top of your source code. The macros used by your 
C:()ll l' l"'P r::tnnnt h P ::ll"'l"'PC:<:Pn 11n ti l th P ::IC:C:PlTl h lPl' h ::t<: Pnrnlln t Pl'Pn th P source cannot be accessed unu the assemb er has encountered the 
MCOPY command. 

So, if your source code makes extensive use of QuickDraw II 
Toolbox calls, and you want to use the QuickDraw II macros sup
plied with APW, you could place the following at the top of your 
source code: 

MCOPY / APW /LIBRARIES/ AINCLUDE/Ml6.QUICKDRA W 

Because APW takes advantage of ProDOS 16 prefix numbers, 
you can substitute the number 2 for j APW /LIBRARIES above. (No 
matter what the configuration of your drive, using 2 will work. See 
the section in the APW manual about the IDGIN file for more 
information.) 

MCOPY 2/ AINCLUDE/Ml6.QUICKDRA W 

After using this instruction, any QuickDraw II macros refer
enced in your source code will be replaced by the definitions in the 
M16.QUICKDRAW support file. 

73 



----------Chapter 5 ----------

This sounds like a powerful feature when you're reading the 
APW Assembler manual and might cause you to think you could 
just MCOPY all the predefined macros in the AINCLUDE subdirec
tory into your source code. While that sounds logical, and it would 
make things easier, it's just not the case. 

The MCOPY command only allows four macro files to be in 
use at one time. The manual seems to suggest that you can juggle 
these four macro files using the MLOAD and MDROP directives 
throughout your code. However, this is a fallacy. Rather than toss 
about MCOPY, MDROP, and MLOAD directives, it's much faster 
and easier to create a custom macro file for your source code files. 
This is done with the MACGEN program from the APW shell: 

MACGEN (source.code] [macro.file] (macro.llbrarles ... ] 

MACGEN creates a custom macro file for your source code. 
It's one of APW's better utilities. 

First, MACGEN reads in your entire source file. Then, it scans 
a specified list of macro support files, pulls out only the macros ref
erenced by your source code, and finally creates a custom macro 
file containing only the macros referred to by your source. 

For example, consider the program MODEL.ASM in the next 
chapter. MODEL makes extensive use of macros. Most of those 
macros are defined by the M16 files in the AINCLUDE prefix. To 
build a custom macro file containing only the macros referenced by 
MODEL.ASM, the following MACGEN command was typed at the 
APW system prompt: 

MACGEN model.asm model. macros 2jalncludejml6. = 

This reads: From the source code model.asm, generate a macro 
file named model. macros using all the files that start with m 16. in 
the subdirectory AINCLUDE. (The equal sign is a wildcard specify
ing all files starting with M16.) 

MACGEN reads in the source code and then reads through all 
the files M16. = for any matching macros. It then places the macros 
it finds into the file MODEL.MACROS. To take advantage of them, 
the following is placed at the start of MODEL.ASM: 

MCOPY MODEL.MACROS 

If your program has more than one module, you should use 
the MACGEN command on the main module. As long as the main 
module has COPY or APPEND directives, the other related source 

74 



-------A Matter of Language --------

file modules will also be scanned for macro references. 
Building a custom macro file with the aid of MACGEN is the 

best way to provide the macros your program needs. If you update 
your source listing with new macro calls, you can run MACGEN a 
second time to create a new custom macro file. Also, any unique 
macros you create can be typed into the macro file using the APW 
editor. 

Summary 
Macro files, header files, unit symbol files, nearly all the information 
covered in this chapter can be found elsewhere. However, many 
people who consider themselves old hands at programming have 
never taken advantage of support files. With the Apple IIGS Toolbox 
at your disposal, using support files and paying attention to the tips 
offered in this chapter can make you a better programmer. 

75 



.------Chapter 6 __ __, 

The DeskTop 

Applications for the Apple IIGS 
fall into two categories: Desk
Top and non-DeskTop. This 
chapter introduces some new 
and exciting things happening in 
the DeskTop world of program
ming. It begins with a descrip
tion of a DeskTop program and 
provides a sample program, in 
three languages, that you can 
run on your computer. 



----------Chapter 6 ----------

The DeskTop 
A DeskTop program is one that takes advantage of the 16-bit pro
cessing power of the Apple IIGS and uses its built-in tools to manip
ulate pull-down menus, windows, dialog boxes, icons, the mouse, 
and so on. This interface has proven to be highly intuitive to the 
user and is popular on a variety computers. DeskTop programs 
written for the Apple IIGS will not run on the Apple lie or lie. 

A non-DeskTop program is one written for the eight-bit 
personality of the Apple IIGS. This half of the computer, also called 
the Mega II, emulates an Apple lie with 128K of RAM and a 65C02 
processor. Programs in that environment rarely use the powerful 
tools that reside in the Apple IIGS Toolbox ROM. They are required 
to provide their own memory-management schemes and custom 
interfaces. This entails a lot of work for the programmer. However, 
these programs can run on the Apple IIGS as well-as on the Apple 
lie and lie. 

Having a "canned interface" inside the computer provides 
many advantages. Users feel at home with DeskTop programs be
cause the interface is consistent from one program to the next. Pro
grammers can concentrate on the tasks of their software and are 
spared the details of interacting with the user. Since most of the 
code for the interface resides in ROM, programs require only a few 
calls to drive the entire DeskTop. 

The DeskTop interface, remarkably similar to that found in 
Apple's Macintosh computer, is the most exciting aspect of the Ap
ple IIGS. 

Managers 
Here's a quick description of the Apple IIGS DeskTop and how the 
various managers built into the IIGS are responsible for maintaining it. 

When a DeskTop program is first launched, a blank back
ground pattern is displayed across the entire Apple IIGS super-hi
res graphics screen. Traditionally, the background pattern is a solid 
shade of light blue, though the programmer can choose any color 
supported by computer. 

Inevitably, the DeskTop will have a menu bar at the top of the 
screen which contains the titles of one or more pull-down menus. 
These menus contain all of the program's commands and functions 
available to the user. 

78 



---------The DeskTop---------

Figure 6-1. Figure of DeskTop with Menus, Dialog Boxes, and 
Windows 

~ LJ LJ LJ 
PRODOS SYSTEM ICONS APPLE'w'ORKS 

LJ LJ LJ ~ 
CMDS MOUSETALK PROLINE ECP 16 .SYS16 

It is the responsibility of the Event Manager to track the loca
tion of the mouse and update the mouse pointer on the screen. The 
mouse pointer, an arrow shape, marks the position on the screen 
where the mouse is located on the DeskTop. Moving the physical 
mouse device will cause the mouse pointer to move accordingly on 
the screen. This function is completely transparent to the DeskTop 
application because it relies on the interrupt feature of the Apple 
IlGS microprocessor. 

The mouse is used to select items on the DeskTop. For ex
ample, the user moves the mouse pointer over a title on the menu 
bar and presses the mouse button. This causes a pull-down menu 
to be displayed, showing a list of available selections. By holding 
down the mouse button and moving the pointer (an action called 
dragging) the user chooses a menu item from the menu. A selection 
is made when the mouse button is released. 

The programmer organizes what is to be placed into the 
menus and passes that information along to the Menu Manager. 
The job of drawing pull-down menus and interacting with the user 
while a selection is made is handled completely by the Menu Man
ager. To do this, of course, it relies on other tool sets, especially 
QuickDraw II. 

79 



----------Chapter 6 ----------

Some menu items are selected with the keyboard instead of 
the mouse. This is done by pressing the Open Apple key in con
junction with another key that corresponds to a menu item. The 
user determines if a menu item has a keyboard equivalent by 
examining the list of items in a pull-down menu. Menu items with 
keyboard equivalents have apple symbols, followed by the com
mand character, after their name in the menu. 

For the programmer, all of the work involved in getting the 
user's selections via the mouse or keyboard equivalents is handled 
by the routines in the Toolbox. It's the job of the Window Manag
er's TaskMaster function to manage these details. 

After a menu item is selected, any number of events might oc
cur. As an example, a dialog box could be displayed asking the 
user to supply input for the application. Appropriately named, dia
log boxes let the user communicate with the DeskTop program by 
filling in blank entries with text, turning switches on or off, press
ing buttons, or by using other controls. 

Using software, the programmer builds the dialog box to the 
required specifications. Buttons and other controls can be installed 
on the box. The functions in the Dialog Manager and Control Man
ager allow the user to manipulate the controls and report to the 
application which buttons have been pressed. 

The function of a typical DeskTop program is as simple as 
making a selection from a vending machine. The user makes selec
tions from the menu bar and interacts with a few dialog boxes, and 
the computer performs its assigned task. 

The Apple lies has more managers than a small baseball 
league. The programmer is well assisted in driving the DeskTop. 

Parts of a DeskTop Program 
At the software level, DeskTop applications consist of three main 
parts: 

Startup Before a program can begin to interact with the 
user, it must complete the startup phase. This in
volves starting a host of tool sets, allocating mem
ory, and setting up the DeskTop environment 
with pull-down menus and so forth. 

80 



---------The DeskTop---------

Event handling Once everything is initialized, a DeskTop program 
basically sits idle, waiting for the user to make se
lections from the pull-down menus. When a menu 
item is selected, a corresponding function for that 
item is dispatched and carried out. 

Shutdown Eventually, the user will be finished with the pro
gram and will want to quit. As part of the shut
down process, the application will take care of 
unfinished business, such as saving changes to 
disk. It shuts down the tool sets it started up, 
deallocates reserved memory, and exits to the op
erating system. 

These three steps provide the basic framework of practically 
every DeskTop program written. The nice thing about this is that 
once you've created the overhead code (the basic code that performs 
these three functions), it can be used over and over again for new 
programs. 

The Tower of Babel 
The following sample program-shown here in APW machine lan
guage source code, APW C, and TML Pascal-demonstrates how a 
typical DeskTop program starts up, handles events, and shuts 
down. It doesn't do anything spectacular. But it sets the stage for 
some very exciting programming ventures using the powerful abili
ties of the Apple IIGS Toolbox. 

Referring to these programs as models, the next few chapters 
will describe the important details in creating DeskTop programs. 
Study closely the program listing written in the language you're 
most interested in. 

Program 6-1. MODEL.ASM 

MODEL.ASM ~ 

• S~mp,e Desktop Appi 1cat1on 1n APW Assembler 11.0> * 
·-------------------------------------------------------~ 

To cr eate the ModeiMacs macro f1 I e. use th1s APW she I I command: 
"macgen model .asm modelmacs 2talncludet m= 

ABSADDR ON 
KEEP Modell\ 
MCOPY MoaeiMacs 

-------------------------------· 
Global Equates * 

·------------------------------· 

81 



----------Chapter 6 ----------

Tooloox 
TRUE 
FALSE 
?age 

Model A 

gequ 
gequ 
gequ 
gequ 

START 
phi< 
plo 
brl 

SeiOOOO 
$8000 
soooo 
$100 

Matn 

·------------------------------· 
* Handle Toolbox Errors * 
·------------------------------· 
ErrChk bcs Dte 

Dte 

rts 

ph a 
push I ong #0 
_SysFatiMgr 

*------------------------------· 
* Manage Dtrect Page Buffers * 
·------------------------------· 

;Prtmary tool dtspatcher 
;True value 
;False value 
;The stze of a page <256 bytesJ 

;Make the data bank ... 
; ... the current code banK 
;branch over functtons to Matn 

;Carry set tf error 

;Else, return 

;Toolbox returns error tn A 
;Use standard system death message 
;Get ready to slide apples back and forth 

; Returns address of next free Dtrect Page. <Modtftes Y regtster> 
; The GetDPs entry potn t r equ tr es byte count 1n A reo ts er . 

GetDP Ida 
GetDPs clc 

ldy 
add 
tya 
ft§ 

#Page 

DPBase 
.DPBase,DPBase 

·------------------------------· 
* Start Up Tools * ·------------------------------· 
DPSpace equ 
HndiRef equ 

$000600 
$00 

StartUpTools anop 
_TLStartUp 

ph a 
_MMStartUp 
JSr ErrChk 
pullword User!D 
ora #%100000000 
sta Mem!D 

_MTStartUp 

;Ask for one 256 byte DP block 
;Alternate entry: A= Number of bytes 
;Get base value <we return thtsl 
;Add A to our last DP buffer address 
;Return entry value 

;Memory needed for dtrect pages 
;dtrect page handle deref potnter 

;----Start the Tool Locator 

;Result Space for User ID 
;----Start the Memory Manager 
;Check for errors 
;Get our User ID and save tt 
;munge an auxtltary ID . . . 
;used for Memory Manager handle usage 

;----Start the Mtsc Toolset 

Get dtrect page space for other tools 

82 

ph a 
ph a 
pushlong #DPSpace 
pushword MemiD 

Long result space ... 
... for returned handle 
Long value: stze of memory block 
Use the spectal ID for handle allocatton 



---------The DeskTop---------

pushword #Sc005 
pushlong #SOOOOOO 
_NewHandle 
JSr ErrChk 
pull long HndiRef 
Ida CHndiRefl 
sta DPBase 

Ida #3*Page 
JSr GetDPs 
ph a 
pushword #S0080 
pushword #SOOaO 
pushword UseriD 
_QDStartUp 
JSr ErrChk 

JSr GetDP 
ph a 
pushword #20 
pushword #0 
pushword #640 
pushword #0 
pushword #200 
pushword UseriD 
_EMStartUp 
JSr ErrChk 
pusiword #0 
_SetBaci<Color 

pushword #3 
_SetForeColor 

pushword #260 
pushword #85 
_MoveTo 

pushlong #Moment 
_DrawCStr1ng 

pushlong #Tool1st 
_LoadTools 
JSr ErrChi< 

pushword UseriD 
_WindStartUp 
JSr ErrChi< 

pushword UseriD 
JSr GetDP 
ph a 
_CtiStartUp 
JSr ErrChi< 

pushword UseriD 
J sr GetDP 
ph a 
_MenuStartUp 
JSr ErrChk 

_DeskStartUp 
rts 

;F1xed, Page-aligned, Locked, Unpurgable 
;Where our block res1des <S00/0000> 

;Check for errors 
;Get handle of new block 
;Get address of the storage area 
;Save 1t for GetDP ut1l1t1es 

;Ou1ckDraw requ1res 3 d1rect pages 
;Get address for them ... 
; ... and push 1 t 
;Screen Mode <use SOOOO for 320 mode> 
;Pixel Map S1ze <use S0050 for 320 mode> 
;Push our program' s ID 
;----Start Ou1ckDraw II 

;Requires a Direct Page 
;Push the DP address 
;Event queue s1ze 
;Mln X clamp 
;Max X clamp <640 mode> 
;M1n Y clamp 
;Max y clamp = 200 <bottom of screen> 
;Push program· s User ID 
;----Start the Event Manager 

;Standard background coior 

;Standard foreground color 

;X position of message 
;Y position of message 
;Move pen to X,Y 

;Po1nt to a message str1ng 
;Pr1nt ' One moment ... ' 

;Po1nt to a I 1st of tools 
;Read tools from disk 1nto RAM 

;Requires User ID 
;----Start the Window Manager 

;Requires User ID ... 
; ... and a D1rect Page 

;Start the Control Manager 

;Requires User ID ... 
; ... and a D1rect Page 

;----Start the Menu Manager 

;----Start the Desk Manager 

83 



----------Chapter 6 ----------

*------------------------------* * Prepare Desktop and Menus * 
*------------------------------* 
PrepDeskTop anop 

pushlong #0 
_RefreshDesktop 

In1tCursor 

NxtMenu pha 
ph a 
Ida 
as I 

MenuTbl 
A 

tax 
Ida MenuTbl,x 
phb 
phb 
ph a 
_NewMenu 
pushword #0 

InsertMenu 

dec 
bne 

MenuTbl 
NxtMenu 

pushword #1 
_FixAppleMenu 

ph a 
_F1xMenuBar 
pia 

_DrawMenuBar 
rts 

*------------------------------* * Apple Menu: About * 
*------------------------------* 
About rts 

*------------------------------* 
* F1le Menu: Ou1t * 
*------------------------------* 
Quit dec 

rts 
QFiag 

*------------------------------* 
* Do Menu SelectiOn * 
*------------------------------· 
DoMenu Ida TaskData 

and #SO Off 
as I A 
tax 
JSr <MTable,x> 

pushword #FALSE 
pushword TaskData+2 

84 

;Draw ent1re desktop us1ng default values 

;Result Space <Long> for ... 
; ... the menu ' s handle 
;Get menu count 
;x 2 
;Make It an index 1nto word values 
;Get address of menu structure 
:Push program bank tw1ce 
;<PHB pushes only a byte> 
;Push address of menu structure 
;the menu handle IS now on the stack 
;Insert menu at left, sh1ft1ng right 

;More menus to 1nstal I? 
;Yes 

;Put Desk Accessor1es · s 1n Apple Menu 

; Resu I t space 
;Calculate menu bar ' s he1ght 
;D1scard height for now 

;Display the menu bar 

;Does nothing <for now> 

;User wants to qu1t <OFiag Sffff) 

;Get TaskData Item ID number 
;Discard upper 8-blts 
;Double the value 

;Dispatch the proper menu 1tem handler 

;We need to unH1I1te the menu title now 
;Get TaskData Menu number 



---------The DeskTop---------

_Hll 1teMenu 
rts 

;Unh1l1te menu t1tle 

·------------------------------· 
* Shutdown Toolsets * 
·------------------------------· 
ShutDownTools anop 

Shut 1 

1aa Tool 1st 
as i A 
asl A 
tax 
Ida Toollst-2,x 
cmp 11$0002 
one Shut! 
pushword MemiD 
_D 1 sposeA I I 
pushword UseriD 
Ida #S0002 
ora #$0300 
tax 
JS] 
dec 
bne 

rts 

Toolbox 
Tool 1st 
ShutDownTools 

:Get 11 of toolsets started up 
:x2 
:x2 <to create 1ndex over longwords> 

;Get toolset 10 from l1st 
;Memory Manager? 
;No, so shut th1s down r1ght now 
:D1spose all handles allocated 

;Shut down th1s program' s memory 
;MMShutDown 
;Hake it a shutdown cal I 
;Set X to cal I number 
;Shut 1t down! 
;Shutdown another toolset? 
;Yes 

·------------------------------· 
* Ma1n * 
·------------------------------· 

Scan 

JSr 
JSr 

ph a 

StartUpTools 
Prep DeskTop 

pushword #Sffff 
pushlong #EventRec 
_TaskMaster 
pia 
beq Scan 

cmp #$11 
bne Scan 

Jsr DoHenu 
bl t QFiag 
bpi Scan 

JSr ShutDownTools 

_QUIT Qparms 

·------------------------------· 
* Var1able Storage * 
·------------------------------· 
User!D ds 
HemiD ds 
DPBase ds 
QFiag de 

2 
2 
2 
1 ' FALSE ' 

;Start toolsets 
;Prepare desktop and menus 

;Resu It Space 
;Event Mask 
;Po1nt to Event Record 

;Get HandleEvent flag 
;If noth1ng, cont1nue loop1ng 

;A menu event? ($11=wlnHenuBar> 
;Nope, Just keep scann1ng 

;Do menu item dispatch 
;Time to quit? 
;No, keep scanning for events 

;Shut down all tools started 

:Exit this program through ProDOS 16 

;Our User 10 
;Memory User 10 <made from User ID> 
;Used by DP buffer manager 
;Boolean: Quit flag <starts out as false> 

85 



----------Chapter 6 ----------

·------------------------------· * StartUp/ Shutdown Tool List * 
·------------------------------· 
Too list de i ' <ToolstE-Toolist-1)/4 ' ;Tool count 

de 1 1 1 ,0 ' Tool Locator 
de i ' 2,0 ' Memory Manager 
de i ' 3,0 ' Mise Tools 
de i ' 4,0 ' QuickDraw I I 
de i ' 6,0 ' Event Manager 
de i ' 14,0 ' Window Manager 
de i ' 16,0 ' Control Manager 
de i ' 15,0 ' Menu Manager 
de i ' 5,0 ' Desk Manager 

ToolstE anop 

·------------------------------· 
* Pull Down Menu Structures * ·------------------------------· 
MenuTbl de i ' <MenTbiE-MenuTbl-1>12 ' ;Menu count 

de i ' Menu! ' ;Apple 
de i ' Menu2 ' ;File 
de i ' Menu3 ' ;Edit 

MenTblE anop 

Menu! de c ' »'GI\XN1 ' ,il ' O' ;Apple 
de c ' --About This Program .. . \ N256 ' ,il ' O' 
de c ' ---\ D' ,il ' O' 
de c ~" > ' 

Menu2 de c ' >> File \ N2 ' , i 1 ' 0' ;File 
de c ' --0uit \ N257•0q ' ,i1 ' 0' 
de c ' >' 

Menu3 de c ' >> Edit \ N3D ' ,il ' O' ;Edit 
de c ' --Undo\ N250V•Zz ' ,il ' O' 
de c ' --Cut\ N25l•Xx ' ,i1 ' 0' 
de c ' --Copy\ N252•Cc ' ,il ' O' 
de c ' --Paste\ N253V•Vv ' ,il ' O' 
de c ' --Ciear\ N254 ' ,il ' O' 
de c' >' 

·------------------------------· 
* Menu Item Dispatch Addresses * 
·------------------------------· 
MTable de 

de 
i ' About ' 
i ' 0Ui t ' 

;256/About 
; 257/Qu it 

<Apple Menu> 
< F i I e Menu> 

·------------------------------· 
* The Event Record * 
·------------------------------· 
Even tRee 
EWhat 
EMsg 
EWhen 
Mere 
EMods 
TaskData 
TaskMask 

86 

anop 
ds 
ds 
ds 
ds 
ds 
ds 
de 

2 
4 
4 
4 
2 
4 
i 4' $1 fff ' 

;Event Record used by TaskMaster 
;What 
;Message 
;When 
;Where 
;Modifiers 
;Task Data 
;Task Mask 



---------The DeskTop---------

·------------------------------· 
* M1scel laneous Data * 
·------------------------------· 
Moment de c'One Moment ... ' ,11'0' 

QParms de 
de 

END 

14'0' ;ProD03 16 Quit Code parameters 
l '$0000' 

The sample program written in APW machine language will 
create a four-block object file on disk. Of that, one block (512 
bytes) of header information is used for the System Loader. The 
last three blocks contain the actual machine language program. 

Program 6-2. MODEL.C 

1*---------------------------------------------* 
* MODEL.C * 
*Sample Desktop ApplJcatJon 1n APW C (1.0> * 
*--------------------------------~------------*/ 

"Include ~types.h> 
#Include ~stdJo.h> 
#Include <locator.h> 
#Include ~memory.h> 
#Include <m1sctool .h> 
#Include <quickdraw.h> 
#Include <event.h> 
#Include ~wJndow.h> 
#Include <menu.h> 
#Include <control .h> 
#Include <desk.h> 

/*------------------------------· 
* Global Variables * 
*------------------------------•1 

WmTaskRec EventRec; 

Word Event, 
User!D, 
Mem!D, 
QFlag; 

Word Tool ISt[J 

} ; 

char 

3, 
14, 0. 
15, 0. 
16, 0 

•DPBase; 

I* Event Record Structure *I 

I* Event code *I 
I* Our User ID *I 
I* Memory Management ID *I 

I* Boolean: Quit flag *I 

I• Tool count *I 
I* Window Manager *I 
I* Menu Manager *I 
I* Control Manager *I 

I* Direct Page base pointer *I 

1*------------------------------· 
* Handle Toolbox Errors * 
*------------------------------•1 

87 



----------Chapter 6 ----------

ErrChk<> 
( 

I* Check for error, die 1f so *I 

1f <_tooiErr> SysFa!IMgr<_tooiErr, nil>; 

1•------------------------------* 
* Manage Direct Page Buffers * 
·------------------------------•1 

char •GetDP<bytes> 
Word bytes; 
( 

char •OidDP = DPBase; 
DPBase += bytes; 
return <OidDP>; 

I* Update base level pointer *I 
I* Return old DPBase pointer *I 

1•------------------------------· * Start Up Tools * 
·------------------------------•1 

StartUpTools<> 
( 

Word GetDP<>; I* Force words from GetDP *I 

TLStartUp<>; 
UseriD = MMStartUp<>; 
MemiD = UseriD I 256; 
MTStartUp(); 
DPBase = •<NewHandle<Ox600L, MemiD, Oxc005, n1l>>; 
QDStartUp<GetDP<Ox300>, Ox80, OxaO, UseriD>; 
EMStartUp<GetDP<OxlOO>, Oxl4, 0, Ox280, 0, Oxc8, UseriD>; 

SetBackColor<O>; I* Show Intro Screen *I 
SetForeCol or< 3>; 
H~v~To <0~10~, OMGG> 
DrawCString<'One Moment ... '>; 

LoadTools<Toolist>; ErrChk<>; I* Load & Startup tools *I 

WindStartUp<UseriD>; 
CtlStartUp<UseriD, GetDP<OxlOO>>; 
MenuStartUp<UseriD, GetDP<OxlOO>>; 
DeskStartUp<>; 

1•------------------------------· * Prepare Desktop and Menus * 
*------------------------------*1 

PrepDesi<Top<> 
( 

88 

stat1c char *AppleMenull ~ ( 
'»~\ \XNl', 
'--About This Program ... \\N256', 
·---\\D', 
'>' 

) ; 

ErrChk<> 
ErrChk<> 
ErrChk<> 

ErrChk< >; 

ErrChk<> 
ErrChk< > 
ErrChk<> 



---------The DeskTop---------

stattc char •FtleMenu[J 
"» F i I e \ \N2' , 
'--Quit\\N257*Qq', 
II )II 

) ; 

static char •EottMenu[J 
">> Edit \\N3D', 
'--Undo\\N250V*ZZ', 
"--Cut\\N251*XX', 
'--Copy\\N252*Cc', 
'--Paste\\N253V*Vv', 
'--Ciear\\N254', 
II)" 

); 

RefreshDesktop<ni I>; 
InitCursor<>; 

InsertMenu<NewMenu<EditMenu[OJ>, O>; 
InsertMenu<NewMenu<FileMenu[OJ>, O>; 
InsertMenu<NewMenu<AppleMenu[OJ>, O>; 

FtxAppleMenu<l>; 
FtxMenuBar< >; 
DrawMenuBar< >; 

1*------------------------------* 
* Apple Menu: About * 
*------------------------------*1 

About<> 
( 

I* Does nothing <for now> *I 

1*------------------------------* 
* Do Menu Selection * 
*------------------------------*1 

DoMenu<> 
( 

I* Display Desktop *I 
I* Show mouse cursor *I 

I* Install menus *I 

I* Dtsplay menu bar *I 

swttch<EventRec.wmTaskData> 
case 256: About; I* Apple Menu: About *I 

break; 
case 257: QFiag = TRUE; 

break; 
I* Flle Menu: Quit *I 

HillteMenu<FALSE, EventRec.wmTaskData>>16); 

1*------------------------------* 
* Shutdown Toolsets * 
·------------------------------*1 

89 



-
----------Chapter 6 ----------

ShutDownTools<> 
{ 

DeskShutDown< >; 
MenuShutDown< >; 
CtlShutDown<>; 
WindShutDown< >; 
EMShutDown< >; 
QDShutDown<>; 
MTShutDown<>; 
DlsposeAII<MemiD>; 
MMShutDown<UseriD>; 
TLShutDown<>; 

1*------------------------------* 
* Ma1n * 
*------------------------------*1 

ma1n<> 
( 

StartupToo I sO; 
Prep DeskTop<>; 

I* Start toolsets *I 
I* Prepare desktop and menus *I 

QFlag = FALSE; 
EventRec.wmTaskMask = OxOOOOlfff; 

while <!QFlag> < I* Wait for a menu event *I 
do < 

Event = TaskMaster<Oxffff, &EventRec>; 
) while <!Event>; 
if <Event== winMenuBar> DoMenu<>; 

ShutDownTools<>; 
ex1t<O>; 

I* Shutdown all tools started *I 

The sample program written in APW C compiles into a 16-
block object file. However, a compiled C program containing no in
structions at all produces a 12-block file. This means that, like the 
assembly program, about 4 blocks contain the actual code, while 
the other 12 consist mostly of overhead from the standard C library 
and System Loader. 

Program 6-3. MODEL.PAS 
( ·--------------------------------------------------· 

* MODEL.PAS * 
*Sample DesKtop Appl 1cat10n In TML Pascal <vl.OlJ * 
·--------------------------------------------------· ) 

PROGRAM ModeiP; 

USES QDintF, 

90 

GS!ntF, 
M1scTools; 



---------The DeskTop---------

*------------------------------· 
* Glooal Variables * ·------------------------------· 

VAR EventRec: 
Event: 

EventRecord; 
Integer; 
Integer; 
Integer; 
Integer; 
Boolean; 

Taskmaster Structure 
Event code ) 

UseriD: Our User ID ) 
MemiD: 
DPBase: 
QFiag: 

Memory allocation ID) 
Direct Page base po1nter 
Boolean: Quit flag ) 

AppleMenu: Str1ng; 
Str1ng; 
Str1ng; 

Pull down menu str1ngs 
Fi leMenu: 
EditMenu: 

·------------------------------· * Handle Toolbox Errors * 
·------------------------------* 

PROCEDURE ErrChk; < Check for error, die 1f so ) 
BEGIN 

IF IsTooiError THEN 
SysFaiiMgr<TooiErrorNum, 'Tool error-> S'l; 

END; 

*------------------------------* 
* Manage D1rect Page Buffers * 
*------------------------------* 

FUNCTION GetDP<bytes: Integer>: Integer; 
BEGIN 

GetDP := DPBase; 
DPBase := DPBase 

END; 
+ bytes; 

Return current DPBase ) 
Update base level pointer 

*------------------------------* 
* Start Up Tools * 
*------------------------------* 

PROCEDURE StartUpTools; 
VAR 

Tool 1st: 
He1ght: 

Tool Table; 
Integer; 

Disk-based tool list ) 
Menu bar helgth <unused) 

BEGIN 
Toolist.NumTools := 3; 
Toollst.Toolsi1l.TSNum := 14; 
Toollst.Tools[1J.MlnVerslon := O; 
Toollst.Tools[2J.TSNum := 15; 
Toollst.Tools[2J.MlnVerslon := O; 
Toollst.Tools[3J.TSNum := 16; 
Toollst.Tools[3J.MlnVerslon .- 0; 

TI:StartUp; 
UseriD := MMStartUp; 
MemiD := UseriD + 256; 
MTStartUp; 

Tool count ) 
W1ndow Manager 

Menu Menager ) 

Control Manager 

DPBase := LoWord<NewHandle<S600, MemiD, Sc005, Ptr<Oll'); 
QDStartUp<GetDP<S300>, sao. SaO, UseriD>; 
EMStartUp<GetDP<S100>, S14, 0, t2aO, SO, sea, UseriD>; 

ErrChk; 

ErrChk 
ErrChk 
ErrChk 

91 



-------------------Chapter6-------------------

END; 

SetBackColor<O>; 
SetForeColor<3>; 
MoveTo($104, s55>; 
DrawStrtng( ' One Moment . . . ' >; 

( Show Intro Screen } 

LoadTools<Tooltst>; ErrChk; 

WindStartUp<UseriD>; 
Ct iStartUp<UseriD, GetDP<S100)); 
MenuStartUp<UseriD, GetDP<S100)); 
DeskStartup; 

Loao & Startup tools } 

ErrChk; 
ErrChk; 
ErrChk; 

·------------------------------· * Prepare Desktop and Menus * 
·------------------------------· 

PROCEDURE PrepDeskTop; 
VAR 

Hetght: Integer; 

BEGIN 

END: 

AppleMenu . - CONCAT< ' >>Q\XN! \ 0' , 
' --About Thts Program ... \ N256\ 0' , 
'---\ D\ 0' . 
/)I ) ; 

F1 leMenu .- CONCAT< '>> File \ N2\ 0' , 
' --Qu i t\ N257•Qq\ 0' , 
I )' ); 

EdttMenu .- CONCAT< '>> Edtt \ N3D\ 0' , 
' --Unao\ N250V•VZz \ 0' , 
' - - Cut\ N251•Xx\ 0' , 
'--Copy\ N252•Cc\ 0' , 
' --Paste\ N253V•Vv\ O' , 
' --Ciear\ N254\ 0' , 
I>' ); 

Refresh<Ni I); Dtsplay Desktop } 
InttCursor; Show mouse cursor 

InsertMenu<NewMenu<QEdttMenu[!J), O>; Install menus} 
InsertMenu<NewMenu<QFileMenu£1)), 0); 
InsertMenu<NewMenu<QAppleMenu[!J) , O>; 

FixAppleMenu<l>; < Display menu bar ) 
Height := FtxMenuBar; 
DrawMenuBar; 

·------------------------------· 
* Apple Menu : About * 
·------------------------------· 

PROCEDURE About; 
BEGIN 

Does nothtng <for now) ) 
END; 

92 



---------The DeskTop---------

·------------------------------· 
* Do Menu Select1on * 
·------------------------------* 

PROCEDURE DoMenu; 
BEGIN 

CASE LoWord<EventRec.TaskData> OF 
256: About; 
257: QF!ag := TRUE; 

END; 

Apple Menu: About 
File Menu: Quit } 

HiliteMenu<FALSE, HiWord<EventRec.TaskData>>; 
END; 

*------------------------------* * Shutdown Toolsets * 
·------------------------------* 

PROCEDURE ShutDownTools; 
BEGIN 

DeskShutDown; 
MenuShutDown; 
Ct!ShutDown; 
WindShutDown: 
EMShutDown; 
QDShutDown; 
MTShutDown; 
DisposeAII<MemiD>; 
MMShutDown<UseriD>: 
TLShutDown; 

END; 

·------------------------------* 
* Ma1n * 
*------------------------------* 

BEGIN 
StartUpTools; 
PrepDeskTop; 

Start toolsets } 
Prepare desktop and menus 

QF!ag := FALSE; 
EventRec.TaskMask := SOOOOlfff; 

REPEAT 
REPEAT 

< Wait for a menu event } 

Event := TaskMaster<Sffff, EventRec>; 
UNTIL Event <> 0: 
IF Event = winMenuBar THEN DoMenu; 

UNTIL QF!ag; 

ShutDownTools 
END. 

<Shutdown all tools started} 

Surprisingly, the TML Pascal example compiles into an eight
block runtime file, half the size of the C program. 

These sample programs are written so they can be compared 
to each other easily. This does not necessarily mean that they have 
been written in the best format for the language used. For example, 

93 



-
----------Chapter 6 ----------

since Pascal is relatively inflexible, the machine language and C 
programs have a very Pascal-like "bottom-up" format in order to 
keep the functions parallel. 

Since all three programs make extensive use of routines in 
ROM, they run at roughly the same speed. They should be studied 
carefully and used as models for more complex DeskTop 
applications. 

If you diligently typed in one of the model program listings, 
successfully compiled it, and were mildly impressed with the re
sults, don't give up now. These model programs were intentionally 
created as skeletons. They form the basic parts of all DeskTop 
applications. 

The chapters that follow discuss key portions of the sample 
programs in greater detail. They show how to add more pull-down 
menus, custom windows, dialog and alert boxes, and special dialog 
controls. With a little imagination and this book at your side, 
you're on your way toward a rewarding programming experience. 

94 



.....----Chapter 7 __ ____, 

Memory 
Management 

Many Apple IIGS programmers 
have their roots in earlier Apple 
II computers. Perhaps you're one 
of them. If so, you are well 
aware of the anarchy that pre
vailed in the 64K RAM Apple II. 
Apple had cleaned up the neigh
borhood when the memory
management system was created 



----------Chapter 7 ----------

for the Apple IIGS. It was something that had to be done. 
This chapter is about memory management. It may sound like 

a dry subject, but it really isn't. In fact, compared to the jungle-gym 
memory management of earlier Apple II computers, the designers 
of the Apple IIGS have blessed the programmer with a memory
management system that's reliable, easy to manage, and easy to 
program. 

New Rules 
Imagine an Apple II with eight megabytes of RAM (128 times more 
memory than a 64K Apple II) and no sensible way of managing it 
all. Programs would overwrite each other, and there would be no 
way to locate lost data, which might be intact but as irretrievable as 
a needle in a hayfield. Before long, memory would be as packed 
with as much useless information as a poorly managed bookstore. 
A horrific thought. But thanks to the Memory Manager built into 
the IIGS, programs can coexist in peace for the first time in Apple II 
history. 

This is a radical departure from the programming environment 
of older Apple lis. If you're moving up to an Apple IIGS from a lie 
(or lie or II+), you're in for a surprise. Gone are the days when a 
program grabbed a hunk of memory for its own purposes. 

With the Memory Manager in charge, memory blocks are allo
cated to applications that request them. Memory blocks can be any 
size, and they can contain any type of information. But a program 
must specifically ask for a block of memory or risk the complete 
destruction of any space it arbitrarily claims. 

A memory block may be located anywhere in RAM. It is very 
rare for a program to ask for a block of memory that always resides 
at a fixed address in the machine. In fact, it's considered sloppy 
programming if your application cannot deal with memory blocks 
that move around in the Apple IIGS. The memory blocks that the 
Memory Manager hands out will not always live at the same ad
dress in the computer, and there's a good reason for this. 

As more and more applications reside inside the computer at 
the same time, their impact on memory usage will vary. Some pro
grams might require a small portion of RAM for temporary usage 
and then throw it away when it's no longer needed. Other pro
grams might require memory blocks that could be considered per
manently reserved. And still other programs may require great 
amounts of memory. Managing that memory without the assistance 

96 



--------Memory Management --------

of the Memory Manager would be a big headache. 
So, imagine having hundreds of small memory blocks scattered 

throughout your computer's memory. Then imagine that your 
application needs a large, contiguous piece of RAM, but an unused 
area of memory that size doesn't exist. If you couldn't move the 
smaller blocks, rearranging them to make room for the one large 
block, the program would crash. With this kind of demand on 
RAM, things can get messy fast if memory blocks are not allowed 
to be moved. 

Figure 7-1. Memory Blocks Distributed All Over Memory in a Random 
Dispersal 

Fixed & Locked Block 

Purgeable Block 

Fixed & Locked Block 

Purgeable Block 

Figure 7-2. Memory Blocks After Reorganization by the Memory 
Manager 

Fixed & Locked Block 

Fixed & Locked Block 

97 



----------Chapter 7 ----------

Fortunately, part of the Memory Manager's job is reorganizing 
memory blocks. It shuffles movable blocks around in an efficient 
and resourceful manner. This is done by removing blocks that are 
flagged as unused and then sliding blocks around in order to fill 
any gaps. The effect is that the landscape inside the computer is 
kept neat and orderly. 

Don't let this worry you. It's possible for an application to re
quest a block of memory that will reside at a fixed location, if you 
want it. However, the odds of the Memory Manager denying your 
request are higher because that space might already be reserved by 
another program. 

Of course, if blocks of memory can be allowed to move about, 
seemingly at will, there must be a way to keep track of where 
they are. 

Getting a Handle on Memory Blocks 
Since a memory block can move around inside the computer, it is 
referenced by a handle. You'll see handles used with anything that 
moves about or that doesn't have a specific, given, or constant lo
cation, such as memory blocks, records, structures, and so on. Han
dles are simply long-word pointers to an address stored in memory, 
and they're used frequently in programming the Apple IIGS. 

In the case of memory blocks, a handle points to a location in 
memory that contains a list of items. This list is also referred to as 
the memory-block record. For example, the first item in the list is a 
long-word address containing the actual location of the memory 
block's data in memory. The other items will be discussed later in 
this chapter. 

Recall that a memory handle is a pointer. It points to a list of 
items. The first item in the list is an address which points to the 
location in memory where the memory block lives. This can be 
confusing. 

If the memory block is moved, the only thing that changes is 
the address in the memory-block record. The handle still points to 
the same structure. Your program won't need to adjust anything if 
it's working with the handle correctly to begin with. 

Suppose that you have a friend whose name is Kitty. On a 
page in your address book, you have recorded her name, address, 
birth date, and dozens of other pieces of information about her. 

Kitty has a problem: She is always being evicted from her 

98 



-------- Memory Management --------

apartment. Whatever other information you have about Kitty is al
ways the same: She never changes her hair color, her birth date, 
her parents, or her telephone number. Only her address. The line 
in your address book where her address is written is the only thing 
you need to change in order to keep up to date on Kitty. That 
much-erased line in your address book is analogous to the memory
block record. 

Starting the Memory Manager 
Just as its name implies, the Memory Manager is responsible for 
keeping the computer's RAM neatly organized. This is done by tag
ging with an identification number each chunk of memory owned 
by an application. Whenever the Memory Manager is called upon 
for moving, purging, or manipulating a block of memory, your pro
gram must identify its piece of RAM. This is done by passing along 
an identification value when calling the Memory Manager. 

Even the space that your program occupies is branded with its 
own identification number. The ID of your program is obtained 
when the Memory Manager is started. 

The following examples show how a program obtains its own 
ID. This is typically one of the first calls an application should 
make. 

In machine language: 

pha 
_MMStartUp 
pia 
sta UseriD 

In Pascal: 

UseriD : = MMSta.rtUp; 

InC: 

UseriD = MMSta.rtUp( ); 

;word result space 
;start the Memory Manager 
;pull Master User ID 
;and sa. ve lt 

These samples demonstrate the steps involved in starting the 
Memory Manager in 65816 machine language, Pascal, and C. The 
UseriD, declared as a 16-bit unsigned integer, is a unique identifier 
that belongs to your application. It should always be saved for 
later use. 

99 



----------Chapter 7 ----------

User ID Numbers 
The ID value returned by MMStartUp is your program's master 
User ID. It references the space your application takes up in mem
ory. The User ID is used when shutting down both your program 
and the Memory Manager. 

The ID value consists of 16 bits, grouped into three parts, or 
fields. Bit positions within the word value represent the different 
fields: 

Field: Type ID Aux ID Main ID 

User ID: I I I I I I L__l -'-------'---'------'----'------L_____.J.___J 

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

The Type ID field occupies bits 12-15. Type ID identifies the 
class of software the User ID belongs to. It may be one of 11 
values: 

Value 
$0 
$1 
$2 
$3 
$4 
$5 
$6 
$7 
$8 
$9 
$A 
$B- $F 

Class of Software 
Memory Manager 
Application 
Control program 
Pro DOS 
Tool set 
Desk accessory 
Runtime libraries 
System Loader 
Firmware 
Tool Locator 
Setup file 
Undefined 

The Auxiliary ID field occupies bits 8-11. This field is initially 
set to 0, but you can manipulate it to create up to 16 different sub
ID's for your program. For example, to set bit 8 (the least signifi
cant bit of the Aux ID field), the following can be done. 

In machine language: 

lda UseriD 
ora #%100000000 
eta MemiD 

In Pascal: 

;Get the User ID ... 
; ... and set bit 8 
;Save the new ID 

MemiD : = UseriD + 256; 

100 



--------Memory Management --------

InC: 

MemiD = UseriD I 256; 

This should be done before an application requests memory 
from the Memory Manager. An auxiliary ID value is used rather 
than the program's User ID. The memory allocated can then be cat
egorized by your program as an example of using this field. Other
wise, if you don't want to get that detailed, you can ignore the Aux 
ID field. But it's there if you need it. 

The Main ID field occupies the lower eight bits of the User ID 
returned from the Memory Manager. This is a unique number as
signed to your program's User ID by the Memory Manager. Your 
User ID is what makes your program special. It makes your pro
gram different from any others that are running in the machine. 
The lower eight bits of your User ID should never be altered. To 
do so would be like changing your own fingerprints. 

Asking for Memory 
When a ProDOS 16 application is launched, it is given its own 64K 
bank of memory to live in. It also has its own direct page and 
stack. If the program requires memory outside its code space for 
storage, it must call the Memory Manager's NewHandle function to 
request a block of memory. 

This 65816 code segment calls the NewHandle function in or
der to request a 256-byte buffer in bank $00 of the computer: 

pha. 
pha. 
pushlong 
push word 
push word 
pushlong #0 

_New Handle 

#$100 
Me miD 
$C005 

;long word result space 

;push size of requested block (one page) 
;push a. Memory ID (made from the User ID) 
;Attribute bits (discussed later) 
;Location of block in memory (not used) 

;call the NewHa.ndle fUnction 

This call requires four input parameters (and result space when 
called from machine language) in order to work: 

Value 
Long word 
Word 
Word 
Long word 

Parameter Description 
Size of the memory block needed 
An 15 value to assign to this biock 
Attributes (discussed later) 
Location of the block (if applicable) 

101 



------ - ---Chapter 7 ----------

Value 

Size 

ID 

Attributes 

Location 

Parameter Description 

The size of a memory block can be anything from zero bytes 
to whatever free memory space there is left in the machine. 
As described earlier in this chapter, each memory block allo
cated to a program must be identified by an ID number. 
The attributes of a memory block determine certain charac-
teristics about it (where it can reside, if it can be moved, and 
so on). Attributes are very important. They will be discussed 
in detail later in this chapter. 
If the memory is to reside at a fixed location in memory, this 
long-word value determines the address requested. 

NewHandle doesn't return a pointer to the location of the re
quested block of memory. Rather, it returns a handle to that block. 
The handle will be waiting to be pulled from the stack after this 
call is made from machine language-which is an important detail 
to remember. 

The handle references the memory-block structure just allo
cated. Within that structure is the actual address of the memory 
block. That address is obtained in the following manner: 

pla 
plx 
sta 0 
stx 2 
sta TheHandle 
stx TheHandle + 2 

;get low-order word of the handle 
;get high -order word of the handle 
;build a long pointer at location $00 

;and save the address for later 
;(might be used for disposal) 

The handle has been pulled from the stack and stored in four 
bytes from memory locations $00-$03. A copy has also been stored 
in TheHandle, a four-byte storage area within the program. By 
putting the value returned by NewHandle at location $00, a long
address pointer is created. This can be referenced indirectly in or
der to fetch values in the memory block's record. 

lda [0] ;get 16-bit address of the memory block 
sta BlockAddr 
ldy #2 
lda [O),y 
sta BlockAddr + 2 

; ... and save it 
;index passed the first word ... 
; . .. then get the bank of the memory block 
;and save it 

The address contained in the four-byte storage area named 
BlockAddr is the location of the 256-byte page of memory that was 
allocated with NewHandle. In fact, due to the location and 

102 



--------Memory Management --------

attributes of this memory block, it could be used as direct-page 
space by a tool set. 

Since direct pages reside in bank $00 only, the high word of 
the address need not be retrieved from the memory handle record. 
The most significant word of the address is assumed to be 0. 
Example: 

lda. [0] 
eta. DPa.geAddr 

;get the direct pa.ge address 
; . . . a.nd sa.ve lt 

DPageAddr would simply be a two-byte storage area in your 
program. 

Using NewHandle in Pascal and C is far easier. In Pascal, the 
following is used to obtain memory for direct-page space: 

TheHa.ndle : = NewHa.ndle($100, MemiD, $0006, Ftr(O)); 
DPa.geAddr : = LoWord(TheHa.ndleA); 

These statements are identical in operation to the machine lan
guage example listed earlier. The four parameters in the above ex
ample that constitute the NewHandle requirements are block size 
requested ($100), an ID (MemiD), attributes ($COOS), and the 
block's address (0). 

The following illustrates grabbing a memory handle using C: 

TheHa.ndle = NewHa.ndle(OxlOOL, MemiD, OxC006, nll); 
DPa.geAddr = (lnt) *(TheHa.ndle); 

These statements are identical to the machine language and 
Pascal examples. 

The Memory-Block Record 
The memory-block record is one of those things you really don't 
need to know about in order to program the Apple IIGS. The struc
ture and manipulation of memory handle records is not part of the 
regular programmer's repertoire. In fact, the only time you would 
examine a record is to locate a memory block's true location in 
memory. And the purpose of having a Memory Manager is to 
avoid that. 

Each block of memory allocated by the Memory Manager has 
a corresponding record. (Recall that the record is what the handle 
points to.) The structure of this record consists of six fields that 
give the memory block's address in memory and provide additional 
information about the block. 

103 



----------Chapter 7 ----------

The long-word value (handle) returned by NewHandle is the 
address in memory where the memory block's record is stored. 
This record is 20 bytes long, and it contains the following 
information: 

Size 
Long word 
Word 
Word 
Long word 
Long word 
Long word 

Contents 
Address of the block 
Attributes 
Owner's User ID 
Size of the block 
Pointer to the next handle record 
Pointer to the previous handle record 

The first four fields are copies of the parameters used when 
the NewHandle call was first made. See the previous section for 
details. 

The last two items require further explanation. 
In order to keep track of these handle records, the Memory 

Manager uses a set of next and previous record pointers to create a 
linked list. The first long-word pointer points to the next 20-byte 
memory handle record, while the second pointer points to the pre
vious record. This allows handle records to reside in any order 
throughout the computer's memory, yet they can be referenced in 
order due to their link fields. 

Block Attributes 
When NewHandle is used to allocate a block of memory, you must 
decide how that block should be treated by the Memory Manager. 
For example, should the block be allowed to move around? Does it 
have to be aligned on a 256-byte page boundary (which speeds up 
some processes)? Can it reside in special memory banks? You'll 
have to consider these points, and more, when allocating a new 
handle. Time to think. 

Block attributes are assigned by the programmer before the 
NewHandle function is called. The attributes parameter is a word 
value and consists of 16 bits of information: 

Bit Meaning If Set (Made Equal to 1) 
0 Block must reside in a particular memory bank 
1 Block must reside at a particular address 
2 Block must be page-aligned 
3 Block can reside in special memory banks 
4 Block cannot cross a bank boundary 

104 



--------Memory Management --------

Bit Meaning If Set (Made Equal to 1) 

5 Reserved 
6 Reserved 
7 Reserved 
8 Purge level (low bit) 
9 Purge level (high bit) 

10 Not used (0) 
11 Not used (0) 
12 Not used (0) 
13 Not used (0) 
14 Block is fixed (cannot move) 
15 Block is locked (fixed and unpurgeable) 

Each bit position represents a specific attribute describing the 
memory block to be allocated. Setting a bit asserts that attribute. 

Bit 0 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

Specifies whether the block should reside in a particular 
bank of memory in the computer. For example, if your 
application required a memory block that must reside in 
bank $05, you would set this bit. 
Specifies that the block must live at a particular address in 
memory. Memory blocks that reside at fixed addresses 
should also have bit 14 set (which means they cannot be 
moved). 
Causes the block of memory to reside on a page bound
ary. A page is 256, or $100, bytes of RAM. The first page 
boundary is at location $0000 in a bank. The next page is 
at location $0100. The next page would be at location 
$0200, followed by $0300, and so on, all the way up to 
$FFOO, the last page boundary in a bank. 
Determines if a block can reside in the special memory 
banks $00, $01, and $EO and in bank $El. These banks 
are used by the Mega II (Apple lie-emulation) mode of 
the Apple IIGS when an application runs under the 8-bit 
version of ProDOS. If you create a memory-resident appli
cation for the Apple IIGS, such as a desk accessory, it can
not reside in special memory. In native (16-bit) mode, 
bank $00 is used mainly by DeskTop applications for di
rect-page space. 
Tells the Memory Manager if the block can cross from one 
bank to the next in the computer. For example, a $2000-
byte block, living at location $03FEOO could cross over 
into bank $04 if bit 4 was not set. 

105 



----------Chapter 7 ----------

Bits 5-7 
Bits 8 and 9 

Value 
0 
1 
2 
3 

Reserved and should not be set. 
Classify the purge level of a memory block. Because there 
are just two bits, four unique settings can be assigned 
(2 X 2 = 4): 

Meaning 
The block cannot be purged 
Very low purge level 
Moderate purge level 
Very susceptible to purging 

Blocks are purged when the Memory Manager is called to compact 
memory and clean house. As you can see, blocks with the highest 
nonzero purge levels are purged first. 

Bits 10-13 No use at this time. 
Bit 14 
Bit 15 

Fixes a block in memory so it cannot be moved. 
Used to lock a memory block. Locking causes the block to 
become immovable and unable to be purged, regardless of 
the settings of bits 8, 9, and 14. 

The Memory Manager tool set provides functions Jor changing 
the attributes of a block after it has been allocated with 
NewHandle. They are the following: 

Function 
HLock 
HLockAll 
HUnLock 
HUnLockAll 
SetPurge 
SetPurgeAll 

Description 
Locks a memory block referenced by its handle 
Locks all memory blocks referenced by a User ID 
Unlocks a memory block referenced by its handle 
Unlocks all memory blocks with a certain User ID 
Sets the purge level of a block referenced by handle 
Sets the purge level for all blocks with the same ID 

The summary at the end of this chapter lists the parameters for 
these functions. Note that COMPUTEt's Mastering the Apple lies 
Toolbox provides parameter descriptions for the entire Apple lies 
Toolbox. 

Removing Memory 
Memory is removed by eliminating memory handles (the same 
handles that were obtained by the NewHandle function). When a 
handle is removed, the Memory Manager is allowed to make avail
able the space that its memory block took up in the computer. 

Any handles allocated by your application should be removed 
as soon as they are no longer needed. This will make the memory 

106 



--------Memory Management --------

they occupy free for use by other applications. Handles can be re
moved in a number of ways using the Memory Manager tool set. 

The most straightforward method of removing a memory block 
is to use the DisposeHandle function. Your application pushes the 
handle's value onto the stack and then DisposeHandle is called. 
The memory block and its allocated handle are removed from the 
system instantly. 

In machine language: 

pushlong TheHandle 
_ntsposeHandle 

;push the handle on the stack 
;and now dispose of lt 

The same example in C or Pascal: 

DlsposeHandle(TheHandle); 

If you have allocated multiple handles with a single identifica
tion value, your application can take a shortcut by using the 
DisposeAll function. DisposeAll will remove all handles associated 
with a particular ID number. For example, in C or Pascal: 

DlsposeAll(MemiD); 

Your programs should never call DisposeAll with the master 
User ID returned by MMStartUp. This would cause the memory 
space that a program occupies to be freed, which might result in a 
system crash. 

Another approach to freeing a block is to set its purge level to 
the highest setting (3). This would cause the Memory Manager to 
dispose of your block the next time it was called to compact mem
ory (CompactMem). Note, however, that the handle remains allo
cated and will have to be removed eventually. 

When a handle is purged, the block allocated to this handle is 
freed, but the handle is kept alive. The address of the block in the 
memory block record is set to $0000000 (a long word of 0). This 
tells the Memory Manager that the handle is valid, but does not 
have a block allocated to it. This would allow you to reallocate 
(ReAllocHandle) a memory block at a later time without having to 
use NewHandle to create a brand new one. It is understood that if 
purging does not dispose of the handle, your application will still 
need to do so before quitting. 

107 



-------------------Chapter 7--------------------

Chapter Summary 
The following Toolbox functions were discussed in this chapter. 
Also included are a few of the popular Memory Manager functions. 

Function: $0202 
Name: MMStartUp 

Starts the Memory Manager 
Push: Result Space (W) 
Pull: UseriD (W) 

Errors: $0207 
Comments: One of the first calls made by an application. 

Function: $0302 
Name: MMShutDown 

Shuts down the Memory Manager 
Push: UseriD (W) 
Pull: nothing 

Errors: none 
Comments: Make this call when your application is finished. 

Function: $0902 
Name: NewHandle 

Makes a block of memory available to your program 
Push: Result Space (L); Block Size (L); UseriD (W); 

Attributes (W); Address of Block (L) 
Pull: Block's Handle (L) 

Errors: $0201, $0204, $0207 

Function: $0A02 
Name: ReAllocHandle 

Reallocates a purged block with new parameters 
Push: Block Size (L); UseriD (W); Attributes (W); 

Address of Block (L); Old Block's Handle (L) 
Pull: nothing 

Errors: $0201, $0203, $0204, $0206, $0207 

Function: $0B02 
Name: RestoreHandle 

Reallocates a purged block using original parameters 
Push: Old Block's Handle (L) 
Pull: nothing 

Errors: $0201, $0203, $0206, $0208 
Comments: Uses same parameters of original block (unlike function $0A 

which allows the parameters to be reset). 

108 



--------Memory Management --------

Function: $1002 
Name: DisposeHandle 

Deallocates a block and releases its memory 
Push: Block's Handle (L) 
Pull: nothing 

Errors: $0206 
Comments: The block is deleted regardless of its locked status or purge 

level. 

Function: $1102 
Name: DisposeAll 

Releases all blocks associated with a UseriD 
Push: UseriD (W) 
Pull: nothing 

Errors: $0207 
Comments: Ruthless. 

Function: $1202 
Name: PurgeHandle 

Purges a block of memory 
Push: Block's Handle (L) 
Pull: nothing 

Errors: $0204, $0205, $0206 
Comments: The block must be purgeable and unlocked. The block's han

dle is not deallocated by this call. 

Function: $1302 
Name: PurgeAll 

Purges all blocks associated with a UseriD 
Push: UseriD (W) 
Pull: nothing 

Errors: $0204, $0205, $0207 
Comments: The blocks must all be purgeable and unlocked. 

Function: $1 B02 
Name: FreeMem 

Returns memory available for programs 
Push: Result Space (L) 
Pull: Integer Value (L) 

Errors: none 
Comments: Returns the total number of bytes in memory, not counting 

ramdisks or other allocated blocks. 

109 



----------Chapter 7 ----------

Function: $1C02 
Name: MaxBlock 

Returns memory available to programs 
Push: Result Space (L) 
Pull: Integer Value (L) 

Errors: none 
Comments: Returns the largest free block in memory. 

Function: $1002 
Name: TotalMem 

Returns total RAM in the System 
Push: Result Space (L) 
Pull: Integer Value (L) 

Errors: none 
Comments: Returns all RAM in your Apple lies, including the basic 

256K, any ramdisks, and so on. 

Function: $1F02 
Name: CompactMem 

Compacts memory 
Push: nothing 
Pull: nothing 

Errors: none 
Comments: Performs memory garbage collection, purging purgeable 

blocks and reorganizing memory. Don't do this during an 
interrupt. 

Function: $2002 
Name: HLock 

Locks and sets a specific handle to a purge level of 0 
Push: Handle (L) 
Pull: nothing 

Errors: $0206 

Function: $2102 
Name: HLockAll 

l ~ll . 

Pull: 
Errors: 

Locks and sets all handles associated with a specific UseriD 
to a purge level of 0. 
v .:t ..... .l..i.L-1' ., " I 

nothing 
$0207 

Function: $2202 

110 

Name: HUnLock 
Unlocks a block of memory 

Push: Handle (L) 
Pull: nothing 

Errors: $0206 



-------- Memory Management --------

Function: $2302 
Name: HUnLockAll 

Unlocks all blocks of memory associated with a specific 
UseriD 

Push: UseriD {W) 
Pull: nothing 

Errors: $0207 

Function: $2402 
Name: SetPurge 

Sets the purge level of a given block 
Push: New Purge Level (W); Handle (L) 
Pull: nothing 

Errors: $0206 
Comments: Only the lower two bits of the word pushed are significant. 

Function: $2502 
Name: SetPurgeAll 

Sets the purge level for all blocks associated with a given 
UseriD 

Push: New Purge Level (W); UseriD (W) 
Pull: nothing 

Errors: $0207 

Function: $2B02 
Name: BlockMove 

Copies a block of memory from one address to another 
Push: Source Address (L); Destination Address (L); Length (L) 
Pull: nothing 

Errors: none 

Memory Manager Tool Set Error Codes 
$0201 Unable to allocate block 
$0202 Illegal operation on an empty handle 
$0203 Empty handle expected for this operation 
$0204 Illegal operation on a locked or immovable block 
$0205 Attempt to purge an unpurgeable block 
$0206 Invalid handle given 
$0207 Invalid User ID given 
$0208 Operation illegal on block-specified attributes 

111 



,..------Chapter 8 ------. 

Pull-Down 
Menus 

In menu-driven programs not 
too many years ago, the com
puter's monochrome screen 
would clear and a long list of 
menu items, usually num
bered, marched down the 
display: 



----------Chapter 8 ----------

MAIN MENU OPTIONS: 

1. GO TO MENU 2 
2. GO TO MENU 3, SUB MENU C 
3. GO TO MENU 5 AND STAY THERE 
4. DO MAIN MENU OPTION 7 
6. PRETEND TO GO TO MENU 7 BUT GO TO MENU 6 INSTEAD 
6. GIVE ME THE BREAKFAST MENU 
7. DO MAIN MENU OPTION 4 
8. JUST GET ME THE CHECK 

ENTER YOUR SELECTION (1-8): 

Pressing a number would erase the old menu and would likely 
unravel yet another screenful of menu items. Sometimes this would 
go on through several levels, before anything could get done. Mo
bility in this environment was like jogging blindfolded-with 
shackled legs. 

With a DeskTop environment however, the user can see all the 
possible menus at once. Their titles are positioned horizontally 
across the top of the screen. Navigating through these menus re
quires little instruction. They are intuitive and are becoming com
monplace in the computer world. Just about everyone has had 
exposure to them. 

The Two Managers 
Programmers who have written interactive software know that 
when life is made easier for the user, it usually means the opposite 
for the programmer. Creating user-friendly software requires hard 
work. While this is generally true for applications in other environ
ments, things couldn't be sweeter for the Apple IIGS programmer. 
All the credit goes to the Menu and Window Managers. 

As its name implies, the Menu Manager is responsible for 
maintaining the lists of numerous commands and functions a pro
gram may contain. It takes care of shuffling menus around, draw
ing them on the screen, and interacting with the user while 
selections are made with the mouse or keyboard. 

What does the Window Manager have to do with menus? A 
vital part of the Window Manager is the TaskMaster. The purpose 
of the TaskMaster is to watch for menu events that occur on the 
DeskTop and to handle them appropriately. It relieves the pro
grammer of those bothersome details. However, if an application 
requires custom event handling, the TaskMaster can be bypassed 
altogether. 

114 



---------Pull-Down Menus ---------

Organizing Menu Items 
Organization of functions and subroutines is an essential step in 
creating any new program. The same applies to creating pull-down 
menu items. For example, a coffee-shop menu is grouped into sec
tions such as Eggs, Pancakes, Waffles, and Side Orders. This makes 
it easier for the diner to locate a particular item. 

In a DeskTop program, the Main Menu of yesteryear's applica
tion is replaced by the System Menu Bar at the top of the screen, 
as shown in Figure 8-1. 

Figure 8-1. Breakfast Menu Bar 

Eggs Pancakes Waffles Side Orders 

Within each menu are menu items. For example, the third 
menu, Waffles, might include four items, shown in Figure 8-2. 

Figure 8-2. Waffle Menu 

Waffles 

Apple 
Belgian 
Pecan 
Strawberry 

For the user's sake, items in a pull-down menu should be re
lated to the title of the menu. This falls into the department of Ap
ple's Human Interface Guidelines (see Appendix A). The guidelines 
were created to help the programmer decide where certain com
mands should go, how they should be named, and so on. 

As an example, commands that open and close files, save 
changes to disk, create new files, and interact with the printer, are 
found in the File menu on the System Menu Bar. The command to 
quit a program is also in the File menu. Practically all DeskTop pro
grams have a File menu so long as a means exists for quitting the 
application. 

Once an application's commands are organized into menus, 
the programmer must decide which, if any, should have keyboard 
equivalents. Keyboard equivalents are awarded to commands used 
most often. Applications relying heavily on keyboard input, such as 
word processors, ought to provide the user with as many key 
equivalents as possible. On the other hand, people tend to make 

115 



----------Chapter 8 ----------

menu selections using the mouse while working with drawing or 
painting programs, which makes it less important that graphics 
program menu items have keyboard-equivalent commands. 

According to the Human Interface Guidelines, created by Ap
ple's Bruce Tognazzini (lovingly known as "Saint" Tognazzini), 
some keyboard command characters should be reserved for certain 
functions in order to maintain consistency from one DeskTop appli
cation to the next. 

Table 8-1. Command Key Equivalents 

Key Command 
C Copy 
0 Open 
Q Quit 
S Save 
V Paste 
X Cut 
Z Undo 

The letters listed in Table 8-1 are commonly reserved for the 
listed functions. 

Keyboard equivalents are shown to the right of a menu item, 
preceded by the Open Apple symbol. On the Macintosh, they are 
preceded by the clover-leaf (Command key) symbol. 

The placement of items on the menu bar is also discussed in 
the Human Interface Guidelines. The menus are positioned on the 
menu bar starting with the Apple menu (also called the New Desk 
Accessory menu) at the left side. Following that comes the File 
menu. And if the application manipulates text or graphics, usually 
an Edit menu follows. Consult Appendix A for other reserved 
menu titles suggested by the guidelines. 

Designing a Menu 
The Menu Manager works with strings of characters in order to 
build a menu and create its contents. A list of these strings is 
passed to the Menu Manager via the NewMenu Toolbox function. 
In machine language, C, or Pascal, the data for a menu list can be 
created by defining text-string .constants. 

These strings must remain in memory for as long as the menu 
bar is present. Machine language programmers should not reuse 
the space occupied by these strings, and C programmers should de
fine the strings as global, static text. 

116 



---------Pull-Down Menus ----- ----

A menu list consists of three parts: 

• A title 
• The menu items 
• The end of menu marker 

Additionally, each item of a menu, and its title, are tagged by a 
unique identification number. The ID number of a menu title is 
useful only to the Menu Manager. The 10 number of a menu item 
is used by the application when the user selects a menu item. 

Figure 8-3 shows a sample menu list. 

Figure 8-3. Menu List 

> > Waffle '\ N3 
--Apple '\ N256 
--Belgian '\N257 
--Pecan '\ N258 
--Strawberry '\ N259 
> 

+-- Menu Title 

+- Menu Items 

+-- End of Menu 

Each line in the list begins with two unique characters. The ex
ception is the last line which requires just one character. 

The first line in the list describes the title of the menu. It be
gins with two letters, numbers, or symbols. Following these charac
ters is the menu title. Incidentally, the title is usually surrounded 
by one or more spaces to provide padding between the other titles 
on the menu bar. The backslash character ( '\) signals the end of 
the title and the beginning of the special characters. Therefore, a 
backslash cannot be part of the menu's name. The special charac
ters further describe the menu item. 

Tl=t@ eam.ffi@feial at symbol (@) is used to produce the colorea 
Apple logo used for the Desk Accessory menu. It must be the only 
character in the title, with no surrounding spaces. 

You can also specify the @ sign for any other menus you may 
have. However, only the Apple logo will appear as long as there is 
no other text along with it. 

The strings that follow the title line make up the list of items 
in this menu. Each line starts with the same t'wo characters, which 
can be any characters, except the two that begin the menu's title 
line. The name of the menu item follows, and then finally, a 
backslash signals the start of the special characters. 

117 



----------Chapter 8 ----------

A special menu item, called a dividing line, can be placed 
into the menu by using a single hyphen as a menu item. Its 
purpose is to divide members in an item list. Dividing line 
items should be dimmed (see below) so that they cannot be 
chosen as a legal menu item. 

The very last line of the menu list consists of a single charac
ter. This character must be different from the characters that start 
the menu item lines. However, it can be the same character that be
gins the title line, as shown in Figure 8-3 above. 

Each line in the list, except for the very last, ends with a car
riage return ($0D) or a null character ($00). This tells the Menu 
Manager that the end of the line has been encountered and it is al
lowed to proceed to the next line. 

The special characters that follow the backslash have the fol
lowing functions: 

Character Does This 
• 
B 
c 
D 
H 

N 
u 
v 
X 

Defines the command key equivalents 
Draws the menu item's text in boldface 
Places a character in front of the item name 
Dims and disables the menu or menu item 
Indicates that a two-byte hexadecimal ID number follows 
Draws the menu item's text in italic style 
Indicates that a decimal ASCII ID number follows 
Underlines the menu item's text 
Places a dividing line between this item and the next 
Activates color replace for highlighting 

These characters can be upper- or lowercase. Two characters 
must follow the * for keyboard equivalents. They are used to spec
ify the case sensitivity of the command letter. For example: 

*Bb Both B and b are accepted 
*BB Only uppercase B is accepted 
*bb Only lowercase b is accepted 

Similarly, using *? / would allow the user to press the Open 
Apple key and either the slash or question mark (shift-slash), for 
example, to execute a Help command. 

118 



--------- Pull-Down Menus ---------

The key equivalent will be displayed on the menu after an Ap
ple symbol. Also, only the first letter after the * is displayed on the 
menu, though both keys will work. 

The B, I, and U special characters, which stand for boldface, 
italic, and underline type styles, respectively, are used to enhance 
the display of text items. They may or may not be available for use 
depending on the system font. 

The letter C places a character before the item's text. Typically, 
this is used to mark the item with a special character, such as the 
following: 

Character 
Check mark 
Diamond 
Open Apple 
Solid Apple 

ASCII Value 
18 ($12) 
19 ($13) 
17 ($11) 
20 ($14) 

For example, to place a check mark before a menu item, the 
following string would be defined in a machine language source 
code file: 

de c'--Checked Item "-.C',ll'l8',c'N256V',ll'O' 

More information on creating the menu strings from assembly 
language is covered in the next section. 

D is used to dim and disable an item. The item appears in a 
dimmed state and cannot be chosen. If the menu itself is disabled, 
every item in that menu will be dimmed and disabled. 

Hand N allow a menu or item to be assigned an ID number. 
When H is used, it's followed by a two-byte hexadecimal value in 
low-byte/high-byte order. If N is used, it is followed by a string of 
decimal characters. Not every menu item requires an ID, and only 
certain IDs are used as shown in the following chart: 

Menu IDs 
0 
1-65534 
65535 

Description 
Used internally 
Used by an application's menus 
Used internally 

119 



----------Chapter 8 ----------

Item IDs 
0 
1-249 
250 
251 
252 
253 
254 
255 
256-65534 
65535 

Description 
Used internally 
Used by desk accessory items 
Undo 
Cut 
Copy 
Paste 
Clear 
Close 
Used by an application's menu items 
Used internally 

Identification numbers don't have to be sequential or defined 
in any order. They have to be unique, but only if they are enabled. 
Machine language programmers will want to assign menu item IDs 
starting with 256 and work upwards, not skipping over any values. 
(The reason for this is discussed later.) 

V is used to draw a dividing line between two items, across the 
entire width of the menu. It does not take up a line in the list of 
items, as the hyphen character does. (See above.) 

X uses color-replace mode that affects the way a menu is high
lighted when it is chosen. When a colored menu is selected with 
color replace activated, the colors will remain the same. For ex
ample, in the Apple menu, the X option should be specified. If not, 
the Apple character will appear gray on a black background, rather 
than colored on a black background. For ordinary menus, the X op
tion need not be specified. 

Creating Menu Strings 
When using the APW assembler, string constants are defined using 
the DC (Define Constant) directive: 

Menu3 de e'>> Waffle "N3',11'0' 
de e'--Apple" N256* Aa',11'0' 
de e'--Belglan" N257*Bb' ,11'0' 
de e'--Peean" N258*Pp',11'0' 
de e'--Strawberry" N259*Ss',I'O' 
de e'>' 

Each line ends with a single zero byte. ID numbers are as
signed using the special character N. However, the H character 
could have been used: 

de e'--Apple" H' ,1'256',e'• Aa' ,11'0' 

120 



---------Pull-Down Menus ---------

Why use H when N will do? Because it saves a byte and is 
easier for the Menu Manager to parse. Unfortunately, it makes the 
source code look messy. 

Things are done a bit differently using the C language. The 
Waffle menu could be defined using static text strings as follows: 

char •Menu3[] = { ">> Waffle '\... '\... N3", 
"--Apple'\... '\...N266*Aa", 
"--Belgian'\... '\... N267*Bb", 
"--Pecan'\... '\... N268*Pp", 
"--Strawberry". ". N269*Ss", 
">" }; 

Since the C compiler uses the backslash character for various 
purposes, it must be entered twice in a row in order to insert one 
backslash into a string of text. And since C strings by definition 
end in a null byte, the end-of-line terminator will be inserted auto
matically at compile time. 

An alternative method to define text strings is to use C's 
in-line assembly feature to define the strings with 65816 in
structions. Or you could write an external program in machine 
language that is linked with the C code later on. 

For programmers using TML Pascal, menu strings must be de
fined as global string types. They are built at runtime using the 
CONCAT function: 

Menu3 : = CONCAT('>> Waffle ". N3D '\... 0', 
'--Apple'\... N266* Aa ". 0', 
'--Belgian'\... N267*Bb '\... 0', 
'--Pecan'\... N268*Pp '\... 0', 
'--Strawberry'\... N269*Ss "- 0', 
'>'); 

Notice how each line is terminated by the null, '\ 0, escape se
quence. Unlike C, Pascal strings are not automatically terminated 
by nulls, and, therefore, the programmer must provide them. 

Installing a Menu 
Before any Menu Manager functions can be called, the Menu Man
ager must be started. The Menu Manager, like a few other tool sets, 
also requires its own direct page. If you're not sure how to start up 

l-21 



----------Chapter 8 ----------

a tool set, or how to get direct page space, see Chapter 4 in this 
book, "About the Toolbox," and Chapter 7, "Memory 
Management." 

Placing a menu into the System Menu Bar is a two-step pro
cess. First, all menu strings must be passed to the NewMenu func
tion. NewMenu uses them to create an internal menu record. Once 
completed, NewMenu returns a handle to the menu record. 

The second step involves inserting the menu record into the 
System Menu Bar by using the InsertMenu function. This is done 
by passing the menu handle, returned by NewMenu, to 
InsertMenu. It then places the menu at the desired position. 

To accomplish this process from a machine language program, 
the following can be used: 

pha 
pha 
pushlong 
Jew Menu 

push word 
_InsertMenu 

;long-word result space 
;long-word result space 

#Menu3 ;point to Menu 3's strings 
;create the menu record ... 
; ... whose handle ls now on the stack 

#0 ;insert lt before all other menus 

InsertMenu's two input parameters are the handle of the menu 
record and a position value that determines where on the menu bar 
the menu title will be inserted. If the position is 0, the menu will 
be the leftmost menu. Note how the menu record handle is kept on 
the stack for the call to _lnsertMenu. 

The position argument, if 0, will insert the menu at the 
leftmost side of the menu, pushing any existing menus to the 
right. But if the position value is a Menu ID number, it in
structs the Menu Manager to insert the menu after the menu 
referenced by that 10. 

Creating and inserting a menu in C or Pascal is practically ef
fortless when compared to machine language. 

With C: 

InsertMenu(NewMenu(Menu3(0]), 0); 

With TML Pascal: 

InsertMenu(NewMenu(@Menu3[1]), 0); 

122 



--------Pull-Down Menus --------

The two tasks can be taken care of with just one statement by 
embedding the NewMenu function within the InsertMenu function. 
This is a very common programming technique. 

TML Pascal requires the at symbol in front of the Menu3 vari
able in order to reference its address in memory. Also, the data in 
Pascal strings starts with element 1, because element 0 is a count 
byte. 

Drawing the Menu Bar 
Even though a menu has been inserted into the menu bar, it .does 
not appear on the screen. To cause the menu to appear, call the 
FixMenuBar function. 

In machine language: 

ph& 
_FixMenuBar 
pia 
sta Height 

Or inC: 

;word result space 

;returns the bar's height in pixels 
;(optional-you don't need to sa.ve it) 

Height = FixMenuBar( ); 

The Height assignment is optional. A simple FixMenuBar() 
alone can be used. 

In Pascal, 

Height : = FixMenuBar; 

does the same, but the variable assignment (Height) is required. 
FixMenuBar calculates the height of the System Menu Bar and 

vertical placement of menu items. This depends on the type of sys
tem font in use. If this function is not called, all the menu items 
will appear on top of each other, and the program will look 
peculiar. 

. Finally, when the menu records have been created, inserted, 
and fixed, the System Menu Bar can be displayed on the screen 
using the DrawMenuBar function . 

With C, use 

DrawMenuBa.r( ); 

Or with Pascal, use 

DrawMenuBar; 

123 



----------Chapter 8 ----------

To perform the equivalent with a machine language macro call, 
use 

_DrawMenuBar 

This function displays the titles of all your pull-down menus 
on the menu bar. 

Using the TaskMaster 
The easiest way to manage your menus is to let the TaskMaster do 
all the work. The TaskMaster takes over whenever the user does 
something to affect the menu-bar area. As an example, if the user 
clicks the mouse over a menu title, the TaskMaster calls the func
tions in the Menu Manager that draws the menu on the screen. 

If the user begins to drag the mouse pointer down through a 
menu, TaskMaster calls the appropriate Menu Manager functions 
that allow the user to make a selection. TaskMaster also recognizes 
keyboard equivalents of menu items and treats them as if menu se
lections were made with the mouse. 

Before TaskMaster is used, your application must provide an 
event record where TaskMaster places information. The event 
record consists of seven fields, structured in this manner: 

EventRec anop ;Event Record used by TaskMaster 
What ds 2 ;word 
Message ds 4 ;long word 
When ds 4 ;long word 
Where ds 4 ;long word 
Modifiers ds 2 ;word 
TaskData ds 4 ;long word 
TaskMask de i4'$lfff ;long word 

The address of this record is passed to TaskMaster as one of its 
arguments. 

Calling TaskMaster with machine language: 

pha 
pushword #$FFFF 
pushlong #EventRec 
_TaskMaster 
pla 

;Result Space 
;Event Mask (screen all event types) 
;Point to Event Record 

;Get Event code I 
'-

Calling TaskMaster with C: 

Event = TaskMaster(Oxffff, &EventRec); 

124 



---------Pull-Down Menus ---------

After calling TaskMaster, a code is returned to your applica
tion. If its value is not 0, an event is pending. The application can 
continue to call TaskMaster until a nonzero code is reported. This is 
demonstrated by the following loop in Pascal: 

REPEAT 
Event : = TaskMaster($ffff, EventRec); 

UNTIL Event <> 0; 

When the user eventually makes a menu selection, TaskMaster 
returns control to your application, informing it that an event has 
occurred. If a menu item (other than a desk accessory) has been se
lected, TaskMaster returns an extended event code of $0011 (17 
decimal). This is usually equated to the constant called 
wlnMenuBar, as shown in this Pascal statement: 

IF Event = winMenuBar THEN DoMenu; 

The lowercase win wlnMenuBar identifies it as a Window 
Manager constant. In TML Pascal, this constant is already defined 
as 17 for your application's use. 

When menu event $11 has occurred, the menu number and 
menu item ID of the item selected can be obtained from the 
TaskData field in the Event Record. 

Table 8-2 shows the contents of the TaskData field and how 
each word is referenced from machine language, C, and Pascal. 
Some real-life examples follow. 

Table 8-2. TaskData Field 

Language Low-Order Word High-Order Word 
Menu Item ID 

Machine language TaskData 
C EventRec.wmTaskData 
Pascal LoWord(EventRec. TaskData) 

Menu Number 
TaskData+2 
EventRec.wmTaskData<<16 
HiWord(EventRec.TaskData) 

Ida 
sta 

To retrieve the menu selection in machine language: 

TaskData+2 
1.. 

MenuSelected 

To retrieve the menu selection in Pascal: 

MenuSelected : = HlWord(Eventrec.TaskData); 

To retrieve the menu selection in C: 

MenuSelected = EventRec.wmTaskData<<l6; 

125 



----------Chapter 8 ----------

The contents of the high- and low-order words of the TaskData 
field break down as follows: 

Low-order word The low-order word of TaskData holds the Menu Item 
ID of the selected item. For example, if the Pecan item 
in the Waffle menu were selected, the low-order word 
of TaskData would contain 258 (see Figure 8-3). 

High-order word The high-order word of TaskData contains the Menu 
Number. Again, if the Pecan item were selected, the 
high-order word of TaskData would contain 3. 

Dispatching Item Handlers 
Once the Item ID is known, as obtained from TaskData, the appro
priate action can be taken by the program. Suppose that when the 
user has selected the Pecan item from the Waffle menu, you want 
the program to execute the Pecan Waffle routine. C and Pascal pro
grammers can use the SWITCH and CASE statements to do this. 

The CASE statement example in Pascal: 

CASE LoWord(EventRec.TaskData) OF 
256 : AppleWaffle; 
257 : BelglanWaffle; 
258 : PecanWaffle; 
259 : StrawberryWaffle; 

END; 

Pecan Waffle is a previously declared procedure. It fulfills the 
user's request, perhaps by bringing up a dialog box asking if 
whipped cream is desired on the pecan waffle. 

Dispatching the corresponding routine in machine language is 
done in one of two ways. The brute force method is to compare the 
item ID with an immediate value. If the two numbers match, a 
branch is made to the appropriate subroutine. Otherwise, the pro
gram continues to compare the ID with other immediate values. 

A more elegant method, common among experienced machine 
language programmers, is to use the lower eight bits of the Item ID 
as an index into a table of pointers that point to the corresponding 
routines. It sounds more complex than it is. For example: 

lda TaskData ;Get TaskData Item ID number 
and #$00FF ;Discard upper 8 bits 
a.sl A :Double tho v&luo 
tax ;Transfer to X as an Index 
jer (MTable,X) ;Dispatch the proper menu Item handler 

126 



---------Pull-Down Menus ---------

If Pecan (item 258, the third menu item) were selected, the 
AND #$00FF instruction results in $02. This is multiplied by 2 
using the ASL instruction which produces $04. That value is trans
ferred to the X register to be used as an index. 

Using an index into a table of subroutines is one example 
of how useful numbering your menu items sequentially can 
be. The drawback is that during the cycle of development, 
you'll often move, reassign, insert, or change your menus as 
the program evolves. When this happens, renumbering menu 
items to keep them sequential can turn into a headache. 

MTable de l'AppleWaffle' 
de l'BelglanWaffle' 
de l'PeeanWaffle' 
de l'StrawberryWaffle' 

;Item 256 (X = 0) 
;Item 257 (X = 2) 
;Item 258 (X = 4) 
;Item 259 (X = 6) 

The JSR (MTable,X) instruction is known as an indexed, indi
rect jump to subroutine. The processor jumps to the two-byte ad
dress in MTable plus the value in the X register. Since X is 4, the 
subroutine Pecan Waffle in the above table would be executed. 

Unhighlighting the Menu's Title 
During the dispatch of a menu item, the menu's title remains high
lighted on the menu bar. This reminds the user that a menu item is 
being handled. When the service routine is finished,..- the menu's ti
tle should be inversed (unhighlighted). This is done with the 
HiliteMenu function. 

In machine language: 

pushword #FALSE 
push word TaskData + 2 
_H111teMenu 

With TML Pascal: 

;Unh111te the menu title now 
;Push TaskData Menu number 

H111teMenu(FALSE, HlWord(EventRee.TaskData)); 

And inC: 

H111teMenu(FALSE, EventRee.wmTaskData> > 16); 

127 



----------Chapter 8 ----------

The integer constant, FALSE, is defined as 0. 
Keep in mind that unhighlighting a menu item is not auto

matic. You must do it manually after each menu item's function is 
completed. 

Changing Menu Items 
Not only are menu items an excellent way to initiate subroutines in 
an application, but they can also be used to toggle certain states 
(flags) in your program. 

In a drawing program, for example, a check mark may appear 
next to the Ruler Guides item in the Tools menu. This would indi
cate that the rulers are in use. Should the user wish not to have 
rulers while painting (perhaps the artist is an impressionist), the 
Ruler Guides item could be selected from the Tools menu, which 
toggles the rulers off; the check mark would then disappear. But 
that doesn't happen by magic. 

Assume that Ruler Guides has a Menu Item ID of 268. To 
place a check mark to the left of its name in the menu, the 
Che ckMitgm function is: t.lS:Qd: 

pea TRUE 
pea 268 

;TRUE: yes, check the item 
;Item 268 (Ruler Guides) 
;CheckMitem ldx #$320F 

jsl $ElOOOO 

In C or Pascal: 

CheckMitem(TRUE, 268); 

Conversely, to remove a check mark or to make sure that there 
isn't one there, the same code can be used but with a FALSE value 
pushed to the stack instead of TRUE. 

If your program has many menu items with check marks, it's 
best to create one procedure responsible for updating the check
mark state of all the items. An example in C: 

UpdateCheckMa.rka( ) 
{ 

128 

CheckMitem(Rulers, 268); 
CheckMitem(BigBits, 270); 
CheckMitem(Clamps, 271); 
CheckMitem(WindowLocks, 273); 
CheckMitem(ColorMode, 281); 



--------- Pull-Down Menus ---------

The integer (or Boolean) variables Rulers, BigBits, Clamps, 
WindowLocks, and ColorMode contain values representing true or 
false for the states of those items. If, in this drawing program, Rul
ers are turned on, but in order to use them Clamps and 
WindowLocks must be turned off, this C function would handle 
the correct toggling of Rulers: 

ToggleRulers( ) 
{ 

Rulers = !Rulers; ;• Logical NOT toggle • 1 
lf (Rulers) 

Clamps = Window Locks = FALSE; 
UpdateCheckMarks( ); 

This is how the routine works: 

• Toggle the current Rulers state to its opposite. 
• If Rulers are now turned on (true), then make sure that Clamps 

and WindowLocks are turned off (false). 
• Finally, update all the check marks according to the new states. 

Another example of this technique, though not exactly similar 
to placing and removing the check mark, is tne dimming of menu 
items, disabling them so that they cannot be selected. To disable a 
menu item, the DisableMitem function is used. 

In machine language: 

pushword #256 
_ntsableMitem 

In C or Pascal: 

DlsableMitem(256); 

DisableMitem requires a menu item ID number as its argu
ment. After the call is made, that menu item will be dimmed and 
not available for selection. To enable the item once again, the 
EnableMitem is used in a similar fashion: 

In machine language: 

pushword #256 
-EnableMitem 

In C or Pascal: 

EnableMitem(256); 

129 



----------Chapter 8 ----------

Disabled menu items show up in a dimmed font in the pull
down menu, and the user of your program will not be able to select 
that item until it is enabled again. 

Setting Menu Flags 
Even though the Menu Manager has tools dedicated to one particu
lar task, the SetMenuFlag function can perform the duties of three 
functions in one. SetMenuFlag works on an entire menu and affects 
all of its items. The following examples show what a typical call 
looks like. 

In machine language: 

Push Word 
Push Word 

#MenuFla.g 
#MenuiD 

;New menu fla.g value 
;Menu ID number 

_setMenuFla.g 

InC and Pascal: 

SetMenuFla.g(MenuFla.g, MenuiD); 

The values and attributes for the MenuFlag argument are ex
pressed in Table 8-3. For example, using SetMenuFlag with $FFDF 
to invoke color-replace mode is the same as putting the special let
ter X in that menu's definition string. 

Table 8-3. Values and Attributes of the MenuFlag Argument 

MenuFlag 
$FF7F 

$0080 

$FFDF 
$0020 
$FFEF 
$0010 

Description 
Enable 

Disable 

Color Replace 
XOR Highlight 
Standard 
Custom 

Setting Item Flags 

Action 
Menu becomes undimmed and its items 
selectable. 
Menu becomes dimmed and its items not 
available. 
Highlighting uses the color-replace method. 
Highlighting uses the color XOR method. 
Defines the menu as a standard type. 
Defines the menu as a custom type. 

While SetMenuFlag (discussed in the previous section) reigns over 
entire menus, the SetMitemFlag function allows the attributes of a 
single menu item to be modified. 

Table 8-4 provides a reference to the values that may be placed 
in the ItemFlag argument and their results. 

130 



---~---- Pull-Down Menus --------

Table 8-4. Values and Attributes of the ItemFlag Argument 

ItemFlag 
$FF7F 

Description 
Enable 

Action 
The item is enabled, selectable, and not 
dimmed. 

$0080 
$FFDF 
$0020 
$0040 
$FFBF 

Disable 
Color Replace 
XOR Highlight 
Underline 

The item is dimmed and disabled. 
Highlighting uses the color-replace method. 
Highlighting uses the color XOR method. 
The item is drawn with an underline. 

No Underline The item is not underlined. 

This is how a machine language routine that places a value in 
an Item Flag would look: 

PushWord #ltemFlag 
PushWord #ltemiD 
_setMenuFlag 

In C and Pascal: 

;New item flag value 
;Item ID number 

SetMenuFlag(ItemFlag, ItemiD); 

Of course, the EnableMitem and DisableMitem functions 
should be used for enabling and disabling menu items just to keep 
your code looking clean and logical. 

Menu Miscellany 
The rest of the chapter deals with some of the minor details of 
working with the Menu Manager. Everything from changing the 
blink rate of a selected menu item to removing an entire menu is 
discussed in this section. This is where the fun starts. 

Changing the Text Style 
Menu items can appear irl the standard text face or in special styles 
set by using the SetMitemStyle function. The normal system font 
can be displayed only in a bold style. However, the Toolbox has 
provisions for italic, underline, outline, and shadow styles when 
used with compatible fonts. 

This brief table describes the effect of entering various values 
in the Style Word: 

Style Bits Style 
0 Bold 
1 Italic 
2 Underline 

131 



----------Chapter 8 ---- ------

Style Bits 
3 
4 
5-15 

Style 
Outline 
Shadow 
Reserved 

If a bit is set in the Style Word, it asserts that attribute. The 
following examples will set a bold style on the text of a menu item. 

In machine language: 

PushWord #1 ;Bold 
PushWord #262 ;Item ID 
_setMitemStyle 

In C and Pascal: 

SetMitemStyle(1, 262); 

To modify only one style bit without changing the others, use 
the GetMitemStyle function to return the current style, manipulate 
the appropriate bits, and then update the item with SetMitemStyle. 
This C language example sets a bold style to item #262 without 
changing any of its other style attributes: 

Word Style; 

Style = GetMitemStyle(262); 
Style = Style I 1; 
SetMitemStyle(Style, 262); 

/* Style is a.n unsigned integer • I 
/* Get the current style • 1 
/* Logically OR with 1 • I 
/* Set the new style • 1 

Or, the most compact form could be used: 

SetMitemStyle(GetMitemStyle(262) 11, 262); 

Renaming a Menu Item 
It's common to change the name of a menu item. In most cases, re
naming an item draws a close relationship to using a check mark to 
show a certain state. For example, say you've written a communi
cations program in which one of the items on a menu is Text Edi
tor. By choosing this item, a user of your application is taken out of 
terminal mode and is placed into an editor mode. This would be an 
opportune time to rename that menu item, since Text Editor is no 
longer a valid choice: The user is already in it. Instead, that item 
could be renamed to Terminal Mode. By selecting this, the user 
could leave the editor and return to the terminal mode. 

132 



- ------ --Pull-Down Menus ---------

Changing the name of a menu item is quick and easy, as 
shown in these examples. 

In machine language: 

PushLong 
Push Word 
_setMitem 
rts 

#NewName 
#262 

;Point to the new title 
;Specify the Item ID 
;Change the item's name 

NewNa.me de c'--Termlna.l Mode' ,11 '0' 

In Pascal: 

PROCEDURE NameMitem; 
VAR 

NewName : String; 
BEGIN 

END; 

NewNa.me : = '--Terminal Mode'-.. 0'; 
SetMitem(@NewName[l), 262); 

InC: 

SetMitem("--Terminal Mode", 262); 

The SetMitem function requires two arguments: 

• The address of a menu item string 
• An integer that represents the ID of the item to rename 

The string containing the new name is formatted just like a 
menu item: It begins with two starting characters (used only by the 
Menu Manager), and it ends with a null character. 

Recall that strings in C always end with a null character. 
Therefore, there is no need to explicitly add one to the initialization 
string in the C example above. 

SetMitem changes only the name of the item. All previous 
attributes-such as style, enabled or disabled states, and so on
are preserved. Even if the new item string contains a backslash ( '\) 
followed by special characters, only the name will be replaced. You 
can change attributes by using other Menu Manager functions dis
cussed throughout this chapter. 

Pascal users will undoubtedly want to use SetMitem's cousin, 
SetMitemName which is similar in syntax. The difference is that 
SetMitemName accepts a pointer to a Pascal string. Remember that 

133 



----------Chapter 8 ----------

strings in Pascal always start with a count byte. Here is an alternate 
Pascal example using SetMitemName: 

SetMitemNa.me('Termina.l Mode', 262); 

SetMitem is used to change the Save menu item in most 
Apple liGS programs. After a file is opened, the Save item 
reads Save DOCUMENT, where DOCUMENT is the name of 
the file the user has opened. Simple string concatenation func
tions can be used in conjunction with SetMitem to accomplish 
this. 

Although you've renamed the menu item, you're not done 
just yet. 

When an item is renamed, the menu in which the item resides 
must adjust itself to the new width of the item, especially if it is 
longer than any of the others. This is done by using the Calc
MenuSize function as demonstrated below. 

In machine language: 

PushWord #0 ;New Width (0 = a.uto adjust) 
PushWord #0 ;New Height (0 = a.uto adjust) 
PushWord #2 ;The Menu's ID (not Item IDI) 
_Ca.lcMenuSize 

C and Pascal: 

Ca.lcMenuSize(O, 0, 2); 

CalcMenuSize, when used with nonzero arguments, can be 
used to set a menu's explicit height and width in pixels. If O's are 
used, the Menu Manager will scan through the menu strings and 
automatically calculate the size of the menu, with room for check
marks and Apple key equivalents. CalcMenuSize requires the ID of 
a menu as its third argument. 

If the menu width is not resized, long menu item names will 
bleed right off the edge of the menu and into the DeskTop, which 
looks messy. 

Renaming a Menu 
It is far less common to change the title of a pull-down menu, but 
the Menu Manager will let you do it. The procedure is similar to 
changing a menu item's name. 

134 



--------- Pull-Down Menus ---------

Study this machine language routine: 

PushLong #NewName 
PushWord #2 
_setMenuTitle 
JrawMenuBar 
rts 

;Address of title 
;Menu ID number 
;Change the title 
;show the change 

NewName str ' Modem ' ;Pascal-style string 

The same routine in Pascal: 

SetMenuTitle(' Modem ', 2); 
DrawMenuBar; 

The same routine in C: 

SetMenuTitle<" "- p Modem "1 2) i 
DrawMenuBar( ); 

SetMenuTitle requires two arguments: 

• The address of a Pascal string 
• A Menu ID number 

Since a Pascal string is needed, the only language that doesn't 
have to do anything unusual with the string is, of course, Pascal. 
The machine language example uses the Str macro, while the C ex
ample uses the "- p string escape in order to put a count byte 
before the new menu title string. 

After the title is changed, use DrawMenuBar to show off your 
handiwork. 

Now You See It ... 
Another rarely used feature of the Menu Manager is the ability to 
insert both menus and menu items into an existing menu structure. 
This is accomplished with the InsertMenu and InsertMitem func
tions, respectively. InsertMenu was discussed in detail earlier in this 
chapter. 

To insert a menu item, InsertMitem is used in the following 
machine language example: 

PushLong #Newitem 
PushWord #$FFFF 
PushWord #2 
_InsertMitem 
rts 

;address of item string 
;make it the last item 
;ID of the Menu to use 
;insert it 

Newitem de c'--New Item".N28lD',ll'O' 

135 



----------Chapter 8 ----------

In Pascal: 

PROCEDURE InsertNewitem; 
VAR 

Newitem : String; 
BEGIN 

New Item : = '--New Item". N28lD" 0'; 
InsertMitem(@Newitem[l], $ffff, 2); 

END; 
In C: 

InsertMitem("--New Item'\. N28lD", Oxffff, 2); 

InsertMitem's three arguments are 

• The address to a complete menu item string 
• The position where the item should be inserted 
• The ID number of the menu to use 

Values for the position (second) argument are 

Position 
$0000 
$FFFF 
ItemiD 

Description 
Insert into the menu before all other items 
Insert into the menu after all other items 
Insert after the specified Menu Item ID 

As described earlier, CalcMenuSize should be called after in
serting a new menu item . 

. . . Now You Don't 
If the Toolbox allows you to insert menus and menu items, there 
must also be a way to delete them. DeleteMenu and DeleteMitem 
are practically identical in syntax. They both require a single input 
parameter: 

• A menu ID number for DeleteMenu 
• An item ID for DeleteMitem 

To delete an entire menu in machine language, use 

Push Word #MenuiD ;the ID of the menu to delete 
_DeleteMenu ;it's gone! 

Using C and Pascal: 

DeleteMenu(MenuiD); 

136 



--------Pull-Down Menus --------

To delete a menu item in machine language use 

PushWord #ltemiD ;the ID of the Item to delete 
_DeleteMitem ;poofl 

In C and Pascal: 

DeleteMitem(ItemiD); 

Change Blink Rate 
After a menu item is selected, the item winks at you a few times 
before your choice is acted upon. The number of times the item 
blinks is determined by the blink rate. Usually, this value is set to 3 
upon starting the Menu Manager. But you can spring the following 
routine on some unsuspecting user. 

In machine language: 

PushWord #60 
JetMitemBI!nk 

;bl!nk 50 t!mesl 

In C and Pascal: 

SetMitemBI!nk(BO); 

When SetMitemBlink is used to change the blink rate to 50, a 
selected menu item will flash on and off 50 times before the item is 
handled. 

Menu Bar Colors 
If you're enthralled by the myriad of colors your Apple IIGS can 
produce, you'll be happy to know that even the menu bar can 
show its true colors. The text, background, and outlining can be set 
to any of 16 different colors in 320 mode, and 4 colors in 640 
mode. Even though the colors can be changed in 640 mode, it's 
hardly worth the trouble because so few colors are available. But in 
320 mode, the effects can be quite interesting. 

How about a blue background, yellow text, and red outlines? 
Use the MODEL program from Chapter 6 and insert the following 
code just before the DrawMenuBar function is called. 

In machine language: 

PushWord #$49 ;Background and text colors 
PushWord #$94 ;Background 8e text for color replace 
PushWord #$70 ;Outl!ne color 
_setBarColors 

137 



----------Chapter 8 ----------

InC: 

SetBarColors(Ox49, Ox94, Ox70); 

In Pascal: 

SetBarColors($49, $94, $70); 

To get blue, yellow, and red menu bar colors, the 
QuickDraw tool set will have to be started up for 320 mode. 
To do this, use a MasterSCB (screen mode) value of $00. Also, 
make sure to specify a maximum X clamp of 320 pixels when 
starting the Event Manager. 

SetBarColors uses three input values: 

Value Name 
NewBarColor 
NewinvertColor 
NewOutColor 

Colors 
per Mode 
320 640 
16 4 
16 4 
16 4 

Description 
Background (bits 4-7), text (bits 0-3) 
Color-replace values for background/text bits 
Outline color (bits 4-7) 

All unused bits are 0, except for bit 15, the most significant bit. 
This bit is used to cancel the effects of a value. In other words, 
your program could establish a new outline color, but leave the text 
and background colors as they were by setting bit 15 on the New
BarColor and NewinvertColor arguments. 

When the modified MODEL program runs with new menu col
ors, the menu bar will be dark blue with yellow text. The outline 
around the menus, dividing lines, and underlines will be red. But 
selected menus and items will appear in light blue with orange 
text. 

The Apple menu will retain its colorful logo, but on a yellow 
background. Why? Recall that the Apple menu uses the special 
character X in its menu string. This denotes a color-replace mode 
when selected. All other menus and their items use an XOR (eXclu
sive OR) method of highlighting when selected. 

It's clear to see why this occurs by examining Table 8-5. The 
color number for dark blue is 4. When XORed with its complement 
(EOR #$FF), the result is 11, which corresponds to light blue. Like
wise, yellow (9) XORed with its complement results in orange (6). 

138 



--------- Pull-Down Menus ---------

Table 8-5. Standard Colors in 320 Mode 

Color Number 
Black 0 
Dark Gray 1 
Brown 2 
Purple 3 
Dark Blue 4 
Dark Green 5 
Orange 6 
Red 7 
Beige 8 
Yellow 9 
Green 10 
Light Blue 11 
Lilac 12 
Periwinkle 13 
Light Gray 14 
White 15 

The second argument, NewlnvertColor, is applicable only to 
color-replace items. So in order to cause selected items to appear in 
blue text with a yellow background, the opposite of their back
grounds when not selected, the special X character would have to 
be placed in each item's menu string. 

With a little creativity, you could create a menu where only se
lected items would show up in a color, indicating a warning or 
other message to the user, based on the color. 

There are accepted guidelines governing the use of color in 
programs. See Appendix A, "Human Interface Guidelines," for 
more details. 

Chapter Summary 
The following tool set functions were referenced in this chapter: 

Function: $010F 
Name: MenuBootlnit 

Initializes the Menu Manager 
Push: nothing 
Pull: nothing 

Errors: none 
Comments: Do not make this call. 

139 



----------Chapter 8 ----------

Function: $020F 
Name: MenuStartUp 

Starts the Menu Manager 
Push: User ID (W); Direct Page (W) 
Pull: nothing 

Errors: none 

Function: $030F 
Name: MenuShutDown 

Shuts down the Menu Manager 
Push: nothing 
Pull: nothing 

Errors: none 
Comments: Make this call when your application is finished. 

Function: $0DOF 
Name: InsertMenu 

Inserts a menu into the menu bar 
Push: Menu Handle (L); Insert After (W) 
Pull: nothing 

Errors: none 
Comments: If Insert After is 0, the menu becomes the first in the menu 

bar. 

Function: $0EOF 
Name: DeleteMenu 

Removes a menu from the menu list 
Push: Menu Number (W) 
Pull: nothing 

Errors: none 
Comments: Use DrawMenuBar to update the screen. The menu is not 

fully disposed, just deleted from the list. 

Function: $0FOF 
Name: lnsertMitem 

Inserts a menu item into a menu 
Push: Item (L); Insert After (W); Menu Number (W) 
Pull: nothing 

Errors: none 
Comments: If Insert After is 0, the item becomes the first in the menu. 

Function: $100F 
Name: DeleteMitem 

Removes an item from a menu 
Push: Item (W) 
Pull: nothing 

Errors: none 
Comments: Use CalcMenuSize after making this call. 

140 



-------- Pull-Down Menus --------

Function: $130F 
Name: FixMenuBar 

Standardizes the menu bar's sizes and returns its height 
Push: Result Space {W) 
Pull: Height (W) 

Errors: none 
Comments: The returned height is in pixels and is usually 13. 

Function: $170F 
Name: SetBarColors 

Specifies the colors of the menu bar 
Push: Normal Color (W); Selected Color (W); Outline Color (W) 
Pull: nothing 

Errors: none 

Function: $1 COF 
Name: CalcMenuSize 

Calculates the new dimensions of a menu 
Push: Width (W); Height (W); Menu Number (W) 
Pull: nothing 

Errors: none 

Function: $1FOF 
Name: SetMenuFlag 

Specifies the attributes of a menu 
Push: Attributes (W); Menu Number (W) 
Pull: nothing 

Errors: none 
Comments: Attributes are: $FF7F = Enable, $0080 = Disable; $FFDF = 

Color Replace; $0020 = XOR Highlight; $FFEF = Standard; 
$0010 = Custom. 

Function: $210F 
Name: SetMenuTitle 

Selects the title for a menu 
Push: Title (L); Menu Number (W) 
Pull: nothing 

Errors: none 

Function: $240F 
Name: SetMitem 

Selects the name for an item 
Push: Name (L); Item Number (W) 
Pull: nothing 

Errors: none 

141 



----------Chapter 8 ----------

Function: $260F 
Name: SetMltemFlag 

Sets the attributes of a menu item such as being underlined, 
enabled, and so on 

Push: Attributes (W); Item Number (W) 
Pull: nothing 

Errors: none 
Comments: Attributes are: $0040 = Underline, $FFBF = No Underline, 

$0020 = XOR Highlight; $FFDF = Redraw Highlight; $FF7F 
= Enable; $0080 = Disable. 

Function: $280F 
Name: SetMitemBlink 

Sets the blink rate for selected items 
Push: Blink Count (W) 
Pull: nothing 

Errors: none 

Function: $2AOF 
Name: DrawMenuBar 

Draws the menu bar and its titles 
Push: nothing 
Pull: nothing 

Errors: none 

Function: $2COF 
Name: HiliteMenu 

Determines if a menu title is highlighted 
Push: Hilite Flag (W); Menu Number (W) 
Pull: nothing 

Errors: none 
Comments: If Hilite Flag is nonzero, the title is highlighted; otherwise, 

it's unhighlighted. 

Function: $2DOF 
Name: NewMenu 

Creates a new menu 
Push: Result Space (L); Menu Structure (L) 
Pull: nothing 

Errors: none 
Comments: This creates the menu internally and does not display or in

sert it into a menu bar. 

142 



--------- Pull-Down Menus ---------

Function: $300F 
Name: EnableMitem 

Enables a disabled menu item 
Push: Item (W) 
Pull: nothing 

Errors: none 

Function: $310F 
Name: DisableMltem 

Disables a menu item, making it dimmed 
Push: Item (W) 
Pull: nothing 

Errors: none 
Comments: The item will no longer be ayailable for selection. 

Function: $320F 
Name: CheckMitem 

Manages check marks for a menu item 
Push: Check Flag (W); Item (W) 
Pull: nothing 

Errors: none 
Comments: An item will be marked with a check if Check Flag is true; a 

check will be removed if false. 

Function: $330F 
Name: SetMitemMark 

Sets the marking character (or none) for an item 
Push: Mark Character (W); Item Number (W) 
Pull: nothing 

Errors: none 
Comments: Use 0 for no mark. 

Function: $350F 
Name: SetMitemStyle 

Sets the text style of a menu item 
Push: Text Style (W); Item Number (W) 
Pull: nothing 

Errors: none 

Function: $3AOF 
Name: SetMitemName 

Selects a name for a menu item 
Push: Name (L); Item Number (W) 
Pull: nothing 

Errors: none 
Comments: Name is a Pascal-type string. 

143 



.------Chapter 9 ------., 

Windows 

Next to pull-down menus, win
dows are the most important 
part of the desktop environ
ment. A window is a region of 
the screen inside of which infor
mation and/ or graphics can be 
displayed. The Toolbox's Win
dow Manager provides the func
tions for creating a window and 

placing va.riou§ obj€H3t§ inte it. 



----------Chapter 9 ----------

This chapter covers programming, creating, and using Apple 
IIGS windows. Unfortunately, not everything about windows can 
be covered here. It would require a gargantuan book to demon
strate everything the Window Manager can do. And, of course, it 
would take a trilogy of these books to present program examples in 
three languages as is being done here. You'll find enough routines 
and examples in this chapter to start experimenting. If you practice, 
you'll be writing useful window applications of your own in short 
order. 

A Frame to Build On 
Windows are controlled by a joint cooperation between the Win
dow Manager and the Control Manager. The Window Manager is 
what actually manages the windows (as you may have guessed) . It 
also takes care of certain functions that occur behind the scenes. 
The Control Manager is responsible for all the controls on a win
dow. Controls are the buttons, boxes, scroll bars, and other items 
that allow you to manipulate a window. Therefore, both managers 
share the responsibility of windows on the desktop. 

To use windows in your Apple IIGS program, you'll need to 
have already started the Tool Locator, Memory Manager, and Mis
cellaneous tool sets (the "big three" ), as well as QuickDraw II and 
the Event Manager. After that, you should start the Window Man
ager and then the Control Manager. 

The Window Record 
Once all your tool sets have been started, placing a window on the 
screen isn' t a difficult task. In fact, you simply pass information 
about the window to a Window Manager Toolbox function. The 
window's information is kept in one of the longest record struc
tures used by the Toolbox, the window record. The window record 
stores all sorts of information about the window: its size, contents, 
color, types of controls, movability, ability to zoom, and large 
quantities of additional information. 

Unlike the Menu Manager, which uses several intervening 
steps between creating the menu and having it appear on the 
screen, the NewWindow function displays a window immediately. 
a 11 'f'011dh rlt ve to do is point to your window record so New Window 
can m 1 . 

146 



-----------Windows-----------

NewWindow returns a long pointer to your window's port in 
memory after a successful Toolbox call. Use this pointer to refer
ence the window. For example, to close the window, the port ad
dress for that window is pushed onto the stack and a Toolbox call 
is made to the CloseWindow function. All other Window Manager 
calls use the port pointer, and there is a port for each window on 
your desktop. 

Things in a Window 
When you're creating a window, you should be familiar with all 
the controls it uses, and with what each control does. These con
trols are summarized in Figure 9-1. 

Figure 9-1. Diagram of Window with Controls 

Close Box Title 

/ I 

/ 
Info Bar 

Bottom Scroll Bar 

Zoom Box 

~ - Right Scroll Bar 

0 
<····I 0 I2J 

'Grow Box 

The controls and items inside a window are explained below. 
All of these items are optional: A window need not contain any of 
them. 

Bottom scroll bar. The bottom scroll bar moves the contents of 
the window right or left. 

Close box. The close box is used to emove the window from 
the desktop (to make it disappear). This is ot a direct function of 
this control. Your program actually makes th · dow close. Clos
ing a window is covered in detail later in the chapter. The close 
box control is located in the title bar. 

147 



----------Chapter 9 ----------

Grow box. The grow box is used to resize the window. The 
grow box can be grabbed with the mouse and moved to change the 
horizontal and vertical dimensions of the window. 

lnfg !?!\r. The info bar appears just below the title bar and is 
used to display additional information about the window. The Ap
ple IIGS Finder program makes extensive use of window info bars 
to let you know how many files are present in each window, and 
so on. 

Right scroll bar. The right scroll bar moves, or scrolls, the 
contents of the window either up or down. Only if a window has 
contents larger than can be seen through the window does it need 
a scroll bar. 

Title. The title is the name of the window, centered in the title 
bar. 

Title bar. The title bar shows the title of the window. The title 
bar also contains the optional close box, or go-away button, and the 
zoom button. The title bar is used to drag the window around the 
desktop. Because of this it's also referred to as the drag region of 
the window. 

Zoom box. The zoom box can be used to make the window 
expand to fill the entire screen. Clicking the zoom a second time 
restores the window to its previous size. Both sizes, original and 
zoomed, are determined by the Window Record at the time the 
window is created. 

When you're creating a window, all these items are specified 
in the window record. Depending on what type of data is in the 
window and how you want it displayed, any number of these op
tions can be specified. 

The TaskMaster 
No discussion of windows and controls would be complete without 
mention of the TaskMaster. TaskMaster is a Window Mana er 
function that acts as an extension of the Event Manager. It' espe
cially handy when you're dealing with windows. Though th Task
Master is discussed elsewhere in this book, it's important to k w 
the window-related event codes returned by TaskMaster. 

The following table shows the extended event codes and regu
lar event codes returned by the TaskMaster function. Note that ex
tended events 2-12 concern themselves with windows. 

148 



-----------Windows-----------

Table 9-1. Event and Extended Event Codes Returned by TaskMaster 

Event Code Extended Code Description 
16 0 Mouse is in desk 
17 1 A Menu item was selected 
18 2 Mouse is in the system window 
19 3 Mouse is in the content of a window 
20 4 Mouse is in drag region 
21 5 Mouse is in grow 
22 6 Mouse is in go-away 
23 7 Mouse is in zoom 
24 8 Mouse is in info bar 
25 9 Mouse is in vertical scroll 
26 10 Mouse is in horizontal scroll 
27 11 Mouse is in frame 
28 12 Mouse is in drop 

When one of these events takes place, the event code is re
turned by TaskMaster. The window associated with the event can 
be determined by examining the TaskData field of the event record. 
For example, if your desktop had many windows on it and you 
clicked the go-away button in one of them, that window's pointer 
would be placed in TaskData. The window can be further manipu
lated by Window Manager functions that use the window pointer. 
(A good example of this is in the MONDO program listed at the 
end of this chapter.) 

The important thing to remember about TaskMaster is that it 
assists in the trapping of window-related events. It also automati
cally updates the contents of a window as you scroll them around. 

Opening a Window 
Putting a window o the screen is a trivial task. A simple call to 
the Toolbox is all th t is required. The complexity of the window 
lies in the window re ord-a group of values, ranges, and pointers 
that actually define the ·ndow. 

For example, suppose you wanted to display a typical Apple 
IIGS window. To do this you need two things: 

• A call to the Window Manager's NewWindow function 
• The window record describing the window 

149 



----------Chapter 9 ----------

In machine language, the call looks something like this: 

pha ;Long result space 
ph a 
pushlong 
_New Window 
jsr 
pulllong 

*WindowRec 

ErrorH 
WlndowPtr 

;Address of window record 
;the new window call 
;Remember to do error checking 
;A pointer to the window 

First, a long word of result space is pushed to the stack, fol
lowed by the address (long) of the window record. Then the call is 
made to NewWindow. After the call, the Toolbox returns a pointer 
to the window's record. All further reference to the window is 
made through this pointer, so it should be saved in memory. (The 
above routine saves the pointer at the label WindowPtr.) 

The only possible errors at this point are $0E01 and $0E02. Er
ror $0E01 is produced if the window record is of an unusual length 
(meaning you left something out or the pointer was inaccurate) . Er
ror $0E02 is a memory error and probably would only happen if 
your. computer didn't have a memory upgrade or if you had too 
many windows already open. 

A typical error in working with structures in machine lan
guage, especially if you're using macros, is to reference the ad
dress of a structure incorrectly. For example, the following 
pushlong macro is in error: 

pushlong WindowRec ;This is wrong 

Because the # in front of WindowRec is left off, the program 
attempts to push the long value that ·resides at wr· ;WRec. 
This is akin to leaving off the ampersand (&) bef re a variable 
in a C program. 

What is intended is that the address of WindowRec (its lo
cation in memory) be pushed onto the stack. The address of 
any object is always referenced as an immediate value. Thus, 
the following is the correct way to push the long address of a 
structure or label in memory: 

pushlong *WindowRec ;This is the correct way 

150 



-----------Windows-----------

In C, the following routine can be used to summon up a new 
window: 

WindowPtr = NewWindow(&WindowRec) ; 

And in Pascal: 

WindowPtr : = NewWindow(WindowRec); 

As was mentioned earlier, the hard part (if you want to call it 
that) is creating the window record . It contains a wealth of infor
mation about the window and is perhaps the most detailed record 
used by the Toolbox. The window record is covered later in this 
chapter. 

Closing a Window 
All that 's needed to close a window is the pointer to the window 
record and, of course, a call to the Window Manager's 
CloseWindow function. After CloseWindow is called, the window 
is removed from the screen and all the data contained in the win
dow is gone. Using the pointers returned from the NewWindow 
call in the previous section, the following code examples are used 
to close a window referenced by WindowPtr. 

In machine language: ~ 
pushlong WindowPtr ;Saved when e window was opened 
_CloseWindow ;(No errors ar possible here) 

In C and Pascal: 

Close Window(WindowPtr) ; 

After CloseWindow, the window disappears from the screen, it 
is removed from the current list of windows, and any data con
tained in the window is lost. A window doesn't have to be on top 
of all the other windows in the desktop, nor does it have to be ac
tive in order to be removed. 

It's important to note that clicking in a window's close box 
does not automatically close the window. Nor does selecting a close 
window option from a pull-down menu. Closing down a window 
has to be done by the code in your program. 

To detect when the close box has been clicked, you must use 
the Window Manager's TaskMaster function. The extended event 

151 



----------Chapter 9 ----------

codes returned by the TaskMaster call are your clues as to what is 
going on in a window. Normally, most of the operations (scrolling, 
growing, moving, zooming, and so on) are taken care of automati
cally by the operating system. But your program will have to moni
tor the close box. 

Extended event code 6, or regular event code 22, is returned 
by the TaskMaster call when the mouse is clicked in the close box 
(see Table 9-1). When extended event code 6 is returned, the cor
responding window's pointer is found in the TaskData field of the 
event record. To close the window, the following machine lan
guage code can be used: 

pushlong Ta.skDa.ta ;get window's pointer from Ta.skDa.ta.. 
_Close Window 

The window record, placed in TaskData by the TaskMaster, is 
pushed to the stack for the CloseWindow call. This is the same as a 
regular close, except the window pointer is snatched from 
TaskData. . 

As usual, the examples for C and Pascal are a little more~ 
straightforward. . 

In C: 

CloseWindow(EventRec.wmTa.skDa.ta); 

In Pascal: 

Close Wlndow(WindowPtr(EventRec. Ta.skData)); 

This method of using TaskData works even when there are a 
number of windows present on the desktop. 

The Window Record 
The window record defines the window, determines what the win
dow can do, and establishes which controls (zoom, grow box, title 
bar, and so on) the window will have. The window record is 
huge-24 parameters determine what type of window is created. 

In the following table, the parameter name is the word used 
by Apple in all documentation to refer to that particular parameter 
of the window record. Later on, when a sample window record is 
created, a few of the parameters will be combined into one to make 
the list easier to manage. 

152 



----------Windows-----------

Table 9-2. The Window Record's Parameter List 

Parameter Name Type Description 
paramlength Word Size of this table 
wFrame Word Bit pattern describing the frame 
wTitle Long Window's title 
wRefCon Long User-defined value, usually 0 
wZoom Rectangle Size of window when zoomed 
wColor Long Window's color table location 
wYOrigin Point Window content's origin, Y position 
wXOrigin Point Window content's origin, X position 
wDataH Word Height of document 
wDataW Word Width of document 
wMaxH Word Maximum height for grow window 
wMaxW Word Maximum width for grow window 
wScrollV Word Number of Y pixels to scroll 
wScrollH Word Number of X pixels to scroll 
wPageVer Word Number of Y pixels to page 
wPageHor Word Number of X pixels to page 
winfoRefCon Long Used by info-bar draw routine 
winfoHeight Word Height of info-bar 
wFrameDefProc Long Window definition procedure (' w Info Defrroc Long Info-bar drawing routine 
wContDefrroc Long Content drawing procedure 
wPosition Rectangle Window's starting coordinates 
wPlane Long Position, front to back 
wStorage Long Memory for window record 

Incidentally, the tiny w at the front of a parameter name is an in
stant tip-off that the parameter belongs to the Window Manager. 

Each of the parameters is discussed in detail in COMPUTE!'s 
Mastering the Apple lies Toolbox. However, the following is a brief 
rundown of each of them, along with explanations and expansions 
where necessary. 

paramlength. The parameter paramlength (word value) is the 
length of the entire window record. It's used by the Memory Man
ager in moving these parameters to the internal window record. It 
also serves as a form of error checking: If the paramlength is inac
curate, the Window Manager returns an error code of $0E01 after 
the NewWindow call. 

153 



----------Chapter 9 ----------

wFrame. The parameter wFrame (word value) describes the 
frame of the window. Each bit in the word wFrame signals the 
presence or absence of one of the window controls. A window with 
everything on it has the following bit pattern: 

1101111110100000 

which is $DFAO in hex. The individual significance of each of the 
bits is shown in Table 9-3. 

Table 9-3. wFrame Values 

Bit If set, means 
0 The window is highlighted (initially always 0) 
1 Window is zoomed when first drawn 
2 Internal use (determines window record allocation) 
3 Window's controls can be active when the window is inactive 
4 The window has an info bar 
5 The window is visible 
6 An inactive window is made active if the mouse is clicked in it 
7 The window can be moved (bit 15 should also be set) 
8 The window has a zoom box (bit 15 should also be set) 
9 The size of the window is flexible (grow and zoom will not change 

the origin of the window's data) 
10 The window has a grow box (bit 11, bit 12, or both should also be 

set) 
11 The window has an up- and down-scroll bar (right side) 
12 The window has a left- and right-scroll bar (bottom) 
13 The window has a double frame, like an alert dialog box 
14 The window has a go-away button (bit 15 should also be set) 
15 The window has a title bar 

The bits above that are set to define a window "with the 
works" are 5, 7, 8, 9, 10, 11, 12, 14, and 15. Bit 13 is used by the 
Dialog Manager when it creates a window. Bits 4, 8, 9, 10, 11, 12, 
14, and 15 must be reset to 0 if this bit is set. 

wTitle. wTitle (long pointer) points to the memory location 
containing the window's title. The title is a Pascal string, and it's a 
good idea to pad it with spaces. (This keeps the title from appear
ing too tight in the title bar. More on this in a while.) If a long 
word of 0 is specified, the window has no title. 

154 



----------Windows-----------

wRefCon. wRefCon (long value) is a user-defined value, 
though typically a long word of 0 is specified. A few of the Win
dow Manager's functions can return or set this value, but its mean
ing is up to you. For example, in the sample program, MONDO, 
wRefCon is used to number each window for later reference in the 
program. 

wZoom. wZoom (rectangle) indicates the size of the window 
when zoomed. The four word values are listed in the order Min Y, 
MinX, MaxY, MaxX. If four words of 0 are specified, the entire 
screen is filled with the window. It's also suggested your window 
have a zoom box (bit 8 of wFrame above). 

wColor. wColor (long pointer) points to a table controlling the 
color of the window, title bar, and frame. If a long word of 0 is 
specified, the system default colors are used. (See the section on 
color later in this chapter for additional information.) 

wYOrigin and wXOrigin. wYOrigin (point) and wXOrigin 
(point) set the Y and X origins of the window's data. Both Y and X 
are word values, expressed in global coordinates (with 0, 0 as the 
upper left corner of the screen). In this book, both wYOrigin and 
wXOrigin together are referred to as the point value wOrigin. 

wDataH and wData W. wDataH (word) and wData W (word) 
designate the height and width of the data inside the window. If 
the data cannot be scrolled (meaning the window doesn't have 
scroll bars), two words of 0 are used. wMaxH (word) and wMaxW 
(word) specify the maximum height and width of the window. The 
size of the window is manipulated by the window's grow box and 
is measured in pixels. 

wScrollV and wScrollH. wScrollV (word) and wScrollH 
(word) define the number of Y and X pixels, respectively, that a 
window may scroll when the arrows are clicked in either the 
upjdown or left/right scroll bars. 

wPageVer and wPageHor. wPageVer (word) and wPageHor 
(word) define the number of Y and X pixels that a window is 
paged. Paging occurs when the mouse is clicked inside a scroll bar. 

(This should be a proportionally larger value tfian for w§crollV ana 
wScrollH, above.) 

wlnfoRefCon. wlnfoRefCon (long pointer) points to a string to 
be placed in the window's information bar. If there is no string, it 
points to a long word of 0. (The window should have an infor
mation bar for this value to take effect-bit 4 of wFrame above.) 

155 

,/"--

( 



----------Chapter 9 ----------

wlnfoHeight. wlnfoHeight (word) defines the height, in pixels, 
of the window's information bar. As with wlnfoRefCon, the win
dow should contain an information bar for this value to have any 
meaning. 

wFrameDefProc. wFrameDefProc (long pointer) points to a 
window definition routine or procedure. It is normally set to a long 
word of 0 to use the default routines. 

wlnfoDefProc. wlnfo0e£Proc (long pointer) points to a routine 
that draws the window's information bar, or it points to a long 
word of 0 if no info bar is present in the window. 

wContDefProc. wContDefProc (long pointer) contains the ad
dress of a routine that draws the contents of a window. An ex
ample of such a routine is listed in the section "Window Contents" 
later in this chapter. If no routine is used, a long word of 0 is speci-
fied. Aiso, if you don;t suppiy a redraw routine, your window 
shouldn't have scroll bars. 

wPosition. wPosition (rectangle) defines the starting position 
and size of the window. The four word values are listed in the or
der MinY, MinX, MaxY, MaxX, and are in global coordinates. 

wPlane. wPlane (long value) indicates this window's prece
dence-in other words, how many windows are stacked on top of 
it. A long word of 0 places the new window behind every other 
window on the desktop. A long word of $FFFFFFFF, which is also 
-1, places the new window on top of all the others. 

wStorage. wStorage (long pointer) represents the address of 
additional storage for the window record. This value is always set 
to 0 because Apple has not officially said what other values will 
mean in the future. 

The following are examples of window records. Each corre
sponds to the NewWindow toolbox calls demonstrated earlier in 
this chapter. To add a window to your program, simply add the 
NewWindow call as shown above and have it reference a window 
record with the data you desire. The following window records are 
simple, standard window records. Later in this chapter, more excit
ing, splashy, and mind-boggling window records are used. 

156 

( 
\ 



-----------Windows-----------

In machine language: 

WindowRec anop 
de i'WRecEnd- WindowRec' ;size of parameter list 
de i'%1101111110100000' ;frame type 
de i4'Wtitle' ;Title string pointer 
de i4'0' ;Reserved 
de i2'0,0,0,0' ;Position When Zoomed (O=def) 
de i4'0' ;Pointer to color table 
de i2'0,0' ;Contents VertjHorz Origin 
de i2'200,640' ;Height/Width of document 
de i2'200,640' ;Height width for grow window 
de i2'4,16' ;Vertjhorz pixels for scroll 
de i2'40,160' ;vertjhorz pixels scroll page 
de 14'0' ;Value passed to information 
de 12'0' ;Height of info bar 
de i4'0' ;Window Definition 
de i4'0' ;Draw info bar routine 
de i4'0' ;Draw Interior 
de 12'40,100,159,540' ;Starting position and size 
de 14' $ FFFFFFFF' ;Starting plane 
de 14'0' ;window record 
anop 

Wtitle str" Mr. Mondo " 

Note that the title is padded with spaces. If the spaces were re
moved, the title would appear jammed into the title bar. 

In C, global record structure can be used to create a window 
record as follows: 

ParamList WlndowRec = { 
sizeof(WindowRec), 
OxdfaO, 
"'-. p Mr. Mondo ", 
NULL, 
0, 0, 0, 0, 
NULL, 
0, 0, 
200, 640, 
200, 640, 

;• size of parameter list • I 
!* frame type • I 
!* Pascal title string • 1 
!* refcon •; 
!* Position When Zoomed (O=def) •; 
!* Pointer to color table • 1 
!* Contents V ertjHorz Origin • 1 
!* Height/Width of document • I 
j* helghtjwidth for grow window • 1 

157 



----------Chapter 9 ----------

}; 

4, 16, 
40, 160, 
NULL, 
0, 
NULL, 
NULL, 
NULL, 
40, 100, 159, 540, 
-1L, 
NULL 

/* vertlhorz pixels for scroll • I 
!' vertlhorz pixels scroll page • I 
/* information bar string * 1 
/* Height of info bar • 1 
/* Window Definition routine *I 
!' Draw info bar routine • I 
/* Draw content routine • I 
I* Starting position and size • I 
I* starting plane • I 
I* window record address • I 

In Pascal, your window record and its title string must first be 
declared in the VAR section of your program: 

VAR 
WindowRec: NewWindowParamBlk; 
TheTitle: String; 

The structure is then loaded with data at runtime (within a function 
or procedure) with the desired values: 

TheTitle : = ' Mr. Mondo '; 

WITH WindowRec DO BEGIN 
paraiiLlength 
wFrame 
wTitle 
wRefCon 
SetRect 
wColor 
wYOrigin 
wXOrigin 
wDataH 
wDataW 
wMaxH 
wMaxW 
wScrollVer 
wScrollHor 
wPageVer 
wPageHor 
winfoRefCon 
winfoHeight 
wFrameDefProc 
winfoDefProc 
wContDefProc 

158 

: = sizeof(NewWindowParamBlk); 
: = $dfa0; { frame type } 
: = @The Title; { pointer to title string } 
: = nil; { ref con } 
(wZoom, 0, 0, 0, 0); 
:= nil; 
:= 0; 
:= 0; 
:= 200; 
:= 640; 
:= 200; 
:= 640; 
:= 4; 
:= 16; 
:= 40; 
:= 160; 
: = Longint(nil); 
:= 0; 

:= nil; 
:= nil; 
:= nil; 

{ color table pointer } 
{ content origin } 

{ document size } 

{ grow window size } 

{ scroll range } 

{ page range } 

{ Draw info bar routine } 
{ Height of info bar } 
{ Window Definition routine } 
{ Draw info bar routine } 
{ Draw content routine } 



-----------Windows-----------

SetRect 
wPlane 
wStorage 

END; 

(wPosltlon, 100, 40, 540, 159); 
: = -1; { starting plane } 
: = nil; { window record address } 

Once you've defined an acceptable window record, you can 
use it as a template for any other window applications you write. 
Customizing an existing window record is easier than building a 
new one each time from the ground up. The remaining sections in 
this chapter augment certain parameters of the window record, and 
help make your windows more exciting. 

Naming a Window 
About the only important thing to do when naming a window is to 
place spaces on either side of the title. The spaces provide adequate 
breathing room between the title and the rest of the title bar. 

The title of the window is specified in the window record, in 
the wTitle field: 

wTitle (long pointer) 

wTitle points to the address of a Pascal string that contains the 
window's title. In the previous window record example, the title of 
the window was listed as follows (in machine language): 

de l4'wTitle' ;title string pointer 

The actual title is at the address wTitle: 

wT!tle str' My Window ' 

The str macro is used to create a Pascal string with a leading count 
byte for My Window. 

You can name a window anything. Or, if you use a long word 
of 0 for the wTitle field of the window record, the window won't 
have a title. (This also holds true if you haven't specified a title bar 
for the window.) 

Most often, you'll want to use the name of the file you're 
working on as the title of the window. This involves a little byte
wise sleight of hand in machine language because of the way 
ProDOS stores a filename in memory. C and Pascal programmers 
can use standard string-handling functions which make this job a 
cinch. 

159 



----------Chapter 9 ----------

A ProDOS filename is stored as a Pascal string, and can be 
from 1 to 15 characters long (not including a prefix). The char
acters after the count byte make up the actual name of the file. 
Since a filename buffer can take up as many as 16 characters 
(the count byte plus the 15 letters), your programs should pro
vide at least that much space for that worst-case scenario. The 
string buffer should always be 16 characters long no matter 
how long the expected filename is. 

Suppose you've used the Standard Files tool set to return the 
name of a file on disk-either a text, picture, or some other file. 
When the file's name is returned, it is a maximum of 16 characters 
long, the first of which is a count byte. The filename can be as 
many as 15 characters long; if there are fewer characters, the re
maining characters are padded with nulls (zero bytes). 

The object for you, the programmer, is to examine the file
name string returned by the Standard Files tool set and make it 
suitable as the title of a window. Of course, you can't just use the 
filename returned by ProDOS. Instead, you must delicately extract 
the filename, being careful to add a space in front and a space be
hind for padding. And, don't forget to add 2 to the count byte. But 
the hard part is done for you, as explained below. 

In machine language, the following routine moves a ProDOS 
filename from its storage buffer to a window title storage buffer 
(the ProDOS filename is stored at location Fname; the window's ti
tle, at location wTitle): 

Pro2Win LONG A OFF ;ProDOS-to-Window Title 
LONG I OFF 
sep $30 ;use eight-bit registers 
lda. Fna.me ;get the name's length In A 
ta.x ;sa.ve a. copy In X 
Inc A ;Increase the length by 2 
Inc A 
sta. wTitle ;sa.ve It In the window's title 
lda. $20 ;a.dd a. spa.ce 
sta. wTitle+ l ;to the beginning of the title 
sta. wTitle+2,x ;a.nd one to the end 

160 



Windows 

loop Ida Fname,x ;read a character from filename 
sta wTltle+l ,x ;store filename ln title buffer 
dex ;work backwards to start of name 
bne loop ;lf not zero, keep looping 

rep $30 ;back to 16-bit registers 
LONG A ON 
LONG I ON 
rts ;and you're done 

This routine takes the filename from location Fname and 
moves it to the window's title location, wTitle, and adds one space 
on each end of the filename. The size of the wTitle buffer should 
be 18 characters, two more than the Fname buffer, so that it can 
hold the largest possible filename. 

First the routine reads the length of the filename; then it adds 
2 to that length (with two INC A instructions), one for each space. 
Then, before the file 's name is transferred, a space is placed at the 
start and end of the window title . 

In the main program loop, the characters are moved from 
Fname to wTitle . Each character is taken from the right side of 
Fname, indexed by X, and it works to the left. When X reaches 0, 
the last character has been moved. This backwards copying method 
saves a few instructions that would have been needed if you were 
copying in a forward direction. 

In C, the logic follows that of machine language since C's 
string-handling functions aren't meant to be used with Pascal 
strings. The routine is as follows: 

Pro2W!n( ) 
{ 

char x = Fname[O]; 
wT!tle[O] = x + 2; 
wTitle[l] = wTitle[x + 2) = ' '; 
for(; x; - - x) 

wTitle[x + 1] = Fname[x]; 

I ' x = length of filename ' I 
I ' set wTitle 's new length • I 
;- pad with spaces • 1 
r while X is not zero, • I 
I' copy the string • I 

Far simpler, because of the compatible string format, the fol
lowing single statement can be used in Pascal: 

wTltle : = CONCAT(' ', Fname, ' ') ; 

Feel free to include these routines in any of your programs that use 
a filename as the window's title. 

161 



----------Chapter 9 ------ ----

Colorful Windows 
Windows on the Apple lies come in several styles, from the plain, 
black-titled windows, to stylish and colorful windows that would 
malH~ a Ma.eiftto§fi ewft€!f gf€!€!ft with €!ftvy. 

The color of the window is set by the wColor parameter found 
in the window record: 

wColor (long pointer) 

wColor points to the address of a table containing the colors. to be 
used in the window. If a long word of 0 is specified, the Window 
Manager creates a black and white window with a solid black title 
bar. 

But you can change that. For example, the following could e 
included as the wColor parameter of a window record: 

de 14'WColor' ;address of color table 

The color table consists of five word-sized values, each of 
which describes a different color attribute of the window. The ac
tual colors are determined by the bit positions within each of the 
words. The five words are described in Table 9-4. 

Table 9-4. Color Table 

Color Word 
FrameColor 
TitleColor 
TBarColor 
GrowColor 
lnfoColor 

Sets the Color For 
Window outline 
Title, zoom, close boxes 
Title pattern and background 
Grow box 
Info bar 

The bit positions are significant in each of these words. Gener
ally speaking, each word is split into groups of four bits (one nib
ble). These four bits can represent 16 values from 0 (0000) - 15 
(1111). Each value then represents one color from the current pal
ette as set by QuickDraw II. 

162 



-----------Windows-----------

FrameColor (Figure 9-2) sets the color of the window's outline, 
including the outline of the title bar and info bar. 

Figure 9-2. Meaning of Color Bits in FrameColor 

Bit 15 Bit 0 

Always Zero Outline Color Unused 

The only bits of any significance here are at positions 4-7. 
Those values control the color of the window's frame. The other 
bits in this word should be set to 0. 

TitleColor (Figure 9-3) controls the color of the windo_w's title 
(the name of the window), and the close and zoom button~ as wel 
as the colors of the title bar and title when the window is inactive. 

Figure 9-3. Meaning of Color Bits in TitleColor 

Bit 15 

Always Zero Inactive 
Title Bar Color 

Inactive 
Title Color 

Bit 0 

Title, Zoom, and 
Bar Color 

The inactive colors specified by TitleColor only appear when a 
window is inactive, or in the background. Otherwise, only bits 0-3 
are used when a window is first displayed to color the title, zoom, 
and close boxes. The inactive title bar color and inactive title color 
are best used when both values are opposites, such as 0000 for the 
first and 1111 for the second. When both are the same, the title of 
an inactive window appears all one color. 

Figure 9-4. Meaning of Color Bits in TBarColor 

Bit 15 Bit 0 

Title Pattern Value Pattern Color Background 

163 



----------Chapter 9 ----------

In the TBarColor slot (Figure 9-4), the title pattern value is one 
of three values: 0 (00000000) for solid, 1 (00000001) for dithered, 
or 2 (00000010) for barred-as on the Macintosh. 

The pattern color and background (Figure 9-4) set the fore
ground and background colors for whatever type of pattern is se
lected. For the solid title bar, only Pattern color (bits 4-7) are used. 
For a dithered or barred pattern, both values are used. 

In the GrowColor Slot (Figure 9-5), the alert frame, bits 12-15, 
are used when the type of window created is a dialog box and not 
an actual window. (Remember, the Window Manager is also re
sponsible for creating dialog boxes.) 

Figure 9-5. Meaning of Color Bits in GrowColor 

Bit 15 

Alert Frame Always Zero Grow Interior 
Inactive 

Bit 0 

Grow Interior 
Active 

A special type of dialog box, the alert box, has a few outlines. 
The alert frame parameter above colors the alert box's middle out
line. The grow interior inactive parameter colors the inactive win
dow's grow box. The grow interior active parameter colors the 
active window's grow box. 

As with GrowColor, bits 12-15 of InfoColor (Figure 9-6) deter
mine the color of an alert box. This time the parameter affects the 
inside outline's color. 

Figure 9-6. Meaning of Color Bits in InfoColor 

Bit 15 Bit 0 

Alert Frame Always Zero Interior Color Inactive Unused 

The only other significant bits are 4-7, which control the inte
rior color of the window when it's inactive. 

A sample color table would be as follows. In machine lan
guage, the percent sign is used to indicate a bit value description of 
the word. The following color table creates a typical Macintosh
style window using only black and white color values. 

164 



-----------Windows-----------

WColor de i'%0000000000000000' ;frame color 
de i'%0000111100000000' ;Title Color 
de i'%0000001000001111' ;Title Bar Color 
de i'%0000000011110000' ;Grow Box Color 
de i'%0000000011110000' ;Info Bar Color 

In C, a sample color table declaration would be 

WlndColor wColor = 

OxOOOO, 
OxOfOO, 
Ox020f, 
OxOOfO, 
OxOOfO }; 

!* frame color • 1 
1• title color • I 
1• title bar color • I 
!* grow box color • 1 
!* info bar color • I 

And in Pascal (wColor is defined as a WindowColorTbl type): 

WITH wColor DO BEGIN 
FrameColor : = $0000; 
TltleColor : = $0FOO; 
TBarColor : = $020F; 
GrowColor : = $00FO; 
InfoColor : = $00FO; 

END; 

Using these premanufactured structures, you'll find it easy to 
experiment until you create the right window for your needs. 

Window Contents 
What good is a window unless you can put something into it? Not 
much. Putting data into a window isn't that difficult; it just requires 
that you know which buttons to push. 

The contents of a window are drawn by a routine indicated in 
the window record. The wContDe£Proc parameter contains the 
long address of a routine that draws the window's contents: 

wContDefProc (long pointer) 

The routine, if written in machine language, should end in an RTL 
instruction. Functions and procedures in C and Pascal always end 
in RTLs. The wContDe£Proc routine draws the contents of the win
dow, then exits. There are no input or output parameters, nor do 
you need to do any extensive graphics tweaking. 

165 



----------Chapter 9 ----------

The wContDefProc routine is called by the TaskMaster to up
date the window's contents-for example, when the window is 
scrolled or its size is changed. When you're using graphics, the 
window's port will be the current GrafPort. 

If wContDefProc is a long. word of 0, then the window will be 
blank, and scrolling about in the window will erase the window's 
data. This is why windows without a wContDefProc routine should 
not have scroll bars. 

The following are two examples of the wContDefProc param
eter in a window record. The first is an empty field, meaning no 
procedure is defined. The second is the address of a procedure to 
draw the contents of a window. 

In machine language: 

de i4'0' ;no update routine 

or 

de i4'WContent' ;address of update routine 

In C: 

WindowRec.wContDefProc = NULL; I* no update routine • I 

or 

WindowRec.wContDefProc = WContent; /* name of fUnction • 1 

In Pascal: 

WindowRec.wContDefProc : = nll; { no update routine } 

or 

WindowRec.wContDefProc : = @WContent; { address of procedure } 

See the MONDO program example in the next section for a 
wContDefProc routine that displays a string in a window. When 
designing your own update routines, remember that the actual size 
of the window's port is set by the window record when the win
dow is created. 

Also, for some reason, having a wContDefProc routine that is 
just an RTL instruction (or a null routine or procedure in C or Pas
cal) doesn't seem to work. It causes the machine to crash. Appar
ently some window access or graphics interaction is required by the 
routine. This could be because of the versions of tool sets that the 
IIGS uses at the time of this writing. 

166 



-----------Windows-----------

The MONDO Window Program 
Below is the program MONDO as written in machine language, C, 
and Pascal. It uses the program MODEL (introduced earlier in this 
book) as a base upon which to work. To run the MONDO pro
gram, you'll need to copy and rename the MODEL program and 
merge in the following modifications. The program is only altered a 
little, so there need not be much retyping. 

MONDO adds two windows to the MODEL program and per
forms some interesting trickery with pull-down menus. The 
windowing routines are used to open and close two separate win
dows. An extra routine has been added to hide or show the first 
window and to demonstrate how easy the Window Manager's 
functions are to use. 

When you begin experimenting with this program, change the 
Show /Hide menu option to some other Window Manager function 
(SelectWindow, BringToFront, SendBehind, HiliteWindow, or a 
number of others. 

MONDO also demonstrates some interesting Menu Manager 
functions. For example, when a window is open, its corresponding 
open menu item is dimmed. When the window is closed, its close 
menu item is dimmed. This is done with two Menu Manager calls, 
EnableMitem and DisableMitem. Additionally, when the first win
dow is hidden, the Hide menu item changes to Show. This is ac
complished with the SetMitemName function and can be seen in 
the code samples below. 

Another interesting thing to note is how the first window 
makes use of a custom color table and the second window uses a 
default color table. Also, note how the wRefCon value is used to 
identify each window. Because wRefCon's value can be anything 
you want, MONDO uses it to identify which window is being 
closed in order to update (dim or enable) the associated menu item. 
This is done with the GetWRefCon function in the CloseW proce
dure in the following source code listings. 

As usual, feel free to modify this program or use its routines in 
your own applications. As a special project, try to fix the error that 
occurs when an invisible window is closed and the Show menu 
item is not changed back to Hide. 

167 

I 

I 

\ 



----------Chapter 9 ----------

Program 9-1. Machine Language Source for MONDO.ASM 
·-------------------------------------------------------· 
* HONDO.ASH * 
* Sample Desktop Appltcatton 1n APW Assembler <1.0) * 
* Wtndowing Routines * 
·-------------------------------------------------------· 

To create the Hondo.Hacros macro file, use this APW shel I command: 
# macgen mondo.asm mondo.macros 21atnclude/ml6= 

ABSADDR ON 
KEEP Hondo 
HCOPY Mondo.Macros 

·------------------------------· 
* Global Equates * 
·------------------------------· 
Toolbox 
TRUE 
FALSE 
Page 
mOpenl 
mHtdel 
mClosel 
m0pen2 
mClose2 

gequ 
gequ 
gequ 
gequ 
gequ 
gequ 
gequ 
gequ 
gequ 

telOOOO 
saooo 
$0000 
$100 
257 
258 
259 
260 
261 

;Primary tool dispatcher 
;True value 
;False value 
;The size of a page <256 bytes> 

•NOTE* 
•NOTE• 

From this potnt on, copy the source from 
the original MODEL.ASM APW program •.. 

Model A START 
phk ;Hake the data bank ... 
plb 
brl Main 

; •.. the current code bank 
;branch over functions to Hatn 

•NOTE* 
•NOTE* 

jsr 

_QUIT 

•NOTE* 
•NOTE• 
•NOTE• 

Et cetera, on down to the end of the 'Main' routine 
as follows: 

ShutDownTools ;Shut down all tools started 

Qparms ;Exit this program through ProDOS 16 

Then add what follows after this point. 
It augments and replaces the rest of the HodeiA 
source code: 

·------------------------------· * Window Routines * 
·------------------------------· 
Open! 

168 

pea $0000 
pea SOOOO 
pushlong #WtndRecl 
_NewWi ndow 

Jsr ErrChk 
pul I long WindPtrl 

; I ong resu I t space 

;first window record 
;open it 

;check for errors 
;get pointer #I 



pea mOpenl 
_D1sab I eMit em 

pea mH1del 
EnableM!tem 

pea mCiosel 
_Enab I eMit em 
rts 

;------------------------------
hidebit de i2'0' 

H1del Ida hidebit 
beq H1de!t 

Showlt pushlong WindPtrl 
_ShowW1ndow 

pushlong #mHide 
pea mH1del 
_SetM!temName 

Ida #$0 
sta h1deb1 t 
rts 

Hidelt pushlong WlndPtrl 
_HldeWindow 

pushlong #mShow 
pea mHidel 
_SetM!temName 

Ida #$FFFF 
sta h1deblt 
rts 

;------------------------------
Open2 pea $0000 

pea $0000 
pushlong #WindRec2 
_NewWindow 
JSr ErrChk 
pul I long W1ndPtr2 

pea m0pen2 
D1sableM!tem 

pea mCiose2 
_Enab I eMit em 
rts 

;------------------------------

Close! pushlong W1ndPtrl 
CloseW1ndow 

Windows -----------

;this menu item number 
;dim it 

;enable these two 

;zero window IS visible 

;show the window ) 
;change the name back 

;hide this window 
;hide it, no errors 

;change menu item name 
;this item number 
;change the name 

;change status byte 

;long result space 

;second window record 
;open that window 

;get second window ' s po1nter 

;now, dim this menu 

; and enable this item 

;close this window 

169 



- - -------- Chapter 9 

pea mOpenl 
EnableMitem 

pea mHidel 
_DI sabl eMit em 

pea mCiosel 
_DlsableM!tem 
rts 

;------------------------------
Close2 pushlong WindPtr2 

_CioseWindow 

pea m0pen2 
_Enab I eMit em 

pea mCiose2 
_DlsableM!tem 
rts 

;------------------------------

;this menu item number 
;Enable this aga1n 

;disable these two 

;close window two 

;re-enable this item 

; close whichever window was clicked 

CloseW pea SOOOO 
pea soooo 
pushlong TaskData 
_Ge twRetcon 

pia 
pix 
cmp #! 
beq Close! 
bra Close2 

;------------------------------
WContent pea S0028 

pea S0020 
_Move To 

PushLong #Str1ngO 
_DrawCStrlng 

rtl 

;long result space 

;get the window' s pointer from Taskdata .. 
;ge t t he w1n oow•s wRetcon va lue 

;get low order word into a 
;toss away high order word 1n x 
;if !, then it ' s window I 
;so close window I 
;else, close window 2 

;Horizontal pointer loc. 
;Vertical pointer loc. 
; <Ou1ckDraw> 

; 1 ong return 

StnngO de c'Th1s 1s a str1ng inside the window.",il ' O' 

*------------------------------* 
* Var1able Storage * 
*------------------------------* 

User!D ds 
Mem!D ds 
DPBase ds 
OFlag de 

2 
2 
2 
i ' FALSE ' 

•==============================• 
* StartUp/ Shutdown Tool List * 
*------------------------------* 

170 

;Our User ID 
;Memory User JD <made from User JD> 
;Used by DP buffer manager 
;Boolean: Quit flag <starts out as false> 



Windows 

Tool ist de i ' <ToolstE-Toolist-1>14 ' ;Tool count 
de i ' 1 '0 ' Tool Locator 
de i ' 2,0 ' Memory Manager 
de i ' 3,0 ' Mise Tools 
de i ' 4,0 ' Ou l ckDraw I I 
de l ' 6,0 ' Event Manager 
de l ' 14,0 ' Window Manager 
de I ' 16,0 ' Control Manager 
de i ' 15,0 ' Menu Manager 
de i ' 5,0 ' Desk Manager 

ToolstE anop 

·------------------------------· 
* Pul I Down Menu Structures * 
·------------------------------· 
MenuTbl de 

de 
de 
de 

i ' <MenTbiE-MenuTbl-1>12 ' ;Menu count 

MenTbiE anop 

Menu! de 
de 
de 
de 

Menu2 de 
de 
de 
de 
de 
de 

i ' Menul ' ;Apple 
l ' Menu2 ' ;Window 
i ' Menu3 ' ;Quit 

c ' »Q\XNI ' ,il ' O' ;Apple 
c ' --About This Program . . . \ N256 ' ,il ' O' 
c ' ---\ D' , il ' 0' 

c ' >> Window \ N2 ' ,il ' O' ;Window 
c ' --Open Wlndow1 \ N257 ' ,il ' O' 
c · --H1de Wlndow1 \ DN258 ' ,11 ' 0 ' 
c ' --Ciose Wlndowl\DVN259 ' ,11 ' 0' 
c ' --Open Window2\N260 ' ,il ' O' 
c · --CI ose W1 ndow2\ DN261', 11 ' 0' 

de c ' >' 

Menu3 de 
de 
de 

c ' >> Quit \ N3 ' ,i1 ' 0' 
c ' --0ult\ N262•0q ' ,il ' O' 
c ' >' 

;Quit 

mShow str ' Show W1ndowl ' 
mH1de str ' H1de W1ndow1 ' 

;changing menu 1tems 

·------------------------------· 
*Menu Item Dispatch Addresses* 
·------------------------------· 
MTable de i ' About ' 

de i ' Open! ' 
de i ' H1del ' 
de 1 ' Close! ' 
de 1 ' Open2 ' 
de i ' Ciose2 ' 
de I ' Ou1 t ' 

·------------------------------· 
* The Event Record * 
·------------------------------· 
Even tRee 
EWhat 

anop 
ds 2 

;256/About 
; 257/0pen window 
;258/Hide w1ndow 1 
;259/ Ciose window 1 
;260/0pen w1ndow 2 
;261 / Ciose window 2 
;26VOul t 

<Apple Menu> 
<Window Menu> 

<FIle Menu> 

;Event Record used by TaskMaster 
;What 

171 



----------Chapter 9 ----------

EMsg 
E'tl'hen 
Mere 
EMods 
TaskData 
TaskMask 

ds 
ds 
ds 
ds 
ds 
de 

4 
4 
4 
2 
4 
i4 ' $1fff ' 

·------------------------------· 
* Window Data * 
·------------------------------· 
WlndPtr1 ds 4 

'f/1tltle str " Mr. Mondo One • 

W1Ctable de 1' %0000000000000000 ' 
de i ' %0000111100000000 ' 
de I ' %0000001000001111 ' 
de 1' %0000000011110000 ' 
de i ' %0000000011110000 ' 

WindRec1 anop 
de i ' WR1end-WindRec1 ' 
de 1' %1101111110100000 ' 
de i4 ' Wlti t le ' 
de i4 ' 1' 
de 12 ' 0,0,0,0 ' 
de i4 ' W1Ctable ' 
de i2 ' 0,0 ' 
de i2 ' 180,640 ' 
de i2 ' 180,640 ' 
de i2 ' 4,16 ' 
de 12 ' 40,160 ' 
de !4 ' 0' 
de i2 ' 0' 
de i4 ' 0' 
de i4 ' 0' 
de I4 ' WContent ' 
de i ' 40,100,159,540 ' 
de i4 ' SFFFFFFFF ' 
de 14 ' 0' 

WR1end anop 

WindPtr2 ds 4 

W2title str ' Mr . Mondo Two • 

WindRec2 anop 

172 

de i ' WR2end-WindRec2 ' 
de i ' %1101111110100000 ' 
de i 4' W2ti tl e ' 
de i4 ' 2' 
de i2 ' 0,0,0,0 ' 
de i4 ' 0' 
de i2 ' 0,0 ' 
de i2 ' 180,640 ' 
de I2 ' 180,640 ' 
de i2 ' 4,16 ' 
de 12 ' 40 , 160 ' 
de i4 ' 0 ' 
de 12 ' 0' 
de i4 ' 0' 

;Message 
;When 
;Where 
;Modifiers 
;Task Data 
;Task Mask 

;Window pointer 

;frame color 
; T i t1 e Co I or 
;Title Bar Color 
;Grow Box Color 
;Info Bar Color 

;size of parameter 
;frame type 
;tl tie 

I ist 

;Used for window number here 
;Position When Zoomed O=def 
;Pointer to color table 
;Contents Vert / Harz Origin 
;Height/Width of document 
;height / width for grow window 
;vert/ horz pixels for scroll 
;vert/ horz pixels scrol I page 
;Value passed to information draw 
;Height of info bar 
;Window Definition 
;Draw info bar routine 
;Draw Interior 
;Starting position and size 
;starting plane 
; Window Record 

;Window pointer 

;size of parameter list 
;frame type 
;ti tie 
;Used for wi ndow number here 
;Position When Zoomed O=def 
;no color table 
;Contents Vert / Horz Origin 
;Height / Width of document 
;height/ width for grow window 
;vert/ harz PIXels for scroll 
;vert/ harz pixels scrol 1 page 
;Value passed to i nformation draw 
;Height of info bar 
;Window Def inition 



-----------Windows-----------

de i4 ' 0' 
de 14 ' 0' 
de 1' 50,120,169,560 ' 
de 14 ' tFFFFFFFF ' 

;Draw info bar routine 
:Draw Inter1or <none> 
;Starting position and size 
:starting plane 

de i4 ' 0' ;Window Record 
WR2end anop 

·------------------------------· * Miscellaneous Data * 
·------------------------------· 
Moment de c ' One Moment . .. ' ,i1 ' 0' 

OParms de 
de 

i4'0 ' ;ProDOS 16 Quit Code parameters 
I ' $0000 ' 

END 

Program 9-2. C Language Source for MONDO.C 

-·---------------------------------------------· .. MONDO.C * * Sample Desktop Appl teat ton tn APW C <1 .0> * 
·------- ---- - ---------------- -----------------·1 

' * ••NOTE•• Thts ts not a complete program. Merge parts of 
thts llsttng With the MODEL.C program from 
Chapter S1x. Insert port1ons from MODEL .C where 
1nd1cated. *I 

I * #tnclude dtrect1ves 

#deftne mAbout 256 
#dettne m0pen1 257 
#deftne mHtde1 258 
#deftne mCiose1 259 
#deftne m0pen2 260 
#deftne mCiose2 261 
#define mOutt 26~ 

Insert from MODEL.C *I 

I * Menu 1tem IDs *I 

/·------------------------------· 
* Global Variables * 
·------------------------------·/ 

WmTaskRec EventRec: I * Event Record Structure 

Word Event. 
User I D. 
MemiD, 
OF lag; 

Word Tooltst[J 

) ; 

3, 
14, 0, 
15, 0. 
16, 0 

I * Event code *I 
I• Our User ID *I 
I • Memory Management ID *I 
I • Boolean: Ou1t flag 

I • Tool count *I 
I * Window Manager *I 
I * Menu Manager *I 
I * Control Manager *I 

*I 

*I 

char •DPBase; I * Direct Page base pointer • I 

173 



Chapter 9 ---------

GratPortPtr W1ndPtrl, 
WJndPtr2; 

I* Window port pointers *I 

WJndColor W!Ctable = < 
OxOOOO, 
OxOtOO, 
Ox020t, 
OxOOtO, 
OxOOtO 

I* 
I* 
I* 
I* 
I* 

) ; 

1nt WContent<> ; 
ParamL1st W1ndRec1 = < 

sJzeot<WindRecl>, 
Oxdtao. 

) ; 

ParamL1st 

) ; 

"\p Mr. Mondo One 
1L, 
0, 0, 0, 0, 
&WlCtable, 
0, 0, 
180, 640, 
180. 640. 
4. 16, 
40. 160. 
NULL , 0, 
NULL, 
NULL, 
WContent, 
40, 100, 159, 540, 
-1L, 
NULL 

WindRec2 = < 
sJzeot<WindRec2>, 
Oxdtao, 
'\p Mr. Mondo Two 
2L, 
0, 0, 0, 0, 
NULL, 
0, 0, 
180. 640. 
180, 640, 
4, 16, 
40. 160. 
NULL, 0, 
NULL, 
NULL. 
NULL. 
50, 120, 
-1L, 
NULL 

169, 560, 

Boolean h1deb1t FALSE; 

I * ErrChk<> 1nsert from 
I* GetDP<> insert from 
I* StartUpTools<> insert from 

174 

frame color *I 
t 1 tle color •I 
title bar color •I 
grow box color *I 
into bar color •I 

I* s1ze of parameter list *I 
I* frame type *I 

",1* Window title *I 
I* used tor Window number */ 
I* posJtJon when zoomed *I 
I* color table */ 

I* content vert/horz or1g1n *I 
I* height/width of aocument *I 
I* height/width tor grow Window •I 
I* vert/horz PIXels tor scroll *I 
/* vert/horz Pixels tor page •I 
I* no 1nfo bar */ 
I* Window definition •I 
I• draw info bar *I 
I* draw interior */ 
I* position I s1ze *I 
I* plane *I 
I* window record address */ 

I* size of parameter list*/ 
I* frame type */ 

",1* window title *I 
I* used tor window number *I 
I* position when zoomed *I 
I* color table •I 

I* 
I* 
I* 
I* 

I* content vert/horz orJgin *I 
height/width of document *I 
height/width tor grow Window *I 
vert/horz pixels tor scroll *I 
vert/horz pixels for page *I 

I* no 1nfo bar *I 
I* window aetJnJtJon *I 
I* craw 1nto bar *I 
I* draw 1nter1or *I 
I* position I s1ze *I 
I* plane •I 
I* Window record address *I 

MODEL.C *I 
MODEL.C *I 
MODEL.C *I 



-----------Windows-----------

1•------------------------------· 
* Prepare Desktop and Menus * 
·------------------------------•1 

PrepDeskTop< > 
( 

statiC char •AppleMenu[J = < 
'»~'\ \XNl', 
•--About This Program ... '\'\N256', 
·---'\'\D'. 
">' 

) ; 

stat1c char •WindowMenu[J = 
">> W1ndow '\'\N2', 
•--Open Windowl'\'\N257', 
•--Hide Wlndowl'\'\DN258', 
"--Close Windowl'\'\DVN259', 
·--Open Wlndow2'\'\N260', 
"--Close Window2'\'\DN261", 

); 

static char •OultMenu[J 
'>> Ou1t '\'\N3', 
"--Oult'\'\N262•0q', 
• >' 

) ; 

RefreshDesktop<nll>; 
In1tCursor<>: 

InsertMenu<NewMenu<OultMenu[OJ), 0>; 
InsertMenu<NewMenu<WindowMenuCOl>, O>; 
InsertMenu<NewMenu<AppleMenu[OJ>, 0); 

FlxAppleMenu<l>; 
F i xMenuBar < >; 
DrawMenuBar<>; 

1•------------------------------· 
* Apple Menu: About * 
·------------------------------•1 

About<> 
( 

I* Doe5 nothing <for now> *I 

1•------------------------------· * W1ndow Content Procedure * 
·------------------------------•1 

WContent< > 

MoveTo<Ox28, Ox20>; 

I* Display Desktop *I 
I* Show mouse cursor *I 

I* Instal I menus *I 

I* Display menu bar *I 

DrawCStrlng<"This IS a string inside the window.">; 

175 



-------------------Chapter9--------------------

1*------------------------------* * W1ndow Menu: Open! * 
*------------------------------*1 

Open!<> 
( 

WindPtr1 = NeWWindow<&WindRec1>; 
DlsableHitem<mOpen!>; 
EnableHitem<mHide1>; 
EnableMitem<mCiose1>: 

1•------------------------------· * W1ndow Menu: Hide! * 
·------------------------------•1 

Hide!<> 
( 

1f <hldeblt> 
ShowWindow<WindPtr1>: 

I* open f1rst window *I 
I* disable open! item *I 
I* enable these two ... *I 

SetMitemName('\pHide Window!', mHide1>: 
hldeblt =FALSE: 

else < 
HideWindow<WlndPtr1>; 
SetHitemName('\pShow Window!", mHide1>; 
hldebit =TRUE; 

1•------------------------------· 
* Window Menu: Open2 * 
*------------------------------•1 

Open2<> 
( 

WindPtr2 = NeWWindow<&WindRec2>: 
DlsableMitem<m0pen2>: 
EnableMitem<mCiose2>: 

/·------------------------------· * Window Menu: Close! * 
·------------------------------•1 

Close!<> 
{ 

CloseWindow<WlndPtrl>: 
EnableMitem<mOpen1>: 
DisableMitem<mHide1>: 
DlsableMltem<mCiosel>; 

1*------------------------------· 
* W1ndow Menu: Close2 * 
·------------------------------•1 

Close2<> 
{ 

CloseWlndow<WindPtr2>: 
EnableMitem<mOpen2>: 

176 

I* open second window ~I 
I* disable open2 1tem *I 
I* enable close2 item *I 

I* close this window *I 
I* enable open! item *I 
I* disable these two .. . •I 

I* close window 2 *I 
I* enable open2 item *I 



Windows -----------

DisableHitem<mClose2>: I• disable close2 item *I 

CloseW<> I* close whichever window was clicked *I 
( 

1f <GetWRefCon<EventRec.wmTaskData> == I> 
Cl osel 0; 

else 
Close2<>: 

1•------------------------------· 
* Do Menu Selection * 
·------------------------------•1 

DoHenu<> 
( 

SWitch <EventRec.wmTaskData> 
case mAbout: About<>: 
case mOpent: 
case mHidel: 
case mCioset: 
case m0pen2: 
case mCiose2: 
case mOuit: 
) 

Openl<>; 
H1deiO; 
Cl osel 0; 
Open2< >; 
Close20; 
OFiag = TRUE; 

break: 
break; 
break; 
break; 
break: 
break; 
break; 

HlllteHenu<FALSE, EventRec.wmTaskData>>l6>; 

I* ShutDownTools<> -- insert from MODEL.C *I 

1•------------------------------· 
* Main * 
·------------------------------•1 

ma1n<> 
( 

StartUpTool~<>: I* Start toolsets *I 
PrepDeskTop<>: I* Prepare desktop and menus •I 

OFiag = FALSE; 
EventRec.wmTaskHask OxOOOOifff; 

wh i I e < ! OF I ag > ( 
Event = TaskMaster<Oxffff, &EventRec>; 
SWitch <Event> < 
case wlnMenuBar: 
case wlnGollway: 
) 

ShutDownToo Is<>: 
exit< 0 >: 

DoHenu<>: 
CloseW< >; 

break; 
break; 

I* Shutdown alI tools started •I 

177 



----------Chapter 9 ----------

Program 9-3. Pascal Source for MONDO.PAS 

·--------------------------------------------------· .. 
* 

MONDO.PAS 
Desktop AppiJcatJon 1n TML Pascal <vl.Oll * 

* ·--------------------------------------------------· 
••NOTE•• Th1s IS not a complete program. Merge sect1ons 

from the MODEL.PAS program 1n Chapter Six 
where 1nd1cated. ) 

PROGRAM MonaoP; 

USES QDintF, 
GSintF, 
M1scTools; 

CONST mAbout 256; 
257; 
258; 
259; 
260; 
261; 
262; 

< Menu item IDs ) 
mOpenl 
mH1del 
mCiosel 
m0pen2 
mCiose2 
mOu1t 

*------------------------------· * Global Variables * 
*------------------------------· 

VAR EventRec: 
Event: 
UseriD: 
MemiD: 
DPBase: 
QFiag: 

Event Record; 
Integer; 
Integer; 
Integer; 
Integer; 
Boolean; 

AppleMenu: Str1ng; 
W1ndowMenu: Str1ng; 
QuitMenu: String; 

Taskmaster Structure 
Event code ) 
Our User ID ) 
Memory allocation ID > 
Direct Page base pointer 
Boolean: Quit flag ) 

Pull down menu str1ngs 

W1ndPtrl: WindowPtr; 
WindowPtr; 
Str1ng; 
String; 

< Window port pointers ) 
WlndPtr2: 
W!Tl tie: 
W2Tl tie: 

W!Ctable: WlndowColorTbl; 

WindRecl: NewWlndowParamBik; 
WindRec2: NewWlndowParamBik; 

h 1debi t: Boo I ean; 

PROCEDURE ErrChk -- 1nsert from MODEL.PAS ) 
FUNCTION GetD -- insert from MODEL.PAS ) 
PROCEDURE StartUpTools -- 1nsert from MODEL.PAS 

·------------------------------· * Prepare Desktop and Menus * 
·------------------------------· 

178 



---------------------VVindows---------------------

PROCEDURE PrepDeskTop; 
VAR 

Height: Integer; < Menu bar heigth <unused> ) 

BEGIN 

END; 

AppleMenu .- CONCAT<'>>Q\XNI\0 ', 
'--About This Program ... \N256\0', 
'---\D\0', 
I>/); 

WindowMenu .- CONCAT<'>> Wtndow \N2\0', 
'--Open Windowi\N257\0 ' , 
' --Hide Windowi\DN258\0 ' , 
' --Close Windowi\DVN259\0', 
'--Open Window2\N260\0', 
'--Close Window2\DN26!\0 ', 
I)'); 

QuitMenu := CONCAT< ' >> Quit \N3\0', 
'--Ouit\N262•Qq\0', 
I ) I ); 

Refresh<Ni I>; Display Desktop ) 
InttCursor; Show mouse cursor 

InsertMenu<NewMenu<QOuitMenu£11>, O>; Install menus> 
InsertMenu<NewMenu<QWindowMenu(IJ>, O>; 
InsertMenu<NewMenu<QAppleMenu[IJ>, O>; 

FtxAppleMenu<l>; < Dtsplay menu bar ) 
Hetght := FixMenuBar; 
DrawMenuBar; 

·------------------------------· 
* Apple Menu: About * 
·------------------------------· 

PROCEDURE About; 
BEGIN 

< Does nothing <for now> > 
END; 

·------------------------------· 
* Wtndow Content Procedure * 
·------------------------------· 

PROCEDURE WContent: 
BEGIN 

MoveToC$28, $20>; 
DrawStrtng< ' Thts 1s a strtng tnstde the wtndow. ' >; 

END: 

·------------------------------· 
* Wtndow Menu: Open! * 
·------------------------------· 

PROCEDURE Open!; 
BEGIN 

W!Title := ' Mr. Mondo One'; 

1~ 



----------Chapter 9 ----------

WITH W1Ctable DO BEGIN 
FrameColor := SOOOO; 
TitleColor := SOfOO; 
TBarColor := S020f; 
GrowColor := sOOfO; 
InfoColor := sOOfO: 

END; 

WITH WindRec1 DO BEGIN 
param_length := SIZEOF<NewWindowParamBlk>; 
wFrame := SdfaO: < frame type l 
wTitle := QW1Title; <window title l 
wRefCon := 1; (Window number l 
SetRect <wZoom, 0, 0, 0, O>; < position when zoomed 
wColor .- QW1Ctable; < color table > 
wYOr1g1n := 0; ( content vert origin } 
wXOrigin := 0; < content horz origin } 
wDataH := 180: < height of document ) 
wDataW .- 640: < width of document l 
wMaxH := 180; ( height of grow Window 
wMaxW := 640; < width of grow Window l 
wScroi!Ver .- 4: < vert PIXels: scrol I ) 
wScrol!Hor := 16: < horz pixels: scrol I l 
wPageVer := 40; < vert pixels for page > 
wPageHor := 160; ( horz p1xels for page } 
winfoRefCon := Longint<nill; (no 1nfo bar) 
winfoHe1ght .- 0; < no info bar l 
wFrameDefProc :=nil; < w1ndow definition 
winfoDefProc :=nil; (draw info bar l 
wContDefProc := QWContent; < draw interior l 
SetRect <wPosi t ion, 100, 40, 540, 159); 
wPlane := -1; < plane } 
wStorage :=nil; <window record address 

END; 

WlndPtr1 := NewWindow<WindRec1>; 
DlsableMitem<mOpen1>; 

EnableMitem<mHide1>: 

open first window > 
disable open1 item l 

{enable these two ... 
EnableMitem<mClose1>; 

END; 

*------------------------------* * Window Menu: Hide1 * 
*------------------------------* 

PROCEDURE Hide1; 
BEGIN 

IF hidebit THEN BEGIN 
ShowWindow<WindPtr1>: 

END 

SetMitemNameC'Hide Window1', mHide1>; 
hidebit :=FALSE: 

ELSE BEGIN 
HideWindow<WindPtr1>; 
SetMitemName<'Show Window1'. mHide1>: 
hidebit :=TRUE: 

END; 
END; 

180 



Windows -----------

·------------------------------· * W1ndow Menu: Open2 * 
·------------------------------· 

PROCEDURE 0pen2; 
BEGIN 

END; 

W2Title := ' Mr. Mondo Two ' ; 

WITH W1ndRec2 DO BEGIN 

END; 

par am_ I ength 
wFrame 
wTi t le 
wRefCon 
:!etRe c t 
wColor 
wYOr1g1n 
wXOrig1n 
wDataH 
wDataW 
wMaxH 
wMaxW 
wScroiiVer 
wScroiiHor 
wPageVer 
wPageHor 
wlnfoRefCon 
wi nfoHe 1 ght 
wFrameDefProc 
wlnfoDefProc 
wContDefProc 
SetRect 
wPiane 
wStorage 

:= SIZEOF<NewWindowParamBik); 
.- $dfa0; ( frame type > 
:= QW2Title; (window title > 
.- 2; < window number > 
wzoom, ~ . o, o, o>; < position when zoomed 

.- ni I; < color table > 
:= 0; < content vert origin > 
.- 0; < content horz origin > 
.- 180; < height of document > 
:= 640; < width of document > 
.- 180; < height of grow window 
:= 640; < width of grow window > 
.- 4; < vert pixels: scrol I > 
.- 16; ( horz PIXels: scrol I > 
.- 40; < vert pixels for page > 
.- 160; < horz p1xels for page > 
.- Longint<n1 I>; < no 1nfo bar > 
.- 0; < no 1nfo bar > 
:= n1l; <Window definition 
.- n1 I; < draw 1nfo bar > 
.- n1 I; < draw Interior > 
< wPos 1 ti on , 120 , 50 , 560 , 169 > ; 
:= -1; <plane> 
.-nil; < w1ndow record address> 

W1ndPtr2 : = NewWindow<WindRec2>; 
DlsableMitem<mOpen2>; 
EnableMitem<mCiose2>; 

open second window 
disable open2 item 
enable close2 item 

·------------------------------· 
* W1ndow Menu: Close! * 
·------------------------------· 

PROCEDURE Close!; 
BEGIN 

CloseWindow<WindPtrl>; 
EnableMitem<mOpenl>; 
DisableMitem<mHidel>; 
DlsableMitem<mCiosel>; 

END; 

·------------------------------· * Window Menu: Close2 * 
·------------------------------· 

PROCEDURE Close2; 
BEGIN 

CloseWindow<WindPtr2>; 
EnableMitem<m0pen2>; 
DisableMitem<mCiose2>; 

END; 

close this window > 
enable open! item) 
disable these two . .. 

close window 2 ') 
enable open2 Item 
disable close2 item 

181 



----------Chapter 9 ----------

PROCEDURE CloseW; 
BEGIN 

(close whichever window was clicked 

IF GetWRefCon<WindowPtr<EventRec.TaskData>> = 1 THEN 
Close! 

ELSE 
Close2; 

END; 

*------------------------------* * Do Menu Select1on * 
*------------------------------* 

PROCEDURE DoMenu; 
BEGIN 

CASE LoWord<EventRec.TaskData> OF 
mAbout: About; 
mOpenl: Open!; 
mHidel: Hide!; 
mClosel: Close!; 
m0pen2: 0pen2; 
mClose2: Close2; 
mQuit: QFlag :=TRUE; 

END; 

HiliteMenu<FALSE, HiWord<EventRec.TaskData>>; 
END; 

PROCEDURE ShutDownTools -- insert from MODEL.PAS 

*------------------------------* 
* Main * 
*------------------------------* 

BEGIN 
StartUpTools; 
PrepDeskTop; 

QFlag := FALSE; 

Start toolsets > 
Prepare desktop and menus 

hidebit := FALSE; 
EventRec.TaskMask := SOOOO!fff; 

END. 

182 

REPEAT 
Event :=TaskMaster<-!. EventRec>; 
CASE Event OF 

winMenuBar: DoMenu; 
winGoAway: CloseW; 

END; 
UNTIL QFlag; 

ShutDownTools (Shutdown all tools started> 



---------------------Windows---------------------

Chapter Summary 
The following tool set functions were referenced in this chapter. 

Function: $020E 
Name: WindStartUp 

Starts the Window Manager 
Push: UseriD (W) 
Pull: Nothing 

Errors: None 

Function: $030E 
Name: WindShutDown 

Shuts down the Window Manager 
Push: Nothing 
Pull: Nothing 

Errors: None 

Function: $090E 
Name: NewWindow 

Creates a window on the DeskTop 
Push: Result Space (L); Window Record (L) 
Pull: Window Pointer (L) 

Errors: $0E01, $0E02 

Function: $OBOE 
Name: CloseWindow 

Closes a window, removing it from the DeskTop 
Push: Window Pointer (L) 
Pull: Nothing 

Errors: None 

Function: $120E 
Name: HideWindow Hides a window, making it invisible 
Push: Window Pointer (L) 
Pull: Nothing 

Errors: None 

Function: $130E 
Name: ShowWindow 

Displays a previously hidden window 
Push: Window Pointer (L) 
Pull: Nothing 

Errors: None 

183 



-------------------Chapter9-------------------

Function: $1 DOE 
Name: TaskMaster 

Tracks mouse, menu, and window events 
Push: Result Space (W); Event Mask (W); Event Record (L) 
Pull: TaskCode (W) 

Errors: $0E03 

Function: $290E 
Name: GetWRefCon 

Returns the value of a window wRefCon parameter 
Push: Result Space (L); Window Pointer (L) 
Pull: Window's wRefCon (L) 

Errors: None 

Menu Item Calls 
Function: $300F 

Name: EnableMitem 
Enables a dimmed menu item 

Push: Menu Item's ItemNum (W) 
Pull: Nothing 

Errors: None 

Function: $310F 
Name: DisableMitem 

Dims, or disables, a menu item 
Push: Menu Item's ItemNum (W) 
Pull: Nothing 

Errors: None 

Function: $3AOF 
Name: SetMitemName 

Changes the name of a menu item 
Push: Pascal String (L); Menu Item's ItemNum (W) 
Pull: Nothing 

Errors: None 

QuickDraw II Calls 
Function: $3A04 

Name: MoveTo 

184 

Moves the graphics pen to a specific coordinate 
Push: Horz Position (W); Vert Position (W) 
Pull: Nothing 

Errors: None 



-----------Windows-----------

Function: $A604 
Name: DrawCString 

Displays a C string in graphics mode 
Push: C String (L) 
Pull: Nothing 

Errors: None 

185 



.-----Chapter 10 _ ___, 

Dialog Boxes 

Dialog boxes offer you a chance 
to communicate with the per
son using your program. Like 
the buttons and viewing win
dow on the front of an auto
matic teller machine, dialog 
boxes are the most easily un
derstood ways for a computer 
to display information and ob
tain input, particularly when 



--

---------Chapter 10 ---------

compared to the old-fashioned YesjNo prompts and dreary com
mand line options. 

This chapter covers the Dialog Manager and the creation of di
alog boxes. Background information is provided initially, with de
scriptions of the different types of dialog boxes: 

• Modal dialog boxes 
• Modeless dialog boxes 
• Alerts 

This chapter also covers the items associated with dialog boxes and 
all their structures, options, and settings. This is followed by nu
merous programming examples and explanations. Unlike previous 
chapters, this chapter does not contain a complete programming 
example, though you can merge the About. .. dialog box example 
at the end of this chapter with the MODEL program introduced in 
Chapter 6. 

Chapter 11, which is about controls, adds a little more infor
mation to what's offered here. If you're interested in creating 
custom dialog boxes with your own controls, it's recom
mended that you read Chapter 10 first, then Chapter 11. 

Background Information 
Dialog boxes are controlled by the Dialog Manager. But actually, 
more than any other tool set, the Dialog Manager relies on a num
ber of other tool sets to help get the job done. For example, from 
the previous chapter, you might have read that the Window Man
ager contributes to the Dialog Manager by drawing the actual dia
log box. Also, the Control Manager (covered in the next chapter) 
helps out by drawing, manipulating, and regulating the controls in 
a dialog box. 

To use dialog boxes in your programs, you'll need to have 
started the following tool sets: 

• Tool Locator 
• Memory Manager 
• Miscellaneous tool set 
• QuickDraw II 
• Event Manager 

188 



----------Dialog Boxes ----------

• Window Manager 
• Control Manager 
• LineEdit tool set 

(Also refer to the table of tool set dependencies in Chapter 4.) 
It may seem rather strange that the LineEdit tool set is re

quired to use a dialog box. In fact, you cannot display any text in a 
dialog box unless you've started the LineEdit tool set. The main 
reason LineEdit is needed is to manipulate text in a text input box 
(EditLine item). 

The text input box, as well as numerous other goodies you can 
put into a dialog box, are covered in Chapter 11, which deals with 
controls . 

The Dialog Manager is started by a call to the DialogStartUp 
function and shut down by a call to the DialogShutDown function. 
The Dialog Manager shares direct page space with the Control 
Manager, so there's no need to specify direct page space when 
starting this tool set. 

In machine language, the following code can be used to start 
the Dialog Manager (remember that the above-mentioned tool sets 
should also have been started): 

pushword UseriD 
JlalogStartUp 

In C and Pascal: 

DlalogStartUp(UseriD); 

;push the program's User ID 
;No errors possible 

To avoid compile-time errors, C programmers should note that 
the <dialog.h> header file should be included at the top of your 
program along with the header files for all the other tool sets that 
are started up. 

To shut down the Dialog Manager, the following routines can 
be used. 

In machine language: 

JlalogShutDown 

In C: 

DlalogShutDown( ); 

And in Pascal: 

DlalogShutDown; 

189 



------------------Chapter10------------------

Once the Dialog Manager is started, your program can display 
dialog boxes. The dialog boxes can be defined in three ways, using 
three separate, yet similar, Toolbox calls. Once the dialog box is ac
tivated, there are special Dialog Manager calls that monitor the 
events in the dialog box. All these techniques, including examples 
of several dialog boxes, are described below. 

Types of Dialog Boxes 
As was mentioned earlier in this chapter, there are three types of 
dialog boxes: 

• Modal 
• Modeless 
• Alert 

Modal. A modal dialog box is the most common traditional 
type of dialog box. It's typically a rectangle filled with controls or a 
message. The dialog box is where a dialogue can take place be
tween the user and the program. A model dialog box allows the 
user to set or change an option or it can simply display information 
as in an About. .. or a Help dialog box. 

Modeless. The modeless dialog box is the least understood of 
the three. It's basically a window with dialog controls in it. Unlike 
the modal dialog box, which is always the foremost window, a 
modeless dialog box can be placed behind other windows, moved, 
zoomed, or manipulated like a regular window. Because of this ex
tra activity, the modeless dialog boxes are a little harder to pro
gram. Also, their use is vaguely defined, so you won't see them 
very often. 

Modal? Modeless? How can you remember which one does 
what? 

A good question. Think of a modal dialog as one that puts 
you in a mode where you're essentially forced to interact only 
with that dialog. A modeless dialog box is one without such 
restrictions: It's present on the DeskTop, but doesn't force you 
to interact with it. 

190 



----------Dialog Boxes ----------

Alert. The third type of dialog box, the alert, displays a warn
ing and, to varying degrees, a message. Alerts can have 
OKjContinue or Cancel/Stop buttons in them. The alert dialog 
boxes are actually specialized forms of modal dialog boxes. 

Refer to the Human Interface Guidelines Appendix for more 
information on the use of the dialog box as well as for design 
guidelines. 

Creative Overview 
Dialog boxes are easy to use. About the hardest thing they require 
is that you organize your thoughts about what to put into them. 
Utilizing a combination of tool set functions, the Dialog Manager 
simplifies the monitoring of dialog box events. Your program acts 
upon those events and performs whatever actions are necessary. 

Dialog boxes, like windows, require tables, locations, pointers, 
strings-a lot of information. In fact, positioning the controls is the 
only difficult thing about doing one. You'll spend more time mak
ing minor adjustments in the way things are displayed than you 
will placing them into the dialog box, or debugging logic. 

The steps to building a standard, modal dialog box are as 
follows: 

1. Define the dialog box. 
2. Place items into the dialog box. 
3. Wait for a dialog event. 
4. Act on the event (repeat steps 3 and 4 as needed). 
5. Close the dialog box when you've finished. 

Steps 3 and 4 are repeated as various options in the dialog box 
are set. According to the Human Interface Guidelines, at least one 
button in the dialog should be responsible for closing the dialog 
box and making it go away. Typically, two buttons, OK and Can
cel, are used for this purpose. 

Actually, a dialog box could contain only a text message such 
as the famous saying, Please wait while I initialize. As soon as the 
program was ready, it could remove the dialog box and then 
proceed. 

In step 1, the dialog box is defined. It is placed on the screen 
as a special type of window, in front of all other windows on the 
screen. There are a number of calls to create the different types of 

191 



----------Chapter 10 ----------

dialog boxes. In fact, there are three separate Toolbox calls used to 
create a standard modal dialog box (each is covered later in this 
chapter). 

After the dialog box is created (by whichever method), the Di
alog Manager returns a pointer used to further reference the dialog 
box, just as the Window Manager returns a pointer to a window. 
The pointer returned by the Dialog Manager is used to place items 
into that particular dialog box, as well as to remove the dialog box 
once you've finished with it. 

Step 2 is where items are placed into the dialog box. Each item 
has a position relative to the top left corner of the dialog box (local 
coordinates), an item description, and a type. The individual 
characteristics of the items, or controls, placed into a dialog box are 
covered in the next section. 

Steps 3 and 4 are where all the activity takes place. The Dialog 
Manager has special functions that monitor dialog box activity. 
These functions take advantage of the TaskMaster and Event Man
ager to make tracking the events in a dialog box quite simple. 
When a user selects a particular control, your program can deter
mine which control was selected and take appropriate action. 

Once the user has finished with the dialog box (OK or Cancel 
has been clicked), the dialog box is closed, just like a window. The 
dialog box can be called up again a number of times by simply re
peating these steps. See below for individual examples of how 
these steps are implemented. 

Modal dialog boxes will, without exception, follow the above 
five steps. Alert boxes are special exceptions. With alerts, the first 
three steps are combined (most of the work is done internally, by 
the Toolbox). Alerts are used only to get an immediate yesjno re
sponse from a user. Therefore no additional action is taken upon 
them. They are first displayed; then they get the input and are fi
nally removed so that your program can continue with the action 
or stop what it's doing. (See the section on alerts below for more 
information.) 

Modeless dialog boxes are handled in a completely different 
manner. A modeless dialog box is displayed; however, unlike 
modal dialog boxes and alerts, it need not be acted upon right 
away. The user can move it behind other windows on the DeskTop, 
or ignore it completely and go off to do something else. Because of 

192 



----------Dialog Boxes ----------

this, modeless dialog boxes have a special way of handling their 
events. (Refer to the section on modeless dialog boxes below for 
additional information.) 

Dialog Box Controls 
The things placed into a dialog box are called controls. Buttons are 
a common type of control, as are radio buttons, check boxes, text 
input boxes (EditLines), pictures, icons, and even blocks of text. 

Every control placed into a dialog box has a special ID number 
associated with it. It's this value that is monitored by the Dialog 
Manager's special event-handling routines (step 3 from the previ
ous section). When the user clicks on that control, the ID number is 
returned for your program to examine. Simple. 

Besides assigning an ID number, you also need to define what 
type of item is placed into your dialog box, where it is placed, 
whether it's visible, invisible, disabled, and so forth. In all, you 
need to tell the Dialog Manager seven things in order to place a 
control into a dialog box (see Table 1 0-1). 

Table 10-1. Seven Parameters for Placing Controls in Dialog Boxes 

Meaning 
The control's special ID number 
The control's position inside the dialog 

Nam e 
ltemiD 
ItemRect 
Item Type 
ltemDescr 
Item Value 
ltemFlag 
Item Color 

Value 
Word 
Rectangle 
Word 
Long 
Word 
Word 
Pointer 

The type of control: button, text, icon, and so on 
A pointer to special information about the control 
The initial value of a control 
Visible/invisible flag, as well as other information 
A table defining the dialog's color 

These items are placed into the dialog box either individ
ually-by using the NewDitem Toolbox call-or all at once-by 
using a template of information, or record, and using the 
GetNewDitem or GetNewModalDialog calls. 

Individually, each item is described as follows. 
ltemiD. The ItemiD is a value assigned to each cont~ol in your 

dialog box. It can be any value in the range $0001-$FFFF. (An Item 
ID of 0 is possible, but not recommended, because of potential con
flicts with certain Toolbox calls.) 

An ItemiD of 1 is reserved for use by the dialog's default but
ton. Pressing the Return key is considered the same as clicking on 
the item with an ItemiD of 1. Typically, the OK button is given an 

193 



---------Chapter 10 ---------

ID of 1. Also, if a button has an ID of 1, that button has a double 
outline. 

An ItemiD of 2 is reserved for the dialog's Cancel button. 
Pressing the Escape key is the same as selecting the item in a dia
log box with an ID of 2. 

Feel free to give the items in your dialog box any number 
other than 1 and 2 (and 0). A good technique is to give each dialog 
box an ID in the MSB of the ltemiD, then number the controls se
quentially starting with 0. 

For example, assume your dialog box is given the arbitrary 
value $0055. Then assign each contr_ol in the dialog box (except the 
OK and Cancel buttons) with IDs of $5500 plus the sequential 
value of the specific button. Refer to the programming samples be
low for examples. 

The default button, ltemiD $0001, is a good thing to have in 
any dialog box, especially when you're first writing routines 
and experimenting. Because pressing the Return key is the 
same as clicking the default button, if you ever make a terrible 
formatting mistake (like creating a tall, skinny dialog box with 
no visible text or controls), you can still press Return to avoid 
having to reset your computer to start over. This might not ex
actly be the intent of the default button, but by trial and error, 
most programmers discover this technique. The authors have 
become very adept at this. 

ItemRect. The ltemRect defines the control's position relative 
to the upper left corner of the dialog box (which is local coordinate 
0,0). The ltemRect is defined as four words setting the upper left 
corner and lower right corner of the control's location as follows: 

• Upper Left Y value (Min Y) 
• Upper Left X value (MinX) 
• Lower Right Y value (MaxY) 
• Lower Right X value (MaxX) 

Any text in your dialog box must fit inside the given rectangle. 
If you make that rectangle too small, not all the text will be visible. 
And if you make the rectangle too large, the text might overlay 
other controls in the dialog box. 

194 



----------Dialog Boxes ----------

With some controls, such as buttons, you need only define the 
upper left coordinate, using a value of 0 for the lower right coordi
nate. The lower right values are calculated based on the size of the 
text inside the control. (This calculation is performed automatically 
by the Control Manager.) For example, 

de 12'70,130,0,0' 

is all right to define the location of a button. The MaxY and MaxX 
values are set according to the text in the button. 

In machine language and C, the values of a rectangle are 
given in MinY, MinX, MaxY, MaxX order. But in TML Pascal, 
coordinates use the MinX, MinY, MaxX, MaxY order. Keep this 
in mind when converting programs between these languages. 

ItemType. The ItemType parameter describes the type of con
trol. ItemTypes in the following table are listed next to the items 
they define. 

Table 10-2. ItemTypes and the Control They Describe 

ItemType Description Name Definition 
$000A Button Buttonltem Activator 
$000B Check box Checkltem Switch 
$000C Radio button Radioltem Switch 
$0000 Scroll bar ScrollBaritem Special dialog control 
$000E User control UserCtlltem User-defined 
$000F Text StatText Characters (up to 255) 
$0010 Text (longstat) LongStatText Characters (up to 32,767) 
$0011 EditLine EditLine Input box 
$0012 Icon Iconltem Graphic image 
$0013 Picture Picltem Graphic image 
$0014 User item Userltem User-defined 
$0015 User control 2 UserCtlltem2 User-defined 

Currently, only the above ItemTypes are defined. So, for ex
ample, to define a check box in your dialog, you'd specify an item 
type of $000B (as well as providing the other information indicated 
in this section). 

To disable any item in the dialog box (so that clicking the 
mouse on that item will not generate a dialog event), logically OR 
the ItemType with $8000 (which is the same as adding $8000 to 

195 



---------Chapter 10 ---------

the item value). For example, most text items in a dialog box are 
disabled, meaning that clicking on them doesn't do anything. To 
define a disabled text item, the following ltemType can be used: 

de 12'$800F' 

This might also be expressed using equates in machine lan
guage (see the examples below), as in 

de 12'ItemD1sable + StatText' 

where ltemDisable equals $8000 and StatText equals $000F. 
In C, the expression 

(itemDlsable I statText) 

is equivalent to adding these two items, though more logical. 
ltemDescr. The ltemDescr is a long word, either a pointer or a 

handle, depending on the ltemType (see Table 10-3). 

Table 10-3. ItemType Determines What Is Pointed to by ItemDescr 

Item Type 
Picture 
Button 
Check box 
Radio button 
Scroll bar 
User control 
Text 
Text (longstat) 
Edit Line 
Icon 
User item 
User control 2 

Item Oeser 
Picture's handle 
Pointer to a string to be placed inside the button 
Pointer to the check box's title string 
Pointer to the radio button's title string 
Pointer to an action procedure controlling a scroll bar 
Pointer to the control's action procedure 
Pointer to the text string 
Pointer to the beginning of the block of text 
Pointer to a text string or buffer 
Icon's handle 
Pointer to a definition procedure 
Pointer to a parameter block 

All string pointers above indicate the memory location of a 
Pascal-type string. 

ltemValue. The ItemValue of a control contains the control's 
initial value, or 0 in most cases (see Table 10-4). 

196 



----------Dialog Boxes ----------

Table 10-4. Values Contained in ltemValue 

Item Type Item Value 
Picture Pointer to the picture's image 
Button Initial value of the control 
Check box $0001 to check the box, $0000 for unchecked 
Radio button $0001 to fill the button, $0000 to leave it empty 
Scroll bar Value passed to the scroll bar's definition procedure 
Text Not important 
Text (longstat) Number of characters in the text block (up to 32,767) 
EditLine Maximum number of characters to be entered (up to 255) 
Icon Not important 
User item Initial value of the control 
User control 2 Initial value of the control 

The value can be examined or changed using the Dialog Man
ager Toolbox calls GetDitemValue and SetDitemValue. For ex
ample, suppose a radio button is to be activated based upon some 
change in the program. The following routines will change the 
Item Value of the radio button. 

In machine language: 

ResetRB anop 
pha 
pushlong 
push word 
_GetDitemValue 

pla 
bne 

push word 
pushlong 
push word 
_setDitem Value 

Go_On anop 

DlalogPtr 
#RButton1 

Go_On 

$0001 
DlalogPtr 
#RButton1 

;push one word result space 
;the pointer to the dialog box 
;the ItemiD of the radio button 
;return its value 

;test the item's current value 
;if it's already 1, don't change it 

;the new value for the item (1 =on) 

;set the new value 

Note: GetDitemValue and SetDitemValue return an error 
($150C) if the ItemiD specified does not exist or does not belong to 
the specified dialog box. 

In C: 

lf (IGetDitemValue(DlalogPtr, RButton1)) 
SetDitemValue(l, DlalogPtr, RButton1); 

197 



----------Chapter 10 ----------

In Pascal: 

IF GetDitemValue(DlalogPtr, RButtonl) = 0 THEN 
SetDitemValue(l, DlalogPtr, RButtonl); 

Note: Clicking on a radio button or check box does not auto
matically activate it. Your program must do that. 

The value of the radio button can also be set when the dialog 
box is initially created. However, the above routines are preferred if 
the state of the radio button changes. See the COIDR example be
low. Also, be careful not to confuse changing the Item Value with 
making it invisible or disabling it. 

ltemFlag. The ltemFlag is used mainly by the Control Man
ager to control certain aspects of some controls-for example, the 
outline of a button or the orientation of a scroll bar. Refer to Chap
ter 11 for information on the ltemFlag. For now, setting ltemFlag to 
0 in your routines is acceptable. 

ltemColor. ItemColor is a long word that points to a color ta
ble. The color table is used by the Control Manager to change the 
colors of the item. Normally, this item is set to a long word of 0 
and the standard colors are used. Refer to Chapter 11, which deals 
with controls, for a description of the color table and an example of 
changing an item's color. 

A Dialog Box 
There are three "official" methods for placing a modal dialog box 
on the screen. The first one is the most complex. It pushes all infor
mation about the dialog box on the stack, then calls the Dialog 
Manager a number of times (once to create the dialog, then one 
time for each item in the dialog) until everything's finished. 

The other two methods use templates of information. These 
templates merely contain all the data that is pushed to the stack in 
the first method. However, with templates, only a pointer to a tem
plate, or simply to one master template, is pushed to the stack. The 
Dialog Manager does the rest. 

The complex method of creating a dialog is covered in this sec
tion, along with important background information. The methods 
using the templates appear in the following two sections. 

198 



----------Dialog Boxes - ---------

To create a dialog box, you must tell the Dialog Manager the 
following three things: 

• The location and size of the dialog box 
• Whether the dialog box is visible or not 
• A long word value, DRefCon 

The DRefCon is a value your program can define for its own 
use. As with the wRefCon value used by the Window Manager to 
define a window (see Chapter 9), this value is typically set to 0, but 
it can be set to any value you'd like. 

From the Dialog Manager your program will receive a long
word pointer to the dialog's port, or a long word of 0 if there was 
an error. This value should be saved for all further references to 
your dialog box. 

Once the dialog is established, you can start placing controls 
into it. As with creating a dialog box, the controls can be created by 
pushing their values on the stack and calling a Dialog Manager 
routine to install them one at a time, or you can use templates to 
install them all at once. 

Simply creating and placing the dialog items does not make 
them appear in the dialog box. They all suddenly appear the first 
time you make a call to the ModalDialog function-which is a 
good thing, because that's what your program will use to handle 
dialog events. 

When the desired controls have been placed into the dialog 
box, the ModalDialog function handles dialog events, just as the 
Event Manager or TaskMaster handles desktop events. Modal
Dialog also initially places all the items into the dialog box. (The 
items are not visible until ModalDialog is called.) 

The ModalDialog function is used only for modal dialog boxes. 
Modeless dialog boxes and alerts use their own methods for trap
ping dialog box events. These techniques are discussed in a later 
section. 

ModalDialog waits for the user to click the mouse on a control. 
When this happens, the ItemiD of the control is returned by the 
ModalDialog function, even for EditLine items. Your program can 
then take whatever action is necessary. 

Once the function of the dialog box is served, close it, remov
ing it from the screen, with the CloseDialog function. 

199 



---------Chapter 10 ---------

It's important to include some way to close a dialog box. In 
other words, build in an option for the user to tell the dialog box to 
go away. It's embarrassing when professional programmers and gu
rus create magnificent dialog boxes and then realize they have no 
way of escaping from them. 

Important Pascal Note 
At the time of this writing some important TML Pascal data types 
for the Dialog Manager had not been finalized. So, for your pro
gramming pleasure, a set of records and data types are listed next. 
These are all related to working with dialog boxes and alert boxes 
in Pascal, and they are used throughout the examples in the rest of 
this book. You can incorporate this information into your programs 
as needed. 

Note that the remainder of this book refers to these types as if 
they were automatically built into a TML Pascal unit symbol file. 
The definitions of these types won't be shown again. 

{ TML Pa.sca.l Dla.log a.nd Alert Type Deflnltlons } 

CONST a.titemLlstLength = 4; 
dtitemLlstLength = 8; 

TYPE ItemTempPtr = AitemTempla.te; 
ItemTempla.te = PACKED RECORD 

END; 

Dla.logTempla.te = RECORD 
dtBoundsRect: Rect; 
dtVlslble: Boolean; 
dtRefCon: Longlnt; 

ItemiD: 
ItemRect: 
Item Type: 
ItemDescr: 
ItemVa.lue: 
ItemFla.g: 
ItemColor: 

Integer; 
Rect; 
Integer; 
Ptr; 
Integer; 
Integer; 
Ptr; 

dtitemLlst: ARRAY [O .. dtitemLlstLength] OF ItemTempPtr; 
END; 

AlertTempPtr = A AlertTempla.te; 
AlertTempla.te = RECORD 

200 

a.tBoundsRect: Rect; 
a.tAlertiD: Integer; 
a.tSta.gel: SlgnedByte; 



----------Dialog Boxes ----------

END; 

a.tStage2: SignedByte; 
a.tStage3: SignedByte; 
a.tStage4: SignedByte; 
a.titemList: ARRAY [O .. a.titemListLength] OF ItemTempPtr; 

Check your version of TML Pascal to see whether these types 
(or similar types) are defined. If they are, the names might be dif
ferent. (The authors did their best to choose record and field names 
that seemed the most logical, but they're not clairvoyant.) 

Doing a Dialog, the Long Way 
The first Toolbox function used to create a dialog box is 
NewModalDialog. It receives its information on the stack rather 
than using a template. The following routines can be used to create 
a modal dialog box using the NewModalDialog function. 

In machine language: 

LadyDl pha. 
pha. 
pushlong 
push word 

pea. 
pea. 
_NewModa.lDia.log 
jsr 

pulllong 
rts 

#Dla.logRect 
TRUE 

$0000 
$0000 

ErrChk 

DlalogPtr 

;long word result space 

;rectangle pointer 
;make dialog visible (TRUE = 

;$8000) 
;DRefCon - any value 

;make the call 
;check for errors 

;the dialog pointer 

DlalogRect de 12'40,30,100,290' ;Its position and size (320 mode) 

InC: 
Rect Dla.logRect = 

La.dyDl() 
{ 

{ 40, 30, 100, 290 } ; 

DlalogPtr = NewModa.lDla.log(&Dla.logRect, TRUE, NULL); 
} 

In Pascal: 

PROCEDURE La.dyDl; 
V AR DlalogRect : Rect; 
BEGIN 

SetRect(Dla.logRect, 30, 40, 290, 100); 
Dla.logPtr : = NewModa.lDlalog(Dla.logRect, TRUE, Longint(nil)); 

END; 
201 



---------Chapter 10 ---------

The size and position of the dialog box are specified by the 
rectangle passed to the NewModalDialog function. According to 
the Human Interface Guidelines, dialog boxes should be a little 
higher than screen center and centered left to right. The following 
machine language equations can be used to center a dialog box. 
The DHeight and DWidth parameters represent the dialog box's 
height (Y pixels) and width (X pixels), respectively. 

DHeight equ ?? ;Your dialog's height goes here 
DWidth equ ?? ;Your dialog's width goes here 

DlalogReet de i2'(190-DHeight)/2' 
de i2'(640-DWidth)/2' 
de i2'(190-DHeight)/2 + DHeight' 
de i2' (640-DWidth) /2 + DWidth' 

For a dialog box in the 320 screen mode, change the number 
640 above to 320. The value 190 is used for the maximum number 
of Y pixels to place the dialog box a little above center screen. (It 
looks awkward when a value of 200 is used.) 

This technique can be used in your programs as needed, either 
as a pointer or as part of a dialog's template (see below). Remem
ber to replace the DHeight and DWidth values in the template with 
the equates (or values) representing the size of your particular dia
log box. 

Items placed inside the dialog box are given in local coordi
nates relative to the upper left corner of the dialog (position 0,0). 
This allows you to move or resize the dialog box without affecting 
the internal location of the items. 

Items inside a dialog box are placed there by a call to the Dia
log Manager's NewDitem function. NewDitem requires the infor
mation listed in Table 10-5 for the item you're placing into the 
dialog. 

Table 10-5. Information Required by NewDitem 

Parameter 
DialogPtr 
ltemiD 
ltemRect 
Item Type 
ltemDescr 
Item Value 
ltemFlag 
Item Color 

202 

Size 
Long 
Word 
Long 
Word 
Long 
Word 
Word 
Long 

Description 
A pointer to the dialog box 
The control's ID number 
A pointer to the control's position 
The type of control 
A pointer to special information about the control 
The control's initial value 
Miscellaneous information about the control 
A pointer to the control's color table 



----------Dialog Boxes ----------

In the following programming examples, the first control de-
fined is the OK button; the second control, a block of text. 

In machine language: 

Buttonitem equ $000A 
Textrtem equ $000F 
ItemD1sable equ $8000 
TrickD1 pushlong DialogPtr ;dialog in which to place this control 

push word $0001 ;the ItemiD, 1 = default button 
pushlong #ButtonRect ;rectangle pointer for the button 
push word Buttonitem ;this item is a button, type $000A 
push long #Button Text ;text inside button 
push word $0 ;initial value (not important) 
push word $0 ;itemFlag, zero for default 
pushlong $0 ;color table, zero for default 
JewDitem ;make the call 
jsr ErrChk ;check for errors 

pushlong DlalogPtr ;second item: text block 
push word $1234 ;ItemiD, can be anything 
pushlong #TextRect 
push word Textitem + ItemD1sable 
pushlong #TextText 
push word $0 
push word $0 
pushlong $0 
JewDitem 
jmp ErrChk 

ButtonRect de i2'36,160,0,0' ;its position In the dialog (relative) 
;Button Text 

str 'OK' ;button's text 
TextRect de i2'10,60,30,240' 
TextText str 'Press the OK button' 

In C: 

Rect ButtonRect = { 35, 150, 0, 0 } ; 
Rect TextRect = { 10, 60, 30, 240 } ; 

TrlckDl() 

{ 

} 

NewDitem(Dla.logPtr, 1, &ButtonRect, buttonitem, 

"" pOK", 0, 0, NULL); 
ErrChk( ); 
NewDitem(Dla.logPtr, Ox1234, &TextRect, textitem + ltemDlsa.ble, 

"" pPress the OK button", 0, 0, NULL); 
ErrChk( ); 

203 



----------Chapter 10 ----------

In Pascal: 

PROCEDURE Tr1ckD1; 
V AR ButtonRect : Rect; 

TextRect : Rect; 
ButtonText : String; 
TextText : String; 

BEGIN 
Button Text : = 'OK'; 
Text Text : = 'Press the OK button'; 
SetRect(ButtonRect, 150, 35, 0, 0); 
SetRect(TextRect, 60, 10, 240, 30); 

NewDitem(DlalogFtr, 1, ButtonRect, Buttonitem, 
@ButtonText, 0, 0, nil); 

ErrChk; 
NewDitem(DlalogFtr, $1234, TextRect, StatTextltem + ltemDlsable, 

@TextText, 0, 0, nil); 
ErrChk; 

END; 

Once all the controls have been placed in the dialog box, the 
ModalDialog function is called to monitor dialog events. ModalDialog 
returns the ItemiD of the control selected with the mouse. The fol
lowing routines incorporate the previous two examples to monitor 
the pressing of the OK button. When OK is pressed, the dialog box 
is closed via the CloseDialog function. 

In machine language: 

Walt pha 
pushlong DlalogFtr 
_ModalDlalog 

pia 
crop #$1 

bne Walt 

pushlong DlalogFtr 
_CloseDlalog 

In C: 

while (ModalDlalog(DlalogFtr) I= 1); 
CloseDlalog(DlalogFtr); 

In Pascal: 

;one word result space 
;this dialog 
;make the call 

;get results, the ItemiD 
;was it OK? 
;keep waiting if not OK 

;close this dialog 
;do it 

REPEAT UNTIL (ModalDlalog(DlalogFtr) = 1); 
CloseDlalog(DlalogFtr); 

204 



----------Dialog Boxes ----------

Once the dialog is closed, the Event Manager/TaskMaster con
tinues monitoring your DeskTop events. The dialog can again be 
opened to obtain input, adjust settings, or communicate a message, 
simply by repeating the above steps. 

Making It Easier 
The only thing wrong with the routines in the previous section is 
that they involve a lot of typing (especially in machine language). 
When you replace the information pushed to the stack with tem
plates of information, the actual code used to create the dialog box 
becomes easier to read. Also, updating the dialog box is easier be
cause you're changing data templates rather than changing actual 
program code. 

To add a control to a dialog box using templates, the 
GetNewDitem function is used. GetNewDitem does the same thing 
as NewDitem, except the information is in a template, and a long 
pointer to that template is passed to the Toolbox. Refer to Table 
10-6 for details about the structure of the template. 

Table 10-6. Structure of GetNewDitem Template 

Offset 
+$00 
+$02 
+$0A 
+$0C 
+$10 
+$12 
+$14 

Size 
Word 
Four words (rectangle) 
Word 
Long word (pointer) 
Word 
Word 
Long word (pointer) 

Parameter 
ItemiD 
ItemRect 
Item Type 
ItemDescr 
Item Value 
ItemFlag 
Item Color 

The following routines are similar to those found in the previ
ous section. They define the same two controls-a button and a 
block of text-using the GetNewDitem function. 

In machine language: 

Buttonltem equ $000A 
Textltem equ $000F 
ItemDlsable equ $8000 

Putltems anop 
pushlong DlalogFtr 

pushlong #ButtonRec 
_GetNewDitem 
jar ErrChk 

;dialog In which to 
;place this control 
;the button's template 

;test for errors 

205 



Chapter 10 

pushlong D!alogPtr 

pushlong #TextRec 
_GetNewDitem 
jmp ErrChk 

ButtonRec anop 
de i2'1' 
de i2'36,150,0,0' 
de i2'Buttonitem' 
de i4 'Button Text' 
de i2'0' 

de i2'0' 

de i4'0' 

Button Text str 'OK' 

TextRec anop 
de i2'$1234' 
de i2'10,60,30,240' 
de i2'Textrtem + ItemD!sable' 
de i4'TextText' 
de i2'0' 
de i2'0' 
de i4'0' 

TextText str 'Press the OK button' 

InC: 

JtemTemplate ButtonRec = { 

}; 

1, 
35, 150, 0, 0, 
buttonltem, 
" "- POK", 
0, 

0, 
NULL 

ItemTempl&te TextRec = { 

Ox1234, 
10, 60, 30, 240, 
textltem + ltemDis&ble, 

206 

I' Item!D = 1 ' I 
I ' rectangle for the button • I 
I ' Item Type • I 
I' button's text • 1 
I' ItemV&Iue ' I 
I ' ItemFiag ' I 
I ' color table, default • 1 

;dialog in which to 
;place this control 
;the text's template 

;the button's template 
;ItemiD, 1 
;rectangle for the button 
;Item Type 
;pointer to button's text 
;initial value (not 

;important) 
;itemFlag, zero for 

;default 
;color table, default 

;button's text 

;the text's template 



----------Dialog Boxes ----------

"' pPress the OK button", 
0, 

0, 
NULL 

}; 

Putltems() 
{ 

GetNewDitem(DialogPtr, ~ButtonRec); 
GetNewDitem(DialogPtr, ~TextRec); 

In Pascal: 

PROCEDURE Putitems; 
VAR ButtonRec : 

TextRec : 
TextText: 
ButtonText : 

TextText 
Button Text 

WITH ButtonRec DO BEGIN 
Item!D 

Item Template; 
Item Template; 
String; 
String; 

SetRect (ltemRect, 150, 35, o, 0); 
Item Type 
ItemDescr 
Item Value 
ItemF!ag 
ItemColor 

END; 

WITH TextRec DO BEGIN 
Item!D 

END; 

SetRect(ItemRect, 60, 10, 240, 30); 
Item Type 
ItemDescr 
Item Value 
ItemF!ag 
ItemColor 

ErrChk( ); 
ErrChk( ); 

: = 'Press the OK button'; 
:='OK'; 

:= 1; 

: = Buttonitem; 
: = ~Button Text; 
:= 0; 
:= 0; 

:=nil; 

:= $1234; 

: = ItemDisable + StatTextitem; 
: = t!>TextText; 
:= 0; 
:= 0; 

:= nil; 

GetNewDitem(DialogPtr, ButtonRec); ErrChk; 
GetNewDitem(DialogPtr, TextRec); ErrChk; 

END; 

The other routines from the previous section, NewModal
Dialog and ModalDialog (for dialog box event trapping), would still 
be used as written. The GetNewDitem only aids in the creation of 
controls. 

Do you get the feeling that perhaps you should have started to 
read this chapter from the end and then worked backwards? 

207 



---------Chapter 10 ---------

The final step to creating a dialog box easier is just to use one 
big template for everything-that is, for the dialog box as well as 
all the controls in the dialog box. This way, creating a dialog box 
with all its goodies is done with just one Dialog Manager Toolbox 
call: GetNewModalDialog. 

GetNewModalDialog would seem to be the longest-named 
Toolbox function. Well, it is. At 17 letters, it ties with 

FF§aum1Dam~§tiHU§ i!Rd TbT~JEtMountVBlHmt : g~tN~w
ModalDialog works internally by calling NewModalDialog and 
then GetNewDitem for each item in the template. 

The template used by GetNewModalDialog contains the infor
mation listed in Table 10-7. (Note how it also incorporates the tem
plates used by GetNewDitem.) 

Table 10-7. Information Required by GetNewModalDialog Template 

Offset Size Parameter Description 
+$00 Four words (rectangle) BoundsRect Size/location of dialog box 
+$08 Word dtVisible Visible/invisible flag 
+ $0A Long word dtRefCon Whatever you want 
+$0E Long word (pointer) ltemPtr First item's template 
+$12 Long word (pointer) ltemPtr Second item's template 

(and so on) 
+$?? Long word Terminator Zero, end of template 

The dialog box's template contains all the information passed 
to the NewModalDialog function, as well as pointers to the control 
ltem·s template used ~y tht= G t!tNcwDitg m function . The last item 
in the dialog box's template is a long word of 0 to indicate the end 
of the template. This way, your dialog box can have a multitude of 
items (though that's not recommended). See the COIDR example 
below for a really huge template example. 

Incorporating all the information from the previous two sec
tions, the following examples create the dialog box and place all 
those items into the dialog box. Use the ButtonRec and TextRec 
data from the examples in the previous section to complete the ex
amples below. 

208 



----------Dialog Boxes ----------

In machine language: 

Putitems anop 
pha 
ph a 
pushlong 
_GetNewModalDialog 
jar 

pulllong 
rts 

DlalogRec anop 
de 
de 
de 
de 
de 
de 

InC: 

DlalogTemplate DlalogRec = { 

}; 

Putitems() 
{ 

;long word result space 

#DlalogRec ;dialog's template 
;do it alll 

ErrChk ;check for errors 

DlalogPtr ;the dialog pointer 

;dialog's template 
i2'40,30,100,290' ;dialog's rectangle 
i2'TRUE' 
i4'0' 
i4'ButtonRec' 
i4'TextRec' 
i4'0' 

40, 30, 100, 290, 
TRUE, 
NULL, 
&ButtonRec, 
&TextRec, ___ ..... ..... ..,, 

NULL 

;visible flag 
;DRefCon - any value 
;first control's template 
;second control's template 
;null terminator 

!* dialog's rectangle • 1 
!* visible flag • I 
!* dtRefCon • I 
!* first control's template • 1 
!* second control's template • 1 
f •. i.IVV'J.U.U. VV.UVL Vl g V'l1u.i}l.t.Ot\lv f 

/* null terminator • I 

DlalogPtr = GetNewModalDialog(&DlalogRec); 

In Pascal: 

PROCEDURE 
Putitems; 
VAR DlalogRec : DlalogTemplate; 
BEGIN 

WITH DlalogRec DO BEG IN 
SetRect(dtBoundsRect, 30, 40, 290, 100); 
dtVisible : = TRUE; 
dtRefCon : = Longint(nil); 
dtitemList[O] : = @ButtonRec; 
dtitemList[1] : = @TextRec; 

209 



---------Chapter 10 ---------

END; 

END; 

DlalogPtr 

dtltemL1st[2) := nll; 

: = GetNewModalDlalog(&DlalogRec); 

Following the above routines, your program should monitor 
the dialog events with the ModalDialog function and, when fin
ished, close the dialog box with the CloseDialog function. Unfortu
nately, there are no simple shortcuts for those two calls. (After all, 
they really are simple themselves.) 

The list of ltemTemplate pointers in C is actually an array 
which has eight elements allocated. If your program has a dialog 
box that contains more than eight items, you'll have to increase the 
size of that array to handle more elements. This is done by defin
ing a constant dtltemListLength. It should be placed before the #in
clude <dialog.h> directive at the top of your program-for example: 

#define dtltemLlstLength 14 ;• define a larger ltem array •; 
#include <dlalog.h> 

Pascal programmers need only change the dtltemListLength 
constant in the CONST section of their programs. 

Alert Boxes 
An alert box is a special type of dialog box. It's used to display a 
message and usually offers two buttons: 

• One to go on (OK) 
• One to stop whatever action is taking place (Cancel) 

Events in alerts are handled by the function that creates the alert. 
Only one event can be acted upon and then the alert box disappears. 

There are four functions to create an alert, each a warning of 
increasing intensity: 

• Alert 
• Note alert 
• Caution alert 
• Stop alert 

The note, caution, and stop alerts all have graphic icons associ
ated with them, as seen in Figure 10-1. The basic alert has no 
graphic. You can define your own icon as the graphic, or just let it 
go as a text-only alert. 

210 



----------Dialog Boxes ----------

Figure 10-1. Three Alert Boxes 

This is a note alert. 

[ Cancel ] OK 

This is a caution alert. 

[ Cancel ] OK 

This is a stop alert. 

[ Cancel ] OK 

The functions to bring up the above alerts are as follows: 

Dialog Manager Function Type of Alert 
Alert Empty alert box (no icon) 
NoteAlert Man and cartoon balloon icon 
CautionAlert 
StopAlert 

Exclamation point icon 
Stop sign icon 

These functions are a combination of GetNewModalDialog and 
ModalDialog. One call to an alert function places all the controls in 
the specified dialog box (all using one template, as with GetNew
ModalDialog). Then, ModalDialog is called to monitor the events in 
the alert box. Control doesn't return from the Toolbox until an item 
(ItemHit) is chosen. 

The only variance among the routines is in the icon drawn (or 
not drawn) in the upper left corner of the alert box. After an event, 

211 



---------Chapter 10 ---------

the alert function closes the alert dialog box and returns with the 
ItemiD of the item selected. So, there's really nothing to be done 
with an alert other than display a message and get a quick response. 

Because of the click-and-vanish aspect of alert boxes, they 
typically only contain text and an OK or Cancel button (or some
thing similar). If you're planning on an alert with more buttons, 
switches, or controls, you should create a modal dialog box instead. 

All the above functions use the following parameters to define 
an alert: 

Parameter Size Description 
AlertTemplatePtr Long word Pointer to a template 
FilterProcPtr Long word Pointer to a filter procedure 

The FilterProcPtr points to a user-defined routine to test the 
events detected by ModalDialog (all dialog events). This way, you 
can write your own filtering routines, either augmenting or replac
ing the standard routines used by the Toolbox. Usually, a long 
word of 0 is specified to use the default routines. 

The template pointed to by AlertTemplatePtr contains the 
information listed in Table 10-8. 

Table 10-8. Information Required by AlertTemplatePtr Template 

Offset 
+$00 
+$08 
+$0A 
+$0B 
+$0C 
+$00 
+$0E 
+$12 

+$?? 

Size 
Four words (rectangle) 
Word 
Byte 
Byte 
Byte 
Byte 
Long word (pointer) 
Long word (pointer) 

Long word 

Parameter 
BoundsRect 
AlertiD 
Stagel 
Stage2 
Stage3 
Stage4 
ltemPtr 
ltemPtr 

Terminator 

Description 
Size/location of alert 
Alert's ID number 
Alert stage (see below) 
Alert stage 
Alert stage 
Alert stage 
First item's template 
Second item's template 
(and so on) 
Zero, end of template 

The AlertiD is simply a unique number identifying the alert 
box. Its value can be anything. 

The alert stages are used to monitor subsequent selection of 
the same alert box. An alert box is supposed to appear to warn the 
user of some pending catastrophe. Obviously, the more the alert 
box tends to pop up in a program, the more careless (or inattentive) 
the user is. So the differing alert stages can be used to progres
sively increase the warnings offered by the alert. 

212 



----------Dialog Boxes ----------

Table 10-9. Bit Values for Alert Stages 

Bit Meaning 
0 Number of beeps 
1 Number of beeps 
2 Not used 
3 Not used 
4 Not used 
5 Not used 
6 Sets default button 
7 If set, alert is drawn; if 0, alert is not drawn 

As indicated in Table 10-9 and in Table 10-10, bits 0 and 1 de
termine the number of beeps made by the alert. The beep sounds 
before the alert is drawn on the desktop. 

Table 10-10. Beeps Emitted as a Result of Bits Set in Alert Stages 

Bit 
1 0 Beeps 
0 0 None 
0 1 One 
1 0 Two 
1 1 Three 

Bit 6 sets the default button in the dialog. If bit 6 is 0, the de
fault button is ItemiD $0001; if bit 6 is 1, the default button is 
ItemiD $0002. (Remember, the default button is selected either 
with the mouse or by pressing the Return key.) 

Bit 7 determines whether the alert is to be drawn or not. 
By subtly changing each subsequent alert stage, you can offer 

an increasingly severe warning each time the same alert appears. 
Or, you can opt to keep the same alert stage throughout the ap
pearance of your alert dialog. Incidentally, after alert stage 3, alert 
stage 4 will repeat for each succeeding appearance of the alert. 

The following demonstrates four alert stages, each offering a 
more severe warning than the last: 

de 11'$01' ;stage one 
de 11'$81' ;stage two 
de 11'$82' ;stage three 
de 11'$C3' ;stage four 

The first stage simply beeps the speaker once-the alert is not 
drawn. The second stage beeps the speaker once and the alert is 

213 



----------Chapter 10 ----------

drawn. In the third stage, the speaker beeps twice before the alert 
is drawn. In the fourth and all following stages, the speaker beeps 
three times, the alert is drawn, and the default button is switched. 
This way, a user who is accustomed to seeing the alert and press
ing Return will not automatically continue to select the same op
tion. (He or she will have been foiled-or shocked back into 
reality, which is the purpose of the alert.) 

A lot of research and study has gone into the way people re
spond to computers. It seems that no matter how you warn 
users, no matter how many safeguards and warnings you dis
play, if they are set on doing something, they'll do it, even if 
that something could lead to catastrophic results. 

As an exam p le, it's easy to make an erro r u sing the com
mand to reformat a disk on an IBM computer. The only warn
ing offered is a simple yesjno prompt. As the accidental 
formatting of disks increased, the makers of IBM's DOS kept 
adding safeguards to prevent users from accidentally format
ting disks. This still didn't work. 

An alert box, on the other hand, has many tricks to con
tinually warn users of what they're about to do. The best is in 
bit number 6 of the alert stage. This bit switches the default 
button of an alert. So, if a user is accustomed to seeing the 
sa e aie t up up ar u 1 t: 1 ctlui 1 ~ '-'.!-'"'~ "' 1 • r'_ ........ n ... _ __ , 

you can circumvent that process by switching the way the 
alert responds to the Return keypress. 

As with the GetNewModalDialog function, the alert template 
ends with a series of pointers to items and controls inside the alert 
box. A long word of 0 is used to indicate the end of the alert 
template. 

The following example creates a note alert. You can replace 
the NoteAlert function with either CautionAlert or StopAlert to dis
play a different icon as your own program requires . 

In machine language: 

DoNote a.nop 

214 

pea. 
pushlong 
pea. 
pea. 

$0000 
#Warning 
$0000 
$0000 

;Result Space (Item ID) 
;Alert template pointer 
;Filter Pointer (use default) 



Dialog Boxes 

_NoteAlert 

pla ;get Hit item ID 

;evaluation of item hit could be placed here 

rts 

Warning de 
de 
de 
de 
de 
de 
de 
de 
de 

item1 de 
de 
de 
de 
de 
de 
de 

item2 de 
de 
de 
de 
de 
de 
de 

but1 str 

msg1 str 

In C: 

ItemTemplate ltem1 = { 

} ; 

ItemTemplate ltem2 = { 

i'50,30,110,290' 
i'6374' 
h'81' 
h'81' 
h'81' 
h'81' 
i4'item1' 
i4'item2' 
i4'0000' 

i2'0001' 
i2'35,150,00,00' 
i2'10' 
i4'but1' 
i2'0' 
i2'0' 
i4'0' 

i2'6348' 
i2'10,60,30,240' 
i2'15' 
i4'msg1' 
i2'0' 
i2'0' 
i4'0' 

'Okay' 

'This is a Note Alert' 

ok, 
35, 150, 0, 0, 
buttonltem, 
"'-pOkay", 
0, 0, NULL 

6348, 
10, 60, 30, 240, 

;dialog's rectangle 
;ID number (unique) 
;first stage alert 
;second stage 
;third 
;fourth 
;First item template 
;Second item template 
;null terminator 

;item id 
;display rectangle 
;type = button 
;item descriptor 
;value of item 
;default bit vector 
;default color table 

;item id 
;display rectangle 
;type = text 
;item descriptor 

;• Item ld •; 
/' Item rect •; 
;• Item type •; 
;• Item text •; 
;• value, bit flag, color 

table•; 

;• Item ld •; 
;• Item rect •; 

215 



---------Chapter 10 ---------

atatText, I* Item type • I 
" "pThla Ia a note alert", 
0, 0, NULL I* value, bit 

}; 

AlertTemplate Warning = { 

60, 30, 110, 290, 
6374, 

} ; 

DoNote() 
{ 

lnt ItemHit; 

Ox61, Ox81, 
Ox81, Ox81, 
c!eltem1, 
c!eltem2, 
NULL 

ItemHit = NoteAlert(c!eWarnlng, NULL); 

In Pascal: 
PROCEDURE DoNote; 
VAR ltem1 : ItemTemplate; 

ltem2 : ItemTemplate; 
Warning : AlertTemplate; 
ItemHit : Integer; 
butl : String; 
mag1 : String; 

BEGIN 
butl : = 'Okay'; 
mag1 : = 'This Ia a Note Alert'; 

WITH ltem1 DO BEGIN 
ItemiD := 1; 
SetRect(ItemRect, 160, 36, 0, 0); 
Item Type : = Buttonitem; 
ItemDescr : = @but1; 
Item Value : = 0; 
ItemFlag : = 0; 

{ Item ld } 
{ Item rect } 
{ Item type } 
{ Item text } 
{ value } 
{ bit flag } 

flag, and so on • I 

/* rectangle • I 
I* ID number (unique) *I 
/* alert stages 1 and 2 • I 
I* alert stages 3 and 4 • I 
I* first Item template • I 
I* second Item template • I 
I* null terminator • I 

ItemColor : = nll; { color table } 
END; 

WITH ltem2 DO BEGIN 
ItemiD : = 6348; 

216 

SetRect(ItemRect, 60, 10, 240, 30); 
Item Type : = StatTextitem; 
ItemDeacr : = @mag1; 
Item Value : = o; 

{ Item ld } 
{ Item rect } 
{ Item type } 
{ Item text } 
{ value } 



----------Dialog Boxes ----------

END; 

ItemFlag : = o; 
Item Color : = nil; 

WITH Warning DO BEGIN 
SetRect(atBoundsRect, 30, 50, 290, llO); 
atAlertiD : = 6374; 
atStage1 : = $81; 
atSte.ge2 : = $81; 
atStage3 : = $81; 
atStage4 : = $81; 

{ bit flag } 
{ color table } 

atitemList[O] : = em1; { first item template } 
atitemList[1] : = em2; { second item template } 
atitemList[3] : = nil; { null terminator } 

END; 

ItemHit : = NoteAlert(@Warning, nil); 
END; 

Remember, in order to use the types AlertTemplate, ItemTemplate, 
and so forth with older versions of TML Pascal, refer to the types 
defined in the " Important Pascal Notes" section earlier in this 
chapter. 

A Modeless Dialog Box 
Modeless dialog boxes are perhaps the least-understood type of di
alog box. Basically, a modeless dialog box is a cross between a win
dow and a dialog box. Unlike most dialog boxes, it can be dragged 
around, zoomed, and hidden behind other windows-all while still 
remaining active. 

Figure 10-2. A Modeless Dialog Box 

MODE -less 

This is H Modeless 
Diolog DoH! 

[ Neot ~ 

217 



----------Chapter 10 ----------

A good example of a modeless dialog would be a spelling 
checker in a desktop word processor. The modeless dialog can dis
play a misspelled word and offer a suggestion for the correct spell
ing. In response, you can edit the text in your document window, 
then click a Next button inside the modeless dialog box to go to 
the next misspelling. 

Because a modeless dialog box can be active along with every
thing else on the DeskTop, its events are not handled the same as 
those in modal dialog boxes. 

To handle a modeless dialog box, three separate routines need 
to be written: 

• The routine to create the dialog box 
• A modification to the TaskMaster call to detect activity inside the 

modeless dialog box 
• A routine to handle activity inside the modeless dialog box 

The routine to create the modeless dialog box works like the 
routine to create a modal dialog box (but without a template). All 
the information about the modeless dialog box is specified individ
ually, and then a call is made to the Dialog Manager's function 
NewModelessDialog. 

Items are placed into the dialog box, either via NewDitem or 
GetNewDitem, and then the function to create the modeless dialog 
box is complete. The events in the modeless dialog box are then 
picked up by TaskMaster, so once NewModelessDialog creates the 
dialog and places it on the screen, your program can go about its 
business. 

In order to monitor the events of the modeless dialog, you 
need to augment the TaskMaster call in your program's main scan
ning loop. After the TaskMaster call is made, your program should 
call the Dialog Manager's IsDialogEvent function . IsDialogEvent re
turns a logical TRUE value if a modeless dialog event has taken 
place. 

If a modeless dialog event has taken place, your program 
should branch to a routine to handle activity inside the modeless 
dialog. That routine calls the DialogSelect function with the ItemiD 
of a control in the modeless dialog box. DialogSelect returns a logi
cal TRUE if that particular item has been selected (see the example 
below). 

218 



---------Dialog Boxes---------

The following calls are used to create and manage a modeless 
dialog box: 

Action 
Creates the modeless dialog 

Dialog Manager Function 
New ModelessDialog 
NewDitemjGetNewDitem 
IsDialogEvent 
DialogSelect 

Places items into the modeless dialog 
Tests for a (modeless) dialog event 
Determines which item has been selected 

To create a modeless dialog box, you need to define its size 
and location, as well as a title, frame description, and the other 
information you would use when defining a standard window. 

In order, NewModelessDialog uses the parameters listed in Ta
ble 10-11. 

Table 10-11. Parameters Used with NewModelessDialog 

Name 
DBoundsRectPtr 
DTitlePtr 
DBehindPtr 
DFlag 
DRefCon 
DFullSizePtr 

Value 
Long 
Long 
Long 
Word 
Long 
Long 

Purpose 
A pointer to the dialog's rectangle 
A pointer to a Pascal string for the title 
Number of the window the dialog is behind 
Bit pattern describing the dialog's frame 
Any value: User-defined value, usually 0 
A pointer to the size of the dialog when 
zoomed 

Many of these parameters have similar counterparts in the 
window record, most notably DBehindPtr, DFlag, and DRefCon. 

DBoundsRectPtr. DBoundsRectPtr is a long pointer to the ad
dress of a rectangle. The rectangle consists of four word values that 
define the size and location of the modeless dialog using global co
ordinates. As usual, the values are Min Y, MinX, MaxY, and MaxX 
in that order (unless you're using TML Pascal, of course). 

DTitlePtr. The DTitlePtr is the long address of a Pascal string 
to be used as the modeless dialog box's title string. If DTitlePtr is a 
long word of 0, the modeless dialog box does not have a title. 

DBehindPtr. DBehindPtr acts like wPlane in the window 
record. It indicates the position of the modeless dialog box in rela
tion to the other windows on the desktop, front to back. DBehindPtr 
is the value of the window behind which the modeless dialog box 
is placed. If a value of -1 ($FFFFFFFF) is used, the dialog box is 
put in front of everything else. 

219 

~-------------------------------------------------------- -



---------Chapter 10 ---------

DFlag. DFlag is a word-sized bit pattern describing the items 
in the modeless dialog's frame. The bit positions are exactly the 
same as they are for wFrame in the window record. Be sure to give 
your modeless dialog a title bar and don't specify scroll bars (dialog 
boxes do not have scrolling contents). A common value used for 
DFlag is $80AO, as seen in the example below. 

DRefCon. DRefCon, like wRefCon in the window record, can 
be any long word value you want it to be. 

DFullSizePtr. DFullSizePtr is a pointer to a rectangle that indi
cates the size of your dialog box when zoomed. The DFlag option 
should specify a zoom box in your dialog's title bar in order for the 
coordinates pointed at by DFullSizePtr to have any effect. A long 
word of 0 indicates that the zoomed size is the full screen. 

The following routines can be used to create a modeless dialog 
box on your desktop. The modeless dialog box can be called via a 
pull-down menu or by some oth~r activity in the DeskTop. These 
routines are written for the 320-mode screen. 

In machine language: 

Modeless anop 
pushlong #$0 ;long word result space 
pushlong #MDBounds ;slzejlocatlon of modeless dialog 

;box 
pushlong #MDTitle ;title of modeless dialog box 
pushlong #$FFFFFFFF ;place this window In front 
push word #$80AO ;window frame bits 
pushlong #$0 ;DRefCon - anything 
pushlong #$0 ;Zoomed size (not used) 
__NewModelessDialog 
jsr ErrChk ;test for errors 

pulllong ModelessPtr ;get the pointer 

;put an okay button Inside the box 

pushlong ModelessPtr ;dialog pointer 
push word $0001 ;the ItemiD, 1 = default button 
pushlong #Button ;rectangle pointer for the button 
pusllword •oooA :this Item Is a button 
pushlong #Btxt ;text Inside button 
push word $0 ;Initial value 
push word $0 ;ltemFlag 
pushlong $0 ;color table 
__NewDitem 
jsr ErrChk ;check for errors 

220 



----------Dialog Boxes ----------

;put some text in there too: 

pushlong ModelessPtr 
push word $F502 
pushlong #TextReet 
push word $800F 
pushlong #Text 
push word $0 
push word $0 
pushlong $0 
.......NewDitem 
jar ErrChk 

rts ;that's itl All donal 

ModelessPtr de 4 

MD Bounds de i2'30,30,100,200' 
MDTitle str 'MODE-less' 

Button de 12'40,50,0,0' 
Btxt str 'Neatl' 

TextReet de 12'10,20,40,160' 
Text de 11 'endtext-starttext' 
starttext de e'Thls is a Modeless',ll'13' 

de e' Dialog Boxl',ll'13' 
endtext anop 

In C: 

GrafPortPtr ModelessPtr; 
Reet MDBounds = { 30, 30, 100, 200 }; 
Rect BttnRect = { 40, 50, 0, 0 }; 
Reet TextReet = { 10, 20, 40, 160 }; 

Modeless() 
{ 

ModelessPtr = NewModelessDialog(&!MDBounds, 

;dialog pointer 
;ItemiD 

;text Item + Item disable 

;storage for modeless dialog 
;pointer 

"'-.pMODE-less", topMost, Ox80a0, NULL, NULL); 
ErrChk( ); 
NewDitem (ModelessPtr, 1, &!BttnReet, buttonitem, 

"'-. pNeatl", 0, 0, NULL); 
ErrChk(); 
NewDitem(ModelessPtr, OxF502, &!TextReet, statText + ltemDisable, 

"'-. pThls Is a Modeless '-. r Dialog Boxl '-. r", 0, 0, NULL); 
ErrChk( ); 

In Pascal: 

PROCEDURE Modeless; 

221 



-

----------Chapter 10 ----------

VAR ModelessPtr : WindowPtr; 
MDBounds : Rect; 
BttnRect : Rect; 
TextRect : Rect; 
Text : String; 
Btxt : String; 

BEGIN 
Btxt : = 'Nea.tl'; 
Text : = CONCAT('This is a. Modeless', CHR(13), 

' Dialog Boxl', CHR(13)); 
SetRect(MDBounds, 30, 30, 200, 100); 
SetRect(BttnRect, 50, 40, 0, 0); 
SetRect(TextRect, 20, 10, 160, 40); 

ModelessPtr : = NewModelessD!a.log(MDBounds,'MODE-less', 
WindowPtr( -1),$80&0, 0, MDBounds); 

ErrChk; 
Newltem(ModelessPtr, 1, BttnRect, Buttonltem, @Btxt, 0, 0, nll); 
ErrChk; 
NewDitem(ModelessPtr, $F502, TextRect, Sta.tTextltem + ItemDisa.ble, 

@Text, 0, 0, nll); 
ErrChk; 

End; 

After the above routines have been called, the modeless dialog 
box appears on your desktop. The window can be dragged about, 
just like any other window, but unlike a dialog box, you can pull 
down menus, open other windows, and perform other activities 
while the modeless dialog is visible. 

To monitor the events in the above modeless dialog, you need 
to modify your program's main scanning loop with the lsDialogEvent 
call. IsDialogEvent simply returns a logical TRUE or FALSE if the 
user has selected something in the modeless dialog. It requires only 
a pointer to the event record. 

The following routine shows how your program's main scan 
loop can be modified to handle a modeless dialog event. 

In machine language: 

Scan pha ;result Space 
push word #$ffff ;event Mask 
pushlong #EventRec ;point to Event Record 
_TaskMaster 
pla ;get task code 
beq Scan ;if nothing, continue looping 

asl a ;double value in A 
tax ;put in X for reference 

222 



--------------------Dialog Boxes--------------------

jar (Table,x) 

;now, test for a modeless dialog event 

pha 
pushlong 
_IsDialogEvent 

pla 
beq 
jar 

bra 

In C: 

while (IQFlag) { 
do { 

#EventRec 

Scan 
MD Event 

Scan 

;do the appropriate routine 

;one word result space 
;push the event record 

;get logical result 
;keep looping if FALSE 
;otherwise, do the modeless 
;dialog event 

;keep scanning for events 

/* Wait for an event • I 

Event = TaskMaster(Oxffff, &!EventRec); 
} while (!Event); 
if (Event = = winMenuBar) DoMenu( ); 
if (IsDialogEvent(&!EventRec)) MDEvent( ); 

In Pascal: 

REPEAT 
REPEAT 

UNTIL Event <> 0; 

{ Wait for an event } 

Event : = TaskMaster($ffff, EventRec); 

IF Event = winMenuBar THEN DoMenu; 
IF IsDialogEvent(EventRec) THEN MDEvent; 

UNTIL QFlag; 

In the above routines, IsDialogEvent is called after the Task
Master call. If the result of IsDialogEvent is TRUE, the MDEvent 
routine is called. MDEvent contains a call to the Dialog Manager's 
DialogSelect function, the third routine used to monitor events in a 
modeless dialog box. 

When DialogSelect is called, your program can be certain that 
an event relating to your modeless dialog box has occurred. 
DialogSelect's job is to determine which control was selected with 
the mouse so that your program can act accordingly. DialogSelect 
requires the following parameters: 

223 



... 

----------Chapter 10 ----------

Name 
TheEventPtr 
TheDialogPtr 
ltemHitPtr 

Value 
Long 
Long 
Long 

Purpose 
A pointer to your event record 
A pointer to the dialog pointer 
A pointer to an ltemiD 

There are quite a few pointers in this function. The actual val
ues are not passed to the DialogSelect function. Only the address 
of those values is handed down. 

The following is an example of a routine to handle the events 
inside a modeless dialog box. It would be called by the previous 
routine. 

In machine language: 

MDEvent 

No Event 

DlalogPtr 
Hitltem 

InC: 

MDEvent() 
{ 

anop 
pha 
pushlong 
pushlong 

pushlong 
_DlalogSelect 

pla 
beq 

pushlong 
_CloseDlalog 

rts 

de 
de 

#EventRec 
#DlalogPtr 

#Hitltem 

NoEvent 

ModelessPtr 

4 
2 

GrafPortPtr DlalogPtr; 
Word ItemHit; 

;one word result space 
;push the event record 
;address of dialog pointer 
;storage 
;pointer to hit item 

;get logical result 
;leave it not our hit item 

;close this dialog now 

if (DlalogSelect(&EventRec, &DlalogPtr, &ItemHit)) { 
CloseDlalog(DlalogPtr); 

224 



----------Dialog Boxes ----------

In Pascal: 

PROCEDURE MDEvent; 
V AR D1alogPtr : W!ndowPtr; 

ItemH!t : Integer; 
BEGIN 

IF D1alogSelect(EventRec, D1alogPtr, ItemH!t) THEN 
CloseD1alog(D1alogPtr); 

END; 

These routines test for only one item in the dialog box: item 1 
(the OK button). If the OK button is clicked, then the DialogSelect 
function returns a TRUE, and the dialog box is closed. Otherwise, 
DialogSelect returns FALSE and the program continues. 

Multiple DialogSelect calls would be required for a dialog box 
with more than one selectable control. For each item in the dialog 
box, a different call to DialogSelect would be made to determine 
whether that control was activated. (This is because DialogSelect 
returns only a TRUE or FALSE value, not an ltemHit as with the 
ModalDialog function and modal dialog boxes.) 

Pretty as an Icon 
In this section, and the remaining two sections of this chapter, ex
amples and techniques for modal dialog boxes are listed. You can 
incorporate these routines into your own dialog boxes. 

An icon is a graphic image you can place in your dialog box. It 
can be a symbol or logo, or it can be a switch to activate some 
event. However, unlike other types of controls, an icon needs some 
special adjustment to be placed into a dialog box. 

Actually, anything in a dialog box could be a switch. You sim
ply define that item without adding the item disable to it. The 
ModalDialog function returns that item's ltemiD just as it 
would return the ltemiD of a button, check box, radio button, 
or any other standard control. 

225 



---------Chapter 10 ---------

Icons are defined as a series of bytes representing the pixels in 
the icon's image. They start with a rectangle indicating the size of 
the icon. The values in the rectangle are 

Offset Meaning 
+$00 Offset of upper leftY coordinate 
+$02 Offset of upper left X coordinate 
+$04 Height of icon 
+$06 Width of icon 

he height of the icon is the number of p1xels hlgh the leon 
will be. The width of the icon is the number of pixels across. For 
the 640 mode, the width is double that of the 320 mode, even if 
the icon is of the same size. (The example below is for a 640-mode 
screen. For a 320-mode screen, the width value would be half of 
64, or 32.) 

If an icon is to be placed into a dialog box, it must be refer
enced via a memory handle. This creates a pointer to the icon's 
data. When you make the NewDitem call, the ltemDescr field be
comes the address of that pointer (the address of a pointer is tech
nically known as a handle). 

The three programs below are used to create and add an icon 
to a modal dialog box. (The icon design itself was created for the 
Living Legends Software company and appears in the About dia
logs of most of that company's Apple IIGS software.) 

In machine language: 

Do Icon 

IconRect 

IconPtr 

Icon 

226 

pushlong 
push word 
pushlong 
push word 
pushlong 

push word 
push word 
pushlong 
~ewv1e 

jmp 

de 

de 

de 
de 
de 

D1alogPtr ;push the dialog pointer 
#$F504 ;ItemiD for the leon 
#IconRect ;rectangle for the leon 
#Iconitem ;an leon's ItemType, $12 
#IconPtr ;handle (address of pointer) 

;to the leon 
#0 ;Item Value 
#0 ;Item Flag 
#0 ;color table 

ErrChk 

1'101,10,117,42 ' 

14'Icon' ;pointer to leon's data 

12 '0,0,16,64' ;slze of icon following 
H'FFFFFFFFFOOOOOOFFOOOOOOOOOOOOFFF' 
H'FFFFFFFFOFFFFOFFOFFFFFFFFFFOFFFF' 



Dialog Boxes 

de H'FFFFFFFOFFFFOFFOFFFFFFFFFFOFFFFF' 
de H'FFFFFFOFFFFOFFOOOOOOOOOOOOOOOOOF' 
de H'FFFFFOFFFFOFFFFFFFFFFFFFOFFFFOFF' 
de H'FFFFOFFFFOFFFFFFFFFFFFFOFFFFOFFF' 
de H'FFFOFFFFOFFFFFFFFFFFFFOFFFFOFFFF' 
de H'FFOFFFFOFFFFFFFFFFFFFOFFFFOFFFFF' 
de H'FOFFFFOFFFFFFFFFFFFFOFFFFOFFFFFF' 
de H'OOOOOOOOOOOOOOOOOFFOFFFFOFFFFFFF' 
de H'FFFFOFFFFFFFFFFOFFOFFFFOFFFFFFFF' 
de H'FFFOFFFFFFFFFFOFFOFFFFOFFFFFFFFF' 
de H'FFOOOOOOOOOOOOFFOOOOOOFFFFFFFFFF' 
de H'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' 
de H'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' 
de H'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' 

In C: 

define FF Oxff 
define FO OxfO 
define QF OxOf 

char Icon[ ] = { 0, 0, 0, 0, 16, 0, 64, 0, ;• slze • 1 

}; 

FF,FF,FF,FF,FO,OO,OO,QF,FO,OO,OO,OO,OO,OO,QF.FF, /' data '/ 
FF,FF,FF,FF,QF,FF,FO,FF,QF,FF,FF,FF,FF,FO,FF,FF, 
FF,FF,FF,FO,FF,FF,QF,FO,FF,FF,FF,FF.FF,QF,FF,FF, 
FF.FF,FF,QF,FF,FO,FF,oo.oo.oo.oo.oo.oo.oo.oo.QF. 
FF,FF,FO,FF,FF,QF,FF,FF,FF,FF,FF,FF,QF,FF,FO,FF, 
FF,FF,QF,FF,FO,FF,FF,FF.FF,FF,FF,FO,FF,FF,QF,FF, 
FF,FO,FF ,FF ,QF.FF,FF ,FF ,FF ,FF ,FF ,QF ,FF ,FO,FF ,FF, 
FF,QF,FF,FO,FF,FF,FF,FF,FF,FF,FO,FF,FF,QF,FF,FF, 
FO,FF ,FF ,QF,FF ,FF ,FF ,FF ,FF ,FF.QF ,FF ,FO,FF ,FF.FF, 
oo.oo.oo.oo.oo.oo,oo.oo.QF,FO,FF,FF,QF.FF.FF,FF. 
FF,FF.QF,FF,FF,FF,FF,FO,FF,QF,FF,FO,FF,FF,FF,FF, 
FF,FO,FF,FF,FF,FF,FF,QF,FO,FF,FF,QF,FF.FF,FF,FF, 
FF,OO,OO,OO,OO,OO,OO,FF,OO,OO,OO,FF,FF.FF,FF,FF, 
FF,FF,FF,FF,FF,FF,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF, 
FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF.FF,FF, 
FF,FF,FF,FF,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF ,FF 

Rect IconRect = { 101, 10. 117, 42 }; 

Doicon() 
{ 

Ptr IconPtr = Icon; 
NewDitem(DialogPtr, Oxf504, &IconRect, lconitem. 

&IconPtr,O,O,OL); 

227 



---------Chapter 10 ---------

In Pascal: 

PROCEDURE Doicon; 
VAR IconPtr : Ptr; 

IconRect : Rect; 
Icon : RECORD 
BRact : Rect; 
Data : ARRAY [0 .. 16] OF 

PACKED ARRAY [1..16] OF Byte; 
END; 

BEGIN 
SetRect(IconRect, 10, 101, 42, 117); 
SetRect(Icon.BRect, 0, 0, 64, 16); 

StuffHex( l!IIcon.Data[O], 'FFFFFFFFFOOOOOOFFOOOOOOOOOOOOFFF'); 
StuffHex(l!IIcon.Data[1], 'FFFFFFFFOFFFFOFFOFFFFFFFFFFOFFFF'); 
StuffHex( l!IIcon.Data[2], 'FFFFFFFOFFFFOFFOFFFFFFFFFFOFFFFF'); 
StuffHex(l!IIcon.Data[3], 'FFFFFFOFFFFOFFOOOOOOOOOOOOOOOOOF'); 
StuffHex( l!IIcon.Dll.ta[ 4 ], 'FFFFFOFFFFOFFFFFFFFFFFFFOFFFFOFF'); 
StuffHex(l!IIcon.Data[6], 'FFFFOFFFFOFFFFFFFFFFFFFOFFFFOFFF'); 
StuffHex(l!IIcon.Data[6], 'FFFOFFFFOFFFFFFFFFFFFFOFFFFOFFFF'); 
StuffHex( l!IIcon.Data[7], 'FFOFFFFOFFFFFFFFFFFFFOFFFFOFFFFF'); 
StuffHex( l!IIcon.Data[8], 'FOFFFFOFFFFFFFFFFFFFOFFFFOFFFFFF'); 
Stuf!Hox( tilloon.Do.t&[ll], 'OOOOOOOOOOOOOOOOOli'li'Oli'li'li'li'Oli'li'li'Fli'li'li'') ; 

StuffHex( l!IIcon.Data[1 0], 'FFFFOFFFFFFFFFFOFFOFFFFOFFFFFFFF'); 
StuffHex(l!IIcon.Data[11],'FFFOFFFFFFFFFFOFFOFFFFOFFFFFFFFF'); 
StuffHex( l!IIcon.Data[12], 'FFOOOOOOOOOOOOFFOOOOOOFFFFFFFFFF'); 
StuffHex(l!IIcon.Data[13],'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF'); 
StuffHex(l!IIcon.Data[14],'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF'); 
StuffHex( l!IIcon.Data[16], 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF'); 

IconPtr : = l!IIcon; 
NewDitem(DialogPtr, $!504, IconRect, Iconitem, liliconPtr, 0, o, nll); 

END; 

Some touch of compiler magic is required in both the C and 
Pascal examples. In the C example, to keep the icon data definition 
as brief as possible, some constants are defined to represent the 
hexadecimal values $00, $OF, $FO, and $FF. Also note that the 
icon's size parameters consist of eight characters rather than four 
word values because of the type of array defined. (A customized 
structure type could have been used to clean this up, however.) In 
Pascal, the StuffHex procedure, found in TML Pascal's ConsoleiO 
unit symbol file, is used to place hexadecimal data into the icon 
data buffer. Unlike C and machine language, Pascal does not allow 
you to define an array and have it filled with data at compile time. 

228 



----------Dialog Boxes ----------

Help 
Most DeskTop applications have a feature which provides helpful 
information about the program. A help dialog box may list special 
commands used in the program, or explain features that aren't in
tuitive. Suffice it to say that a help facility is standard equipment 
for most real-world applications. 

This chapter has already presented a number of examples 
showing how to display text and other information inside a dialog 
box. But what about changing existing information? For example, 
what if your help dialog box contained two or more pages of text? 
How would you switch between screens without creating new dia
log boxes for each one? 

It's done with two Dialog Manager functions, HideDitem and 
ShowDitem. When the visible flag is changed on text items, your 
dialog box can page through them, displaying one screen after an
other. If your help dialog has three screens of information, the last 
two are initially hidden, and only the first item is shown. When 
you go to the next page, perhaps by pressing a Continue button, 
the first item is hidden and the second item is made visible. 

With a little extra tweaking, you could even have buttons 
specifying Next Page and Previous Page. 

An About . .. Dialog Box 
Many chapters in this book have dealt with the MODEL program 
that was introduced in Chapter 6. This chapter caps off the MODEL 
program by putting an About. .. dialog box in the Apple menu. 

The following code examples can be used to put your stand
ard, run-of-the-mill About. .. dialog box into the MODEL program. 
This dialog box is rather boring. It only contains text and an OK 
button. You can add color, icons, or other features to your own dia
log boxes. However, when designing a dialog box, you should keep 
in mind the pointers offered in the Human Interface Guidelines 
(see Appendix A). While it would be nice simply to drop in the fol
lowing code as was done in the previous chapter, you will need to 
make several custom modifications to the MODEL program to fa
cilitate dialog boxes. Most importantly, you'll need to add the Dia
log Manager and LineEdit tool sets to the list of tool sets started 
and shut down by the program. 

229 



---------Chapter 10 ---------

Once those tool sets have been started, you can replace the 
empty instruction for About. .. in the MODEL program with the 
following. To spice it up, you could experiment by adding your 
own custom icon. (Don't forget to insert the appropriate ShutDown 
function calls at the end of your program.) 

Program 10-1. Machine Language About. .. 

·------------------------------* 
it Apple Menu: About * 
*------------------------------· 

AboutDialog equ lFSOO :ass1gn a value to thts dtalog 

Button Item equ lC>A pd for a button 

StatTe>: t equ lOF ;td for stat1c text 

ItemDtsable equ $8000 ;dtsable an item 

About pea :.f(IIJ(n) ;long word result space 

pushlong #DtalogRecord 

GetNewModalDtalog 

JSr ErrChk 

pul 1 long DtalogPtr ;get dtalog po1nter 

:Now watt unt1l the OK button 1s cltcked 

Watt pea :f(H)t) t) ; resLtl t soac e 

pea :J.(i( H)I) ;ftlter routtne (long potnter ) 

pea J:(H) t)(l 

_Modal Dta 1 og ;get dtalog events 

o l a ;get results 

cmp ll$1 ;was 1t the button ? 

bne Watt ;~eep wa1t1ng tf not 

230 



----------Dialog Boxes ----------

pushlong D1alogPtr 

CloseD1a1og 

;we ' re done, close the d1alog 

rts 

D1alog~tr ds 4 

D1alogHe1ght eou 60 

01aiogW1dtn eou 400 

[•1c>logf<ecora anop 

ButtonRec 

ButtonTe:< t 

de 12 · (!90-01al ogHe1ght) /2 ' 

de 12 ' 1640-D1alogW1dthl / 2' 

de 12 '1 190-01alogHe1ghtl/2+D1alogHe1ght ' 

de 12 ' 1640-D1alogW1dthl/2+D1alogW1dth ' 

de 12 ' TRUE ' 

de 14 ' 0 ' 

de 14 · But tonRec ' 

de 14 ' TextRecord ' 

de 14 ' 0' 

de 12 ' 1 ' 

de 1 ' 37 ,130,0,0 ' 

de 12 ' Buttonltem ' 

de 14 ' Buttontext ' 

de 12 ' 1:1 · 

de 12 1 0 

de 14 ' 0 ' 

str "Okev Do key" 

231 



-

Chapter 10 

Te~tRecord de I2 ' AboutDialog+2 ' 

de I ' 10,10,80,440 ' 

de I2 ' ltemDisable+StatText' 

de I4 ' TextString' 

de 12 · 1) ' 

de 12 ' 0 ' 

de I4 0 ' 

TextString de I1 ' endtext-starttext ' 

st~rttext de c "' This is • demonstration program for Advanced "' ,i1'13 ... 

de c'Programming Techniques for the Appl~ JIGS Toolbox' , il ' l3 ' 

anop 

Program 10-2. C About. .. 

1·------------------------------· 

• HPP 1 e 14enL<: Aoout * 
·------------------------------*1 

ilaetin~e 

llde+Ine 
i.11 a I ogHe I ght 
DialogWidth 

cna~ le>· t String( J = 

6(• 

400 

" '\.pTh is i !:· a demonstration p~">ogram for Advanced'\. r ' 

Programming Techniques for the Apple JIGS Toolbox' r"; 

Itemlemolate Te :-· tRecord 

2. I* Item Id « / 

l t) . 1(•. 8(•, 441), I* Item rect *I 

ItemDisablelstatText, I* Item type *I 

le>: tString, I* Item descriptor * I 

0, 0, NULL 

232 



----------Dialog Boxes ----------

) ; 

ltemTemplate ButtonRec 

ok, I* Item Id *I 

37, 13<). 0, o. I * Item rect *I 

buttonltem, I* Item type * I 

11 \pOkev [Iokey", I* Item te:< t *I 

0, o, NULL I* value, bit f I ag, 

) ~ 

DiaiogTemplate DialogRecord = C 

j ; 

1190-DtalogHetght )l2 , 

<640-DtalogWidthll2, 

<190-DtalogHetghtJ I 2+DtaJogHetght, 

1640-DtalogWtdthJ I2+DtalogWtdth, 

TRUE, 

NULL, 

&ButtonRec, 

&Te>:tRecord, 

NULL 

About ') 

GratF'ortF'tr DialogF'tr; 

D1a1ogFtr = GetNewModalDtalogi&DtalogRecordJ; 

wntle ·~lodalDial og<NULU '=ole) ; 

Cl osel,tal og <Dial ogF'tr!; 

color tbl * I 

233 



Chapter 10 

Program 10-3. Pascal About. .. 
In Pascal : 

t ~------------------ ------------· 

Hppre Menu: About * 
*------------------------------· 

F'ROCEDURE HDout: 

VHR D1alogF'tr: W1ndowF'tr: 

T e ·: tRecord: ItemTemplate: 

ButtonRec : ItemTemplate: 

D1a l ogRecord: D1alogTemplate: 

Buttonle:: t : Str1ng : 

Te :.: t Str1ng: Str1ng: 

ButtonTe~ t : = ' Okev [Iokey ' : 

Te x tStr 1 ng := COf'\ICAT< ,. This i ~. a derr.onstrat ion progr· am for Advanced Programming ... , 

CHR I 13l, ' Techniques for the App le I!GS Toolbox ' , 

CHRI 13 l l: 

WITH ButtonRec [10 BEGIN 

Item!D := I: ( 1tem ld ) 

SetRect \ ItemRect, 131), 37, o. c) ) : 1tem rect 

ItemTvpe := But ton Item: 1tem type 

I temLtescr := @ButtonText: 1tem text 

ItemValue := t); value } 

ItemFlao := () ; ( blt + 1 ag 

ltemCol or := n1 l : color table } 

EI~D: 

234 



---------Dialog Boxes---------

WITH Te·< tRecord DO 8EGIN 

ltem!D := 2: 1tem 1d ) 

SetRect I ItemRect, 10, 10, 440, 8t)) : 1 tem rect 

ItemTvpe := ItemDlsable+StatTextltem: item type 

ltemDescr := @Te:< tStrlng: 1tem te:<t 

ItemVal ue := (1: value ) 

ltemFl ag := 0; b1t flag 

ItemColor := n1l: color table 

END: 

WllH D1alogRecord DO 8EGIN 

SetRect ldtBoundsRect, 120, 65, 520, 1251: 

dtV1s1ble :=TRUE; 

dtRefCon := 0: 

u~lL~mLl~lL~' J - ~~u~~on~ec: 

dtltemllst[1J := @TextRecord; 

dtltemL1sU2J := n1l; 

END: 

D1alogPtr := GetNewModalDialog i@DialogRecord): 

REPEAl UNTIL ModalDlaloglnil) = 1; 

CloseD1alog\D1alogPtrJ: 

E I~D: 

Chapter Summary 
The following tool set functions were referenced in this chapter. 

Function: $0215 
Name: DialogStartUp 

Starts the Dialog Manager 
Push: User ID (W) 
Pull: Nothing 

Errors: None 

235 



---------Chapter 10 ---------

Function: $0315 
Name: DialogShutDown 

Shuts down the Dialog Manager 
Push: Nothing 
Pull: Nothing 

Errors: None 

Function: $0A15 
Name: NewModalDialog 

Creates a modal dialog box 
Push: Result Space (L); Rectangle Pointer (L); Visible Flag (W); 

DRefCon (L) 
Pull: Dialog Pointer (L) 

Errors: Possible Memory Manager errors 

Function: $0815 
Name: NewModelessDialog 

Creates a modeless dialog box 
Push: Result Space (L); Rectangle Pointer (L); Title Pointer (L); Win

dow Level (L); Frame (W); DRefCon (L); Zoomed Rect 
Pointer (L); 

Pull: Dialog Pointer (L) 
Errors: Possible Memory Manager errors 

Function: $0C15 
Name: CloseDialog 

Removes a dialog from the screen 
Push: Dialog Pointer (L) 
Pull: Nothing 

Errors: Possible Window Manager errors 

Function: $0D15 
Name: NewDitem 

Places a control into a dialog box 
Push: Dialog Pointer (L); ItemiD (W); Rectangle pointer (L); 

ItemType (W); Item Descriptor (L); ItemValue (W); Item Flag 
(W); Color Table Pointer (L) 

Pull: Nothing 
Errors: $150A, $1508 

Function: $0F15 
Name: ModalDialog 

Handles events in the frontmost dialog box 
Push: Result Space (W); Filter Procedure (L) 
Pull: Item Hit (W) 

Errors: $150D 

236 



----------Dialog Boxes ----------

Function: $1015 
Name: IsDialogEvent 

Determines whether an event is related to a modeless dialog 
box 

Push: Result Space (W); Event Record Pointer (L) 
Pull: Logical Result (W) 

Errors: None 

Function: $1115 
Name: DialogSelect 

Tests to see whether an item in a modeless dialog box was 
selected 

Push: Result Space (W); Event Record Pointer (L); Dialog Pointer 
(L); ItemiD Pointer (L) 

Pull: Logical Result (W) 
Errors: None 

Function: $1715 
Name: Alert 

Draws an " empty" alert box 
Push: Result Space (W); Alert Template (L); Filter Procedure (L) 
Pull: Item Hit (W) 

Errors: None 

Function: $1815 
N arne: Stop Alert 

Draws an alert box with a stop sign icon 
Push: Result Space (W); Alert Template (L); Filter Procedure (L) 
Pull: Item Hit (W) 

Errors: None 

Function: $1915 
Name: NoteAlert 

Draws an alert box with a note icon 
Push: Result Space (W); Alert Template (L); Filter Procedure (L) 
Pull: Item Hit (W) 

Errors: None 

Function: $1A15 
Name: CautionAlert 

Draws an alert box with an exclamation point icon 
Push: Result Space (W); Alert Template (L); Filter Procedure (L) 
Pull: Item Hit (W) 

Errors: None 

237 



---------Chapter 10 ---------

Function: $2215 
Name: HideDltem 

Hides a control in a dialog box, rendering it invisible 
Push: Dialog Pointer (L); ltemiD (W) 
Pull: Nothing 

Errors: $150C 

Function: $2315 
Name: ShowDltem 

Makes an item or control in a dialog box visible 
Push: Dialog Pointer (L); ltemiD (W) 
Pull: Nothing 

Errors: $150C 

Function: $2E15 
Name: GetDltemValue 

Returns the value (ltemValue) of a control or item 
Push: Result Space (W); Dialog Pointer (L); ltemiD (W) 
Pull: Item Value (W) 

Errors: $150C 

Function: $2F15 
Name: SetDltemValue 

Changes the value of an item, or selects an item 
Push: New Item Value (W); Dialog Pointer (L); ltemiD (W) 
Pull: Nothing 

Errors: $150C 

Function: $3215 
Name: GetNewModalDialog 

Creates a modal dialog using a template 
Push: Result Space (L); Template (L) 
Pull: Dialog Pointer (L) 

Errors : Possible:! Mc:!mory ManagQr Qrrors 

Function: $3315 
Name: GetNewDltem 

Places an item or control into a dialog box using a template 
Push: Dialog Pointer (L); Template (L) 
Pull: Nothing 

Errors: $150A, $150B 

Window Manager Calls 
Function: $0COE 

238 

Name: Desktop 
Controls a variety of things dealing with the DeskTop 

Push: Result Space (L); Command (W); Parameter (L) 
Pull: Result (L) 

Errors: None 



----------Dialog Boxes ----------

Function: $1 DOE 
Name: TaskMaster 

Returns status of the event queue, updates window events 
Push: Result Space (W); Event Mask (W); Event Record (L) 
Pull: Extended Event Code (W) 

Errors: $0E03 

Memory Manager Calls 
Function: $0902 

Name: NewHandle 
Makes a block of memory available to your program 

Push: Result Space (L); Block Size (L); UseriD (W); Attributes (W); 
Address of Block (L) 

Pull: Block's Handle (L) 
Errors: $0201 , $0204, $0207 

Function: $2002 
Name: HLock 

Locks and sets a specific handle to a purge level of 0 
Push: Handle (L) 
Pull: Nothing 

Errors: $0206 

Function: $2802 
Name: PtrToHand 

Copies a number of bytes from a specific memory address to 
a handle 

Push: Source Address (L); Destination Handle (L); Length (L) 
Pull: Nothing 

Errors: $0202, $0206 

239 



,.-----Chapter 11 _ ___, 

Controls 

Controls are things you can put 
into dialog boxes or windows to 
perform specific functions. In 
addition, they have their own 
identities and allow a user to 
interact with a program using 
standards that are maintained 
in all Apple applications. 

The nicest part about con
trols, like just about everything 



---------Chapter 11 ---------

else in the Toolbox, is that most of the work relating to them is 
done for you. You simply define the control, stick it in a window, 
and your work is done. When you consider that description, a 
chapter on controls might seem to be useless. Yet, there's a lot of 
information about controls that doesn't exactly fit under any other 
rubric. Hence, this chapter is full of information about controls. 

This chapter doesn't focus on the Control Manager, but instead 
concerns itself with the individual controls themselves. The chapter 
on the Dialog Manager gives dialog boxes a thorough going-over. 

But much more can be said about controls inside the dialog l3ox. 
Therefore, this chapter has two areas of concentration: 

• The Control Manager 
• Controls 

The first part of this chapter provides some general infor
mation about the Control Manager (one of the more important tool 
sets). Then the chapter turns to techniques for customizing the 
standard controls already defined in the Toolbox so that they are 
best suited to your programs. At the end of this chapter you will 
find examples of the Control Manager being used to set or change 
the value of a control. 

The Control Manager 
The Control Manager is one of the more important, as well as ob
scure, tool sets. The following two tool sets rely upon the Control 
Manager in order to operate properly: 

• Window Manager 
• Dialog Manager 

The reason for this is that both of these tool sets use controls. 
All the items inside a window-the grow and zoom boxes and the 
scroll bars-as well as the items in a dialog box are controls. The 
Control Manager is the tool set whose job it is to manipulate those 
controls. You can choose from a list of predefined controls: buttons, 
radio buttons, check boxes, LineEdit boxes, and so on. Or, by using 
the Control Manager, you can create custom controls to use in your 
programs. 

Many of the functions of the Control Manager are called inter
nally by other tool §et§. For example, the Window Managgr must 

242 



-----------Controls-----------

access certain Control Manager functions to place the proper con
trols into a window. And when you set up a dialog box, it's the 
Control Manager that handles the intricacies of defining the con
trols and maintaining their values. As will be seen in a later section, 
many of the Dialog Manager's functions have similar, correspond
ing Control Manager functions, some of which are called internally 
by the Dialog Manager. 

Before you start the Control Manager, the following tool sets 
should already have been started: 

• Tool Locator 
• Memory Manager 
• Miscellaneous tool set 
• QuickDraw II 
• Event Manager 
• Window Manager 

To start the Control Manager the CtlStartUp call is made. 
You'll need to send the Toolbox your program's User ID, and set 
aside one page ($100 bytes) of direct page space. 

In machine language: 

push word 
push word 
_CtlStartUp 
jsr 

InC: 

UseriD 
DPage 

ErrChk 

;push our user id 
;push direct page location 

;check for errors 

CtlStartUp(UseriD, GetDP(OxlOO)); ErrChk( ); 

In Pascal: 

CtlStartUp(UseriD, GetDP($100)); ErrChk; 

The GetDP call in the C and Pascal examples is described in 
the MODEL program, illustrated in Chapter 6. 

The only error being checked for after the CtlStartUp call is 
$1001, meaning the Window Manager has not been initialized. So 
when you're writing applications, it's a good idea to start up the 
Window Manager before the Control Manager. Also, as is true with 
all other tool sets, the Control Manager functions better if its allo
cated direct page space is page-aligned. (See the information on the 
NewHandie function in Chapter 7~for more information.) 

243 



---------Chapter 11 ---------

To shut down the Control Manager, a call is made to 
CtlShutDown. 

In machine language: 

_CtlShutDown 

InC: 

CtlShutDown( ); 

In Pascal: 

CtlShutDown; 

Be careful to shut down the Window Manager before making 
the above calls. If you're simply shutting down all the tool sets to 
quit a program, then the order isn't that crucial. Still, it's a good 
idea to shut down the Window Manager first. You may wonder 
why this practice is recommended. The reason is that the Window 
Manager is responsible for disposing of windows (and dialog 
boxes) containing controls. Therefore it's a good idea to shut it 
down first. This assures that there are no controls left on the screen 
when CtlShutDown is called. (CtlShutDown does not remove the 
controls, so when the Window Manager makes the call to the Con
trol Manager to remove the controls, an error results.) 

Shut down tool sets following the reverse of the order in 
which they were started up. 

Controls 
The Control Manager maintains several built-in controls. All the 
items in a window that manipulate the window are controls. Oth
ers managed by the Control Manager include the following items, 
which you can specify in a dialog box: 

• Buttons 
• Check boxes 
• Radio buttons 
• Scroll bars 
• Edit lines 
• Grow box 

244 



----------Controls----------

For each type of control there is a control record. This record 
contains information about the control: 

• The window to which it belongs 
• Pointers to its action procedure 
• Pointer to a color table 

It also contains information defined by your program when the 
control was initially put on the screen, or as maintained by the 
Control Manager as you are manipulating the control. 

The following sections detail each type of control. This infor
mation is provided to enhance information already presented in 
Chapter 10. For example, the following sections contain infor
mation about certain controls' Item Value and ltemFlag, and how 
these values can be manipulated to give your programs their own 
unique look. Plus, there's information about changing the default 
color of a control. 

The following built-in controls can be specified as part of a di
alog box via the NewDitem or GetNewDitem calls of the Dialog 
Manager. NewDitem specifies each aspect of the control one at a 
time, whereas GetNewDitem uses a template of values. 

In summary, GetNewDitem sets up a call to NewDitem. 
NewDitem, on the other hand, contacts the Control Manager to set 
up the control. The Control Manager manipulates the information 
further and calls NewControl, which actually sets up the control 
record and assigns the control to a particular window. NewControl 
may do further initializing depending upon the type of control. 

Push button. Push buttons always perform some action, or 
they can activate something. Unlike other controls that can be 
switched on or off or positioned in some manner, when a push 
button is clicked by the mouse, it immediately causes something to 
happen (usually it closes a dialog box). 

Table 11-1 shows the items specified when a push button is 
defined. These items would either be individually specified via the 
NewDitem function, or using a template with the GetNewDitem 
function. 

245 



thapterll 

Table 11-1. Items Specified en Push Button Is Defined 

Name 
ltemiD 
ltemRect 

Item Type 
ltemDescr 
Item Value 
ItemFlag 
Item Color 

Size 
Word 
Word 
Word 
Word 
Word 
Word 
Long 
Word 
Word 
Pointer 

Buttonltem Value 
The button's ID 
Upper left Y position of the button (Min Y) 
Upper left X position of the button (MinX) 
Usually 0 
Usually 0 
$000A (10 decimal) 
Pointer to string inside the button 
Always 0 
Determines visibility and type of button 
A table defining the button's color 

Item/D. ltemiD assigns a unique value to the button. A value 
of $0001 defines the button as the default button of the dialog box. 
The default button has a double outline. Pressing Return is the 
same as clicking the default button. 

An ltemiD of $0002 defines the default Cancel button, which 
is equivalent to pressing the Escape key. Other values can be used 
simply to define a typical push button. 

ItemRect. The ItemRect of the button defines its location and 
size relative to the upper left corner of the dialog box (position 0,0). 
Normally, only the first two words of this rectangle are specified; 
the last two can be zeros. The Control Manager will fill in the 
other corner based on the size of the text inside the button. 

Later in this chapter, an example of a button is shown with all 
four values defined. Even though the second two words need not 
be actual values, the Control Manager will still create a push but
ton (though of a nonstandard size), and will still center the text 
within that button. 
w1thm that button. 

ItemType. The ItemType for a button is $000A, or 10 decimal. 

Instead of using a raw number, check your language's support 
files for predefined symbol names that can greatly improve the 
readability of your program. For example, when you include 
the <dialog.h> header file in your C programs, you can use 
the defined constant called buttonltem rather than the number 
OxOOOa (hex) or 10 (decimal). 

246 



----------------------Controls----------------------

ltemDescr. ItemDescr is a long-word pointer to the string to be 
placed inside the button. The string should be rather short, as any
thing longer than one or two words is considered an essay. When 
that's the case you should consider whether the button is appropri
ate. The button's string should start with a count byte (a Pascal 
string). 

ltemValue. ItemValue should always be a word of 0. A button 
does not require an item value. 

ltemFlag. ItemFlag is a word describing whether the button will 
be visible or invisible, and it also determines what type of frame 
the button will have. Only the LSB (lower byte) of this word holds 
any value; the upper byte should always be 0. 

Bit 7 of the ItemFlag word determines the visibility of the but
ton. When bit 7 is set to 1 (a value of $0080), the button is invisi
ble. When bit 7 is reset to 0, the button is visible. There are Dialog 
Manager and Control Manager functions that will change a but
ton's visibility after it has been created. (Note that there is a differ
ence between a visible button and one that is disabled. See below.) 

Bits 0 and 1 of ItemFlag determine the style of the button's 
frame, or outline. Buttons can have square or round corners, and 
they can have a double outline or a drop shadow, all depending on 
how these bits are set. 

Table 11-2. Style of Button's Frame 

Bit 
1 0 Hex Value 
0 0 $0000 
0 1 $0001 
1 0 $0002 
1 1 $0003 

Meaning 
Typical round-cornered button 
Round-cornered button with double border 
Square button 
Square button with a drop shadow 

Figure 11-1. The Four Types of Buttons 

( $0000 ) [ $0001 ]I 

$0002 sooo3 I 

247 



---------Chapter 11 --------+--

The default button for a dialog box uses a bit pattern of 
Other bit patterns for ItemFlag can be used to create different
shaped buttons. However, Apple advises against using the doub -
border pattern ($0001) on buttons other than the default button. 

ItemColor. ltemColor is a long-word pointer to a color table for 
the button. The color table can be· used to specify colors other than 
black and white for the button's parts. For example, the button's 
text could be green on pink and the button could be gray on blue. 

Table 11-3 describes the color table used for a push button 
(and pointed to by ltemColor). 

Table 11-3. Push Button Color Table 

Offset Size Parameter Bits 
15-8 7-4 3-0 

$00 Word SimpOutline 0 OUT 0 
$02 Word SimpNorBack 0 BG 0 
$04 Word SimpSelBack 0 BG 0 
$06 Word SimpNorText 0 BG FG 
$08 Word SimpSelText 0 BG FG 
OUT = Outline color 
BG = Background color 
FG = Foreground color 
0 = Always zero 

The individual bit positions in each word of the color table are 
used to specify which colors are used to color each part of the but
ton. In the 320 mode, all four bit positions (7-4 or 3-0) are used to 
specify one of 16 different colors. In the 640 mode, only bits 4 and 
5, or bits 0 and 1, are used to specify color. Be careful to note 
which values of the word (bitwise) are used and which aren't. 

SimpOutline. SimpOutline describes the color of the button's 
outline. 

SimpNorBack. SimpNorBack is the background color of the 
button when the button is not being pressed. 

SimpSelBack. SimpSelBack is the background color of the but
ton when the button is being pressed. 

SimpNorText. 'SimpNorText is the color of any text inside the 
button when the button is not being pressed. The background color 
of the text is specified in bits 7-4 and the foreground color in bits 
3-0. 

248 



-----------Controls-----------

SimpSelText. SimpSelText is the color of any text inside the 
button when the button is being pressed. The background color of 
the text is specified in bits 7-4 and the foreground color in bits 3-0. 

The following creates a rather interesting colored button (in 
320 m6ae}. Voii might want to include a color tabie such as this 
with a program that uses the colorful menu bar example from 
Chapter 8. 

ButtonColorT de 12'%0000000000110000' 
de 12'%0000000001010000' 
de 12'%0000000011010000' 
de 12'%0000000001110110' 
de 12'%0000000010001001' 

Notice how similar this is to setting the color table for a win
dow as described in Chapter 9. 

Check box. A check box represents a condition, either on or 
off. Clicking in a check box doesn't automatically turn it on, or acti
vate it. Instead, its Item Value must be changed either through the 
SetDitemValue call in the Dialog Manager, or via Control Manager 
calls as outlined in a later section of this chapter. (This was covered 
briefly in the previous chapter.) When you click the mouse in a 
check box, it should become checked if it wasn't already, or it 
should become unchecked if it was. This logic is supplied by your 
program. 

Check boxes have a line of text beside them. Unlike static text 
items, the text by a check box is defined along with other attributes 
of the check box. Therefore, the position of the check box on the 
screen should account for any text just to the right of it. 

Table 11-4 shows the values used to define a check box: 

Table 11-4. Values Used to Define a Check Box 

Name 
ItemiD 
ItemRect 

Item Type 
ItemDescr 
Item Value 
ItemFlag 
Item Color 

Size 
Word 
Word 
Word 
Word 
Word 
Word 
Long 
Word 
Word 
Pointer 

Checkltem Value 
The check box's ID 
Upper leftY position of the check box (MinY) 
Upper left X position of the check box (MinX) 
Zero 
Zero 
$000B (11 decimal) 
Pointer to check box's title string 
$0000 for open, any other value for selected 
Determines visibility 
A table defining the box's color 

249 



J 
-------------------Chapter 11-------------------

ltem!D. The ItemiD of a check box can be any value used to 
identify the checkbox uniquely. You could specify an ltemiD of 
$0001 or $0002; it isn't recommended, however. This would clash 
with the rules set down in Apple's Human Interface Guidelines. 
Only a push button should be the default button in a dialog box, 
so only a push button should have an ltemiD of $0001 or $0002. 

ltemRect. ItemRect, like a button, defines the location of the 
check box relative to the upper left corner of the dialog box. Any 
text appearing next to the check box will be to the right of the 
check box. As with a button, keep the text brief. 

ItemType. The ltemType of a check box is $0008, or 11 
decimal. 

ItemDescr. ltemDescr is a long-word pointer to the string ap
pearing next to the check box. The string should start with a count 
byte. 

Item Value. Item Value indicates the initial value of the check 
box. If ltemValue is 0, the check box is empty, or unchecked. If 
Item Value is any nonzero value, the check box is checked, indicat
ing that whatever state the check box is monitoring is presently se
lected, or active. 

ItemFlag. A check box's ItemFlag holds the same meaning that 
it does for a push button: It determines whether the check box will 
be visible or invisible. A value of $0080 means the check box will 
be invisible, while a value of $0000 means the check box will be 
visible. 

ltemColor. ItemColor is a long-word pointer to a color table for 
the check box. Table 11-5 describes the items in a check box's color 
table. 

Table 11-5. Items in Check Box's Color Table 

Offset Size Parameter Bits 
15-8 7-4 3-0 

$00 Word CheckReserved 0 0 0 
$02 Word CheckN orColor 0 BG FG 
$04 Word CheckSelColor 0 BG FG 
$06 Word CheckTitleColor 0 BG FG 
BG = Background color 
FG = Foreground color 
0 = Always zero 

250 



-----------Controls-----------

The same information for a push button's color table (regard
ing bit positions) holds true for this and all succeeding color tables. 
Remember that the 320 mode is much more colorful than the 640 
mode. 

CheckReserved. CheckReserved should be a word of 0. Pre
sumably Apple has something clever in mind for this value and 
just won't let us know what it means. 

CheckNorColor. CheckNorColor is the color of the check box 
when it's not highlighted or selected. 

CheckSelColor. CheckSelColor is the color of the check box 
when it's highlighted or selected. An example of color usage would 
be to specify bits 7-4 to show a different color (say, red) for a se
lected check box. 

CheckTitleColor. CheckTitleColor is the background and fore
ground color of the check box's title string at all times. (The title 
does not change as the box changes.) 

Radio button. Radio buttons are among the most useful types 
of controls. Yet they are also easily misunderstood. With radio but
tons, only one in a series can be selected at a time-and one of the 
series must be on. Figure 11-2 gives an example of a good use for 
radio buttons. 

Figure 11-2. Row of Three Radio Buttons: Up, Down, and From Top 

Seorch Direction: 

0 Up 

@Down 

0 From Top 

( Concel ) [ Okoy )J 

251 



------------------Chapter11------------------

Why call them radio buttons? The analogy Apple gives is that 
of an old car radio. The buttons on the radio were used to 
switch from one preselected radio station to another. Only one 
of the buttons could be down at a time-you couldn't listen to 
more than one station. When you pushed one in, any other 
button that was pressed in would be automatically released. 

Radio buttons should be used in an application when one 
of several options must be selected, but not more than one. If 
it's possible to choose more than one option, check boxes 
should be used. 

You can specify which radio button is to be on when the dia
log box is created. However, as with other items in a dialog box, 
further manipulation of the radio buttons is up to your program. 
(Refer to the COWR program from Chapter 10 for a good example 
of radio button manipulation.) 

Table 11-6 shows the values used to define a radio button. 

Table 11-6. Values Used to Define Radio Buttons 

Name 
ItemiD 
ltemRect 

Item Type 
ltemDescr 
Item Value 
ItemFlag 
Item Color 

Size 
Word 
Word 
Word 
Word 
Word 
Word 
Long 
Word 
Word 
Pointer 

Radioltem Value 
The radio button's ID 
Upper leftY position of the button (MinY) 
Upper left X position of the button (MinX) 
Zero 
Zero 
$000C (12 decimal) 
Pointer to radio button's title string 
$0000 for open, any other value for selected 
Determines visibility and family number 
A table defining the button's color 

Item/D. The ltemiD of a radio button, as with a check box, can 
be any value except $0001 or $0002. A family number can be given 
to a radio button via its ItemFlag value. This family number is used 
to group radio buttons according to their function, and to ensure 
that only one radio button within a particular family is on at a 
time. (The Control Manager will actually prevent you from activat
ing more than one radio button at a time. See the ltemFlag descrip
tion below.) 

252 



-----------Controls-----------

ItemRect. ItemRect defines the radio button's location relative 
to the upper left corner of the dialog box. Any text appearing next 
to the radio button will be to its right. 

ItemType. The radio button ItemType is $000C, or 12 decimal. 
ItemDescr. ItemDescr is a long-word pointer to a Pascal string 

to appear next to the radio button. 
ltemValue. ItemValue indicates the initial value of the radio 

button. As with a check box, when ltemValue is 0, the radio button 
is unselected, and when Item Value is any nonzero value, the radio 
button is highlighted. 

ItemFlag. ItemFlag determines the visibility of the radio button 
as well as its family number. Bit 7 of the ItemFlag word determines 
visibility. When this bit is set to 1, the radio button is invisible; 
when bit 7 is reset to 0, the radio button is visible. The remainder 
of the bits in this word (bits 6-0) specify the family number of the 
button. Values in the range $0000-$007F can be used for up to 128 
family numbers. 

ItemColor. ItemColor is a long word pointer to a color table for 
the radio button. 

Table 11-7. Meaning of Bits Within ItemColor 

Offset Size Parameter Bits 

$00 Word RadioReserved 
$02 Word RadioNorColor 
$04 Word RadioSel Color 
$06 Word RadioTitleColor 
BG = Background color 
FG = Foreground color 
0 = Always zero 

15-8 
0 
0 
0 
0 

7-4 3-0 
0 0 
BG FG 
BG FG 
BG FG 

RadioReserved. RadioReserved is a word of 0, reserved for 
some future date. Perhaps Apple will design a three-dimensional 
radio button selected with this value. 

RadioNorColor. RadioNorColor is the color of the radio but
ton when it's not highlighted or selected. 

RadioSelColor. RadioSelColor is the color of the radio button 
when it is highlighted or selected. 

RadioTitleColor. RadioTitleColor is the background and fore
ground color of the radio button's title string. 

253 



---------Chapter 11 ---------

Scroll bar. You may not think of scroll bars as controls, but 
they are. They're just like buttons, check boxes, and radio buttons. 
They're usually used with windows. However, they can be used for 
other purposes if you know how to manipulate them. 

Figure 11-3. Diagram of Scroll Bar with Associated Terms 

UpArrow-

Thumb-

Page Region -

Left Arrow Thumb 

I I 
Page Region 

I 
Down Arrow-

I 
Page Region 

Right Arrow 

The scroll bar is the most complex type of control you can de
fine. The Window Manager uses scroll bars in windows to scroll an 
area of data. However, if you want to put a scroll bar into a dialog 
box just to see what it's like, you'll need to know the information 
provided by Table 11-8. 

Table 11-8. Information Required to Define a Scroll Bar 

Name 
ItemiD 
ItemRect 

Item Type 
ItemDescr 
Item Value 
ItemFlag 
Item Color 

Size 
Word 
Word 
Word 
Word 
Word 
Word 
Long 
Word 
Word 
Pointer 

ScrollBarltem Value 
The scroll bar's ID 
Upper leftY position of the scroll bar (MinY) 
Upper left X position of the scroll bar (MinX) 
Lower right Y position of the scroll bar (MaxY) 
Lower right X position of the scroll bar (MaxX) 
$000D (13 decimal) 
Zero, or a pointer to an action procedure 
Data size minus view size (greater than 0) 
Determines visibility and scroll bar items 
A table defining the scroll bar's color 

ltgmlD, lt@miQ i§ 1:1 Vi:lh:lt! Y§@Q tg ido@ntify th@ §U91l bi:lr, 
ltemRect. ItemRect defines the scroll bar's location in the dialog 

254 



-----------Controls-----------

box (or window), relative to the dialog box's upper left corner (local 
coordinates). The two words indicating the lower right corner of 
the scroll bar take on significance here and must be specified. To
gether the four word values create the rectangle into which the 
Control Manager will squeeze the scroll bar. 

By adjusting the corner positions of the scroll bar, you can 
have a very skinny scroll bar, or one that's terribly fat. Because a 
scroll bar is a predefined control, you can subtly change the way it 
looks to use it as a custom control in your programs. 

ItemType. The ltemType of a scroll bar is $0000, or 13 
decimal. 

ltemDescr. ltemDescr is the long-word address of a scroll bar 
action procedure used to control the scroll bar. A long word of 0 
can be used to specify the default procedure. 

ltemValue. ltemValue indicates the position of the thumb in the 
scroll bar. The higher the value, the further along in position the 
thumb will be (with the origin at the top or far left of the scroll bar, 
depending upon the scroll bar's orientation). 

I temflag. ltemFlag determines the visibility of the scroll bar, as 
well as the orientation of the scroll bar and what types of arrows it 
will have. (The thumb and page regions of the scroll bar are in
cluded standard, but the up/down or right/left arrows are consid
ered optional.) As with other ltemFlag values, only bits 7 through 0 
hold any significant value in this word. All other bits should be re
set to 0. 

Table 11-9 shows the meanings of the bit positions in a scroll 
bar's ltemFlag. 

Table 11-9. Meaning of Bit Positions in Scroll Bar's ItemFlag 

Bit Meaning if Set 
7 Scroll bar is invisible 
6 Nothing (should always be 0) 
5 Nothing (should always be 0) 
4 Scroll bar is horizontal (right to left) 
3 Scroll bar will have a right arrow 
2 Scroll bar will have a left arrow 
1 Scroll bar will have a down arrow 
0 Scroll bar will have an up arrow 

If bit 4 above is reset to 0, the scroll bar will be vertical, or up and down . 

255 



-
----------Chapter 11 ----------

You can specify arrows either in one or both directions (up/ 
down, left/right) for your scroll bar. It's possible to specify a 
left/right arrow with an upjdown scroll bar, even though it's 
wrong. Your program will not crash, but the scroll bar will be up
dated improperly and your dialog box will fill with random graph
ics. In other words, it's ill-advised. 

So, to specify a full-on vertical scroll bar with both arrows, an 
ItemFlag of $0003 is used. For a full-on horizontal scroll bar, an 
ItemFlag of $001C can be used. 

ItemColor. ltemColor is a long word pointer to the scroll bar's 
color table as shown below. 

Table 11-10. Meaning of Bits Within ItemColor 

Offset Size Parameter Bits 
15-8 7-4 3-0 

$00 Word Scroll Outline 0 OUT 0 
$02 Word ArrowNorColor 0 BG FG 
$04 Word ArrowSel Color 0 BG FG 
$06 Word Arrow Back Color 0 BG 0 
$08 Word ThumbNorColor 0 BG 0 
$0A Word ScrollReserved 0 0 0 
$0C Word PageRgnColor PAT COLI COL2 
$0E Word InactiveColor 0 BG 0 
OUT = Outline color 
BG = Background color 
FG = Foreground color 
PAT = Color pattern 
0 = Always zero 

ScrollOutline. ScrollOutline is the outline color of the scroll 
bar, arrow boxes, and thumb. 

ArrowNorColor. ArrowNorColor is the color of the arrow out
line and background when an arrow is not being selected by the 
mouse. 

ArrowSelColor. ArrowSelColor is the color of the arrow 
(filled) and background when the arrow is selected by the mouse. 
A good method of setting this and the previous color value is to 
reverse them: Use the foreground color for ArrowNorColor and the 
background color for ArrowSelColor, and vice versa. 

ArrowBackColor. ArrowBackColor is the interior color of the 
arrow when it is not selected. 

ThumbNorColor. ThumbNorColor is the color of the thumb's 
interior. 

256 



-----------Controls-----------

ScrollReserved. ScrollReserved is a word of 0, reserved for 
some secret future use. 

PageRgnColor. PageRgnColor is the color of the page region 
in the scroll bar. The MSB of this word determines whether a dith
ered pattern is to be used. The LSB of the word contains either the 
solid color with which to fill the page region, or two colors to use 
for dithering. 

If bit 8 is set, dithering takes place. The page region is filled 
with a checked pattern of both the colors specified in bits 7-4 and 
3-0. 

If bit 8 is reset to 0, the page region is filled with the solid 
color pattern indicated by the color specified in bits 7-4. Bits 3-0 
should all be reset to 0. 

Bits 15-9 of the PageRgnColor value should always be 0. 
InactiveColor. InactiveColor is the color of the scroll bar when 

it has been deactivated (dimmed). 
Edit lines. Edit lines are controls that allow a user to type a 

line of text into a dialog box. Edit lines are best used when the 
information needed by your program cannot be obtained by using 
a button or list of items. 

Any text typed at the keyboard will appear in the edit box. 
Additionally, because of the LineEdit tool set, the text inside the 
edit line can be edited, selected with the mouse, cut, pasted, de
leted, or copied to a special edit line clipboard (maintained by the 
Toolbox) using the standard editing keys. (See Appendix A for 
more on editing.) 

Any key pressed will appear in the edit line. When Return is 
pressed, the default button of the dialog takes over and the dialog 
box vanishes. Because of this, if more than one edit line appears in 
a dialog box, the Tab key is pressed to switch between one edit 
line item and another. If a number of edit lines are in a single dia
log box, the Tab key can be pressed repeatedly until the insert 
cursor is in the desired edit line. 

If a default button is not defined, the Return character (an in
verse question mark in the system font, or simply a blank) is dis
played in the edit line just like any other character. 

The first edit line defined, either by the NewDitem or 
GetNewDitem functions or first in a template of items for the 
GetNewModalDialog call, is the first edit line created and placed 
into the dialog. The cursor appears in the first defined edit line box. 
The ItemiD of the edit line has nothing to do with its order. 

257 



---------Chapter 11 ---------

The items listed in Table 11-1 are used to define an edit line. 

Table 11-11. Information Required to Define an Edit Line 

Name 
ItemiD 

Size 
Word 

EditLine Value 
The EditLine's ID 

ltemRect Word Upper leftY value of EditLine's box (MinY) 
Word Upper left X value of EditLine's box (MinX) 
Word Lower right Y value of EditLine's box (MaxY) 
Word Lower right X value of EditLine's box (MaxX) 

ltemType Word $0011 (17 decimal) 
ltemDescr Long Pointer to string inside the EditLine, or buffer 
ltemValue Word Max characters to be typed (up to 255) 
ItemFlag Word Determines visibility 
ltemColor Pointer Always 0 

Item/D. The ltemiD is a unique number used to identify the 
edit line. Its value is really unimportant because editing and enter
ing text takes place automatically. 

ItemRect. ltemRect defines a rectangle indicating the size and 
position of the edit line's input box in local coordinates. The length 

8f tht 8m~ OtH !8 ri§h!} 9t~tn9§ gn !ht n~!!1~~! gf ~h~!~~!~~~ !he 
user should be allowed to enter (and, indirectly, depends on the 
system font as well). The height of the box must be at least 15 
pixels-anything less and text inside the edit line will not be 
visible. 

The height of the edit line's box really depends on the size of 
the font used by the Dialog Box. For a smaller font, logically, a box 
of less than 15 pixels in height could be used. Likewise, if an ex
ceptionally large font were being used, a height taller than 15 
pixels would be required. 

ltemType. The ltemType for an edit line is $0011, or 17 
decimal. 

ItemDescr. ltemDescr points to either a string of text that may 
be edited, or an empty buffer into which typed text will be placed. 
ltemDescr must point to something, either an empty buffer or a 
string of text. If ltemDescr is the address of a Pascal string of text, 
that text appears as selected when the Control Manager draws the 
edit line. 

ItemValue. ItemValue determines how many characters areal
lowed inside the edit line. Only the number of characters specified 

258 



-----------Controls-----------

by ItemValue can be typed into the edit line, and no more. Item
Value also indirectly indicates the size of the string pointed to by 
ItemDescr. 

ItemFlag. ItemFlag can be one of two values. When Itemflag is 
$0080, the edit line's box is invisible, but the text can still be seen. 
When ItemFlag is 0, EditLine's box is drawn. 

The edit line control does not use a color table, so its value 
should be reset to a long word of 0. 

Changing Colors 
Almost every control can take advantage of color. Your dialog 
boxes can be made colorful simply by specifying a color table 
pointer and filling the table with the desired values for each con
trol. But some confusion can arise in referring to color tables as 
used by controls and color tables used by QuickDraw. 

It should be pointed out that the color tables used when defin
ing a control are the same as the color tables used by QuickDraw. 

QuickDraw defines a color table from which certain colors are 
selected. For example, in the 320 mode, QuickDraw sets up a color 
table with 16 separate colors. Each color is defined according to the 
intensity of its red, green, and blue attributes. So, in a QuickDraw 
color table, color number 5 in that table may be set to dark green. 

In the color tables used by controls, the values referred to are 
the values in the QuickDraw color tables. So if the current color ta
ble as used by QuickDraw has 16 values and number 5 is dark 
green, then when you specify a value of 5 in your control table, it 
takes on the color dark green. In fact, all the pixels on the super
high-resolution graphics display on the Apple lies work this way: 
They aren't fixed color values; they're simply index numbers into a 
color table. 

Table 11-12 shows how QuickDraw assigns color values in the 
standard 320-mode color table. The control value and color indicate 
the value specified in a control's color table and the color that 
value represents. Use this table to determine which values in your 
control's color tables will take on which colors (using the standard 
color table in the 320 mode). 

259 



Chapter 11 

Table 11-12. Color Values 

QuickDraw Number Color Control Value 
Binary Hexadecimal 

0 Black 0000 $0 
1 Dark gray 0001 $1 
2 Brown 0010 $2 
3 Purple 0011 $3 
4 Blue 0100 $4 
5 Dark green 0101 $5 
6 Orange 0110 $6 
7 Red 0111 $7 
8 Beige 1000 $8 
9 Yellow 1001 $9 

10 Green 1010 $A 
11 Light blue 1011 $B 
12 Lilac 1100 $C 
13 Periwinkle 1101 $D 
14 Light gray 1110 $E 
15 White 1111 $F 

A control's color table can be changed or altered to suit your 
personal tastes and whatever is in vogue. 

Panic Button 
The following code (Programs 11-1 to 11-3) shows how a push 
button's size and color can be manipulated to create a very large 
panic button. These examples are not complete programs. The code 
represents a panic button subroutine (to be called at the appropri
ate time) that you can place into your own programs. 

Program 11-1. Panic Button in Machine Language 

*------------------------------· 
* PANIC Button D1alog Box * 
·------------------------------· 
:Equates ... 

111 <.~I ogHe 1 ght 
D1alogW1dth 
Jteml.Jisat>le 
StatText 
Button Item 

equ 
equ 
equ 
equ 
equ 

:Start ot Routine ... 

260 

100 
110 
$8000 
SOF 
sO A 



Controls ----------

Pantc pea $0000 ;long word result space 
pea tOOOO 
pushlong •DialogRecord 
_GetNewModaiDtalog 
JSr ErrChk 

pull long DlalogPtr ;get dialog POinter 

:Now watt until the button IS clicked 

Wait pea tOOOO ;result space 
pea $0000 ;filter routine <long pointer> 
pea tOOOO 
_Modal Dialog ;get dialog events 

pia 
cmp 
bne 

••t 
Wait 

;get results 
;was it the pantc button? 
;keep waittng if not 

pushlong DialogPtr 
_CioseDtalog 

;we ' re done, close the dialog 

rts ;return, done 

:----Data Storage----

DialogPtr 

DtalogRecord 
de 
de 
de 
de 
de 
de 
de 
de 
de 

Text Record 
de 
de 
de 
de 
de 
de 
de 

TextStrtng 
de 
de 

ButtonRecord 
de 
de 
de 
de 
de 
de 
de 

ds 4 

anop 
t2 ' <190-DialogHeight>l2 ' 
i2 ' <320-DialogWidth>l2 ' 
t2 ' <190-DialogHeight>I2+DialogHeight ' 
i2 ' <320-DialogWidth>I2+DialogWidth ' 
i2 ' TRUE ' 
14 ' 0 ' 
i4 ' TextRecord' 
i4 ' ButtonRecord ' 
14 ' 0' 
anop 
12 ' 2 ' 
1' 5,5,15,105 ' 
i2 ' ItemDisable+StatText ' 
t4 ' TextStrtng' 
i2 ' 0 ' 
12 ' 0 ' 
i4 ' 0' 

anop 
i I ' 15' 
c'lt ' s ttme to ... • 

anop 
i2 ' 1 .. 
I ' 25.5, 95, !05 ' 
i2 ' Buttonltem ' 
t4 ' ButtonStrlng ' 
12 ' 0' 
12 ' 0' 
t4 ' ColorTable ' 

261 



---------Chapter 11 ---------

ButtonString 
str 

ColorTable 
de 
de 
de 
de 
de 

anop 
·' Panic ' 

anop 
12'%0000000001010000' 
12'%0000000011110000' 
12'%0000000001110000 ' 
12'%0000000011110000' 
12'%0000000001110000 ' 

Program 11-2. Panic Button inC 

'*------------------------------* 
* PANIC Button Dialog Box * 
*------------------------------*/ 

#def1ne 01alogHelght 100 
#def1ne D1alogW1dth 110 

ItemTemplate 

) ; 

TextRecord = 
2. 
5, 5, 15, 105, 
JtemD1sable+statText, 
'\pit's time to ... ', 
0, 0. NULL 

BttnColors ColorTable = < 
Ox0050. 
OxOOfO, 
Ox0070, 
OxOOfO, 
Ox0070 

) ; 

ItemTemplate 

) ; 

But ton Record = 
1 • 
25, 5, 95, 105, 
button Item, 
'\pPanic ' , 
0, 0, &ColorTable 

D!alogTemplate DialogRecord = < 

) ; 

Pan1c<> 
( 

<190 - DlalogHeight> I 2, 
<320 - DlalogW1dth> I 2, 
<190- D1alogHelght> I 2 + DlalogHelght, 
<320 - D1alogW1dth> I 2 + D1alogWidth, 
TRUE, 
NULL, 
&TextRecord. 
&ButtonRecord, 
NULL 

GrafPortPtr D1alogPtr; 

262 



-----------Controls-----------

DialogPtr = GetNewModalDialog<&DialogRecord>; ErrChk<>; 
While <ModalDlalog<NULL> !=I>; I• Wait for PANIC button *I 
CloseDialog<DialogPtr>; I* Then close the dialog •I 

Program 11-3. Panic Button in Pascal 

\ ·------------------------------· 
* PANIC Button Dialog Box * 
·------------------------------· 

PROCEDURE Panic: 

CONST DlalogHeight = 100; 
= 110; Dialog'tildth 

VAR TextRecord: ItemTemplate; 
ItemTemplate; 
ControlColorTbl; 
DlalogTemplate; 
Dialo~Ptr; 
String; 

ButtonRecord: 
ButtonCo lors: 
DlalogRecord: 
DialogPort: 
TextString: 
ButtonString: String; 

BEGIN 

TextStrlng :='It's time to ... '; 
ButtonStr1ng :='Panic ' ; 

WITH TextRecord DO BEGIN 
ItemiD := 2; 
SetRect <ItemRect, 5, 5, 15, 105>; 
ItemType := ItemDisable+StatTextitem; 
ItemDescr := qfextStrlng; 
ItemValue := O; 
ItemFlag := O; 
ItemColor :=nil; 

END; 

WITH ButtonColors DO BEGIN 
SimpOutline := $0050; 
SlmpNorBack := sOOfO; 
SlmpSe!Back := $0070; 
SlmpNorText := tOOfO; 
SimpSelText := t0070; 

END; 

WITH ButtonRecord DO BEGIN 
ItemiD := !; 
SetRect <ItemRect, 5, 25, 105, 95>; 
ItemType := Buttonitem; 
ItemDescr := ~ButtonString; 
ItemValue := O; 
ItemFlag := O; 
ItemColor := ~ButtonColors; 

END; 

WITH DlalogRecord DO BEGIN 
SetRect<boundsRect. 

263 

LD~----------------------------------------------------- -- --



---------Chapter 11 ---------

END: 

<320 - DlaloQWidth> I 2, 
<190 - DlalogHelghtl I 2, 
<320 - DlaloQWidth> I 2 + DlaloQWidth, 
<190 - DlalogHelghtl I 2 + DlalogHelghtl; 

dtVislble := TRUE; 
dtRefCon := 0; 
Item1Ptr := ~extRecord; 
Item2Ptr := QButtonRecord; 
Terminator :=nil: 

DlalogPort := GetNewModaiDialog<DialogRecord>: ErrChk; 
REPEAT UNTIL ModaiDialog<nlll = 1; <Walt for PANIC button ) 
ei OiiHi a l oatBl al~ert); ( Th@n ~JQ§@ th@ 9lals~ ! 

Changing Values 
This section describes how a control can be manipulated after it 
has been defined. Some of the functions to manipulate a control 
are listed under the Dialog Manager; the ones listed below are un
der the Control Manager. 

The Control Manager must have a handle to a control before 
that control can be manipulated (unlike the Dialog Manager, which 
requires only an ItemiD). To get a control's handle, a call is made 
to the Dialog Manager's GetControlDitem function. Once the han
dle is obtained, the various Control Manager routines that manipu
late a control can be used. 

Controls can be highlighted or inactive (dimmed), visible or in
visible, and selected or unselected. Make sure you know and un
derstand these differences. 

When a control is dimmed, it appears fuzzy in the dialog box. 
Clicking the mouse on the control will not activate it, just as select
ing a dimmed menu item won't work. 

A visible control is one you can see. A control can be made in
visible, for example, when an option is not available, or as was 
demonstrated in Chapter 10, to page text. 

Another attribute of a control is to be selected or unselected. 
This normally affects only two controls: the check box and radio 
button. When either of those buttons is selected, its button or box 
is filled, meaning whatever function it represents is active. (See the 
COIDR example from Chapter 10 for a demonstration.) 

The following sections illustrate how the Control Manager can 
be used to dim, hide, or activate a control. 

264 



-----------Controls-----------

Dimming controls. The following routines will dim or high
light a control using the HiliteControl function in the Control 
Manager. 

HiliteControl can specify whether a control'is to be redrawn as 
normal or inactive, or whether a specific part code of the control 
can be individually highlighted. (The entire control is always re
drawn each time HiliteControl is called.) 

The parameter determining how the control is highlighted is 
referred to as HiliteState. It's a word-sized value, though only the 
1 -- -• , • r • . , . • • , _ ... __ , ~ ... .. ""' ..... t) ..... '-' ... ' ... J lo.J.l'"-

least significant byte holds any meaning: 

HiliteState Value Highlighting 
0 Control is highlighted 
1-253 Only specified parts are highlighted 
254 Reserved (not used) 
255 Control is dimmed 

Part codes are used to identify the individual parts of a control. 
In the normal operation of a DeskTop application, your program 
will probably never need to manipulate any individual part codes. 
(You'll either be dimming or highlighting the entire control.) 

But, for the curious, Table 11-13 shows the part numbers de
fined for specific controls. Values 32-127 are available for your 
application's use. Any other value not listed is reserved. 

Table 11-13. Controls' Part Numbers 

Code 
Decimal Hexadecimal Part 

0 $00 None 
2 $02 Simple button 
3 $03 Check box 
4 $04 Radio button 
5 $05 Up arrow 
6 $06 Down arrow 
7 $07 Page up 
8 $08 Page down 
9 $09 Static text 

10 $0A Grow box 
11 $0B Edit line 
12 $0C User item 
1J $QQ 6gna §telti( tg~t 
14 $0E Icon 

129 $81 Thumb 

265 



---------Chapter 11 ---------

The following code can be used to dim a control. 
In machine language: 

pushlong 
pushlong 
push word 
_GetControlDitem 

pulllong 

pea. 
pushlong 
_HlllteControl 

#Q 

Dla.logPtr 
ItemiD 

ControlHa.ndle 

255 
ControlHa.ndle 

;long result space 
;dialog box port pointer 
;the control's ItemiD 
;Dla.log Manager Call 

;return a. handle to the control 

;dim the control 

In C and Pascal: 

HlllteControl(255, GetControlDitem(Dla.logPtr, ItemiD)); 

Conversely, the following code will highlight a dimmed con
trol (or simply redraw a highlighted control). 

In machine language: 

pushlong 
pushlong 
push word 
_GetControlDitem 

pulllong 

pea. 
ushlong 

#Q 

Dla.logPtr 
ItemiD 

ControlHa.ndle 

;long result space 
;dialog box port pointer 
;the control's ItemiD 

0 ;redraw the control normal 
ControlHa.ndle 
_JUliteControl 

In C and Pascal: 

HlllteControl(O, GetControlDitem(Dla.logPtr, ItemiD)); 

Control visibility. The easiest way to make a control visible 
or invisible is by setting or resetting bit 7 of its ItemFlag. If bit 7 is 
reset to 0, the control is visible. If bit 7 is set to 1, the control is 
invisible. 

The Dialog Manager functions HideDitem and ShowDitem can 
be used to alter the visibility of a control after it's been defined. 

In machine language: 

pushlong 
push word 
_HideDitem 
jar 

266 

Dla.logPtr 
ItemiD 

ErrChk 

;dialog box pointer 
;ItemiD of the control 
;render it invisible 
;test for error $150C (item not found) 



-----------Controls-----------

In C and Pascal: 

HideDitem{DlalogPtr, ItemiD); 

To make a control visible, simply replace the above HideDitem 
functions with ShowDitem. Note that showing an item already vis
ible, as well as hiding an item already hidden, has no effect. 

To hide a control using the Control Manager, some extra steps 
are required. Actually, it's recommended you use the above Dialog 
Manager functions. However, if you're partial to the Control Man
ager, you'll need to call GetControlDitem (in the Dialog Manager) 
to return the control's handle, then perform either the Control 
Manager's HideControl or ShowControl function. 

In machine language: 

pushlong 
pushlong 
push word 
_GetControlDitem 

_Hi deControl 

#Q 

DlalogPtr 
ItemiD 

In C and Pascal: 

;long result space 
;dialog box port pointer 
;the control's ItemiD 

;keep the control handle on the stack 
;Hide it 

Hi deControl (GetControlDitem {DlalogPtr, ItemiD)); 

To show the control again, replace the HideControl functions 
above with ShowControl. 

Chapter Summary 
The following tool set functions were referenced in this chapter. 

Function: $0210 
Name: CtlStartUp 

Starts the Control Manager 
Push: UseriD (W); Direct Page (W) 
Pull: Nothing 

Errors: $1001 

fllll(;tign: $0310 
Name: CtlShutDown 

Shuts down the Control Manager 
Push: Nothing 
Pull: Nothing 

Errors: None 

267 



---------Chapter 11 ---------

Function: $0910 
Name: NewControl 

Creates a control 
Push: Result Space (L); Window Pointer (L); Control's Rectangle 

(L); Title String (L); Item Flag (W); Initial Value (W); Extra 
Parameter 1 (W); Extra Parameter 2 (W); Definition Procedure 
(L); RefCon (L); Color Table (L) 

Pull: Control Handle (L) 
Errors: None 

Function: $0E10 
Name: HideControl 

Hides a control, making it invisible 
Push: Control Handle (L) 
Pull: Nothing 

Errors: None 

Function: $0F10 
Name: ShowControl 

Shows a control, making it visible 
Push: Control Handle (L) 
Pull: Nothing 

Errors: None 

Function: $1110 
Name: HiliteControl 

Highlights or dims all or part of a control 
Push: HiliteState (W); Control Handle (L) 
Pull: Nothing 

Errors: None 

Dialog Manager Calls 
Function: $0D15 

Name: NewDitem 
Places a control into a dialog box 

Push: Dialog Pointer (L); ItemiD (W); Rectangle pointer (L); 
ItemType (W); Item Descriptor (L); ItemValue (W); Item Flag 
(W); Color Table Pointer (L) 

Pull: Nothing 
Errors: $150A, $1508 

Function: $1E15 

268 

Name: GetControlDitem 
Returns a control handle for a dialog box item 

Push: Result Space (L); Dialog Pointer (L); ItemiD (W) 
Pull: Control Handle (L) 

Errors: $150C 



-----------Controls-----------

Function: $2215 
Name: HideDitem 

Hides a control in a dialog box, rendering it invisible 
Push: Dialog Pointer (L); ltemiD (W) 
Pull: Nothing 

Errors: $150C 

Function: $2315 
Name: ShowDitem 

Makes an item or control in a dialog box visible 
Push: Dialog Pointer (L); ItemiD (W) 
Pull: Nothing 

Errors: $150C 

Function: $2F15 
Name: SetDltemValue 

Changes the value of an item, or selects an item 
Push: New Item Value (W); Dialog Pointer (L); ItemiD (W) 
Pull: Nothing 

Errors: $150C 

Function: $3215 
Name: GetNewModalDialog 

Creates a modal dialog using a template 
Push: Result Space (L); Template (L) 
Pull: Dialog Pointer (L) 

Errors: Possible Memory Manager errors 

Function: $3315 
Name: GetNewDltem 

Places an item or control into a dialog box using a template 
Push: Dialog Pointer (L); Template (L) 
Pull: Nothing 

Errors: $150A, $150B 

Memory Manager Calls 
Function: $0902 

Name: NewHandle 
Makes a block of memory available to your program 

Push: Result Space (L); Block Size (L); UseriD (W); Attributes (W); 
Address of Block (L) 

Pull: Block's Handle (L) 
Errors: $0201, $0204, $0207 

269 



r-----Chapter 12 _ ____, 

Interrupts 

Interrupts. The very word 
evokes trepidation in even the 
most experienced programmer. 
Now, before you flee to the 
next chapter in terror, you'll 
find that interrupts on the IIGS 
are not only an essential part of 
the computer, but they're also 
a lot of fun. 

The first section of this 



---------Chapter 12 ---------

chapter cushions the introduction to interrupts for the programmer 
who hasn't experienced an ordeal with them yet. It also presents 
the various forms of interrupts and task-switching capabilities that 
come as standard equipment on the Apple IIGS. 

A collection of sample programs are used as the basis of study 
throughout the chapter, and you ought to find them exceptionally 
interesting, or at the very least, entertaining. 

Since interrupts involve working at the hardware level of the 
computer, you have to work with them in machine language. 
This doesn't mean that you cannot work with interrupts from 
C or Pascal. You can. But in order to understand the workings 
of interrupts, a knowledge of machine language is required. If 
you're a C or Pascal fan, you can take the ideas and low-level 
routines from the example programs in this chapter and link 
them with your own programs. 

This chapter will concentrate on exploring the Toolbox's role 
in working wHh interrupts. 

What Are Interrupts? 
An interrupt is a signal that causes the microprocessor to stop its 
work and momentarily switch to something else. That "something 
else" is called an interrupt handler, also known as an interrupt ser
vice routine. An interrupt handler takes only a split second of pro
cessor time to complete its work, and then the microprocessor 
returns to its previous task. 

A familiar interrupt on the IIGS is the invocation of the control 
panel. Pressing Control-Open Apple-Escape freezes the current 
program and brings up a new one: the Classic Desk Accessory 
menu. When finished with the control panel, the program that was 
interrupted continues where it left off, as though nothing had ever 
happened. The keyboard is one part of the computer that can gen
erate an interrupt. 

In computers such as the Apple IIGS, in which many things 
seem to happen all at once, the ability to share slices of processor 
time among routines is what keeps things running smoothly. It also 
frees the programmer from having to watch for certain events at 
every turn of the program. Imagine what a pain in the flowchart it 

272 



----------Interrupts----------

would be if you had to keep an eye on the mouse location, move 
the pointer around, update the screen underneath, and so on. Since 
the mouse can generate interrupts when it is moved, or when its 
button is pressed, mouse interrupt handlers take care of all the 
mouse-related business behind the scenes. 

Another source of interrupts is the serial port. These interrupts 
come into play when you have a modem connected to the com
puter while data is racing through the phone line. Each time a 
character comes through the modem and into the computer's mo
dem port, an interrupt signal is generated. This causes a serial port 
interrupt handler to investigate all the commotion. When the han
dler discovers a character waiting at the port, it snatches the char
acter away into a buffer, where it will be processed when the 
modem program is ready for it. This ensures that no characters will 
be lost if the computer is busy working on some other task. 

Interrupts play a very important role in the operation of the 
Apple IIGS, especially since they are far more significant to the 
workings of that computer than they have been to any of its prede
cessors. But the correct handling of interrupts is one of the most 
tenuous programming tasks the budding IIGS programmer will face. 
Fortunately, the Apple IIGS has a few Toolbox functions that make 
working with interrupts easier and safer. 

Safer? Well, let's just say that if your custom interrupt handler 
is incorrectly written, you might find that it does a great job of 
reformatting your hard disk, even if you weren't writing a disk 
utility. 

Careful, precise handling of interrupts is imperative. So 
pay strict attention to the rest of this chapter if you haven't 
been scared away yet. 

Types of Apple IIGS Interrupts 
In the previous section, three main sources of interrupts on the Ap
ple IIGS were introduced: the keyboard, the mouse, and the serial 
port. These are considered external hardware interrupt sources 

273 



----------Chapter 12 ----------

since they're activated by influences outside of the computer. 
The Apple lies has many internal interrupts as well, mostly 

related to circuitry in the machine. The following is a list of some 
of the interrupts that can occur in an Apple IIGS: 

Type 
Reset 
Reset 
Abort 
IRQ 
IRQ 
IRQ 
IRQ 
IRQ 
IRQ 
IRQ 
IRQ 
IRQ 
Software 
Software 

Example Interrupt Activity 
Turning on the computer 
Control-Reset, Control-Open Apple-Reset, or Diagnostics 
Memory fault error (from expansion RAM) 
Any keypress executed while the Event Manager is active 
Keyboard flush (Control-Open Apple-Delete) 
Desk Accessory menu (Control-Open Apple-Escape) 
Mouse movement or button press 
Serial port (register state changes, and so on) 
Firmware print spooling (buffer refresh) 
Video graphics controller (scan line, VBL, and so on) 
Ensoniq DOC (sound RAM refresh signal) 
Realtime clock (one second, quarter-second) 
BRK instruction encountered 
COP instruction encountered 

Interrupts come in five basic flavors: 

Interrupt 
IRQ 
NMI 
Software 
Reset 
Abort 

Explanation 
Maskable interrupt request 
Nonmaskable interrupt 
Software interrupt (BRK or COP) 
System reset interrupt 
Memory access abort interrupt 

Maskable interrupt request (IRQ). A maskable IRQ interrupt 
is generated by a peripheral card or some other type of hardware 
that is physically or logically connected to the computer. A mouse, 
keyboard, serial port, Ensoniq DOC, clock, video graphics control
ler (VGC), and other such interrupt source generates IRQ inter
rupts. These can be masked (ignored) by the processor if the 
interrupt disable bit in the processor's status register is set (with the 
SEI instruction). Using the CLI instruction clears the disable bit, 
which means the processor will resume handling interrupt requests. 

274 



----------Interrupts----------

Just for kicks, enter the following BASIC program into 
Applesoft BASIC and run it. 

10 SEI = 120 : CLI = 88 : RTS = 96 
20 POKE 768, SEI 
30 POKE 769, RTS 
40 CALL 768 

Now, try to bring up the Classic Desk Accessory (CDA) 
menu by pressing Control-Open Apple-Escape. You'll find 
that it refuses to pop up. This is because the 65816 processor 
is set to mask the interrupts that the ADB (Apple DeskTop 
Bus) Keyboard Micro is sending whenever the CDA menu is 
requested. 

Change the SEI in Line 20 to CLI and rerun the program. 
As soon as you press the Return key after typing RUN, 

the CDA menu appears. This will be discussed in detail later 
in the chapter. 

Nonmaskable interrupts. Although no built-in source exists, a 
nonmaskable interrupt (NMI) is supported by the Apple IIGS. A 
nonmaskable interrupt is just like an IRQ except that (as you might 
guess) the processor cannot mask it out. Some Apple II peripherals, 
such as a screen snapshot-to-printer card or a hardware diagnostic 
card, can generate NMis. 

Software interrupts. A software interrupt can be generated by 
executing a BRK or COP machine language instruction. In one. 
sense, these are nonmaskable interrupts; even if the processor's in
terrupt disable flag is set (SEI), a BRK instruction is still performed. 
BRK is used mainly for debugging purposes to insert a programma
ble break point in your programs. COP is intended to kick a 
coprocessor card-a math coprocessor, for example-into action. 

Reset interrupts. Reset interrupts are generated mainly by 
pressing Control-Reset, Control-Open Apple-Reset (reboot), or 
Control- Open Apple-Option-Reset (diagnostics), or by turning on 
the computer. A reset interrupt can be simulated through software 
by sending a command to the Apple DeskTop Bus, or by directly 
calling the reset handler code in ROM ($00FA62 in emulation 
mode). 

275 



---------Chapter 12 ---------

Abort interrupts. The Apple lies currently does not make use 
of an abort interrupt even though it is supported. Aborts are gener
ated when access is made to an off-limits portion of memory, 
something all multi-user computers employ to keep users from 
poking around in other people's memory space. Should the IIGS 
become a true multi-user computer, this police-style interrupt 
would be valuable for maintaining security. 

When an Interrupt Occurs 
Here's a brief rundown of what happens when the processor is in
terrupted (that is, as long as interrupts aren't being masked). Keep 
in mind that all of this happens within a few milliseconds: 

• When the computer is interrupted, a program in the Apple IIGS 
ROM, the firmware interrupt manager, runs through a checklist of 
tasks to service the interrupt. It first determines which set of inter
rupt vectors should be used, depending on emulation mode. 
(These vectors are listed in Appendix B of Mastering the Apple JIGS 

Toolbox, available from COMPUTE! Books.) 
• The processor speed kicks in to fast mode. 
• The type of interrupt is then determined. If it's due to a BRK or 

COP instruction, one of the software interrupt handlers is called. 
If the handler is not installed, the user is sent directly to the Ap
ple lies monitor. 

• Machine-state information (that is, registers and flags) is saved at 
this point, before the serial port is tested to see whether it origi
nated the interrupt. If it did, either AppleTalk or a serial port inter
rupt handler is called. 

• Finally, if the interrupt wasn't due to a software instruction or ac
tivity at the serial port, the rest of the machine-state information 
is saved, and then all the other internal interrupt sources (the 
clock, the VGC, the mouse, and so on) in the computer are in
terrogated. If an internal source generated the interrupt, the inter
rupt manager calls the appropriate handler. 

• If the interrupt wasn't from an internal source, but was from a pe
ripheral card in one of the slots, the computer slows down to the 
old Apple II speed of 1 MHz, and jumps to the user interrupt vec
tor at location $3FE in Bank $00. When ProDOS first runs, it sets 
this vector to point to its own internal interrupt manager. The 

276 



----------- Interrupts -----------

manager is responsible for finding some way to service the inter
rupt. This means that every handler associated with a peripheral 
card should determine whether its card generated the interrupt. 
The duties of such a handler are discussed later in the chapter. 

• Once a handler claims the interrupt and services it, the processor 
restores the machine state and continues execution from the point 
where it was interrupted. 

• However, if the interrupt is not claimed (and, as a consequence, 
not serviced), a fatal error occurs. If ProDOS is unable to have the 
interrupt serviced, it calls a fatal error handler. (In ProDOS 8 this 
handler would set the screen to 40 columns and display INSERT 
SYSTEM DISK AND RESTART -ERR 01). The user interrupt vector 
is used mainly by eight-bit data communications programs in ser
vicing interrupts from internal modems or communications cards. 

Writing a Handler (Using Blanks) 
The Toolbox provides a host of useful functions that make working 
with interrupts a snap. This section of the chapter will ease you 
into writing an interrupt handler. The first program example 
doesn't use interrupts, but it simulates the process of the steps re
quired for real-life interrupt handling. 

Actually, this example is quite useful (and fun). The program 
patches the Apple lies's system bell vector with a new beep. After 
installing this program, the computer will beep with a fweep sound 
reminiscent of a screaming banshee. No more dull, boring bonk 
sound. 

The following is the plan of attack for creating the beep. 
Setup program. First, start up just the three tool sets: Tool Lo

cator, Miscellaneous Tools, and Memory Manager. 

ABSADDR ON 
KEEP 
MCOPY 

Main START 
phk 
plb 
_TLSta.rtUp 
_MTSta.rtUp 
pha. 
_MMSta.rtUp 
pla. 
sta. 

Beep.Setup 
BeepMa.cros 

UseriD 

;(use MACGEN to create this file) 

;data. bank = code bank 
;start Tool Locator 
;start Mise Tools 
;result space 
;start Memory Manager 
;pull User ID 

277 



---------Chapter 12 ---------

Next, call GetNewiD to create a new User ID which will be 
used in allocating a new handle for the beep routine. 

pha ;result space 
PUSHWORD #$AOOO ;Type ID / Aux ID 
_GetNewiD ;make an ID 
pia 
eta CodeiD 

Then ask NewHandle to allocate a small portion of RAM with 
the attributes of $C018: It can be any bank or any address, does 
not need to be page-aligned, and cannot use special memory, cross 
a bank boundary, or be purged or moved at all. 

pha ;result space 
pha 
PUSHLONG #MBEnd-My Beep+ 1 ;Size of block 
PUSHWORD CodeiD ;CodeiD for this handle 
PUSHWORD #$C018 ;Fixed, locked, bolted down 
PUSHLONG #0 ;address of the block 
.JlewHandle 
pia ;get handle 
pix 

eta 0 
stx 2 
Ida [0] ;get long address of block 
eta BlkAddr 
ldy #2 
Ida (O],y 
eta BlkAddr+2 

Once the handle is created and its address determined, place 
the beep code there by using the BlockMove function. (Yes, the 
beep routine has to be written as relocatable code. Don't fret. The 
65816 has some helpful instructions that make it possible to write 
relocatable code.) 

PUSHLONG 
PUSHLONG 
PUSHLONG 
__BlockMove 

#MyBeep ;Source 
BlkAddr ;Destination 
#MBEnd-My Beep+ l ;Size 

Finally, SetVector is used to patch the beep vector to point to 
the new beep routine. This program shuts down, and you've 
finished. 

278 



----------Interrupts----------

PUSHWORD 
PUSHLONG 
_set Vector 

PUSHWORD 
-MMShutDown 
-MTShutDown 
_TLShutDown 
rtl 

UseriD ds 
CodeiD ds 
BlkAddr ds 

#$001B 
BlkAddr 

UseriD 

2 
2 
4 

;Bell Vector Reference 
;New Beep Vector Address 

;shutdown everything 

The code that follows is the actual beep routine that is relo-
cated into safe memory. Every time the IIGS is called to beep the 
speaker, this small routine is called. 

Speaker equ $EOC030 ;speaker toggle location 

My Beep long a off 
long! off 
pha ;preserve the registers we munge 
phy 
phx 

FweepO ldx #32 
Fweepl ldy #4 
Fweep3 lda Speaker 

txa 
sec 

Waltl ph a 
Walt2 sbc #l 

bne Walt2 

pla 
abc #l 
bne Waltl 

dey 
bne Fweep3 

dex 
bne Fweepl 

plx ;restore registers 
ply 
pla 
clc ;return with carry clear 

MBEnd rtl 

END 

279 



----------Chapter 12 ----------

Assemble this with APW and run the resulting EXE file to in
stall the new beep. (If you're hunting for a way to get the machine 
to beep at you so you can hear it, pull up the CDA menu and press 
the space bar or any other illegal key). As long as the computer is 
turned on, this new beep will be used in place of the old sound. 

Imagine the fun you could have with this if a digitized sound 
sample were played through the Ensoniq chip, rather than the 
all-too-common beep. 

If you end up liking this new beep better than the bonk 
sound the IIGS normally makes, you can make the process of 
patching the bell vector part of your ProDOS 16 boot se
quence. Just change the file type of the EXE file to TSF ($B7) 
and copy it to your system disk's SYSTEM/SYSTEM.SETUP 
directory. It is a TSF (Temporary Startup File), because the en
tire program doesn't need to be kept in memory. Only the 
beep portion has to be retained. Every time you boot into 
ProDOS 16, this new sound will replace the old one, even 
when you're running ProDOS 8 programs. 

Should you wish to go back to using the standard IIGS 
bell sound, just move the new beep program out of the 
SYSTEM.SETUP directory and reboot. 

This program is an excellent model for getting started on an 
interrupt installation and servicing program. Some important points 
need to be made about this program and how it relates to interrupt 
handlers: 

• First, before writing any interrupt handler, consider the program
ming environment. In the case of this new beep routine, the beep 
code must be accessible at all times and the code must not be 
overwritten. That's why a special patch of RAM is allocated by 
NewHandle explicitly for the beep routine. Since emulation mode 
programs use banks $00, $01, $EO, and $E1 of the computer, the 
beep routine could not reside there. The beep code had to be 
placed outside of special memory. (See Chapter 7, which deals 
with memory management, for more details). 

280 



-----------Interrupts -----------

• The entire installation program is needed only once to install the 
beep into safe memory and set up the new bell vector. That's why 
NewHandle is called to allocate space only for the beep handler 
code. Why waste memory? 

• Since NewHandle could end up placing the code anywhere in the 
machine, the code had to be written so that it didn't use any self
referencing addressing modes. Of course, in this example, that's 
not a problem. For larger applications, such a program would 
most likely become a relocatable load segment (more on this and 
other disk-related matters in Chapter 14). 

• The beep routine properly maintains the environment by saving 
registers before changing them, and then restores them before re
turning. The handler should avoid modifying any other environ
ment settings (displaying a message on the screen, changing video 
modes, and so on). 

According to the rules, the Apple lies's system bell routine is 
always called in emulation mode with eight-bit registers and must 
return with the carry clear via an RTL instruction. As with an inter
rupt handler, there are certain steps to follow to ensure that every
thing is done correctly. 

Recall the sample Applesoft program from the previous sec
tion. When run, it caused the computer to ignore interrupts so 
you couldn't go into the CDA menu after pressing Control
Open Apple-Escape. As soon as interrupt recognition was 
turned on with the CLI instruction, the CDA menu popped up 
instantly, without your having to press Control-Open 
Apple-Escape again. Strange? Not at all. 

The reason this happened is because the interrupt of the 
Keyboard Micro, part of the Apple DeskTop Bus, was still 
pending and required servicing. The interrupt request line on 
the CPU was like a telephone that kept ringing until it was fi
nally answered by the 65816 microprocessor. Once interrupt 
recognition was reestablished, the processor discovered fhe in
terrupt was pending and went out to find a way to service it. 
That's why the CDA menu seemed to come up all on its own. 
You might chalk it up to delayed reflexes. 

281 



---------Chapter 12 ---------

Interrupt Vectors 
The Beep.Setup program in the last section introduces the Miscella
neous tool set's SetVector function: 

Function: $1003 
Name: SetVector 

Installs an interrupt vector address 
Push: Vector reference number (W); Address of routine (L) 
Pull: Nothing 

Errors: None 
Comments: This installs the vector address, but not the interrupt service 

routine itself. 

SetVector is used to change a multitude of system vectors and 
interrupt handler vectors. The vectors are identified by a unique ID 
number, as shown in this table: 

Reference ID 
$0000 
$0001 
$0002 
$0003 
$0004 
$0005 
$0006 
$0007 
$0008 
$0009 
$000A 
$0008 
$000C 
$000D 
$000E 
$000F 
$0010 
$0011 
$0012 
$0013 
$0014 
$0015 
$0016 
$0017 
$0018 
$0019 
$001A 

282 

Vector Description 
Tool locator (primary) 
Tool locator (secondary) 
User's tool locator (primary) 
User's tool locator (secondary) 
Interrupt manager 
Coprocessor (COP) manager 
Abort manager 
System death manager 
AppleTalk interrupt handler 
Serial communications controller interrupt handler 
Scan line interrupt handler 
Sound interrupt handler 
Vertical blanking interrupt handler 
Mouse interrupt handler 
Quarter-second interrupt handler 
Keyboard interrupt handler 
ADS-response-byte interrupt handler 
ADB-SRQ interrupt handler 
Desk accessory manager (Control-Open Apple-Escape) 
Keyboard-flush-buffer handler (Open Apple-Delete) 
Keyboard-micro interrupt handler 
One-second interrupt handler 
External-VGC interrupt handler 
Other unspecified interrupt handler 
Cursor-update handler 
Increment-busy-flag routine 
Decrement-busy-flag routine 



----------Interrupts----------

$0018 
$001C 
$0010 
$001E 
$001F-$0027 
$0028 
$0029 
$002A 
$0028 
$002C 

Bell vector 
BRK vector 
Trace vector 
Step vector 
Reserved 
Control-Y vector 
Reserved 
ProDOS 16-MLI vector 
Operating system vector 
Message-pointer vector 

The actual locations in memory where the vector addresses are 
stored are presented in Appendix B of Mastering the Apple lies 
Toolbox. 

SetVector's function is to install the address of a new system or 
interrupt handler. This is superior to the old global page scheme, 
where any program had access to all of the system's vectors and 
could destroy them accidentally. Also, using a tool to set vector ad
dresses means that changes in vector storage locations in later 
ROM revisions will never be a problem. 

SetVector's partner is GetVector. GetVector is used to retrieve 
the long address of a system/interrupt handler. 

Function: $1103 
Name: GetVector 

Returns the address of an interrupt vector 
Push: Result Space (L); vector reference number (W) 
Pull: Vector's address (L) 

Errors: None 

Patching out a vector that will be used only momentarily re
quire s the use of both of the s e Misce llane ous tool set functions. For 

example, the following routine demonstrates how you get the cur
rent vector address for the monitor's Control-Y vector, patch it out, 
and then restore it: 

Setlt pushlong #0 ;push long result spa.ce 
push word #$0028 ;Vector ID = Control-Y vector 
_Get Vector ;retrieve the current address 
pulllong OldCtrlY ;sa. ve lt for la.ter 
push word #$0028 ;Vector ID = Control-Y vector 
pushlong #NewVect ;new Control-Y handler address 
_set Vector ;set lt 
rts 

283 



---------Chapter 12 ---------

• Your program then does whatever it must do with the new 
• Control-Y vector installed. Before your program quits, 
• it restores the old vector address llke so .. . 

UnSetit push word 
pushlong 
Jet Vector 
rts 

OldCtrlY de 

#$0028 

OldCtrlY 

4 ;long storage for old Ctrl-Y address 

GetVector and SetVector can also be used to hook into an ex
isting handler without actually replacing it. For example, if you 
wanted to have the keyboard-flush handler play a digitized sound 
sample of a toilet flushing, but still flush the keyboard's type-ahead 
buffer, you'd proceed as follows: 

• Installation 
• Get the keyboard-flush handler address with GetVector. 
• Set the keyboard-flush handler vector with your own routine's 

address using SetVector. 
• Handler operation 

• When the user presses Open Apple-Delete to flush the keyboard 
buffer, your handler first plays your sound sample. 

• Then it jumps to the original keyboard-flush handler address 
(the address obtained by the GetVector call in the installation of 
your handler). 

Interrupts in ProDOS 16 
SetVector is one way to install an interrupt handler. You can also 
set one up by going through the operating system, ProDOS 16, if 
you prefer. This is done mainly for handlers that service interrupts 
from hardware installed in one of the seven peripheral slots in the 
IIGS. 

Normally, patching into the firmware vectors with SetVector is 
desired because less overhead is involved since the operating sys
tem is bypassed. But the firmware vectors only support those inter
rupts indigenous to the circuitry in the IIGS and do not make 
provisions for interrupts from peripheral cards. For these, you have 
to go through ProDOS 16. 

284 



-----------Interrupts -----------

To install an interrupt with ProDOS 16, your program would 
use the AUDC_INTERRUPT ProDOS 16 function (number 
$0031): 

-ALLOC_INTERRUPT IParms ;Allocate the interrupt 
bcs Error ;branch if error 

To remove the interrupt allocation in ProDOS, the 
DEALlDC_INTERRUPT function is used (number $0032): 

_DEALLQC_INTERRUPT IParms 
bcs Error 

The parameter table for these calls consists of a word and a 
long word: 

IParms anop 
inLnum ds 
inLcode de 

Offset 
+$00 
+$02 

Size 
word 
long 

2 ;this value is returned by ProDOS 
i4'TheHandler' ;the address of the handler 

Description 
inLnum: Interrupt handler number 
inLcode: Address of interrupt handler routine 

Actually, only the first parameter is required for 
DEALlDC_INTERRUPT, but in practice the same parameter 
block is usually referenced. 

When ALlDC_INTERRUPT is used, ProDOS 16 will assign 
your interrupt handler a unique number which is returned in the 
first word, inLnum. Each time you reference your handler through 
ProDOS, you use this number (as in the case of memory blocks 
with the Memory Manager). 

Possible error codes returned by these calls are 

Error 
Code Meaning 
$07 ProDOS is busy (it's in the middle of a command already) 
$25 Interrupt vector table full (there are already 16 allocated) 
$53 Invalid parameter (the handler's address is beyond $FFFFFF) 

If ProDOS is busy, you'll have to let it finish what it's doing 
and then try to allocate the interrupt again later. This is an unlikely 
event, unless you try to allocate another interrupt and you're al
ready inside an interrupt handler. 

285 



----------Chapter 12 ----------

Once your interrupt is allocated with ProDOS 16, you can turn 
on the source of the interrupt and begin handling it. When you 
wish to deallocate your interrupt, first turn off the interrupt source; 
then deallocate it. 

Environment 
When an interrupt handler is called, the computer is placed into a 
known state, depending on the type of interrupt your handler ser
vices and how it is registered with the system. For example, an in
terrupt handler set up via SetVector can expect the following 
standard machine configuration: 

Code Bank = The bank containing your handler 
Data Bank = $00 
Emulation = Off (Native mode) 
Registers = Eight-bit widths, contents undefined, carry set 
Speed =Fast 

Your handler returns to the system interrupt manager via RTL. 
If your handler is called from the user interrupt vector at 

$00 j03FE, you get the same results as indicated above, except the 
computer will be running at 1 MHz and emulation mode will be 
on. Your handler returns to the system interrupt manager via RTS. 

If the handler is installed through ProDOS 16, the standard 
configuration applies, but register widths are set to 16 bits. Your 
handler returns to ProDOS 16 via RTL. 

If your handler modifies any registers or other environmental 
aspects, it must restore any changes before returning. For example, 
if you change register widths or their contents, you have to restore 
them as they were when the handler was initially called. In addi
tion, the carry flag should be cleared before returning if your han
dler serviced the interrupt. If the carry is set, it indicates to the 
system that the interrupt was not serviced. 

The typical flowchart of an interrupt handler goes something 
like this: 

• Save all the registers and other machine-state information modi
fied in this handler. 

• Set up the environment as needed in order to service the 
interrupt. 

• If the handler services an interrupt on a peripheral card, deter
mine whether that card has an interrupt that needs service. 

• If it doesn't, set the carry flag and return. Otherwise, service the 

286 



---------------------Interrupts---------------------

interrupt, then clear the interrupt source. (For example, if your 
handler services one-second clock interrupts, it must reset that in
terrupt signal before returning. More on this in a later section.) 

• Restore the state information saved at the beginning of the han
dler; then clear the carry flag and return. 

Failing to restore the machine state before returning can result 
in some spectacularly nasty (and possibly fatal) system crashes. 

Writing a Handler 
Before you can write an interrupt handler, you need to know how 
to turn on the source that generates interrupts. For peripheral cards 
in slots 1-7, you'll have to adjust the soft switches mapped to the 
card's slot. Directions for doing this, and other technical infor
mation about the peripheral card, should be found in its manual. 

For sources built into the IIGS, the IntSource Miscellaneous 
tool set function is used to enable or disable interrupts for a par
ticular source. Using it is far easier than messing with softswitches, 
and it keeps your hands clean, too. 

Function: $2303 
Name: IntSource 

Activates or Deactivates an interrupt source 
Push: Source reference number (W) (see below) 
Pull: Nothing 

Errors: None 

Reference Number 
$0000 
$0001 
$0002 
$0003 
$0004 
$0005 
$0006 
$0007 
$0008 
$0009 
$000A 
$000B 
$000C 
$0000 
$000E 
$000F 

Description 
Enable keyboard interrupts 
Disable keyboard interrupts 
Enable vertical blanking interrupts 
Disable vertical blanking interrupts 
Enable quarter-second interrupts 
Disable quarter-second interrupts 
Enable one-second interrupts 
Disable one-second interrupts 
Reserved 
Reserved 
Enable FOB data interrupts 
Disable FOB data interrupts 
Enable scan line interrupts 
Disable scan line interrupts 
Enable external VGC interrupts 
Disable external VGC interrupts 

287 



---------Chapter 12 ---------

So, to turn on vertical blanking (VBL) interrupts, your program 
uses 

pushword #$0002 ;Enable VBL interrupts 
_lntSource 

To turn VBL interrupts off, use 

pushword #$0003 ;Disable VBL interrupts 
_IntSource 

Notice that all the Enable ID numbers are even, and their Dis
able counterparts are odd. Creative use of equates in your program 
can make such code self-documenting-for example: 

Enable gequ 0 
Disable gequ 1 
VBL gequ 2 

push word #Enable+ VBL 
_lntSource 

push word #Disable+ VBL 
_lntSource 

Do not attempt to turn on an interrupt source until you've in
stalled the corresponding handler. Doing so is like starting 
your car while it's in first gear and the clutch is out. 

The following complete program listing (Program 12-1) is an 
actual interrupt installation and handler. Almost as useful as 
changing the speaker's beep, this program will cycle through all 16 
border colors around your screen. Using the one-second interrupt 
source on the lies, the border color will continue to change every 
second, for a little longer than a minute. It then turns off the one
second interrupts, restores the original interrupt vector, and does its 
best to clean up memory by unlocking its memory block for purging. 

288 



---------------------Interrupts---------------------

Program 12-1. Second.ASM 

*------------------------------· 

* Second.ASM * 
* * 
* One-Second Interrupt Demo * 
·------------------------------· 

ABSADDR ON 

KEEP Second 
MCOPY Second.Mac ;Create us1ng MACGEN on thiS f1 le 

Ma1n START 

phi< 

plb ;data bank = code bank 

_TLStartUp ;start Tool Locator 

_MTStartUp ;start Mise Tools 

ph a ; resu I t space 

_MMStartup ;start Memory Manager 

pia ;pull User ID 

~ta U~er!D 

ph a ; resu It space 

PUSINORD .. FOOO ;Type ID I Aux ID 

_GetNew!D ;make an ID 

pia 

sta Code!D 

ph a ;result space 

ph a 

PUSHLONG •secEnd-OneSec ;Size of block 

PUSINORD Code!D 

PUSINORD •tC118 

;Code!D for this handle 

;Locked, Fixed, <purge=2> 

289 



--------- Chapter 12 

PUSHLONG #0 

_NewHandle 

pia 

pix 

sta 0 

stx 2 

Ida [OJ 

sta BlkAddr 

ldy #2 

Ida [OJ ,y 

sta Bl kAddr+2 

PUSHLONG #0 

PUSHWORD #$0015 

Get Vector 

PULLLONG OldVect 

PUSHLONG #OneSec 

PUSHLONG BlkAddr 

;address of the block 

;get handle 

;get long address of block 

; resu I t space 

;One Second interrupt vector ID 

;retrieve old vector address 

;Source 

; Destination 

PUSHLONG #SecEnd-OneSec ;Size 

_BiockMove 

PUSHWORD U00!5 

PUSHLONG BlkAddr 

_Set Vector 

PUSHWORD #$0006 

IntSource 

PUSHWORD User!D 

_MMShutDown 

_MTShutDown 

_TLShutDown 

_QUIT QParms 

290 

;move handler code 

;One Second Interrupt reference # 

;New One Second Interrupt handler address 

;Enable 1-sec Interrupt Ref Num 

;turn interrupts on 

;shutdown everything 



User!D ds 2 

BlkAddr ds 4 

OParms de 14 ' 0' 

de 1' tOOOO ' 

·------------------------------· 

* Interrupt Handler Code * 
·------------------------------· 

Border EOU t EOC034 

Scanlnt EOU t EOC032 

One Sec LONGA OFF 

LONG! OFF 

phb 

ph a 

phx 

phy 

phi< 

plb 

rep #$30 

LONGA ON 

LONG! ON 

per DataSect 

sep #t20 

LONGA OFF 

Ida Border 

and UFO 

In terrupts -----------

;ProDOS 16 OU1t Code parameters 

;RTC/Border color register byte 

;Scanline I 1-sec Interrupt source 

;Th1s is the handler ' s entry po1nt 

;save what we end up mung1ng 

;data bank = code bank 

;16-blt reg1sters 

;push address of data sect1on to stack 

;accumulator 8-bits 

;Grab border color 

;save upper nibble CRTC b1tsl 

ldy #Color-DataSect ;store to Color record in data section 

sta Cl.Sl.Y 

Ida Border 

291 



InC 

and 

ora 

sta 

rep 

A 

UOF 

< l.S> 'y 

Border 

#S20 

LONGA ON 

Chapter 12 

:1ncrement 1t <color IS lower n1bble> 

:truncate any wrapping to upper nibble 

;OR With RTC bits 

;update the border 

;accumulator= 16-bits 

ldy #Cycle-DataSect ;get Cycle record 

1 da < l.S>, Y 

dec A ;decrement 1t 

sta <J,S> ,Y ;update counter 

bne Exit :If counter 1s not zero, ex1t 

*Once we ' ve cycled through the number of border changes specified, 

*we turn off one- second interrupts, restore the old vector, and 

*unlock this memory block to make It purgeable when needed. 

292 

PUSHWORD #S0007 

IntSource 

PUSHWORD #SOOI5 

;Disable !-sec Interrupts Ref Num 

;turn 'em off f1rst 

;Push !-Sec vector Ref Num 

ldy #OidVect-DataSect+2 

Ida 
ph a 

dey 

dey 

Ida 

ph a 

<1+2,S>,Y 

< 1+2+2,S>, Y 

Set Vector 

;push high-word of old vector 

;<Index low-word> 

;push low-word of old vector 

:restore old !-sec Interrupt vector 

ldy #CodeiD-DataSect 

Ida < J ,S> ,Y 

ph a 

_HUnLock A I 1 

; push code I D 

;unlock thiS block 



----------Interrupts----------

Ex 1 t p ia ;pull PC re lative va lue off stack 

sep #$30 ;8-blt registers 

LONGA OFF 

LONG! OFF 

Ida #%00!00000 ;clear !-sec Interrupt source 

sta Scanlnt 

ply ; restore registers 

pl x 

pia 

plb 

clc ;Interrupt serv1ced, return 

rt l 

DataSect ANOP 

Color ds ;Temporary color value workspace 

Cyc le de I ' 64 ' ;Number of t1mes border color changes 

OldVect ds 4 ;Orlg1nal !-sec Interrupt handler address 

Coae!D as 2 ;User - ID of th1s memory segment 

Sec En a ANOP 

END 

Installation of the interrupt handler is similar in most respects 
to the Beep.Setup program listed earlier in this chapter. The only 
things different are 

• The ID attributes for the GetNewiD call do not reference a setup 
routine. 

• The NewHandle attributes assign the memory block a purge level 
of 2. Even though level 3 means most purgeable, it is reserved for 
use by the system loader. Since the block is locked, it can't be 
purged until it is unlocked. 

• The current vector for one-second interrupts is preserved before 
it's changed by the SetVector function. 

• IntSource is used to turn on one-second interrupts. 

293 



----------Chapter 12 ----------

Of course, the handler itself is quite different. Here is a break
down, starting from the top and dissecting it through to the end, of 
what the handler does: 

OneSec LONGA OFF ;This is the handler's entry point 
LONGI OFF 

Since this routine is called from the firmware interrupt man
ager, the system will be placed into native mode with eight-bit reg
isters. Thus, the assembler needs to be placed into the same state at 
the top of the routine by using the lDNGA and lDNGI directives. 

phb ;save what we end up destroying 
ph a 
phx 
phy 

The data bank, accumulator, and X and Y registers are all 
changed in this routine, so they must first be saved by pushing 
their values onto the stack. 

phk 
plb ;data bank = code bank 
rep #$30 ;16-bit registers 
LONGA ON 
LONGI ON 

Next, the data bank register is set to the code bank register 
since this routine runs and accesses data in the same bank. It 
switches in 16-bit registers and tells the assembler to do likewise. 

per DataSect ;push address of data section to stack 

This is a new instruction to most 65816 programmers. PER is 
used to push the program counter (plus an offset) onto the stack 
for use in accessing portions of a relocated program. By putting the 
16-bit runtime address of the program's data section on the stack, 
stack-relative indirect addressing can be used to access the data. 
This makes writing relocatable code nearly painless. 

Try doing this with the venerable 6502! 

sep #$20 ;accumulator = 8-bits 
LONGA OFF 
lda Border ;Grab border color 
and #$FO ;save upper nibble (RTC bits) 
ldy #Color-DataSect ;store to Color record in data section 
sta (l ,S) ,Y 

294 



----------- Interrupts -----------

Ida. 
inc 
a.nd 
ora. 
sta. 
rep 
LONG A 

Border 
A 
#$OF 
(l,S),Y 
Border 
#$20 
ON 

;increment it (color is lower nibble) 
;truncate a.ny wrapping to upper nibble 
;OR with RTC bits 
;update the border 
;accumulator = 16-bits 

This seemingly complicated series of instructions does one sim
ple task: It increments the screen's border color. It starts by going 
into 8-bit accumulator mode and grabbing the screen's border color 
register (also shared by the Real Time Clock chip in the upper nib
ble). The RTC bits are preserved and stored in the Color data byte 
via stack-relative indirect addressing. The border color register is 
fetched once again, incremented, and then the lower nibble of the 
result is logically ORed with the RTC bits. Finally, the new value is 
stuffed back into the border color register, and the processor goes 
back to a 16-bit accumulator. 

Most of this confusing footwork is due to the RTC bits needing 
to be preserved while the lower nibble of Border is incremented, all 
the while using stack-relative addressing. 

Any time a soft switch or $ExCxxx location is accessed, the 
accumulator should be set to eight bits. This is because the 
locations in this chunk of memory are mapped to eight-bit 
addresses. 

ldy #Cycle-Da.ta.Sect ;get Cycle record 
lda. (l,S),Y 
dec A ;decrement it 
sta. (l,S),Y ;update counter 
bne Exit ;if counter is not zero, exit 

This portion of the routine decrements a counter that keeps 
track of the number of times the border color changes. As defined 
in the data section, 64 iterations will pass before the counter 
reaches 0. When the sixty-fourth cycle is completed, the following 
shutdown code is executed: 

PUSHWORD #$0007 ;Disable 1-sec interrupts Ref Num 
_rntSource ;turn 'em off first 

295 



---------Chapter 12 ---------

First, the source of the one-second interrupt is shut off. This 
must be done before the vector is restored in case another one
second interrupt occurs in the middle of this (unlikely, but it's bet
ter to be safe than reformatted) . 

PUSHWORD *$0016 ;Push 1-sec vector Ref Num 
ldy *OldVect-DataSect+ 2 
lda (l +2,S),Y ;push high word of old vector 
ph a 
dey 
dey ;(Index low word) 
lda (1 + 2 + 2,S),Y ;push low word of old vector 
pha 
_set Vector ;restore old l sec Interrupt vector 

The vector is restored to its original setting at this point. Notice 
how the byte constants in the stack-relative LDAs increase by 2 
each time more data is pushed onto the stack. This is because the 
program counter (plus data offset), initially pushed on the stack 
with the PER instruction, hikes up the stack each time something 
new is pushed, and of course, the reference must compensate for 
that. 

ldy 
lda 
ph a 
_HUnLockAll 

*CodeiD-DataSect 
(l,S),Y ;push code ID 

;unlock this block 

As the last part of the shutdown sequence, the block that en
velops this code is unlocked so that it can be purged whenever the 
Memory Manager needs to use it. 

The DisposeHandle or DisposeAll functions shouldn't be used 
within the block being disposed. The code that follows the block 
could be reassigned to some other program in the computer, 
trashing the instructions and crashing the system. 

Exit pla ;pull PC relative value off stack 

Remember, the i6-bit address of the data section of tfiis pro
gram is still sitting on the stack, so it must be pulled off to main
tain harmony. 

sep *$30 ;8-blt registers 
LONGA OFF 
LONG! OFF 
lda *%00100000 ;clear l-sec Interrupt source 
sta Scanint 

296 



----------- Interrupts -----------

Once again, the computer is placed in eight-bit mode when the 
$ExCxxx space is being accessed. Storing $20 (%00100000) to Scanlnt 
resets the interrupt signal for one-second interrupts. If this is not 
done, the processor will be beaten by this interrupt source until the 
signal is cleared. (For fun, you can try leaving this out just to see 
what happens.) 

Also, recall that when the registers were saved at the top of 
this handler, the machine was in eight-bit mode. That means that 
only one byte per register is still sitting on the stack. 

ply ;restore registers 
plx 
pla 
plb 
clc ;Interrupt serviced, return 
rtl 

After all the registers are restored, the carry flag is cleared to 
indicate that the interrupt was successfully serviced. The routine re
turns via an RTL instruction with all registers restored and the ma
chine still in native mode with eight-bit register widths, exactly as 
it was found at the beginning of this routine. 

Clearing Interrupt Sources 
Part of servicing any interrupt originating from the IIGS's built-in 
hardware or on a peripheral card is clearing the interrupt-generating 
signal. This is the only way the hardware knows that someone has 
taken care of its interrupt. Once reset, the hardware can ready itself 
for new interrupts later on. If it isn't cleared, the hardware keeps 
the interrupt line on the microprocessor ringing nonstop. 

Note: Resetting an interrupt signal and disabling the source are 
two very different things. Disabling an interrupt source will 
turn it off completely, just like pulling the plug on your elec
tric alarm clock. Resetting the interrupt signal, however, is like 
hitting the snooze button . 

Unfortunately, there is no Toolbox function for clearing the 
built-in interrupt sources on the IIGS. Perhaps a future version of 
the Miscellaneous tool set will provide such a handy feature . 

297 



----------Chapter 12 ----------

For now, your interrupt handler will have to access the hard
ware register area of the lies directly to reset interrupt signals. An 
example of this is the program in the previous section. It stores $20 
to location $EOC032 (called SCANINT). This register contains two 
bits that correspond to the clearing of scan line and one-second in
terrupt signals. Writing a 0 to bit 6 of SCANINT resets one-second 
interrupts. Writing a 0 to bit 5 resets scan line interrupts. The other 
six bits are unused and should always be set to 0 in writing to 
SCANINT. 

The following table identifies the interrupt reset locations in 
the Apple lies softswitch register area: 

Address N arne 
$EOC032 SCANINT 

$EOC047 CLRVBLINT 

$EOC048 CLRXYINT 

Description 
Zero bit 6 to reset one-second interrupts; Zero 
bit 5 to reset scan line interrupts 
Write to clear vertical-blanking (VBL) and 
quarter-second interrupts 
Write to clear mouse interrupts 

Interrupts from other sources such as serial ports can be 
cleared by fetching or storing data through the hardware's associ
ated data registers. 

The Loch Ness Keyboard Interrupt 
One myth about keyboard interrupts is just that: keyboard inter
rupts. They're a myth in and of themselves. They don't fully exist 
on the lies. The Apple lies keyboard really cannot generate an in
terrupt if, say, you press the M key. Some of the key sequences can 
cause interrupts, though, such as Control-Open Apple-Escape. But 
honest-to-goodness data interrupts from keypresses are mythical. 

At the moment, keypress interrupts are simulated by some 
trickery built into the Apple lies toolbox. In essence, when 
IntSource is used to turn on keyboard interrupts, a special task is 
invoked which runs in the background every 1/60 second. This 
task looks at the keyboard to see whether a key was pressed, and if 
it was, jumps to the keyboard interrupt handler installed via 
SetVector. Why go about it in such a sneaky way? 

Unlike most modern computers, which have keyboards that 
generate true interrupts from keypresses, the Apple lies was de
signed with the opinion that the extra bit of circuitry needed for 

298 



---------------------Interrupts---------------------

true interrupts could be sacrificed. But the lies's tools development 
team at Apple designed the Toolbox in such a way as to make a fu
ture upgrade of the hardware transparent to software. If a real in
terrupt-generating keyboard is available for the Apple IIGS 
someday, all programs that use SetVector and IntSource to establish 
keyboard interrupts will work just fine, and nobody will be the 
wiser (except you). 

In a HeartBeat 
Another form of task processing on the IIGS is provided by the 
HeartBeat Task Manager, part of the Miscellaneous tool set. These 
routines allow you to add a series of tasks to perform at any num
ber of 60Hz cycles. 

The HeartBeat Task Manager uses the vertical-blanking inter
rupt source, which interrupts every 1/60 second. 

A HeartBeat task is a routine, usually short, that begins with a 
special header identifying it as a HeartBeat task. The structure of 
this header consists of three fields, as shown in this example: 

TaskHdr 
TaskChain 
TaskCount 
TaskSig 

anop 
de i4'0' ;pointer to next task 
ds i'60' ;number of 60Hz cycles before task is run 
de i'$A65A' ;special task signature 

The TaskChain field starts out as a long value of 0. The Heart
Beat manager will change this to point to the next task in the 
HeartBeat task queue, should another be added later. 

The TasKc ount word 1s a counter tha t 1s decremented oy tl"le 
HeartBeat manager every time the VBL interrupt occurs (every 
1/60 second). When this counter reaches 0, your task is executed. 
It's up to the task to reset the counter to the appropriate number of 
cycles before returning. Using this method, a task can run from 
once every 1/60 second to once every 19 minutes. 

Finally, the TaskSig word is a constant value of $ASSA. If this 
value is not present here, an error code of $0304 (NoTaskSignature) 
will be returned when an attempt is made to install the task into 
the HeartBeat task queue. 

299 



---------Chapter 12 ---------

Immediately following the task header is the code for the task 
itself. When the task is called, the computer is placed into native 
mode using 16-bit registers. The task terminates with an RTL in
struction, and unlike what happens with normal interrupt handlers, 
absolutely nothing needs to be preserved and restored before re
turning. You needn't fiddle with the carry flag, and even the regis
ter widths can be left modified without causing problems. Since 
your task is invoked indirectly by VBL interrupts, you don't even 
have to reset any interrupt sources. 

Indeed, this is the lazy person's way to install timed back
ground tasks. But there are some advantages to having all the 
nitty-gritty details handled for you. The only disadvantage is a pos
sible latency in execution of your task should there be a number of 
other tasks in the queue ahead of yours. 

Installing a HeartBeat task is simple. It's done by making a call 
to SetHeartBeat: 

Function: $1203 
Name: SetHeartBeat 

Places a task into the HeartBeat task manager queue 
Push: Address of task header (L) 
Pull: Nothing 

Errors: $0303, Task already in queue 
$0304, No task signature (or bad signature) 
$0305, Damaged HeartBeat queue 

As easy as using SetHeartBeat is for installing a task, the 
DelHeartBeat function is used to get rid of one: 

Function: $1303 
Name: DelHeartBeat 

Removes a task from the HeartBeat task queue 
Push: Address of task header (L) 
Pull: Nothing 

Errors: $0304, No task signature 
$0306, Task not in queue 

This chapter would be incomplete without mentioning a third 
HeartBeat function, ClrHeartBeat. It removes all tasks from the 
queue. This should never be used by your applications, though. 

300 



----------Interrupts----------

Function: $1403 
Name: ClrHeartBeat 

Removes all tasks from the HeartBeat task queue 
Push: Nothing 
Pull: Nothing 

Errors: None 
Comments: Don't make this call 

Using the program from the previous section as a starting 
point, Program 12-2 installs a HeartBeat task that cycles through 
the border colors for about a minute. The task then removes itself 
gracefully. 

Program 12-2. HeartBeat.ASM 

*------------------------------· 

* HeartBeat.TISM * 
* * 
* One-Secona Interrupt Demo * 
* Us1ng A HeartBeat Task. * 

·------------------------------· 

ABSADDR ON 

KEEP HeartBeat 

MCOPY HB.Mac 

Ma1n START 

phk 

plb 

_TLStartUp 

_MTStartUp 

ph a 

_MMStartUp 

pia 

sta User I D 

:create th1s f1 Je us1ng MTICGEN 

:data bank = code bank 

;start Tool Locator 

;start Mise Tools 

; resu 1 t space 

;start Memory Manager 

; pu 11 User I D 

301 



ph a :result space 

PUSHWORD #SFOOO :Type 10 1 Aux 10 

_GetNewiD :make an I D 

pia 

sta Coae!D 

ph a : resu It space 

ph a 

PUSHLONG #SecEna-OneSec :S1ze of block 

PUSH'o'ORD Coae!D :Coae!D for th1s handle 

PUSHWORD #$C 118 :Locked, F1xea, Cpurge=2l 

PUSHLONG #0 ;aaaress of the block 

_NewHanale 

pia :get handle 

pix 

sta 0 

stx 2 

Ida [0) :get long address of block 

sta BIKAadr 

Jav #2 

loa ( 0). y 
sta BlkAdar+2 

PUSHLONG #OneSec ;Source 

PUSHLONG BlkAddr ;Destination 

PUSHLONG #SecEnd-OneSec ;Size 

_BiockMove :move hand\er code 

PUSHLONG BlkAddr :Po1nter to HeartBeat task 

_SetHeartBeat 

PUSH'o'ORD #t0002 :Enable VBL Interrupt Ref Num 

IntSource ;turn Interrupts on 

302 



----------Interrupts 

PUSHWORD User!D 

_MMShutOown 

_MTShutDown 

_TLShutDown 

_QUIT OParms 

User!D ds 2 

OParms de 14 ' 0 ' 

de i ' tOOOO ' 
·------------------------------· 

* Interrupt Handler Code * 
·------------------------------· 

Border EOU 

Beats EOU 

tEOC034 

60 

*** Here ' s the task header: 

OneSec ds 4 

BeatCnt de 1 ' Beats ' 

de I ' IA55A ' 

*** Here ' s the task code: 

LONGA OFF 

LONG! OFF 

phk 

plb 

rep #130 

LONGA ON 

LONG! ON 

per DataSect 

;shutdown everything 

;ProDOS 16 Quit Code parameters 

;RTC/ Boroer color register byte 

;HeartBeats per color change 

;task po1nter storage chain 

;approximately every second 

;HeartBeat task s1gnature 

;Th is is the task ' s entry mode 

;data bank = code bank 

;16-blt reg1sters 

;push address of data section to stack 

303 



--------- Chapter 12 

sep .S20 

LONGA OFF 

Ida 

and 

Border 

IISFO 

:accumulator 6-bl ts 

:Grab border color 

;save upper nibble <RTC btts> 

ldy #Color-DataSect ;store to Color record 1n data section 

sta <l.Sl,Y 

1 da Border 

1nc 

and 

ora 

sta 

rep 

A 

ISOF 

< I,Sl ,Y 

Border 

#$20 

LONGA ON 

:1ncrement it <color ts lower ntbblel 

;truncate any wrapp ing to upper nibble 

;OR with RTC b1ts 

;update the border 

;accumulator= 8-blt 

ldy #Cycle-DataSect ;get Cycle record 

Ida <I ,Sl ,Y 

dec A ; decrement it 

sta 

bne 

< l,Sl ,Y 

Ex1t 

;update counter 

;if counter is not zero, exit 

* Once we ' ve cycled through the number of border changes specified, 

* we turn off VBL Interrupts, remove the HeartBeat task, and 

*unlock this memory block to make it purgeable when needed. 

304 

PUSHWORD 11$0003 

lntSource 

;Disable VBL Interrupts Ref Num 

;turn ' em off f1rst 

Jdy 

Ida 

ph a 

dey 

dev 

Ida 

11BlkAddr-DataSect+2 

< l.S> • y 

;push address of task on stack 

;htgh-word of address 

; <tndex low-word> 

<1+2,Sl,Y ;push low-word of address 



----------Interrupts 

ph a 

_Del HeartBeat 

ldy ICodeiD-DataSect 

Ida <I,S> ,Y 

ph a 

_HUnLock A II 

EXIt pia 

per BeatCnt 

ldy 10 

Ida #Beats 

sta < l.SJ .Y 

pia 

rtl 

OataSect ANOP 

Color ds 

Cycle de i ' 64 ' 

Code!D ds 2 

BlkAddr ds 4 

Sec End ANOP 

END 

;remove thiS task 

;push memory block ID 

;unlock this block 

;pull PC relat1ve value off stack 

;Upaate Beat counter 

;reset HeartBeat counter for this task 

;pul I PC relative value 

;then return 

;Temporary color value workspace 

;Number of times border color changes 

;User-ID of this memory segment 

;Address of HeartBeat task header 

305 



-

----- ----Chapter 12 ---------

The following things are new or different in the installation 
portion: 

• No vectors are preserved. 
• The task is installed with SetHeartBeat. 
• VBL interrupts are turned on. 

Simply installing a HeartBeat task won't make it go. The VBL 
interrupt source must be enabled as well. 

The task portion is substantially different from the one-second 
interrupt handler. First, it starts with a HeartBeat task header. This 
task is set to execute after every 60 heartbeats, which is approxi
mately one second. Notice that none of the processor registers are 
saved on the stack. This isn't needed for HeartBeat tasks. 

The guts of the routine are pretty much the same: Increment 
the border color, and see whether 64 border changes have been 
made. If 64 changes have been made, the VBL interrupt source is 
switched off, the HeartBeat task is deleted with DelHeartBeat, and 
the block of memory for this task is unlocked. 

Before exiting, the routine resets the task counter to 60 beats. If 
this isn't done, the task isn't ever called again, but remains in the 
queue. 

Finally, the task returns to the HeartBeat manager via RTL. 

Interrupt Caveats 
Here are a few important notes to keep in mind while working 
with interrupts: 

• The example programs in this chapter use little or no error check
ing. The intent was to keep the program listings as simple as pos
sible while presenting the study material. Your programs should 
rely heavily on error checking after each Toolbox call capable of 
producing errors. 

• ProDOS calls and many Toolbox functions, especially those from 
disk-based tool sets, shouldn't be called from within an interrupt 
handler. Those resources might not be available at the time of the 
call. Instead, Apple recommends that such calls be installed into 
the Scheduler tool set's task queue. Information on that tool set 
was not available at the time of this writing. 

• Switching off an interrupt source from within an interrupt handler 
lS not a COmmon ptdUlCt::. 1'\::, lll Llu:: I h ::cu LD"-al ocu.....,plo prosra.n'l., 

306 



---------------------Interrupts---------------------

which can run in the background while in another application, 
turning off VBL interrupts can render the application useless if it 
depends on them. 

• You shouldn't use quarter-second interrupts. These are reserved 
for use by AppleTalk. 

• In general, use HeartBeat tasks for most timing-related interrupts. 
This is advantageous since it allows more than one such task to 
be present at the same time. 

• Interrupt handlers are hard to debug with a runtime debugger. 
This is because the interrupts are occurring in realtime as you're 
stepping through the code. 

• If, while you're programming an interrupt handler, a test run fails 
and causes the system to crash, it's a good idea to reboot the 
computer. There's no telling what has become corrupted in 
memory. 

Chapter Summary 
Five Miscellaneous tool set functions are presented in this chapter: 

• SetVector 
• GetVector 
• SetHeartBeat 
• DelHeartBeat 
• ClrHeartBeat 

Their official descriptions, including stack parameters and error 
codes, are discussed within the text of this chapter. 

307 



,..-------Chapter 13 -------y 

Desk Accessories 

According to the Apple Human 
Interface Guidelines, a desk ac
cessory is a small program that 
can be opened while another 
program is running. Good ex
amples of desk accessories are 
calculators, note pads, graphic 
scrapbooks, alarm clocks, utili
ties, and games. Just about any
thing found on your typical 



---------Chapter 13 ---------

(real) desktop is considered a desk accessory. 
In the Guidelines, Apple warns that desk accessories should 

never be too complicated. Some so-called desk accessories for the 
Macintosh are complete programs unto themselves: spreadsheets, 
word processors, and graphics programs. They go beyond the limits 
of desk accessories. Whether they are New or Classic, desk acces
sories should be quick, efficient, and helpful, short programs that 
make using the DeskTop interface more practical and enjoyable. 

This chapter is about desk accessories. It would be silly to de
scribe desk accessories in detail here, as if this were an introduction 
to the Apple IIGS. However, desk accessories are a common feature 
of the IIGS and Macintosh computers. They're just handy, memory
resident programs which are almost always available for use. Every
thing from the ever-familiar Control Panel to a modeless dialog 
boxjalarm clock can be a desk accessory. 

Tell It to the DA 
When ProDOS 16 is booted, the desk accessories stored in the 
SYSTEM/DESK.ACCS subdirectory are installed into memory (see 
Chapter 3). There can be two types of desk accessories; the advan
tages of each will be discussed here briefly. The first type is a Clas
sic Desk Accessory (or CDA). This type is available at all times 
after ProDOS 16 is booted. Classic Desk Accessories can be chosen 
f .. ,._..., ~h o rnA TY'IPn11 hv nrP<:<:jnp- Control-gnen Annie-Escape. Eor 
from the CDA menu by pressmg Contro- pen App e-Escape. For 
example, the Control Panel (where you set your various Apple IIGS 
options) is merely a Classic Desk Accessory, with the exception 
that it's part of your ROM and isn't loaded from disk. 

A New Desk Accessory (NDA) is only available to programs 
taking advantage of the DeskTop. NDAs are found in the Apple 
Menu in DeskTop applications where NDAs are specified. The 
FixAppleMenu ($1EOS) function in the Menu Manager installs NDAs. 

The key difference between CDAs and NDAs is that CDAs are 
always accessible via Control-Open Apple-Escape, and NDAs can 
only be accessed by DeskTop applications that install them. Other
wise, all desk accessories stay resident in memory until you turn off 
the computer, reset by pressing Control-Open Apple-Reset, or run 
the ROM diagnostics by pressing Control-Open Apple-Option-Reset. 

310 



---------Desk Accessories ---------

It's amusing how Apple has adopted this naming convention 
of New and Classic desk accessories. It's suspiciously similar to 
the Coca-Cola Company's marketing campaign which intro
duced a new formula for Coke a few years ago in order to 
compete more successfully with Pepsi (which, as you will re
call, a majority of people preferred in blind taste tests). After 
announcing the New Coke, they dubbed the original concoc
tion Coca-Cola Classic. This is of particular interest because 
Apple Chairman John Sculley was lured away from PepsiCo 
(the people who produce Pepsi Cola) to work for Apple Com
puter. Just a coincidence? Apple claims it is. 

Since desk accessories are memory-resident, they're usually 
written in machine language to make them as compact as possible. 
In fact, because of the structure of desk accessories, it's almost im
possible to write them in a high-level language unless the compiler 
has special provisions for developing them. 

Some high-level language compilers do make special allow
ances for desk accessories. The TML Pascal system has a special di
rective that places the desk accessory header information at the 
front of your Pascal code. This way, most of the information is 
handled by the compiler, and your job is simply to write the desk 
accessory. 

Writing a desk accessory is just like writing a normal program. 
In fact, just about any ordinary program can be turned into a desk 
accessory simply by adding a bit of extra information and changing 
the filetype to $88 for an NDA or $89 for a CDA. (Note that the 
extra information is what's important. Simply changing a filetype 
does not make a desk accessory.) 

The steps to creating your own desk accessory differ only in 
the type of desk accessory you're writing. The following sections of 
this chapter detail the processes of creating a Classic Desk Acces
sory and then a New Desk Accessory. 

Classic Desk Accessories (CDA) 
Of the two types of desk accessories, the Classic Desk Accessory is 
simpler to program. CDAs are easy to create for two reasons. The 
first is that they are text-oriented. CDAs pop up on the familiar old 

311 



---------Chapter 13 ---------

40- or 80-column text screen. You don't have to worry about 
graphics. The second reason is that they usually don't rely on DOS. 
Because CDAs can be used at any time, regardless of which operat
ing system is running (ProDOS 8 or 16, DOS 3.3, Pascal, CP jM, or 
no DOS at all), disk-related functions should be avoided. 

It should be noted that if your CDA involves disk activity, it 
needs to make sure the appropriate DOS is in memory. An Apple 
IIGS can have a CDA in memory and run another operating sys
tem. Never assume ProDOS 16 is present when, in fact, a CP/M 
program could be running. 

If your CDA requires disk activity, it should be able to identify 
the current DOS environment and inform the user if it's unable to 
operate. 

A Classic Desk Accessory begins with a special header. The 
header is basically text string information and pointers. For a Clas
sic accessory, the header consists of a title and two long-word 
pointers: 

MyCDA str 
de 
de 

"CDA Title" 
i4'Sta.rtUp' 
i4'Clea.nUp' 

;name of DA in the CDA menu 
;pointer to startup routine 
;pointer to a. clean up routine 

It may strike you as odd that this program begins with a text 
string. If you're sitting there wondering how the CDA can run, re
member that CDA files have a special filetype that lets ProDOS 
know how to load and run them. For Classic Desk Accessories, a 
filetype of $B9 is used. Disk directories show this as a CDA 
filetype. 

The CDA's title is a standard Pascal string (beginning with a 
count byte that tells the length of the string). Though it can be as 
many as 32 characters long, the title should be as short as possible 
while still being descriptive. 

The long pointer to the StartUp routine is actually the address 
where the CDA code (program) begins. The routine at StartUp is 
called in full native (16-bit) mode, and it must preserve both the 
stack pointer (SP) and the data bank register (DBR). The routine 
must end with a long return (RTL). Those are the only rules to fol
low. The essence of the CDA resides in this routine. 

The long pointer to the CleanUp code contains the address of 
a routine used to clean house. Whenever the DeskShutDown func
tion is performed, this routine is called. This happens whenever 

312 



---------Desk Accessories ---------

ProDOS 16 switches to ProDOS 8, or vice versa, and whenever an 
application makes the DeskShutDown call. 

In practice, the CleanUp subroutine should be used to close 
files, remove interrupt handlers, and do whatever is needed to 
clean up any mess the CDA may have made. Like StartUp, this 
routine returns via an RTL. Even if there is no CleanUp routine re
quired by your CDA, the pointer must point to an RTL instruction. 

NUMCONV.CDA 
The following is a complete Classic Desk Accessory program. After 
assembling it, change its filetype to $89 and copy it to your 
ProDOS 16 disk's SYSTEMjDESK.ACCS directory. To install it, 
just reboot. Then, when you need a handy hex or decimal number 
converter, it's only as far away as Control-Open Apple-Escape. 

It might be added that this program is somewhat limited in its 
capabilities. Astute lies programmers will find ways to fix up this 
code or to use it as a skeleton for their own CDAs. 

Program 13-1. Number Converter CDA 

*------------------------------* 
* Number Converter * 
* Class1c Desk Accessory Demo * 
·------------------------------· 

ABSADDR ON 

KEEP NumConv . CDA 

MCOPY NumConv.MAC ;Create this file with MACGEN 

NumConv START 

str ' Number Converter ' ;Name of CDA 1n menu . 
de 14 ' StartUp ' ;Po1nter to starting rout1ne 

dC 14 ' CieanUp ' ;Pointer to clean up rout1ne 

Start Up ANOP 

phb ;save data bank 

phk ;now make data bank = code bank 

plb 

313 



Loop 

Conv 

314 

_Text Reset 

pushlong #Title 

_Wr lteCSt r 1 ng 

pushlong #Prompt 

_Wr1teCStr1ng 

ph a 

push long #I nBuf 

pushword 1116 

pushword #SBD 

pushword .I 

_ReadLI ne 

Pullword Count 

oeq 

ldX 

Ida 

and 

cmp 

beq 

ldX 

Jsr 

ocs 

sta 

Ex1t 

#0 

lnBuf 

#S7f 

# ' S · 

Conv 

#2 

<ProcTbl ,X> 

Loop 

NType 

pushlong #Result 

_wr 1 teCStr 1 ng 

ora Loop 

plb 

Chapter 13 

;InitialiZe text 1/0 

;draw t1 t l e 

;prompt for 1nput 

; resu l t space 

;po1nter to Input buffer 

;number of characters max to read 

;Return key <HSB set> IS EOL character 

;Echo Input 

;get the I ine 

;get character count 

; If equa I to zero, ex It 

;assume hex 

;check for hex 

;convert it 

;Index dec1mal converter 

;call e1ther Hex2Dec or Dec2Hex 

;probably str1ng overflow 

;change result prefiX 

;po1nt to str1ng to pr1nt 

;go back for more 

;restore bank 



Desk Accessories ---------

CleanUp ANOP 

rtl 

Hex2Dec push long •a 

push I ong l!nBuf+l 

lela Count 

Clec A 

ph a 

_Hex2Long 

push long IOutBuf 

pushworCl ua 

pushworCl •a 

_Long2Dec 

I Cla liSAaAO 

rts 

Dec2Hex push long •a 

push long #lnBuf 

pushwora Count 

pushworCl #0 

_Dec2Long 

push I ong •OutBuf 

pushworCl 110 

_Long2Hex 

lela ISA4AO 

rts 

*------------------------------· 
Data Sect 1on * 

*------------------------------· 

ProcTbl ac 

Count 

In But 

ac 

as 

as 

1 ' Hex2Dec ' 

1 · Dec2Hex ' 

2 

16 

;No clean up neeaea here 

;return to CDA menu here 

; resu I t space 

;Po1nt to str1ng <skiPPing Sl 

;length IS Count m1nus 1 <the Sl 

;length of string 

;long 1s on the stack now 

;po1nt to output buffer 

;output str1ng length 

;uns1gnea 

;two spaces 

; resu I t space 

;po1nt to str1ng 

:number of chars 

;unsigned 

;Long value 1s on stack 

;po1nt to output buffer 

;output string length 

;space I dollar s1gn 

315 



---------Chapter 13 ---------

Resu l t de 4e ' ,e · --> ' 

NType ds 2 

OutBuf ae IOe ' ' ' 11 ' 13 , 0 ' 

Tit le de i l ' l2,17,15 ' ,9e ' 

de e ' I I Number Converter I I ' 

de 9e ' ' 'II ' 14, 13, 13 ' 

de 7e ' ' ,e ' Press RETURN alone to quit ' ,11 ' 13 ' 

de 7e ' ' ,e ' <Start hex numbers WIth tl ' , i I ' 13, 13,0 ' 

Prompt de i I ' 13 ' ,e ' Number: ' '11 ' 0 ' 

END 

If you plan to make extensive use of this desk accessory, 
you're advised to write a custom input routine. The ReadLine tool 
is adequate for getting a line of input, but doesn't allow any editing 
capabilities. For example, if you enter a mistake, pressing the back
space key (+-) will not erase the mistake. It will insert an ASCII 8 
into the input stream, causing the result of the conversion to be 
invalid. 

New Desk Accessories (NDA) 
The formula for producing New Desk Accessories involves more 
ingredients than the Classic formula requires. Keep in mind the dif
ferences between the environment of the NDA and the environ
ment of the CDA. For example, because you're in the DeskTop, it's 
expected that your NDA will use some form of DeskTop conven
tion. This step alone results in a higher level of programming diffi
culty than that of creating the CDA. 

NDAs are accessible whenever a ProDOS 16 DeskTop applica
tion is running in the super-hi-res 320 or 640 mode and the Apple 
Jl llU l ;:) 1 ;:) l Q ll U 1i ... v l l ~JV l'-1.1 .U.l .LLU \...f u.J.. 'tr .t..Tl...a. L.L L.--.~1 1.. A .:T~Ju. 

can assume that these tool sets are active and started up: 

• QuickDraw 
• Event Manager 
• Window Manager 
• Control Manager 

316 



----------Desk Accessories ----------

• Menu Manager 
• LineEdit 
• Dialog Manager 
• Scrap Manager 

Of course, the Tool Locator, the Miscellaneous tool set, the 
Memory Manager, and other ROM-based tool sets are also avail
able and do not require starting up or shutting down. 

No direct page space is allotted to the NDA, so it must be ob
tained by calling the Memory Manager's NewHandle function 
or by tricky use of the stack. The Magnifier program near the 
end of the chapter contains an example of this. 

Like the Classic Desk Accessory, the NDA begins with a spe
cial header. (Also like its Classic counterpart, an NDA file can't be 
run directly, so it's assigned a filetype of $B8, shown as NDA in di
rectory listings.) 

The NDA header contains seven fields: 

MyNDA de i4'0penNDA' ;Open the NDA routine address 
de i4'CloseNDA' ;Close the NDA routine address 
de i4'TheAction' ;Do the NDA action routine 
de i4'InitNDA' ;!nit NDA StartUp or ShutDown 
de i'$0000' ;HeartBeat counter 
de i'$ffff ;Event mask 
de c'--NDA Name'"'- H' ,311 '0' ;NDA item name in Apple menu 

The first four fields are pointers to subroutines. Each of these 
special routines is called by the Desk Manager as needed. They 
must preserve the stack and data bank registers, and end in RTL 
instructions. In addition, they must preserve the current Gra£Port if 
it is swapped out. Each routine is described in more detail below. 

The word value following the pointers is like a HeartBeat 
counter. (See Chapter 12 for details on HeartBeat tasks and inter
rupts.) Its value determines the number of 60Hz cycles that will 
pass before the NDA's Action routine is called with the Run code 
(more on this below). If this value is 0, the Action routine is called 
every pass (actually, every time the TaskMaster loop is executed in 
the DeskTop application). Unlike a HeartBeat task, the NDA does 
not need to reset this counter after each pass. 

317 



----------Chapter 13 ----------

Next, a word containing an event mask is used to specify the 
types of events that the NDA can handle as they relate to actions 
concerning the NDA. The bits in this word correspond to TaskMas
ter Event Codes introduced in Chapter 12 of Mastering the Apple 
lies Toolbox. 

The last field contains a text string in the format of a Menu 
Manager menu item line. It begins with any two characters, fol
lowed by the title of the NDA. The item line is terminated by '\ H 
and three zeros . The first two zeros are filled in by the Menu Man
ager with the item's ID number. The last zero is just a normal C
string terminating character. 

The four special routines are described next. For real-life exam
ples of these procedures, see Program 13-2. 

The NDA Open Routine is called by the Desk Manager when 
it wants the NDA to create its window. In fact, the Desk Manager 
expects the Open routine to return a window port pointer on the 
stack, and provides result space for it. This is perhaps the trickiest 
of the four special routines, because the Open subroutine has to 
modify result space on the stack with the window pointer infor
mation. (You'll have a good feel for how result space is changed to 
meaningful values by the Toolbox after dabbling with this func
tion.) The example NDA program below demonstrates this hair
raising procedure. 

After the window is open, the Open routine should set a flag 
indicating that the window has been created. 

The NDA Close Routine is called whenever the close box on 
your NDA's window is clicked, or whenever the Close menu item 
(ID = 255) is selected. Your NDA's Close function is used to close 
the window created by the Open routine. It should test the flag set 
by the Open routine, then close the window if it's open. Also, it 
should perform any other housekeeping tasks necessary to close 
down the NDA gracefully. 

The NDA Action Routine is responsible for dispatching a host 
of handlers to service the events related to the NDA. When called, 
the Action routine will find a special code in the accumulator 
which corresponds to the type of action that took place. The nine 
Action codes are shown in Table 13-1. 

318 



----------Desk Accessories ---------

Table 13-1. Action Codes 

Code Type 
1 EventA 

2 Run 

3 Cursor 

4 Menu 

5 Undo 
6 Cut 
7 Copy 
8 Paste 
9 Clear 

Description 
DeskTop event that affects the NDA has taken place. 
Use the X and Y registers to obtain the address of the 
event record to further interrogate the event. (X contains 
the low-order word and Y contains the high-order word 
of a long address.) 
It's time to run the guts of the NDA. (See the description 
of the HeartBeat counter field above.) 
If the NDA window is open, this code is passed to your 
Action handler each time TaskMaster is called. This is 
useful for changing the shape of the mouse pointer when 
it's moved into your NDA's window or some other area 
on the DeskTop. 
A menu item has been selected. The Menu ID and Item 
ID are passed in the X and Y registers respectively. 
Undo selected from the Edit Menu 
Cut selected from the Edit Menu 
Copy selected from the Edit Menu 
Paste selected from the Edit Menu 
Clear selected from the Edit Menu 

These last five codes correspond to editing functions your 
NDA may want to handle. If not, the NDA places a zero into the 
accumulator and returns. Otherwise, the NDA handles the editing 
action appropriately and returns with a nonzero value in the A 
register. 

The NDA Init Routine is run whenever DeskStartUp or Desk
ShutDown is called by an application or by the operating system. If 
DeskStartUp is called, the Init routine will find that the accumulator 
contains a nonzero value. In this case, the NDA can do whatever it 
needs to do to prepare itself (usually nothing). If DeskShutDown is 
called, the Init routine will detect a zero value in the accumulator. 
It can then clean house as appropriate (for instance, it will close the 
NDA's window if it's still open). 

MAGNIFY.NDA 
The following program is an excellent example of a New Desk Ac
cessory. When installed and selected from the Apple menu in a 
DeskTop program, this NDA will bring up a small window on the 
screen. It magnifies 512 pixels (a 32 X 16 pixel area), at the mouse 
pointer's location, and draws the enlarged pixel map in its window. 

319 



----------Chapter 13 ----------

It demonstrates the structure of a simple New Desk Accessory. 
This will run in 640 and 320 modes, though the aspect ratio 

for 320 mode is a bit out of proportion (the window appears twice 
as wide as in 640 mode). The budding programmer will want to 
keep the different screen resolutions in mind when creating an 
NDA. 

Program 13-2. Magnifier NDA 

·------------------------------· 
• Hagn If 1 er * 
* New Desk Accessory Demo * 
·------------------------------· 

ABSADDR ON 

KEEP Hagn l f y 

HCOPY Hagn1fy.HAC 

Hagni fy START 

de 

de 

de 

de 

de 

de 

l4 ' 0penNDA ' 

l4 ' CioseNDA ' 

14 ' TheActlon ' 

14 ' In1 tNDA ' 

1' SOOOO ' 

1 ' Sffff ' 

;Create using HACGEN 

;Open the NDA 

;Close the NDA 

;Do the NDA act1on 

;In1t NDA StartUp or ShutDown 

;Heartbeat counter: 0 = each beat 

:Event mask: Sffff =all events 

de c ' --Hagn1f1er \ H' ,3i1 ' 0' :NDA item name 1n Apple menu 

·------------------------------· 
* Open the NDA <1f closed> * 

·------------------------------· 

OpenNDA ANOP 

phb :save data bank (+1 byte to stack> 

phk ;data bank = code bank 

plb 

320 



--------- Desk Accessories 

Opened 

ph a 

ph a 

Open Flag 

Opened 

pushlong #W1ndowRec 

_NewW1 ndow 

loa 1 .s 

sta W1noowPtr 

sta 4+1+4,S 

loa 1+2,S 

sta WlndowPtr+2 

sta 4+1+4+2,S 

_SetSysWindow 

dec OpenFlag 

plo 

rt I 

·------------------------------· 
* ln1t NDA StartUp/ShutDown * 

·------------------------------· 

;Have we already created the Window? 

;yes -- so skiP th1s stuff 

; Resu I t space 

;Create the NDA Window 

;Leave Window port pointer on stack 

;Get Window po1nter <low bytel 1n stack 

;Save 1n memory, and 

;Replace result space on stack 

;Get Window POinter (high bytel 1n stacK 

;Save 1n memory, and 

;Replace result space on stack 

;<Recal I, WindowPtr IS on stack) 

;Mark th1s as a system Window 

;<-IJ Flag w1ndow as open 

On entry, accumulator 1s zero if DeskStartUp called. 

Else the A-reg IS non-zero 1f DeskShutDown was cal led. 

In 1 tNDA ANOP 

tax 

bne AnRTL 

;Test accumulator: DeskStartUp cal led? 

;yes-- else fall 1nto NDA close rout1ne ... 

321 



------------------Chapter13------------------

·------------------------------· 
*Close the NDA <it not open> * 

·------------------------------· 

CloseNDA 

phb 

phk 

plb 

bt t 

bpi 

ANOP 

OpenFiag 

Closed 

pushlong WindowPtr 

_CioseWtndow 

stz OpenFiag 

Closed plb 

AnRTL rt I 

·------------------------------· 

* Handle NDA Actton Event * 
·------------------------------· 

The Act 10n 

phb 

phy 

phx 

322 

plb 

dec 

as! 

tax 

JSr 

ANOP 

A 

A 

<ProcTbl ,X> 

;save data bank 

;data bank = code bank 

;Is the window opened? 

;no-- already closed 

;Close 1t 

;flag 1t closed, too 

;restore data bank 

;save data bank 

;Save X and Y <address of Event Record> 

;<A ' s range 1s 1 • . 9, make tt 0 . . 8> 

;Index procedure table 

;Handle the NDA act1on event 



---------Desk Accessories ---------

pix 

ply 

plb 

rtl 

NDAUndo ANOP 

NDACut ANOP 

NDACopy ANOP 

NDAPaste ANOP 

NDACiear ANOP 

Ida 10 

NDAMenu ANOP 

NDACursor ANOP 

rts 

NDAEvent ANOP 

phd 

tsc 

ted 

Ida (2+2+11 

cmp 19 

bcs GtEq9 

A as I 

tax 

JSr <EventTbl ,X> 

GtEq9 pld 

rts 

MouseOown ANOP 

MouseUp ANOP 

KevDown ANOP 

:Restore X •.. 

; ... andY ... 

; ... and DBR 

:We don't handle any of these act1ons 

:flag the above as not handled 

:+2 bytes on stack <return address> 

:+2 bytes to stack 

:DP SP <tricky way to get DP access> 

;Grab Event 'What' code from stack 

;Event codes less than 9 supported here 

;=> 9, SO SkiP thiS 

:tndex 1nto event procedure table 

:call the event handler <update only> 

:Restore direct page 

323 



AutoKey ANOP 

Act1vate ANOP 

NotUsed rts 

Update ANOP 

pushlong WJndowPtr 

_BeginUpdate 

JSr NDARun 

pushlong W1ndowPtr 

_EndUpdate 

rts 

*------------------------------* 

* Ma1n NDA 'Run' Event * 
*------------------------------* 
NDARun ANOP 

pushlong #CurrPt 

_GetMouse 

Ida CurrPt 

cmp WorkPt 

Ida CurrPt+2 

sbc WorkPt+2 

bne Explode 

rts 

Chapter 13 

; Set 'II sRgn Update reg1on 

;Magnify screen area at mouse locat1on 

;empty update reg1on 

;get current mouse location 

;compare current and prev1ous po1nts 

;(could use EquaiPt, but thiS IS faster> 

;1f not equal, explode some pixels 

;else JUSt return 

Explode movelong CurrPt,WorkPt ;set po1nts 

pushlong WJndowPtr 

324 



---------Desk Accessories ---------

VLoop 

_StartDraw1ng 

stz 

stz MaxY 

moveword #16,VCount 

_HideCursor 

stz M1nX 

stz Max X 

1nc MaxY 

1nc MaxY 

movewora CurrX,Xposn 

moveword #32.HCount 

;Draw 1n NDA w1ndow 

;init Y rectangle coordinates 

;Explode 16 l1nes down 

;turn off the po1nter 

;1n1t rectangle X params 

;adjust Y coora rectangle 

;+2 

;reset X posn 

; ini t honz. counter 

HLoop pha ; resu I t space 

pushlong WorkPt 

_GetPixel 

_SetSol 1dPenPat 

add #3,MinX,MaxX 

pushlong #TheRect 

_PalntRect 

moveword MaxX,M1nX 

1 nc XPosn 

dec HCount 

bne HLoop 

moveword MaxY,M1nY 

1nc YPosn 

dec VCount 

bne VLoop 

;grab the p1xel at current X,Y po1nt 

;set the pen color to 1t 

;draw the rectangle 

;next block over 

;next l1ne down 

_ShowCursor ;turn cursor back on 

movelong CurrPt,WorkPt ;copy po1nts for next pass comparison 

rts 

325 



Chapter 13 ---------

·------------------------------· 

* Data Section * 
*------------------------------* 

TheRect 

M1nY 

MinX 

MaxY 

Max X 

VCount 

HCount 

WorkPt 

YPosn 

XPosn 

CurrPt 

CurrY 

ProcTbl 

EventTbl 

326 

ANOP 

ds 

ds 

ds 

ds 

ds 

ds 

ANOP 

ds 

ds 

ANOP 

ds 

de 

de 

oe 

de 

oe 

de 

de 

de 

de 

de 

de 

de 

de 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 ' NDAEven t ' 

1 ' NDARun ' 

1 ' NDACursor ' 

1 ' NDAMenu ' 

1 ' NDAUndo ' 

1 ' NDACut ' 

1 ' NDACopy ' 

I ' NDAPaste ' 

1 ' ND,l,C\ear ' 

1 ' Not Used ' 

1 ' MouseDown ' 

1 ' MouseUp ' 

l' KeyDown ' 

;exploded pixel rectangle 

:explosion counters 

;current mouse coordinate POint 

;NDA event handler 

;actual NDA code <guts> 

;the rest of these are unused 

nothing 

Mouse Down 

Mouse Up 

Key Down 



--------- Desk Accessories 

OpenFiag 

W1 nctowPtr 

wT1tle 

W1nctowRec 

WRecEnd 

de 

de 

de 

de 

etc 

ds 

as 

str 

de 

etc 

etc 

de 

de 

de 

de 

de 

etc 

de 

de 

de 

de 

etc 

de 

de 

etc 

de 

de 

ANOP 

END 

I ' NotUsect ' 

l ' AutoKey ' 

i ' Upctate ' 

l ' NotUsed ' 

1 ' Activate ' 

2 

4 

' Magnify ' 

i ' WRecEnct-WindowRec ' 

1' %1100000010100000 ' 

i4 ' wTitle ' 

14 ' 0 ' 

1' 0,0,0,0' 

14 ' 0 ' 

1' 0 ,0 ' 

I ' 0 ,0 ' 

I ' 0 ,0 ' 

I ' 0 ,0 ' 

I ' 0 ,0 ' 

14 ' 0 ' 

I ' 0 ' 

14 ' 0 ' 

14 ' 0 ' 

14 ' 0 ' 

i ' 40. 80. 72. 176 ' 

14 ' -1 ' 

i4 ' 0 ' 

nothing 

Auto Key 

Upctate * <only one hanctlect> 

nothing 

Act1vate 

;Boolean: NDA Window open 

;GrafPortPtr: Winctow port 

;Title of NDA Window 

:Size of parameter table 

;Winctow frame b1ts 

;Po1nter to title 

;Ref Con 

;Zoom rect 

;Color table po1nter 

;Or1gin <Y 8. X> 

:Data area <V 8. H> 

;Grow box max <V 8. H> 

;Scroll range <V 8. H> 

:Pag1ng range <V 8. H> 

:Info bar RefCon 

;Info bar height 

:Def1nit1on procedure 

;Info bar ctraw rout1ne 

;Content draw rout1ne 

;POSition 

:Topmost plane 

;W1ndow storage po1nter 

flag 

po1nter 

327 



-

------------------Chapter13------------------

Chapter Summary 
All the tools found in the programs in this chapter are discussed in 
detail in other chapters of this book, as well as in Mastering the Ap
ple liGS Toolbox. None of them deal exclusively with the Desk Man
ager, however. 

328 



...-----Chapter 14 --------. 

Pro DOS 

Although this book is about 
mastering advanced program
ming techniques for the Tool
box on the Apple IIGS, without 
ProDOS such a mastery would 
be nearly impossible. Though 
they sound like two different 
beasts, ProDOS and the Tool
box often cross paths. For ex
ample, ProDOS is used by the 



---------Chapter 14 ---------

Standard File Operations tool set, Font Manager, and the Tool Lo
cator. Those tool sets rely upon ProDOS to perform many of their 
functions. 

The Operating System 
The Professional Disk Operating System, dubbed ProDOS, is little 
more than a handful of commands to manipulate disk drives. It 
isn't really an operating system in the classical sense, but it is a 
smart software interface between an application and a storage 
device. 

Fully detailing the workings and command structure of 
ProDOS is beyond the scope of this book, so this chapter will have 
to serve simply as an introduction to ProDOS 16. In it, you will see 
how to perform a ProDOS command in machine language, C, and 
Pascal. Included are two lengthy sections that list the ProDOS 
commands and their parameters. The Standard File Operations tool 
set is also covered, and a sample program in machine language, C, 
and Pascal gives you a working example of how ProDOS is used in 
a real-life situation. Finally, the chapter is wrapped up with a list of 
ProDOS 16 error codes. 

Other Texts 
If you'r~ familiar with the way ProDOS 8 or other disk operating 
systems work, you'll find this chapter a useful reference. But, if 
you've never worked with file management, it's suggested you 
check out a programmer's tutorial to working with ProDOS. Some 
books worthy of mention are 

Apple lies ProDOS 16 Reference, Apple Computer, 1987. Addison
Wesley. 

Beneath Apple ProDOS, Worth and Lechner, 1984. Quality Software. 

A note to ProDOS 8 programmers. You're probably familiar 
with ProDOS 8, the eight-bit version of ProDOS released by Apple 
Computer in late 1983. ProDOS 8 is the operating system that cur
rently hosts the majority of software for the Apple II series of com
puters, including such popular programs as AppleWorks. But, since 
ProDOS 8 is geared toward the 64K architecture of earlier Apple 
lis, it's inadequate for working with the great expanses of memory 
and features of the Apple IIGS. ProDOS 16 takes full advantage of 
the memory you have installed in your computer. 

330 



---------- ProDOS ----------

Programmers well versed in the workings of ProDOS 8 will be 
relieved to know that ProDOS 16 is similar to ProDOS 8 in most 
respects and is better in many. It's far easier to program than 
ProDOS 8, even though it's more sophisticated. Function calls are 
made in a familiar manner, the carry flag indicates that an error oc
curred, and so forth . 

There are many new features along with the basic familiarity. 
Among other things, parameter tables no longer begin with a count 
byte. It was the intent of ProDOS 8 to verify the parameter table 
for a call by making sure the count byte was correct. In a way, this 
is useless, because the program will probably crash whether the 
count byte is wrong or the parameter table is referenced incorrectly. 

Some of the calls have been renamed, simplified, or have 
slightly different parameters. Some new calls have been added to 
make disk operations and file management easier than ever before. 

A Call to ProDOS 
Before you can use the functions in ProDOS 16, you must first boot 
a disk formatted and set up for ProDOS 16, such as the System 
Disk you received when you bought your IIGS. (See Chapter 3 for 
details on how a ProDOS 16 disk is set up.) 

Once loaded, ProDOS 16 can be accessed from machine lan
guage by making a long jump to a subroutine at location $E100A8. 
For example: 

jsl $ElOOA8 

This address is known as the ProDOS 16 Machine Language 
Interface (MLI) vector. Calls to the MLI vector are made in full na
tive mode. Your program should preserve the accumulator because 
ProDOS 16 will store an error result in the A register after each 
ProDOS call is made. (More on this later.) All other registers are 
preserved. 

A call to ProDOS is followed by two arguments: 

• A command number (word) 
• A pointer to a parameter list (long) 

These arguments are discussed later in this chapter, but, for 
now, here is a typical ProDOS 16 call : 

jsl $ElOOA8 ;Call the ProDOS 16 MLI 
de 1'$29 ' ;$29 = "Quit" command number 
de 14'QParms' ;long pointer to parameter list 

331 



----------Chapter 14 ----------

It might appear to be insanely dangerous to use this format for 
a function call. You would think that after the JSL, the program 
counter would return to the arguments and careen straight into bit 
limbo. But in fact, ProDOS 16 will adjust the program counter so 
that it safely returns to the instruction following the long pointer 
argument. 

This means that you must always call the ProDOS 16 MLI via 
a JSL instruction, and six bytes of argument information must 
follow. 

Calling ProDOS from Machine Language 
As shown in the previous section, calling ProDOS from machine 
language is done by performing a JSL to $E100A8, followed by two 
arguments. But the call can be simplified at the source level by 
using assembler macros. The APW Assembler's M16.PRODOS 
macro file contains macro definitions for every ProDOS 16 
function. 

Like tool calls, ProDOS 16 macros begin with an underscore, 
followed by the name of the ProDOS command. The argument to 
the macro is the address of the parameter list. As an example of 
using macros for doing a ProDOS call, here's the ProDOS 16 Quit 
function in APW assembler format: 

_QUIT QParms ;ProDOS 16 quit fUnction call 

;meanwhile, somewhere else in the program: 

QParms de 14'0' ;longword of zero (no chaining) 
de 1'0' ;word of zero (no returning) 

The _QUIT macro actually expands to the equivalent assembly 
language statements shown here: 

jsl $ElOOA8 
de i'$29' 
de 14'QParms' 

It's obvious that macros can clean up your ProDOS 16 instruc
tions as well as they do for Toolbox calls. 

Calling ProDOS from C and Pascal 
Even though C and Pascal have their own built-in disk functions as 
part of their languages, your high-level programs can access 
ProDOS directly. The advantage is faster, more efficient programs. 

332 



---------- ProDOS ----------

The disadvantage is that your programs will be incompatible when 
ported to other computer environments. However, since your Desk
Top applications perform tool calls and other IIGS-specific opera
tions, it's probably safe to assume that source code compatibility 
has already been tossed out the window. 

A general note to C programmers: If your programs can avoid 
using any of the standard C library functions, including C's 
disk-related commands such as fopen( ), your executable pro
gram will be many times smaller. 

To make a ProDOS call in C, your program should include the 
prodos.h header file at the top of the program: 

#Include <prodos.h> 

This header file contains predefined symbols for error code num
bers, parameter list structures, and the ProDOS function call 
macros. 

To perform the ProDOS 16 Quit function inC, the following 
statement can be used: 

QUIT( &QParms ); 

Each ProDOS function call in C follows the naming conven
tions of ProDOS 16: The names of the C functions are the names 
of the ProDOS 16 commands, and they're always in capital letters. 

A ProDOS command inC requires just one argument: the ad
dress of the parameter list. The list is usually a structure containing 
the needed information to perform the call. Don't forget to place 
the ampersand (&) in front the structure name, or your program 
will crash. 

In order to use ProDOS in TML Pascal, include the ProDOS16 
unit symbol file in the USES portion of the program: 

USES QDintf, 
GSintf, 
ProDOS16, 
MlscTools; 

This makes all the ProDOS 16 functions available to your pro
gram. However, naming conventions for ProDOS 16 calls in TML 
Pascal are not as consistent. They all begin with "P16" and do not 

333 



----------Chapter 14 ----------

include underscores. The Quit call in TML Pascal is 

Pl6Parms.cha!nPath : = Str!ngPtr(O); 
Pl6Parms.returnF!ag : = 0; 
Pl6Qu!t( Pl6Parms ); 

Unfortunately, the arguments to the call are not straightfor
ward either. All arguments to ProDOS calls in TML Pascal are ref
erenced through a variant record, called P16Parrns in the above 
example, which is of P16PararnBlk type. Before a call can be made, 
the fields in the parameter list record must be filled. Setting up pa
rameter lists is discussed later. 

Checking for Errors 
After each ProDOS call, and depending on which language you're 
using, you can check for errors: 

Language Check for Errors 
Machine language Examine the carry flag 
C Check a variable 
Pascal Test the result of a function 

In machine language, if the carry flag is set, an error has occurred, 
and the accumulator will contain an error code number, as you 
carne to expect in Toolbox calls. For example: 

jsl ProDOS16MLI ;call the ProDOS 16 MLI ($ElOOA8) 
de !'READ-BLOCK' ;function number 
de !4'RBParms' ;parameter list pointer 
bee NoError ;If carry Is clear, no error occurred 

jmp HandleD!skErr ;branch to error handler If carry set 

No Error 

In C, the _toolErr global variable holds a nonzero value after 
making a ProDOS 16 call if an error occurred. The value in 
_toolErr is the ProDOS 16 error code number. 

READd3LOCK( &:RBParms ); 
If ( _toolErr ) 

HandleD!skErr( ); 

/* Ma.ke the froDOS 16 call •; 
!' If an error occurred ... •; 
!' ... handle !t. •; 

With TML Pascal, a nonzero value returned by the IOResult 
function indicates that an error occurred. Any positive, nonzero 
value is a ProDOS 16 error code number. 

334 



---------- ProDOS ----------

Pl6ReadBlock( Pl6Parms ); 
IF IOResult > 0 THEN 

HandleDlskErr; 

{ Make the ProDOS 16 call } 
{ If an error occurred. . . } 
{ ... then handle lt. } 

Error codes are provided at the end of the chapter. 

ProDOS 16 Functions 
Table 14-1 is a list of the function names and numbers supported 
by ProDOS 16 Version 1.3, along with a short description of each 
command. 

Table 14-1. Functions Supported by ProDOS 16 

Housekeeping Functions 
$01 CREATE 
$02 DESTROY 
$04 CHANGE_PATH 

$05 SET _FILE_INFO 
$06 GET_FILE_INFO 

$08 VOLUME 
$09 SET _PREFIX 
$0A GET_PREFIX 
$0B CLEAILBACKUP _BIT 

File Access Functions 
$10 OPEN 

$11 NEWLINE 

$12 READ 
$13 WRITE 
$14 CWSE 
$15 FLUSH 
$16 SET_MARK 
$17 GET_MARK 
$18 SET_EOF 
$19 GET_EOF 
$1A SET_LEVEL 

$1B GET_LEVEL 
$1C GET_DIILENTRY 

Creates new files or directories 
Destroys files or empty directories 
Renames a file or directory, or moves its 
link 
Sets various attributes to a file 
Returns the information set by 
SET _FILE_INFO 
Returns information about a disk volume 
Sets one of eight possible prefixes 
Gets one of the eight internal prefixes 
Clears the backup bit on a file 

Opens an existing file for reading or 
writing 
Specifies the newline character when 
reading 
Reads data from an opened file 
Writes data to an opened file 
Closes any or all opened files 
Writes any unwritten data to a file 
Changes the current position in a file 
Returns the current position in a file 
Sets the end-of-file position for a file 
Gets the end-of-file position for a file 
Sets the system file level for subsequent 
access 
Gets the current system file level 
Gets information about entries in a 
directory 

335 



---------Chapter 14 ---------

Device Functions 
$20 GET_DEV _NUM 

$21 GET_LAST_DEV 
$22 READ_BLOCK 

$23 WRITE_BLOCK 

$24 FORMAT 
$25 ERASE 
$2C D_INFO 

Environment Functions 
$27 GET_NAME 

$28 GET_BOOT_ VOL 

$29 QUIT 
$2A GET_ VERSION 

Interrupt Control Functions 
$31 ALLOC_INTERRUPT 

Gets the device number for a device or 
volume 
Gets the last-accessed device number 
Reads a 512-byte block from a device into 
memory 
Writes 512 bytes from memory to a block 
device 
Formats a device in various DOS formats 
Erases a formatted device 
Converts a device number to its device 
name 

Gets the pathname of the active 
application 
Gets the volume name where PRODOS 
was launched 
Exits the current application 
Returns the version number of ProDOS 16 

Allocates an interrupt handler with 
Pro DOS 

$32 DEALLOC_INTERRUPT Deallocates an interrupt handler from 
Pro DOS 

Note that the names given here are the official names used by 
Apple Computer. C programmers can use these names just as 
they are. To use them in assembler macros, just put an under
score in front (for instance, _ERASE). For TML Pascal pro
grammers, prefix each command with the letters P16 and 
leave out any underscores (for instance, P16GetBootVol). 

Did you notice that some function numbers appear to be miss
ing? This isn't a mistake. Apple Computer has intentionally placed 
"holes" in the ProDOS 16 command table for future enhancements 
and additions. 

Building a Parameter List 
Ev~FY PmDO§ Eall f@~UiF~§ a J3aFaffi@t@F li§t in gr9@r t9 I3a§§ infm= 
mation between ProDOS and your program. In machine language, 
the address of the parameter list follows the command number im-

336 



---------- ProDOS ----------

mediately after the JSL $E100A8. In C and Pascal, the argument to 
each ProDOS 16 function is the address of the corresponding pa
rameter list. 

Values in a parameter list consist of the types listed in Table 
14-2. 

Table 14-2. Values in a Parameter List 

Type 
Constant 
Constant 
Pointer 

Size 
Word (2) 
Long (4) 
Long (4) 

Sample Uses 
A flag, code number, bit field, reference number 
File offset, block number, and so on 
Address of a pathname string or storage buffer 

Note that unlike ProDOS 8, only word and long-word values 
are used in parameter lists in ProDOS 16. 

A long pointer to a pathname, such as a prefix, the name 
of a file, device, or volume, is a Pascal-style string: It begins 
with a count byte. All parameters that reference strings are 
long pointers to buffers. Never does a parameter in the list 
contain string data. 

The layout of a sample parameter list for the OPEN ($1 0) 
function is demonstrated in Table 14-3. 

Table 14-3. Sample Parameter List 

Size Offset 
Word 00-01 
Long 02-05* 
Long 06-09 

Parameter 
ref_num 
pathname 
io_buffer 

Description 
Reference number 
Long pointer to filename string 
Address of 1/0 buffer 

• You must provide information in this field before making the call to ProDOS. The other 
fields indicate parameters returned by ProDOS. These returned values are stored in the pa
rameter block when the call is complete. In order to make the OPEN call, all you need to do 
is supply the pathname pointer, the second parameter. After the call is made, ProDOS fills in 
the reLnum and io_buffer fields. Offsets are always shown in hexadecimal. 

An example of a parameter list in use is demonstrated by this 
subroutine in assembly language. It makes the OPEN call and ref
erences the parameter list, OParms: 

DoOpen 

Okay 

_OPEN OParms 
bee Okay 

jmp 

rts 

HandleD!skErr 

;Open the file 
;If carry ls clear, the file ls open 

;Handle the error 

;The program then does whatever 

337 



---------Chapter 14 ---------

OParms ANOP ;Parameter list for the OPEN fUnction 
Oref_num ds 2 ;ref_num returned by ProDOS 
Opathname de i4'FileName' ;long pointer to the fllename to open 
Olo_buf ds 4 ;io_buffer address returned by ProDOS 

FileName str '/SAMPLE/FILE' ;Name of file to open 

This same routine in C could be written like this: 

OpenRec OParms = { o, 

DoOpen() 
{ 

OPEN( &OParms ); 
if ( _too!Err ) 

HandleDlskErr; 

"'-. pjSAMPLE/FILE" 
NULL}; 

/" ref_num • 1 
/" pathname • 1 
/" io_buf •; 

And, in TML Pascal, an equivalent procedure would be 

PROCEDURE DoOpen; 

VAR OParms: Pl6ParamBlk; 
FileName: String; 

BEGIN 
FileName : = '/SAMPLE/FILE'; 
0Parms.pathname2 : = @FileName; 
Pl60pen( OParms ); 
IF IOResult > 0 THEN 

HandleDlskErr; 
END; 

Using the parameter table for the CIDSE function, shown in 
the next section, see if you can figure out how to close the file 
opened above by including just a single function call. It's easier 
than you might think. 

ProDOS 16 Parameter Tables 
The following tables describe the parameter lists for every ProDOS 
16 call: 

If you're programming in a high-level language, check your 
compiler's manuals or support files for the appropriate names 
of each field in a parameter list record. 

338 



---------- ProDOS ----------

Table 14-4. Parameter Lists for Every ProDOS Call 

$01 CREATE 
Size Offset Parameter 
Long 00-03* pathname 
Word 04-05* access 
Word 06-07* file_ type 
Long 08-0B* aux._ type 
Word OC-OD* storage_type 
Word OE-OF* create_date 

Word 10-11 * create_time 

$02 DESTROY 
Size Offset Parameter 
Long 00-03* pathname 

$04 CHANGE_PATH 

Explanation 
Address of pathname to create 
Access bits (that is, read, write, destroy) 
Filetype code number ($00-$FF) 
Auxiliary filetype code ($0000-$FFFF) 
Storage classifier ($01-$0D) 
Date when file was created (usually 
$0000) 
Time when file was created (usually 
$0000) 

Explanation 
Address of pathname to delete 

Size Offset Parameter Explanation 
Long 00-03* pathname Pathname to rename or move 
Long 04-07* new_pathname New pathname or location 

$05 SET _FILE_INFO 
Size Offset Parameter 
Long 00-03* pathname 

Word 04-05* access 
Word 06-07* file_ type 
Long 08-0B* aux._ type 

Word OC-OD* unused 
Word OE-OF* create_date 
Word 10-11 * create_time 
Word 12-13* mod_date 
Word 14-15* mod_ time 

$06 GET _FILE_INFO 
Size Offset Parameter 
Long 00-03* pathname 

Word 04-05 
Word 06-07 
Long 08-0B 

access 
file_ type 
aux._ type 

Explanation 
Address of pathname to get information 
on 
Access bits 
Filetype code number 
Auxiliary type (or totaLblocks if DIR 
file) 

Date when file was created 
Time when file was created 
Date when file was modified 
Time when file was modified 

Explanation 
Address of pathname to get information 
on 
Access bits 
Filetype code number 
Auxiliary type (or totaLblocks if DIR 
file) 

339 



----------Chapter 14 ----------

Word OC-OD 
Word OE-OF 
Word 10-11 
Word 12-13 
Word 14-15 
Long 16-19 

$08 VOLUME 
Size Offset 
Long 00-03* 
Long 04-07 
Long 08-0B 

Long OC-OF 

Word 10-11 

storage_type 
create_date 
create_time 
mocLdate 
mocLtime 
blocks_used 

Parameter 
dev_name 
vol_name 
totaLblocks 

free_blocks 

$09 SET _PREFIX 
Size Offset Parameter 
Word 00-01* prefix_num 

Long 02-05* prefix 

$0A GET _pREFIX 
Size Offset Parameter 
Word 00-01* prefix_num 

Long 02-05* prefix 

$0B CLEAR_BACKUP _BIT 
Size Offset Parameter 
Long 00-03* pathname 

$10 OPEN 
Size Offset 
Word 00-01 
Long 02-05* 
Long 06-09 

$11 NEWLINE 

Size Offset 
Word 00-01* 
Word 02-03* 

340 

Parameter 
ref_num 
pathname 
io_buf 

Parameter 
ref_num 
enable_mask 

Storage classifier 
Date when file was created 
Time when file was created 
Date when file was modified 
Time when file was modified 
Blocks in used by this file (or volume) 

Explanation 
Name of device to get information on 
Address of buffer to store volume name 
Volume's total capacity in 512-byte 
blocks 
Number of unused blocks on the 
volume 
Filesystem ID (identifies disk format) 

Explanation 
Number of the prefix to set 
($0000-$0007) 
Address of prefix string 

Explanation 
Number of the prefix to get 
($0000-$0007) 
Address of returned prefix storage 
buffer 

Explanation 
Address of pathname to have its bit 
cleared 

Explanation 
Opened file's reference number 
Address of pathname to open 
Address of io_buffer for this file 

Explanation 
Opened file's reference number 
Logical AND bitmask used against each 
byte 



---------- ProDOS ----------

Word 04-05"' newline_char 

$12 READ 
Size 
Word 
Long 

Offset 
00-01"' 
02-05"' 

Long 06-09"' 
Long OA-OD 

$13 WRITE 
Size Offset 
Word 00-01"' 
Long 02-05"' 
Long 06-09"' 
Long OA-OD 

$14 CLOSE 
Size Offset 
Word 00-01* 

$15 FLUSH 

Parameter 
ref_num 
data_buffer 

requesLcount 
transfer_count 

Parameter 
ref_num 
data_buffer 
request_count 
transfer_count 

Parameter 
ref_num 

Size Offset Parameter 
Word 00-01"' reLnum 

$16 SET _MARK 

Size Offset Parameter 
Word 00-01"' reLnum 
Long 02-05"' position 

$17 GET_MARK 
Size Offset Parameter 
Word 00-01"' ref_num 
Long 02-05 position 

$18 SET_EOF 

Size Offset Parameter 
Word 00-01"' ref_num 
Long 02-05"' eof 

$19 GET_EQF 

Size Offset Parameter 
Word 00-01"' ref_num 
Long 02-05 eof 

The newline character (in lower byte) 

Explanation 
Opened file's reference number 
Address of buffer where data is read 
into 
Number of bytes to read from file 
Actual number of bytes read from file 

Explanation 
Opened file's reference number 
Address of data to write into the file 
Number of bytes to write 
Actual number of bytes written 

Explanation 
Opened file's reference number 

Explanation 
Opened file's reference number 

Explanation 
Opened file's reference number 
How far into the file to seek 

Explanation 
Opened file's reference number 
Current position in file 

Explanation 
Opened file's reference number 
End-of-file position (file size in bytes) 

Explanation 
Opened file's reference number 
End-of-file position (file size in bytes) 

341 



---------Chapter 14 ---------

$1A SET _LEVEL 
Size Offset Parameter 
Word 00-01* level 

$1B GET_LEVEL 
Size Offset Parameter 
Word 00-01 level 

$1C GET_DIILENTRY 
Size Offset Parameter 
Word 00-01* ref_num 
Word 02-03* reserved 
Word 04-05* base 

Word 06-07* displacement 
Long 08-08* filename 
Word OC-OD entry_num 
Word OE-OF file_ type 
Long 10-13 eof 
Long 14-17 blocks_ used 
Word 18-19 create_date 
Word 1A-1B create_time 
Word 1C-1D mocLdate 
Word 1E-1F mocLtime 
Word 20-21 access 
Long 21-24 aux..._ type 
Word 25-26 file_sys_id 

$20 GET_DEV_NUM 
Size Offset Parameter 
Long 00-03* dev_name 
Word 04-05 dev_num 

$21 GET_LAST_DEV 
Size Offset Parameter 
Word 00-01 dev_num 

$22 READ_BWCK 
Size Offset Parameter 
Word 00-01* dev_num 
Long 02-05* data_buffer 
Long 06-09* blocLnum 

342 

Explanation 
New system file level for opens and 
closes 

Explanation 
Current system file level 

Explanation 
Open DIR file's reference number 
Must be set to $0000 
Positive or negative code for 
displacement 
Entry displaeem.ent frBm eurrent tmtry 
Address of filename buffer 
Entry number 
Filetype of the returned entry 
End-of-file position (file size in bytes) 
Number of blocks in use by this entry 
Date file was created 
Time file was created 
Date file was modified 
Time file was modified 
Access bits 
Auxiliary filetype 
Filesystem ID 

Explanation 
Address of device name string 
The device number of the named device 

Explanation 
Last accessed device number 

Explanation 
Device number to read from 
Address of 512-byte data buffer 
Block number to read 



---------- ProDOS ----------

$23 WRITE_BLOCK 
Size Offset Parameter 
Word 00-01* dev_num 
Long 02-05* data_buffer 
Long 06-09* blocLnum 

$24 FORMAT 
Size Offset Parameter 
Long 00-03* dev_name 
Long 04-07* vol_name 

Word 08-09* file_sys_id 

$25 ERASE 
Size Offset Parameter 
Long 00-03* dev_name 
Long 04-07* vol_name 

Word 08-09* file_sys_id 

$27 GET_NAME 
Size Offset 
Long 00-03* 

Parameter 
data_buffer 

$28 GET _BOOT_ VOL 
Size Offset 
Long 00-03* 

$29 QUIT 

Parameter 
data_buffer 

Size Offset Parameter 
Long 00-03* pathname 
Word 04-05* flags 

$2A GET_ VERSION 
Size Offset 
Word 00-01 

$2C O_INFO 

Parameter 
version 

Size Offset Parameter 
Word 00-01* dev_num 
Long 02-05* dev_name 

Explanation 
Device number to write to 
Address of 5 12-byte data buffer 
Block number to write 

Explanation 
Address of device name to format 
Address of the device's new volume 
name 
Filesystem ID code 

Explanation 
Address of device name to erase 
Address of the device's new volume 
name 
Filesystem ID code 

Explanation 
Address of application's pathname 
buffer 

Explanation 
Address of boot volume's name buffer 

Explanation 
Address of pathname to quit to 
Return and Restart flags in bits 15 & 14 

Explanation 
Major and minor release versions of 
ProD OS 

Explanation 
Device number to convert 
Address of 32-byte device name buffer 

343 



----------Chapter 14 ----------

$31 ALI.OC_INTERRUPT 
Size Offset Parameter Explanation 
Word 00-01 inLnum Interrupt reference number 
Long 02-05* inl-code Address of interrupt handling routine 

$32 DEALI.OC_INTERRUPT 
Size Offset Parameter Explanation 
Word 00-01* inl-num Interrupt reference number 
• You must provide information in this field before making the call to ProDOS. The other 
fields indicate parameters returned by ProDOS. These returned values are stored in the pa
rameter block when the call is complete. In order to make the OPEN call, all you need to do 
is supply the pathname pointer, the second parameter. After the call is made, ProDOS will 
fill in the reLnum and io_buffer fields. Offsets are always shown in hexadecimal. 

Standard File Operations 
Tool set 23 ($17), the Standard File Operations tool set, contains a 
handful of functions that make file selection easier for both the 
programmer and the user of the program. These tools work in the 
super-hi-res graphics displays in 320 or 640 modes and present the 
user with a dialog box containing a list of selectable filenames. 

Figure 14-1. A Standard File Operations Dialog Box 

Fix which fi I e: 
8 I" AI" A pwl" Fixer I" 

D Fixdisk_C m 
D Fixer.H 
D Fixevent.C 
D Fixmain.C 
Cl Fixobj 
D Fixtoo I s.C 
Cl Makefi 1 e 

( Disk 

Open 

( Close 

Cancel 

) 

) 
) 

) 

In addition to the standard housekeeping calls (StartUp, Status, 
and so on) the Standard File Operations tool set provides the func
tions shown in Table 14-5. 

344 



---------- ProDOS ----------

Table 14-5. Functions Provided by Standard File Operations Tool Set 

Description 
Allows the user to select a file to open 
Lets the user choose a file to be saved 

ID 
$0917 
$0A17 
$0817 
$0C17 
$0017 

Function 
SFGetFile 
SFPutFile 
SFPGetFile 
SFPPutFile 
SFAllCaps 

Same as SFGetFile, except uses a custom dialog 
Same as SFPutFile, except uses a custom dialog 
Chooses uppercase or mixed case filename displays 

Note that these are toolbox calls, not ProDOS 16 commands. 

SFGetFile 
Use SFGetFile when your program prompts the user to select a file 
to open. Some examples follow. 

In machine language: 

push word 
push word 
pushlong 
pushlong 
pushlong 
pushlong 
_SFGetFlle 

In C: 

#WhereX 
#WhereY 
#Prompt 
#FllterProc 
#TypeList 
#Reply 

;left coordinate of dialog box 
;top coordinate of dialog box 
;address of prompt string 
;address of filter procedure 
;address of valid flletypes list 
;address of reply record 

SFGetFlle( whereX, whereY, ""- pPrompt", &fllterProc, &typeList, &reply); 

In Pascal: 

SFGetFlle( WhereX, WhereY, 'Prompt', @FllterProc, @TypeList, Reply); 

The WhereX and WhereY values specify the position on the 
screen where the dialog box will be placed. 

The Prompt string is a Pascal string which is displayed at the 
top of the dialog box. This should indicate to the user the purpose 
of the dialog box by giving a one-line instruction, such as Select a 
file to open:. 

Your program may not want the user to be able to select cer
tain files. So you can write your own filter procedure to determine 
how files are to be displayed in the list. If the address of FilterProc 
is 0, no filter procedure is called. Otherwise, your filter routine is 
called for every entry to be placed into the scrolling filename list. 

345 



---------Chapter 14 ---------

FilterProc is invoked in the following manner by the Standard File 
tool set: 

push word 
pushlong 
jsl 
pull word 

#Q 

#Curren tEn try 
YourFllterProc 
ResultCode 

;result space that you will fill ln 
;the address of a directory entry 
;then your fllterlng routine ls called 
;pull result code 

As shown, your filter routine must access the two arguments 
on the stack in order to specify how the current directory entry 
should be placed in the list. Note that when your filter routine is 
called, the stack will contain a long return address, followed by a 
long pointer to a directory entry structure and a word of result 
space. 

The result that your filter routine returns is one of three 
values: 

Value 
0 
1 
2 

Meaning 
Do not place the entry into the dialog window 
Place it in the window, but make it dimmed and not selectable 
Place it in the window and allow it to be selected 

Since the filter procedure must access each file's directory 
record, you need to know the structure of this 39-byte buffer. This 
structure is shown in Table 14-6. 

Table 14-6. Structure of Directory Record 

Offset Field Directory Entry Description 
00 storage_ type Storage classifier (upper nibble) 

name_length Filename length (lower nibble) 
01-0F file_name String of characters for filename 
10 file_ type Filetype code ($00-$FF) 
11-12 key_pointer Pointer to index block 
13-14 blocks_used Number of blocks in use by this entry 
15-17 eof End-of-file position (file's size in bytes) 
18-19 create_date Date file was created 
1A-1B create_time Time file was created 
1C version Version of ProDOS that created this file 
1D min_ version Oldest version of ProDOS that can use this file 
1E access Access bits 
1F-20 aux_type Auxiliary filetype 
21-22 moc.:Ldate Date file was last modified 
23-24 moc.:Ltime Time file was last modified 
25-26 header_pointer Block number of this file's parent directory 

346 



---------- ProDOS ----------

A few fields in this record contain byte values, so you might 
have to put the processor in eight-bit mode for some operations. 

The most straightforward way to filter out a directory entry is 
done as shown in the following routine. It checks the filetype of 
the current entry to see how the entry should be displayed: 

D1rEntry equ $FC ;direct page storage for a long pointer 

MyFllter pulllong Return ;Pull RTL address off stack 
pulllong D1rEntry ;set up a long pointer to the entry record 
pla ;unload result space from stack for now 
ldy #$10 ;Index Into flletype field of entry record 
lda [D1rEntry),Y ;grab the flletype byte (and next byte) 
and #$FF ;make only the flletype byte significant 
ldx #$00 ;X=O: do not display (assume BAD) 
cmp #$01 ;Is It a BAD block file? 
beq Done ;yes 

lnx ;X= l : display as dimmed (not selectable) 
cmp #$0D ;Is It a DIR file? 
beq Done ;yes 

lnx ;X= 2: display and make selectable 
Done phx ;push filter code on stack 

pushlong Return ;put return address back on stack 
rtl ;and return to It 

Return ds 4 ;Storage for return address 

Once control return5 to SFGetFile, it pull5 the filter code off 

the stack and knows how to handle the entry. 
Another way to filter entries is to provide a list of acceptable 

filetypes by pointing to a TypeList table. Only the file entries 
which have types listed in the table will be placed into the dialog 
box. A TypeList begins with a count byte (not a word) followed by 
a string of byte values indicating valid filetypes. For example: 

TypeLlst de ll'4','04,0B,lA,BO' ;Four document types 

If you specify a null address for a TypeList, or the list begins 
with a count byte of 0, this added filtering method is ignored. But, 
if you specify both a FilterProc and a TypeList, your filter proce
dure will be called only for the entries that satisfy the file types in 
the TypeList. 

The final argument to the SFGetFile tool call is the address of 
a Reply record in the format shown in Table 4-6. 

347 



---------Chapter 14 ---------

Table 4-6. Format of the Reply Record 

Offset Field Name Reply Record Description 
$00-01 good True if Open clicked; false if Cancel clicked 
$02-03 file_type Filetype code of the file selected 
$04-05 aux_file_type Auxiliary filetype code 
$06-15 filename Name selected from name list (16 bytes) 
$16-96 fulLpathname Full pathname to file (129 bytes) 

This record is filled in with values by SFGetFile whenever the 
user clicks the Open or Cancel buttons. 

Your program will know whether it should continue with file 
operations by examining the good field of the Reply record. If it 
contains a false (0) value, the program knows that the user clicked 
Cancel. Any nonzero value means the Open button was clicked. 

SFGetFile also returns the filetype and aux_file_type codes for 
the file selected. This information might be useful to your program. 

The filename and fulLpathname fields are Pascal-style strings. 
The IS-character filename is the name of the file selected as it was 
shown in the scrollable list (mixed case and all). The fulLpathname 
is a fully qualified pathname to the file selected. 

After a file is chosen, the current ProDOS prefix is set to the 
subdirectory (or, the folder) that contains the selected file. 

SFPutFile 
Use the SFPutFlie function to allow the user to select a file wlum. 
saving information to disk. If the user selects a file that already ex
ists, SFPutFile will bring up a second dialog box on its own to ask 
the user whether it's okay to overwrite the existing file. 

In machine language: 

push word 
push word 
pushlong 
pushlong 
push word 
pushlong 

In C: 

#WhereX 
#WhereY 
#Prompt 
#QrlgName 
#MaxLen 
#Reply 

;left edge of dialog 
;top edge 
;address of prompt string 
;address of original filename 
;maximum number of characters in name 
;address of reply record 

SFPutFlle( whereX, whereY, ""-pPrompt", 8eorigName, maxLen, &reply); 

In Pascal: 

SFPutFlle( WhereX, WhereY, 'Prompt', @OrigName, MaxLen, Reply ); 

348 



---------- ProDOS ----------

The WhereX and WhereY values specify the position on the 
screen where the dialog box will be placed. 

The Prompt string is a Pascal string and should provide a mes
sage, such as Save document to:, giving the user an idea of the oper
ation at hand. 

OrigName is the address of a Pascal string to be placed into 
the EditLine item in the SFPutFile dialog. OrigName normally 
points to the filename returned by SFGetFile when the file was first 
opened. 

MaxLen indicates the number of characters that can be entered 
in the EditLine item. This is usually 15 since the current implemen
tation of ProDOS limits filenames to 15 characters. 

The last argument is the address of the Reply record as de
scribed in the SFGetFile section. Both SFGetFile and SFPutFile use 
the same Reply record format. 

SFAllCaps 
Normally filenames are shown in mixed case in the scrolling list of 
names in a Standard File dialog box, but if you prefer all upper
case, use the SFAllCaps function with a Boolean value of true (any 
nonzero value). A false value (0) indicates mixed case. 

In machine language: 

pushword #l ;true: show names ln all uppercase 
_SFAllCaps 

In C and Pascal: 

SFAllCaps( TRUE ); 

A Nonredundant Example 
Because ProDOS calls occupy a relatively small portion of the sam
ple program for this chapter, things will be handled a bit differ
ently. Rather than providing three huge programs in machine 
language, C, and Pascal, only one program is presented in its en
tirety. C was chosen for the job because it is midway between the 
low-level control of machine language and the high-level ease of 
Pascal. The section containing the ProDOS calls is provided in both 
machine language and Pascal, however. 

The program listed below, CRC.C, is a 320-mode desktop pro
gram that calculates a cyclic redundancy checksum on the contents 
of a disk file. Unlike most of the other programs in this book, 

349 



----------Chapter 14 ----------

CRC.C uses no pull-down menus. Instead, the program is centered 
around the Standard File Operation's SFGetFile dialog box on the 
desktop. The user selects a file and clicks the Open button to begin 
the CRC calculation. To quit the program, the user simply clicks on 
the Cancel button. Putting a pull-down menu into a program like 
this would introduce an unnecessary step, so menus are left out. 

What in the world is a CRC? A CRC is a calculation on a piece 
of data that results in a unique 16-bit value. It's used mainly 
in data communications protocols to ensure the correct transfer 
of a file over less-than-pristine telephone connections. For 
everyday purposes, it can be used to quickly compare two files 
that are supposed to be identical to see if they are different. 

CRC.C 
This program demonstrates how to use the SFGetFile function to 
allow the user to select a file from disk. It will open the selected 
file, read through it, trap the famous "end-of-file" error, and close 
the file; a typical file-handling procedure. Note also how this pro
gram can easily be changed to run in 640 mode just by modifying 
two definitions near the top of the program. 

Program 14-1. CRC.C 

/4---------------------------------------------· 

* CRC.C * 

* Cycl 1c Redundancy Checksum Calculator * 

* Wr1tten by Morgan Dav1s 4 

·---------------------------------------------•1 

#1nclude ( types.h > 

#1nclude <locator.h > 

#1nclude ( memory.h > 

#1nclude <misctool .h > 

#1nclude <qulckdraw.h > 

#1nclude <qdaux.h > 

350 



---------- ProDOS ----------

lilncl ude 

llinclude 

llinclude 

llinclude 

ll1nclude 

llinclude 

llincl ude 

llinclude 

lldef ine 

lldef ine 

<event.h > 

<window.h > 

<llneedit.h > 

<control .h ) 

<dialog.h > 

<stdfile.h > 

<1ntmath.h > 

<prodos.h> 

Mode 320 

MasterSCB mode320 

I* Screen Mode (320 or 640> *I 

I* MaxWidth mode (320 or 640) *I 

ltdefine Center 

ldefine BoxWidth 

ldefine BoxHeight 

ldefine BoxX 

ldefine BoxY 

<<Mode - 1l I 2> 

240 

I* Center p1xel column *I 

I* Dialog box s1ze & location *I 

70 

<Center- <BoxWidth I 2>> 

40 

lldefine BufferSize 2048 

GrafPortPtr DialogPort; 

WmTaskRec EventRec; 

SFReplyRec Reply; 

OpenRec OF'arms; 

FilelORec RF'arms; 

I* Size of file input buffer *I 

I* Dialog port *I 

I* Event Record Structure *I 

I* Standard File Record Structure *I 

I* Open File parameter 1 ist *I 

I* Read File parameter I 1st *I 

QuitRec QParms = { OL, 0 ); I* Quit parameter 1 ist *I 

Word UseriD, 

MemiD, 

CRC; 

I* Our User ID *I 

I* Memory Management ID *I 

I* The CRC *I 

351 



Word Tool1sUJ = { 6, 

14' 1), I* 

16, o, I* 0:·: 1 (H) 

18, (1, I* 

20, o, I* Ox!OO 

21' o, I* 

23, (l I* Ox!OO 

) ; I* Ox300 

I* Ox 100 

I* 

#define DF'ageSize Ox700L 

char •DF'Base; 

Chapter 14 ---------

W1ndow Manager • I 

Control Manager *I 

Ou1ckDraw I I Au :< • I 

LineEd1t *I 

D1alog Manager *I 

Standard File *I 

OuickDraw II *I 

Event Manager *I 

total d1rect page space is ••• *I 

I* D1rect Page base pointer *I 

ItemTemplate OKitem ok, 

) ; 

D1alogTemplate CRCBox 

) ; 

352 

BoxHeight-22, BoxWidth-68, 0, 0, 

button Item, 

.. \p OK", 

O, O, NULL 

BoxY, BoxX, BoxY+BoxHeight, BoxX+BoxWidth, 

I, 

NULL, 

~OK!tem, 

NULL 



---------- ProDOS 

/lf------------------------------lf 

* Handle Toolbox Errors * 
lf------------------------------lf/ 

ErrChk ( 1 I* Check for error, d1e 1f so., 

1f (_tool Err) SysFailMgr(_toolErr, NULL); 

/lf------------------------------lf 

* Manage D1rect Page Buffers * 

lf------------------------------lf/ 

char *GetDP(bytes) 

Word bytes: 

char *OldDP = DPBase; 

DPBase += bytes: 

return (OldDF' I ; 

I * Update base level po1nter lf/ 

I * Return old DPBase po1nter * ' 

1*------------------------------* 

* Start Up Tools * 
lf------------------------------lf/ 

StartUpTools(l 

Word GetDP () ; 

TLStartup(l; 

Mem!D = Wser!D 

I* Force words from GetDF' *I 

MMStartup ( 1 1 I 256; 

ErrChk ( 1; 

ErrChk ( 1; 

353 



,I 

r 
i 
t I 

1/ 
I 

'I 

---------Chapter 14 ---------

MTStartup(l: 

DF'Base = •<NewHandle<DPageSize, MemiD, Oxc005, NULL)); 

QDStartup<GetDP<Ox300l, MasterSCB, O, User!Dl; 

EMStartUp<GetDP<OxlOOl, Ox14, O, Mode, O, 200, UserlDl; 

SetForeColor<9l: 

SetBack Col or <Ol ; 

MoveTo<20,20l; 

DrawCStr1ng<"One moment ••• "); 

Im tCursor < l ; 

loadTools<Tool istl; 

QDAuxStartUp<l; 

WindStartUp<UseriDl; 

CtlStartUp<UseriD, GetDP<Ox100ll; 

LEStartUp<UseriD, GetDP(Ox100ll; 

DialogStartUp<UseriDl; 

SFStartUp(UseriD, GetDP<OxlOOll; 

Desktop<5, Ox40000030l; 

1•------------------------------· 
* Calculate CRC on a Buffer * 

·------------------------------•1 

ErrChk(l; 

ErrChk<l; 

ErrChk<l; 

ErrChk<l; 

ErrChk(l; 

ErrChk<l; 

ErrChk<l; 

I* A CRC is the result of a mathematical operation based on the 

ErrChk(): 

ErrChk(); 

ErrChk < l: 

ErrChk <); 

*coefficients of a polynomial when multiplied by x·16 then divided by 

*the generator polynomial <X.16 + X' 12 + X' 5 + 1l us1ng modulo two 

*arithmetic. That's okay, I don't understand it either. 

*I 

354 



---------- ProDOS ----------

CalcCRC <ptr, count> 

char *ptr; I* Pointer to start of data buffer *I 

Word count; I* Number of bytes to scan through *I 

Word x; 

do 

CRC *ptr++ << 8; I* XOR hi-byte of CRC w/ data *I 

for <x = 8· 
' X; --x) I* Then, for 8 bit sh1fts ••• *I 

If <CRC & Ox8CH)I)) I* Test hi order bit of CRC *I 

CRC CRC << 1 Ox1021; I* lf set,shift & XDR w/$1021 *' 

else 

CRC ~< = 1• 
' '* Else, just shift left once.*/ 

} wh1le <--count>; '* Do th1s for all bytes *I 

1*------------------------------* 

* Get CRC on the File * 
*------------------------------*1 

GetCRC \pathname) 

char *oathname; I* F'o1nter to full pathname *I 

Word Error; 

Boolean EDF =FALSE; 

char BLtffer(BufferSizel; 

OParms.openF'athname pathname; 

355 



·I 
I 

Chapter 14 

OPEN <&OParms> ; I* Open the f1le *' 

Error= _toolErr; 

if ( 1 Error) { I* If no error ... * I 

RParms.fileRefNum OF'arms.openRefNum; 

RF'arms.dataBuffer Buffer; 

RParms.requestCount = BufferS1ze; 

do 

READ <&RParms> ; I* ... read some data * I 

Error = _toolErr; 

if <Error! ( t * If error ... * I 

EOF = TRUE; I* flag EOF * I 

1f <Error eofEncountered ) i * EOF 1sn ' t fatal ... *I 

Error = 0; I* ... so zero error * I 

else 

CalcCRC<Buffer, RF'arms.transf erCount ) ; 

} wh i 1 e ( 1 EOF I ; 

CLOSE <&OParmsl ; I* Close the f1le *I 

return <Error >; I * And return error code * I 

1*------------------------------* 

* Show CRC 1n Modal Dialog * 
*------------------------------*1 

char 

*Errorl1s g = "F·roDOS Err or 1 Code " : 

Word Er ror; 

Wa!tCursor () ; 

356 



---------- ProDOS 

D1alogPort = GetNewModaiDlalog <•CRCBoxJ : 

SetPort iD1alogPort 1 : 

MoveToC10,20); 

DrawCString <"Getting CRC on "I ; 

DrawStr1ngCReply.filenameJ; 

DrawCStrtng(" ... "); 

MoveToCBoxWidth/2 - 26, 361; 

CRC = 0; 

Error= GetCRC<Reply.fullPathnameJ; 

if <Error) { 

Move To ( 10,361 ; 

DrawCString<ErrorMsg); 

SysBeep<>; 

CRC = Error; 

ln t2He :< <CRC, CRCstr + 1, 41 ; 

DrawCStr1ng <C RCstr 1 : 

lnltCursor \) : 

MoaaiDtalog <NULL J : 

Cl oseDl alog iDt a logPort l : 

~ ~ --- --- --- - --------------------· 

.. Snuta own Toolset s .. 
·-·-----------------------------· ! 

Shut i •ownTool s \ 1 

I* Create modal dialog *I 

I* Pr1nt a prompt *I 

I* ln1t CRC at zero *I 

I* Get CRC on the f1le *I 

I* If an error occurred ... *I 

I* ... print a message *I 

I* Make CRC printable *I 

I* Then pr1nt 1t *I 

I* Wa1t for OK button *I 

I* Close the dialog *I 

357 



Chapter 14 ---------

SFShutDown<l; 

LEShuU•own () ; 

Ct I ShutDown () ; 

W!ndShutLtown () ; 

EMShutDowntl; 

C!DHu:<ShutDown () ; 

Q[IShutDown(); 

MTShut[town () ; 

Dlsposef411 •MemJLt ) ; 

MMShutDown (User!D I ; 

TLShutr•own (I ; 

1*------------------------------* 

" 11 

·------------------------------*1 

/11 U1sp l av a Standard F1le Ooerat1ons "Get" D1alog and w~1t for a 

* tlle to be selected. If Cancel 1s selected, the program qu1ts. 

* I 

ma1n ( 1 

StartUp Tools(); 

do 

SFGetFlle(Center-130, 35, "\pCalculate CRC on:", OL, OL, ~Reply>; 

358 

1f <Reply.goodl 

ShowCRC<I; 

l wh1le <Reply.goodl ; 

/11 If Open cl 1cked 

/ 11 ••• do the CRC 

11 / 

11/ 



---------- ProDOS ----------

Shut(lownTools(J; 

CRC.ASM 
To complete the machine language version of this program, simply 
steal parts of the MODEL.ASM and other examples from this book 
which correspond to most of the routines in CRC.C. Program 14-2 
and 14-3 are two new subroutines, GetCRC and CalcCRC in ma
chine language. 

Program 14-2. Calculate CRC on a Buffer 

*------------------------------* 

• Calculate CRC on a Buffer * 

*------------------------------* 

C<>lcCRC 1av ll(> ;1n1t 1ndex 1nto buffer 

N>:tBvte shortm ;go to 8-blt accumulator 

lda Buffer,~ ;grab a character 

1ny ;bump 1nde:< 

eor CRC+I ;f1 x hlgh-order byte of CRC 

sta CRC+I 

longm ;back to 16-blt accumulator 

1 d:< liB ;1n1t sh1ft counter 

Sh 1ft as I CRC ;sh1ft CRC left once always 

bee Ne:-: t ;1f b1t 15 wa s clear, sklD the XOR 

Ida CRC ;XOR CRC w1th 11 02 1 

eor ll$1 02,1 

sta CRC 

Next dex 

bne Sh1ft ;do th1s 8 t1mes 

359 



Chapter 14 ---------

CRC 

dec 

bne 

rts 

ds 

x+erNum 

NxtByte 

2 

;More bytes to do~ 

;yes 1f count not zero 

;here ' s the CRC word 

Program 14-3. Get CRC on the File 

*------------------------------* 
* Get CRC on the File * 
*------------------------------* 

GetCRC _OPEN OParms ;Open the f i 1 e 

bcs Stop Err ;stop if error occurred 

moveword Oref,Rref ;Copy reference number 

Rdloop _READ RParms ;Read data from f i 1 e 1nto Buffer 

bcs Chf, Err ~error occurred -- checl · for EOF 

._1sr CalcCRC :no error, so update CRC 

bra F.dLoop •and go bacl' to rec>d more unt1l EOF 

Chi Err cmp U4C ;end of f 1l e error 

bne Stop Err :no, so return It 

lda ti(l ;f 1 ag no error -- EOF ISn ' t fatal 

Stop Err sta Error ;save error return code 

CLOSE OParms ;close the file 

rts ;and return 

Error ds 2 ;error code 1 ocat 1on 

360 



---------- ProDOS ----------

Buffer ds BufferS1ze ;data buffer 

OF'arms ANOF' ;OF'EN Parameter L1st 

Oref ds 2 ;open file reference number 

de 14 ' pathname ' ;po1nter to pathname 

ds 4 ;address of I/0 buffer 

RF'arms AN OF' ;READ Parameter List 

Rref ds 2 ;reference number for reading 

de i4'Buffer' ;pointer to data buffer 

de 14 ' Butter-S 1 z e ~s 1 :e a t butter 

:derNum ds 4 :transfer count 

CRC.PAS 
The GetCRC and CalcCRC routines in TML Pascal are shown in 
Program 14-4. 

Program 14-4. Calculate CRC on a Buffer 

(+------------------------------+ 

* Calculate CRC on a Buffer + 

+------------------------------+) 

(Note that the global var1able CRC has a range of IOOOO .• SFFFF J 

PROCEDURE CalcCRC (bufPtr: Ptr; count: Integerl; 

VAR X: Integer; 

Data: $0000 .• IFFFF; 

BEGIN 

REPEAT 

Data := bufPtr • ; 

FOR x := 1 TO 8 DO 

Data := BitSL <Datal; 

361 



--------- Chapter 14 

CRC := BitXOR ICRC, Datal; 

bufPtr := Pointer ILong1nt lbufPtrl + 11; 

FOR x := 1 TO 8 DO 

IF CRC > $7FFF THEN 

CRC := BitXOR IBitSL ICRCI, $10211 

END; 

ELSE 

CRC := BitSL ICRCI; 

Dec <count>; 

UNTIL (count = 01; 

(4------------------------------4 
4 Get CRC on the File 4 
4------------------------------*) 

FUNCTION GetCRC lpathname: StringPtrl 

VAR Error: Integer; 

EOF: Boolean; 

Integer; 

Buffer: Packed Array [0 .. BufferS1ZeJ of Byte; 

OParms: P16ParamBlk; 

RParms: P16ParamBlk; 

BEGIN 

362 

EOF := FALSE; 

0Parms.Pathname2 := pathname; 

P160pen IOParms>; 

Error := IOResult; 

IF Error = 0 THEN BEGIN 

R~· arms .refNum := OParms .refNum; 

RParms.dataBuffer := @Buffer[OJ; 

RParms.requestCount := BufferS1ze; 



---------- ProDOS ----------

REPEAT 

F'l6Read IRF'arms l ; 

Error := IOResult: 

IF Error -' 0 THEN 

BEGIN 

EOF := TRUE: 

IF Error = :f.4C THEN Error := 0; 

El~[l 

ELSE 

CalcCRCCIBuffer[ OJ, RF'arms.transferCountl: 

UNTIL EOF: 

END: 

F'I6Close 10F'arms 1 : 

GetCRC := Error: 

EN[I; 

Disk Errors 
Table 14-7 is a complete list of error codes that can be returned by 
the ProDOS 16 operating system. (See the "Checking for Errors" 
section in this chapter for details on how to detect and handle 
errors). 

Table 14-7. ProDOS 16 Error Codes 

Number 
$00 
$01 
$07 
$10 
$11 
$25 
$27 
$28 
$28 
$2E 
$2F 
$30-$3F 

Meaning 
No error 
Invalid call number 
ProDOS is busy 
Device not found 
Invalid device request 
Interrupt vector table full 
1/0 error 
No device connected 
Disk is write-protected 
Disk switched, files open 
Device not online 
Device-specific errors 

363 



---------Chapter 14 ---------

Number Meaning 

$40 Invalid Pathname 
$42 File control block table full 
$43 Invalid reference number 
$44 Path not found 
$45 Volume not found 
$46 File not found 
$47 Duplicate pathname 
$48 Volume full 
$49 Volume directory full 
$4A Version error 
$4B Unsupported storage type 
$4C EOF encountered, out of data 
$40 Position out of range 
$4E Access not permitted 
$50 File is open 
$51 Directory structure damaged 
$52 Unsupported volume type 
$53 Invalid parameter 
$54 Out of memory 
$55 Volume control block full 
$57 Duplicate volume 
$58 Not a block device 
$59 Invalid file level 
$SA Block number out of range 
$5B Illegal pathname change 
$SC Not an executable file 
$50 File system not available 
$5E Cannot deallocate /RAM 
$SF Return stack overflow 
$60 Data unavailable 

Chapter Summary 
The following functions are part of the Standard File Operations 
tool set, which is presented in this chapter: 

Function: $0117 
Name: SFBootlnit 

Initialize the Standard File tool set environment 
Push: Nothing 
Pull: Nothing 

Errors: None 
Comments: Applications do not make this call. 

364 



---------- ProDOS ----------

Function: $0217 
Name: SFStartup 

Starts up the Standard File Operations tool set 
Push: User ID (W); Direct Page (W) 

Pull: Nethin; 
Errors: None 

Comments: Call this before using Standard File functions. 

Function: $0317 
Name: SFShutdown 

Shuts down the Standard File tool set and frees some 
memory 

Push: Nothing 
Pull: Nothing 

Errors: None 
Comments: Call this when your application is done using Standard File 

Operations. 

Function: $0417 
Name: SFVersion 

Get the current version of the Standard File tool set 
Push: Result Space (W) 
Pull: Version number (W) 

Errors: None 

Function: $0517 
Name: SFReset 

Reset the Standard File Operations tool set 
Push: Nothing 
Pull: Nothing 

Errors: None 

Function: $0617 
Name: SFStatus 

Determine if the Standard File Operations tool set is active 
Push: Result Space (W) 
Pull: Active flag (W) 

Errors: None 
Comments: The flag is 0 if false and nonzero if true. 

Function: $0917 
Name: SFGetFile 

Lets the user choose a specific file from a dialog box 
Push: X position of dialog box (W); Y position of dialog box (W); 

Pointer to dialog box title string (L); Pointer to filtering sub
routine (L); Pointer to list of valid file types (L); Pointer to re
turned pathname record structure (L) 

365 



---------Chapter 14 ---------

Pull: Nothing 
Errors: None 

Comments: Title string starts with a count byte. Calling of the filtering 
routine can be inhibited by using $00000000 as its address. 
The filtering routine should return via RTL. File type Jist 
starts with a count byte. Record structure returned is the fol
lowing: Open Flag (W); File type (W); Auxiliary file type (W); 
filename (16 bytes); full pathname to file (129 bytes). 

Function: $0A 17 
Name: SFPutFile 

Lets the user choose a filename for saving information to disk 
Push: X position of dialog box (W); Y position of dialog box (W); 

Pointer to dialog box title string (L); Pointer to string contain
ing original filename (L); Maximum length of name (W); 
Pointer to returned pathname record structure (L) 

Pull: Nothing 
Errors: None 

Comments: Returned record structure is the same as SFGetFile. 

Function: $0817 
Name: SFPGetFile 

Allows user to choose a filename from a custom dialog box 
Push: X position of dialog box (W); Y position of dialog box (W); 

Pointer to title string (L); Pointer to filtering routine (L); 
Pointer to file type Jist (L); Pointer to dialog template struc
ture (L); Pointer to modal dialog event handler (L); Pointer to 
returned pathname record structure (L) 

Pull: Nothing 
Errors: None 

Comments: Same as SFGetFile except for the template pointer and modal 
dialog activity handler (see Dialog Manager section for 
details). 

Function: $0C17 

366 

Name: SFPPutFile 
Gives the user a custom dialog box to choose a filename for 
saving information to disk. 
·v l . , . _- _ f .l " - 1 - \J 1--· J~: t A T\ . I _ ......... ! 1. ! .-- ,... £ ...J : .-.. 1 ....... - t... - .. ,.. /1A 7\ . 

Pointer to dialog box title string (L); Pointer to string contain-
ing original filename (L); Maximum length of name (W); 
Pointer to dialog template structure (L); Pointer to modal dia
log event handler (L); Pointer to returned pathname record 
structure (L) 



---------- ProDOS ----------

Pull: Nothing 
Errors: None 

Comments: See SFPGetFile. 

Function: $0017 
Name: SFAllCaps 

Sets the case mode for filenames in dialog boxes 
Push: Case flag (W) 
Pull: Nothing 

Errors: None 
Comments: If case flag is true (nonzero), all filenames in SFO dialog 

boxes will be shown without conversion to lowercase. 

367 



Appendices 



______ Appendix A _____ _ 

Apple's Human Interface 
Guidelines 

The uniting idea behind the Macintosh and Apple IIGS desktop, win
dows, menu bars, icons, and dialog boxes is to give all software 
applications a universal look and feel. Apple wants its computers to 
be easy to learn and to use. To accomplish this, all software should 
follow the same conventions and use the same or similar methods 
of accomplishing many tasks. 

Witness the rabble of MS-DOS software, with its many pro
grams and varying uses of graphics, the keyboard, and other 
conflicting methods of operating a program. The Human Inter
face Guidelines provide sanity and order in an operating sys
tem that might otherwise be just as confusing as the rest. 

Contrary to what you've read, following the guidelines is not 
called user-friendly programming. Instead, Apple refers to it as user
centered programming. Most programs are written by programmers 
who wish to amaze other programmers. As a programmer yourself, 
ynn 'vp prnhr~hly hPPn frno;trrltPci with thP wr~y thine;c;; arP c;;uppoc;;pd 
to be done using the desktop interface. After all, wouldn't it be 
much easier and faster to type an MS-DOS-like command such as 
COPY A:"'."' C: '-ROOT '- DEV /B? 

Perhaps you have noticed that the user interface of many non
Apple programs is poorly thought out. Among the dozens of word 
processors available for MS-DOS computers, there are radically dif
ferent procedures to perform the same tasks. Some word processors 
have their own conventions and, for the convenience of users, 
allow alternate keypresses to mimic other word processors. Some 
even have vastly different sequences of commands within a single 
program to achieve similar results. This is the sort of disarray that 
naturally occurs when there is no enforced standard. 

Apple has worked on its Human Interface Guidelines for years. 
The idea behind the guidelines is to make all programs running on 

371 



---------Appendix A---------

Apple computers behave the same, or enough alike that you only 
need to learn one technique for accomplishing similar tasks in sev
eral programs. 

This appendix presents certain ideas and philosophies of the 
Human Interface Guidelines. It was decided that these ideas should 
all be placed together here, rather than scattered throughout the 
book. After all, you are a programmer. And usually the last thing 
you'll consider is how the first-time user will feel about using your 
program. Now that you know how to program the Apple IIGS 
Toolbox, it's time you learned how to present it to the user. 

Programs are not judged on speed alone. Many programmers 
pride themselves in writing fast, compact code. Getting the job 
done, and done quickly, is important. But magazine reviewers and 
software salespeople will not recommend programs that don't fol
low these guidelines. 

Reading the Human Interface Guidelines is like reading a dog
eared, highlighted college text. The list is full of interesting 
ideas, thoughts, and reasons explaining why Apple did what it 
did in designing the Macintosh/Human interface. 

This book (and its predecessor, COMPUTE!'s Mastering the 
Apple IlGS Toolbox) constantly reminds you to "follow the con
ventions" and "do it this way." If you don't follow the guide
lines, you may find your work incompatible with future 
releases of the computer or operating system. 

You'll notice that few programmers obey all of the rules 
and suggestions mentioned in the guidelines. Just as with 
other aspects of life, some people don't pay attention. Apple 
Computer itself is one of the worst offenders and doesn't al
ways pay attention to those warnings, either. Just ask anyone 
who owns a Mac II. Because Apple didn't follow its own rules, 
a good deal of its own software won't work on the Mac II. 

If you buy and read a copy of the Human Interface 
Guidelines, you'll notice that there are many recommendations 
that Apple never follows. The best advice is to do what they 
say and not what they do. Follow the guidelines and you will 
avoid trouble in the future. 

372 



-----Apple's Human Interface Guidelines -----

What Are the Human Interface Guidelines? 
Addison-Wesley has published a book written by Apple entitled 
Human Interface Guidelines: The Apple Desktop Interface. You can 
buy this book at your favorite bookstore (ISBN 0-201-17753-6). It's 
the latest rendition of an on-going project at Apple. While research
ing Advanced Programming Techniques for Mastering the Apple lies 
Toolbox, we located and mulled over one of the photocopied origi
nals of the Human Interface Guidelines. Not much has changed 
since then. Only the list of contributing authors has grown longer. 
Still, most of the work can be attributed to Bruce Tognazzini (also 
lovingly called "Saint" Tognazzini). And before that, much of the 
philosophy on the interface came from work originally done at 
Xerox's Palo Alto Research Center (Xerox PARC). 

Most of the beginning of the book is devoted to philosophizing 
and self-admiration of the Macintosh, mouse, and the desktop in
terface. Since you know how to point, click, and drag, that infor
mation is left out of this appendix. 

Instead, you'll find the high points of the Human Interface 
Guidelines, all you really need to keep in step with what Apple 
likes to see in Apple programs. If you follow these guidelines, your 
program will be more compatible with other Apple IIGS and Macin
tosh programs. And Apple will like you. What more could you 
want? 

The Desktop Environment 
The desktop environment is the latest, supposedly best way for a 
computer to communicate with a human. It's called visual commu
nication. Rather than typing names and commands, you do things 
v bually w ith the i:'l.1.tm:,t d iitl w ith ~ aphie ietn'l.~ whieh appea ert 

the screen. 
You might think that this setup would mean anyone could use 

an Apple computer immediately. You would be wrong. People still 
have hang-ups about computers. No matter how easy you make 
them, some people would have you throw pitchforks at them 
before they would use a computer. 

The following are highlights of the guidelines: 

• Every action on the desktop should be as simple and consistent as 
possible. The Human Interface Guidelines give the greatest weight 
to visual communication, simplicity, and clarity. 

373 



---------Appendix A---------

• Don't be rude to the user. Always provide a way out. When you 
are given the choice between doing something potentially danger
ous and backing out, always make the default choice the way out. 
In other words, it should never be easy to do something stupid. 

• Keep your desktop consistent. Changing screen modes is about 
the most unforgivable offense. True, the 320 mode is more color
ful, and the 640 mode can display more text. Yet a word processor 
that uses one mode for one thing and the second mode for an
other would be dreadful. Users admire stability. 

• Cut down on the dazzle. You can do amazing things with the 
Toolbox and QuickDraw, but try not to overwhelm the user with 
spectacular graphics and stereophonic sound. Look up the word 
aesthetic in the dictionary if you have trouble with what program
mers call creeping elegance. 

Programming for the Toolbox 
In case you haven't noticed, all programs written for the Apple IIGS 
Toolbox follow a convention. They consist of a main event loop 
nested between setup and shutdown routines. (See Chapter 3 of 
COMPUTE!'s Mastering the Apple lies Toolbox for additional infor
mation.) This technique makes for better organization of your pro
grams, making your programs easier to modify, as well (and 
incidentally, the code is easier to adapt for your other programs). 

The following are a few concepts to keep in mind while de
signing and writing your programs: 

• Implement what Apple calls User Control in your programs. Make 
the user choose what goes on. Don't make it appear that there is 
no way to control what the computer is doing. 

• Provide the user with a complete list of options at any decision 
point. This is what separates desktop programs from IBM-type 
programs. In the IBM (command line interface) version of a pro
gram, it's up to you to remember what commands to type. With 
an Apple program, the user should see all the options available 
and then visually select one. Avoid hidden or secret options. 

• When using an icon as a switch, make the icon closely resemble 
the action it invokes. For example, icons of an ImageWriter and 
LaserWriter can be used to choose a printer instead of an input 
box with the prompt Enter printer:. 

374 



-----Apple's Human Interface Guidelines -----

• When you provide text (to explain a dialog box or amplify a 
choice, for instance), write a solid, meaningful description. Too 
many programmers opt to be overly cryptic with their text de
scriptions. But don't be overly simple with your text, either. No
tice how Send the contents of your document to the printer is too 
simple, and Dump File to Printer Device is too complex, but Print 
document: Chapter One? is just right. 

Mouse Traps 
The guidelines go into great detail about use of the mouse, to the 
extent of discussing the algorithms used to select text with the 
mouse. Since this is an internal function of the Toolbox there's no 
need to repeat it here. Instead, the following are the mouse high
lights of the guidelines: 

• Using the mouse with your programs should be consistent with 
other desktop programs. Remember the standard mouse opera
tions (pointing, clicking, dragging, double-clicking, and so on). 
Don't ·make up new mouse modes that could confuse the user. 

• Though all Apple computers now have cursor-control keys on 
their keyboards, Apple demands that you never use the arrow 
keys as a replacement for the mouse. Never. You shouldn't even 
use the arrow keys to choose menu selections. (It should be 
pointed out, however, that Apple uses the cursor keys to imitate 
the mouse on the Macintosh.) 

Though you can change the cursor's shape to just about any
thing (a pointing finger, for example), the following shapes are sug
gested for certain activities: 

Figure A-1. Mouse Pointer (Cursor) Shapes 

1ft Arrow 

I Insert Bar 

-!- Cross hairs 
I 

~ Plus Sign 

<Z> Wristwatch 

375 



---------Appendix A---------

• The pointer is the most common default cursor. 
• The 1-beam is used for inserting and selecting text. The 1-beam 

(or, if active, the pointer), disappears when the user starts typing. 
• The crosshairs pointer is used to select graphic shapes for 

manipulation. 
• The plus sign is used in some spreadsheet programs to select cells 

in the worksheet. It can also be used to select fields in an array. 
(The original Macintosh spreadsheet program, Multiplan, first em
ployed the plus sign.) 

• The tiny wristwatch stands for a pause as the machine does some 
work behind the scenes. 

Pull-Down Menus 
Menus are among the prime ingredients of the desktop. You should 
already know about menu titles and menu items and where they fit 
into the big picture. Keep in mind that the organization of menus 
and menu items (and command areas) is in your control. 

Standard Menus 
There are three menus most programs should have. For the sake of 
consistency, certain menu items should appear only in these 
menus. The standard menus are 

• The Apple menu 
• The File menu 
• The Edit menu 

Text-based programs can also have Font, Style, and Size 
menus. However, Apple is less fussy about them. 

• The Apple menu is always the first menu on the far left side of 
the menu bar. The first item at the top of this menu is an 
About. .. menu item used to display a dialog box telling about 
your program. 

• Under the About. .. item come the various desk accessories in
stalled in your SYSTEM/DESK.ACCS subdirectory. Also, you can 
put a Help item in the Apple menu and any configuration item or 
desk accessories specific to the application, such as a spelling 
checker for a word processor. 

• The File menu contains all the items that deal with saving, load
ing, and creating data files. Aside from its allowances tor opemng, 
closing, and saving files, this menu also contains print options 

376 



-----Apple's Human Interface Guidelines-----

and the Quit option. Even if your program lacks any disk access, 
this is where the Quit option should go. The typical file menu ap
pears as shown in Figure A-2. 

Figure A-2. Graphic of File Menu 

New .N 
Open ... •o 
Close 
Saue •s 
Seue Rs ... 
Reuert to Seued 

Page Setup ... 
Print ... 

Quit •o 

• The final required menu is the Edit menu. A lot of emphasis is 
put on the cut-and-paste aspect of the desktop. Therefore, the 
Edit menu is considered important to all applications. (Even if 
your program doesn't need the items in the Edit menu, you might 
want them included for use by some desk accessories.) 

Figure A-3. Graphic of Edit Menu 

Undo •z 
Cut .H 
Copy •c 
Peste •u 
Clear 
Select Rll 

Show Clipboard 

One of the common items on the Edit menu is Select All. 
There is no key equivalent officially defined for the Select All item, 
although many applications seem to implement their own (usually 
Open Apple-A). 

Other menus that might crop up from time to time, especially 
in text-oriented programs, are 

• The Font menu 
• The Size menu 
• The Style menu 

377 



---------Appendix A----------

There are no hard-and-fast guidelines for these menus. If you 
have a crowded menu bar, you can combine two or three of them 
into one menu, or include all the options in a dialog box that looks 
like a Boeing 747 control panel. 

Menu Items 
The guidelines have the following suggestions for menu items: 

• Menu items can be verbs used to describe an immediate reaction, 
or they can be adjectives used to describe some attribute of a 
selection: 
• With verb menu items, you choose a menu item and that task 

is carried out. If the program requires more input before the ac
tion can take place, the menu item should be followed by ellip
ses ( ... ). If the item toggles a state on or off, a check mark 
should appear to indicate when the item is on, or you can 
choose to change the menu item's text-for example, Inhale 
could be changed to Exhale. 

• When menu items are adjectives (in font menus, for example), 
they should be descriptive words and adequately characterize 
what they change. Consider the opaqueness of a menu entry 
such as Font 2 when it is compared to something more descrip
tive, such as Courier. 

A third type of menu, introduced with the Apple JIGS, is the 
color menu. This menu has no words, only the hues of colors avail
able for changing selected items. 

Commonly used menu items should be at the top of a menu, 
with less frequently used items at the bottom. Good examples are 
the Undo menu item commonly found at the top of the Edit menu, 
and the Quit menu item found at the bottom of the File menu. 

Key Equivalents 
You can assign key equivalents to just about any menu item. Be 
sure they make sense. Also consider that some actions are appro
priate for the mouse and others are appropriate for the keyboard. A 
word processor is keyboard-intensive (although a mouse is great for 
editing). When users are typing, they'll find it·more convenient to 
use a keyboard equivalent of a pull-down menu item than to grab 
the mouse, pull down the menu, and make the selection. On the 
other side of the coin, a paint program is a mouse-intensive piece 
of software. Having a keyboard-only command could be awkward. 

378 



----Apple's Human Interface Guidelines -----

Some of the older Macintosh communications programs lacked 
key equivalents entirely. This was because they used the Com
mand key (later the Open Apple key) instead of the Control 
key to generate control codes. Apple IIGS communications pro
grams have access to both the Open Apple-Command key 
and the Control key. So there is no reason to write a program 
devoid of Apple key equivalents. 

The following keyboard equivalents must be used exclusively 
for the function described. Aside from these, you can assign what
ever key equivalents your program might require: 

Keyboard Equivalent Comment Menu 
Open Apple-? Help Apple 
Open Apple-C Copy Edit 
Open Apple-N New File 
Open Apple-0 Open File 
Open Apple-Q Quit File 
Open Apple-S Save File 
Open Apple-V Paste Edit 
Open Apple-X Cut Edit 
Open Apple-Z Undo Edit 
Note that Open Apple-/ is considered the same as Open Apple-? (which is actually Open 
Apple-Shift-/). (See Chapter 8 for information on defining these keys.) 

Less stringently obeyed are the following text-style key 
equivalents: 

Keyboard Equivalent 
Open Apple-B 
Open Apple-! 
Open Apple-P 
Open Apple-U 

Comment 
Bold 
Italic 
Plain 
Underline 

A special-case Open Apple key equivalent is Open Apple-. 
(Open Apple-period). This key equivalent can be used to halt an 
action such as printing a document or a file listing in the APW 
shell. Apple implemented Open Apple-. because some Macintosh 
keyboards lacked an Esc key (normally Esc would be used). A few 
older programs may stick with the Open Apple-. convention. How
ever, if you decide to implement an Esc cancel key in your pro
grams, you might want to add Open Apple-. just to be well
received. 

379 



---------Appendix A---------

Dialog Boxes 
Dialog boxes are actually special forms of windows. They are di
vided into modal and modeless types, as well as the special-case 
Alert boxes. The guidelines include the following information about 
dialog boxes: 

• Dialog boxes should be placed in the center of the upper third of 
the screen. (The examples in this book were positioned in the cen
ter of the upper half because it was more aesthetically pleasing.) 

• Alert boxes can be positioned so that their default button is in the 
same position as that occupied by the button that activated them. 
For example, this would allow the user to quickly cancel an oper
ation without moving the mouse. 

• A dialog box should always contain a message. It might describe 
what the dialog does or give some indication of what is happen
ing. Don't crowd the text into the dialog. If you need more room, 
make the dialog box bigger. 

• The most important and most commonly used items in a dialog 
box should be placed at the top, just as they are in the pull-down 
menu. Less frequently used items should be placed at the bottom. 
You can also place the more important items on the left side of 
the box, and the less important ones on the right. 

• Remember to include in the dialog box a button that lets the user 
out. 

• The OK button is associated with the Return key and the Cancel 
button is associated with the Esc key. Don't confuse the user by 
mixing these up. 

There is such a creature as a dialog box without buttons. An 
example is a simple text box that displays a message and then dis
appears. One use for this sort of dialog is to inform the user how 
long an operation will take. For some reason, users don't mind 
waiting 15 minutes for an operation if the program is smart enough 
to tell them to do so. 

Alerts 
An alert dialog box is an example of a specific dialog with a spe
cific use. In some cases, you may find that a simple beep of the 
speaker will replace an alert. For example, if a user clicks outside of 
a field, it's much faster to make the speaker bonk than to bring up a 
complete alert box. 

380 



-----Apple's Human Interface Guidelines -----

Take advantage of the various alert stages. During your beta 
testing, you may discover that some alert boxes appear more often 
than others, indicating perhaps that a specific type of error is more 
likely to occur. If so, you may want to rethink your program's strat
egy. Ask questions of your beta testers to see if this happens. 

The guidelines make the following suggestions: 

• Keep alerts clean. Don't use radio buttons, long-scrolling text mes
sages, check boxes, or other clutter. The typical alert box has an 
alert icon, a short message (or warning), and two buttons. 

• The two buttons in an alert box typically allow the chosen action 
to continue or to be stopped. For example, an alert might display 
the message Erase your hard disk? The two buttons could be Yes 
and No, or even better, Erase and Stop. Typically, however, you 
should phrase your prompts so that it would be natural to supply 
buttons marked OK and Cancel. 

• The default button in an alert box is always Cancel. The purpose 
of the alert is to warn of some impending danger. The default 
choice should always be to back away from the danger-in other 
words, make users really think about what they're doing. 

• The alert message could be a system error, or something that your 
program can't handle. When this is the case, you may want tore
think your error-trapping routines and perhaps take the error
correcting decision out of the user's hands. 

Notes on Sound and Color 
The Apple IIGS comes with excellent sound and graphics. With the 
addition of the Mac II, sound and color have also been made avail
able to the Macintosh line of computers. 

The following are the guidelines on the use of sound and color 
in your programs. Generally speaking, the suggestions themselves 
are rather obvious, if you think about them. Listed below are only 
the high points. 

Sound. The general thrust of the guidelines approach to sound 
is that sound should be used as an attention-getter. Use sound to 
say Hey you! should an application require immediate attention, or 
use it to alert the user that something is happening in the back
ground. Other highlights: 

• Try not to startle the user with sound. 

381 



---------Appendix A----------

• Different sounds can be used to herald entering and exiting cer
tain modes. Of course, you may find these modal sounds annoy
ing. It would be nice to include an option in your program for 
shutting off the noises (or for a volume control, at least). 

Color. Color can be fun, and a great benefit to your programs. 
However, there are a few guidelines about the use of color. Most of 
these you can figure out on your own. For instance, an all-red fore
ground and background can make computing difficult. Still, some 
of the other guidelines are interesting and, when you pause to 
think about them, make sense. 

• Different colors can be used in a number of ways. For example, 
you can color some text or a dialog box icon red to indicate some
thing drastic. The color yellow can be used to show caution. 
Green is used to indicate go or proceed. 

• Blue, especially light blue, is hard to see, and the guidelines rec
ommend avoiding its use. However, an example of a good use of 
light blue would be providing rules or grids for a paint program; 
the blue is just faint enough to use as a reference. 

• Use color to show how certain objects are grouped together, or to 
define separate areas. 

• Keep the background light. A dark red background will make any 
foreground text difficult to see. Some programmers get carried 
awa'J w\1-Jn £.0A0lr-. R~m~~J.: th~t ~J.%el% t\l%t want to use your pro
gram. Psychedelic colors went out with the sixties, along with 
love beads and sandalwood incense. 

Above all, consider the application. Colored text looks good on 
the screen (and has probably sold more than one Apple IIGS). 
However, few people can print colored text. If the application is 
one that could use some color-such as a drawing, painting, or 
educational program-use it. But for text-intensive programs, think 
twice before splashing the screen with color, or at least provide the 
user with the option of choosing the colors to be used on the text 
display. 

382 



-----Apple's Human Interface Guidelines -----

It should be noted that the terms text and text display have 
been tossed about freely in this appendix. True, the Apple IIGS 
does have a text display mode that can use different-colored 
~~~'i'\'Ji!t'i't&. :a'i'l'd.. ltetlti.<e'i.s. '!hi!ttL tt\lR. 11~t~11~1ilh.~% t.o text are mean.t 
to include any textual material displayed on the graphics
screen as well.

Summary
It goes without saying that a copy of the Apple Human Interface
Guidelines will provide more detailed information than this appen
dix. However, the desktop environment is constantly changing. As
Apple develops the IIGS and its other computers, and as program
mers provide more interesting and intuitive applications, the guide
lines will no doubt change. Just remember these two things:

• Users love to play with things.
• Above all, have fun with your programming.

383

______ Appendix B _____ _

Tool Sets in the Apple IIGS
Toolbox

Table B-1. Tool Sets

Number Tool Set N arne Version
$01 Tool Locator $0201
$02 Memory Manager $0200
$03 Miscellaneous $0200
$04 QuickDraw II $0202
$05 Desk Manager $0202
$06 Event Manager $0201
$07 Scheduler $0200
$08 Sound Manager $0201
$09 Apple DeskTop Bus $0201
$0A SANE $0202
$08 Integer Math $0200
$0C Text Tool Set $0200
$0D RAM Disk $0200
$0E Window Manager $0201
$OF Menu Manager $0200
$10 Control Manager $0202
$11 System Loader -?-
$12 QuickDraw II Auxiliary $0202
$13 Print Manager $0102
$14 Line Edit $0200
$15 Dialog Manager $0200
$16 Scrap Manager $0102
$17 Standard File $0200
$18 Disk Utilities -?-
$19 Note Synthesizer $0100
$1A Note Sequencer -?-
$18 Font Manager $0201
$1C List Manager $0201

The high-order byte of the version number indicates the major
release number and the low-order byte is the minor release. If bit 7
of the major release is set (bit 15 of the word), the release is a beta

384

-----Tool Sets in the Apple IIGS Toolbox-----

version. For example, $0201 (binary 0000 0010 0000 0001) indi
cates version 2.1, and $8101 (binary 1000 0001 0000 0001) indi
cates beta (prerelease) version 1.1.

The version numbers above apply to the ROM 01 release of
the Apple IIGS as well as to the tool sets on System Disk version
3.1. Version numbers shown as-?- indicate tool sets which are
not yet available.

TV.C Program
Since version numbers change as fast as the wind in Cupertino,
Program B-1 (a C program) will generate a table just like the one
printed above with the latest tool set version information for your
system.

Program B-1. TV.C

1*---*
* 'IV.C *

* Displays all known toolset versions *
·---*1

#include <types.h>

#include <prodos.h>

linchrle <intmath.h>

#include <locator.h>

#include <memory.h>

#include <misctool.h>

#include <texttool.h>

1*------------------------------*

* Main *
·------------------------------*1

Word UseriD; I* Our User ID *I

Word Toolist[] =
12, I* Tool count *I

385

Appendix B

14, 0, I* Window Manager *I

15, o, I* Menu Manager *I

16, 0, I* Control Manager *I

18, 0, I* QD II AiJx *I

19, o, I* Print Manager *I

20, 0, 1,. Line Hdi.t *I

21, o, I* Dialog Manager *I

22, 0, I* Scrap Manager *I

23, 0, I* Standard File *I

25, 0, I* Note Synth *I

27, 0, I* Font Manager *I

28, 0 I* List Manager *I

) :

Quit.Rec QPanas = (NULL, 0) ; I* ProDCS 16 Quit parameter list *I

-.in()

TLStartUp () ;

User ID = l'H3tartUp () ;

Ml'StartUp () ;

Wri teString ("\J>Lc-ling tools ••• ") ;

Loadl'ools (Toolist);

WriteLine ("\p");

WriteLine ("\p");

ShowVers ();

MI'ShutDown ();

toHnlut.Down (UseriD);

TLShut.Down ();

386

ErrChk();

ErrChk();

ErrChk();

ErrChk();

I* Show Versions *I

,

----- Tool Sets in the Apple IIGS Toolbox -----

QUIT (&QParms); I* Quit to Prolnl *I

1*------------------------------*

* Handle Toolbox Errors *
·------------------------------*1

ErrChk() { if (_toolErr) SysFailMgr(_toolErr, NULL);

1*------------------------------*

* Shaw Toolset Versions *
·------------------------------*1
struct set {

char *name;

word id;

Toolset[) = I
"\pTool Locator", 1,

"\}:i'lemory Manager", 2,

"\P'!iscellaneous Tools", 3,

"\r.QuickDraw II", 4,

"\pDesk Manager", 5,

"\pEvent Manager", 6,

"\pScheduler", 7,

"\pSound Manager", 8,

"\pApple Desktop Bus", 9,

"\pSANE", 10,

"\plnteger Math" , 11,

"\pText Toolset", 12,

"\pRAM Disk", 13,

"\pWirxiow Manager" , 14,

" \pMenu Manager", 15,

387

Appendix B ---------

"\pControl Manager", 16,

"\pSystem Loader", 17,

"\pQuickDraw II Aux.", 18,

"\pPrint Manager", 19,

"\pLineEdit", 20,

"\pDialog Manager", 21,

"\pScrap Manager", 22,

"\pStandard File", 23,

"\pDisk Utilities", 24,

"\pNote Synthesizer", 25,

"\pNote Sequencer", 26,

"\pFont Manager", 27,

"\pList Manager", 28

);

#define EN'IlUES (sizeof (Toolset) I sizeof (struct set))

char *HexStr = "\p$xxxx";

char *Title = "\pNo. Toolset Name Version "•
'

I* :, '',:,''':,,,,:, ',,:,,,':,,,':,,,,:,,',: *I

ShowVers(I

word i;

WriteString (Title); WriteLine (Title);

RepeatChar ('=', 71); WriteLine ("\p");

for (i = 0; i < ENTRIESI2; ++i) {

DoLine (i);

388

-----Tool Sets in the Apple IIGS Toolbox-----

Repeatchar (32, 6);

DoLine (i + ENTRIES/2) ;

WriteLine ("\p");

DoLine(item)

word item;

word id, ver;

id = Toolset[item].id;

Int2Hex (id, HexStr+2, 2) ;

HexStr[5] = HexStr[4] = 32;

Wri teStri.ng (HexStr) ;

WriteString (Toolset[item].name);

Repeatcbar (32, 22 - (Toolaet[item].name[O] A Oxff));

asm {

lda id

ora #1024

tax

pha

jsl dispatcher

sta _too !Err

pla

sta ver

if (_ toolErr)

WriteString ("\p--?--");

else (

389

! i
<
I

----------Appendix B ---------

Int2Hex (ver, HexStr+2, 4);

WriteString (HexStr);

Repea tChar (theChar, count)

char theChar;

int count;

while (count--) Wri teChar (theChar) ;

This program makes a handy utility to keep around on your APW
system disk. To direct its output to a file or printer, use one of
these APW shell commands:

tv >filename
tv >.printer

----------Appendix B ---------

Int2Hex (ver, HexStr+2, 4);

WriteString (HexStr);

RepeatChar (theChar, co\.Ult)

char theChar;

int co\.Ult;

while (co=t--) WriteChar (theChar);

This program makes a handy utility to keep around on your APW
system disk. To direct its output to a file or printer, use one of
these APW shell commands:

tv >filename
tv >.printer

390

______ Appendix C _____ _

Error Handling
There are several ways to deal with errors returned from the Tool
box. A blanket method has been shown in this book, one that's not
really the best way to deal with potential errors. In fact, the method
used by most Toolbox program examples in this book would be
considered awful error trapping for a professional application.

Most of your programs should be smart enough to catch sim
ple, common errors. Out-of-memory errors, disk IjO errors, and
some Toolbox errors can easily be sidestepped. Your programs
should make exceptions for the errors, recognize them, and deal
with them in such a manner as to be transparent to the user. In
other words, don't cop out on error handling.

ErrChk
Program C-1 is the error-checking code used in this book as the ge
neric error handler, ErrChk. The problem with ErrChk is that it as
sumes every error returned from the Toolbox is a fatal, typically
death-inducing error.

Program C-1. ErrChk in Machine Language

·------------------------------·
* Handle Toolbox Errors *
·------------------------------*

Brrl:hk bca Die ;Carry set if error

rts ; Else, return

Die ;Toolbox returns error in A

pushlong tO ;Use standard system death message

_SysFail.I'Vr ;Get ready to slide apples back and forth

391

---------Appendix C ---------

Program C-2 is the equivalent in C.

Program C-2. ErrChk inC

1•------------------------------·

* Handle Toolbox Errors *
·------------------------------•1

Err<:hk() I* Check for error, die if so *I

if (_toolErr) SysFail.Mgr(_toolErr, nil);

Program C-3 is the equivalent in Pascal.

Program C-3. ErrChk in Pascal

(·------------------------------·

* Handle Toolbox Errors *
·------------------------------·

~ Err<:hk; I Check for error, die if so }

BEniN

IF IsToolError THEN

SysFailMgr(ToolErrorNI.ID, Stri~Ptr(O));

END;

This error handler is called after every potential error-causing Tool
box function. All it checks is whether an error occurred. If so, the
program bombs using the SysFailMgr call and tells you there's a fa
tal error. This is a very nondescript and somewhat crude method of
error handling, albeit good for quick demonstrations and beta test
ing. But it doesn't take into consideration errors from which recov
ery is possible.

392

--------- Error Handling ---------

A Better Generic Error Handler
Documenting a procedure for each nonfatal Toolbox error would be
complicated and would increase the size of this appendix to a full
blown chapter. Instead, the following example is provided to pique
your curiosity.

This error-trapping routine (Program C-4) is designed to han
dle generic errors, and it can replace the ErrChk routine used
throughout this book. Of course, it's a good idea to take care of
nonfatal errors individually. This routine should be called only as a
last-ditch effort. The code is listed in machine language. C and Pas
cal programmers can be inventive and code their own versions.

Program C-4. Fatal Error Handler

·------------------------------·

* Fatal Brror Handler *
·------------------------------·

;only absolutely fatal errors are sent here

Die Jfla ;Toolbox returns error in A, save it

and t$FFOO ;get toolset number

xba ;exchange MSB half of A-reg to LSB

clc ; clear carry

tay ;put a into Y

lda ITable-28 ;offset from start of table

DieO adc t28 ; length of each entry

dey ;dec coi.B'lt

me DieO ; loop =til the toolset is indexed

phb ;push data bank twice

phb ; (because phb pushes only a byte)

Jfla ;push string's address

_SysFailMgr ;Get ready to slide apples back and forth

393

Appendix C

Table str ' Tool Locator error ••
str ' Memory Manager error ••
str 'Miscellaneous Tools error ••
str ' QuickDraw I I error ••
str ' Desk Manager error S'

str ' Event Manager error ••
str ' Scheduler error ••
str ' Sound Manager error S'

str ' Apple Desktop Bus error ••
str ' SANE error ••
str ' Integer Math error ••
str ' Text Toolset error ••
str ' RAM Disk error ••
str ' Window Manager error ••
str ' Menu Manager error ••
str ' Control Manager error S'

str ' System Loader error ••
str ' Qui.ckDraw II Aux. error ••
str ' Print Manager error S'

str ' LineBdit error ••
str ' Dialoar Manager error ••
str ' Scrap Manager error S'

str ' Standard File error ••
str ' Disk Utilities error ••
str ' Note Synthesizer error ••
str ' Note Sequencer error ••
str ' Font Manager error ••
str ' List Manager error ••

394

--------- Error Handling ---------

This routine eliminates the Fatal System Error message and replaces
it with something more specific. Rather than providing a two-byte
hex number, this example translates the first number, representing
the tool set, into a string. The actual error number is displayed after
the dollar sign. So instead of

Fatal System Error -> SOE02

you are given

Window Manager error SOE02

Granted, this routine doesn't do anything the standard ErrChk
routine didn't do, but it's more specific as to the type of error oc
curring. Again, a specific routine to deal with certain types of errors
would be better.

This routine is still relatively simple. It would be easy to make
it more elegant. For example, rather than padding each error string
so that each takes up a fixed number of characters, you could use a
table of pointers into variable length strings. It takes more source
code to implement, but results in far less object code.

395

______ Appendix D _____ _

Error Codes

There are three types of errors you can receive from your com
puter. Unfortunately, it's sometimes hard to determine the origin of
an error, though this appendix should help. The three types of er
rors you can receive are

• Fatal System errors
• ProDOS errors
• Toolbox errors

Fatal System errors are errors your programs won't be able to
catch or wouldn't want to catch. Because these errors seem to pop
up quite often for adventurous programmers such as yourself,
they're listed here.

ProDOS errors are different from Toolbox errors in that their
origin§ ar@ in ProQQ~ and an~ not th~ r~§ult of any Toolbo~ mi§
takes you might have made. In fact, anyone who has programmed
disk 1/0 or worked at all with any operating system is familiar
with a DOS error. You can't build a decent program without DOS
error trapping.

ProDOS errors are not incurable. For example, if your program
returned the error Disk Write Protected, you could prompt the user
to remove the write-protect tab or use another disk.

Toolbox errors aren't always fatal. In fact, quite a few are sur
vivable (see Appendix C). However, more often than not, your pro
gram's error-handling routine may report a few of the more
interesting ones. If your error-handling routine is smart, it can work
around the error. Otherwise, make sure your program displays the
error code so your users can report it back to you.

Just to throw you a curve, there are some Toolbox function
calls that result in errors originating from ProDOS. Yes, it's
true. For example, the Tool Locator's LoadTools call or the
Font Manager's FMStartUp function can return with an error
flagged. An error code between $0001 and $00FF is a ProDOS
16 error. Error codes greater than $00FF are Toolbox errors.

396

----------Error Codes----------

Table D-1. Fatal System Errors

$01 Unclaimed interrupt
$0A Volume control block unusable
$08 File control block unusable
$0C Block 0 allocated illegally
$0D Interrupt occurred while 1/0 shadowing off
$11 Wrong OS version

Table D-2. Errors Returned from ProDOS

$00
$01
$07
$10
$11
$25
$27
$28
$28
$2E
$2F
$30-$3F
$40
$42
$43
$44
$45
$46
$47
$48
$49
$4A
$48
$4C
$4D
$4E
$50
$51
$52
$53
$54
$55
$57
$58

No error
Invalid call number
ProDOS is busy
Device not found
Invalid device request
Interrupt vector table full
1/0 error
No device connected
Disk is write-protected
Disk switched, files open
Device not online
Device-specific errors
Invalid pathname
File control block table full
Invalid reference number
Path not found
Volume not found
File not found
Duplicate pathname
Volume full
Volume directory full
Version error
Unsupported storage type
EOF encountered, out of data
Position out of range
Access: file not rename-enabled
File is open
Directory structure damaged
Unsupported volume type
Invalid parameter
Out of memory
Volume control block full
Duplicate volume
Not a block device

397

-------------------Appendix D-------------------

$59 Invalid file level
$SA Block number out of range
$5B Illegal pathname change
$5C Not an executable file
$50 File system not available
$5E Cannot deallocate /RAM
$SF Return stack overflow
$60 Data unavailable

Table D-3. Errors Returned from the Toolbox

$0000 No error
$0001 Internal error, not enough arguments on the stack
$0002 Tool set wasn't activated (no StartUp call was made)

$0100 Unable to mount system startup volume
$0110 Bad tool set version number

$0201 Unable to allocate block
$0202 Illegal operation on an empty handle
$0203 Empty handle expected for this operation
$0204 Illegal operation on a locked or immovable block
$0205 Attempt to purge an unpurgeable block
$0206 Invalid handle given
$0207 Invalid User ID given
$0208 Operation illegal on block specified attributes

$0301 Bad input parameter
$0302 No device for input parameter
$0303 Task is already in the heartbeat queue
$0304 No signature in task header was detected
$0305 Damaged queue was detected during insert or delete
$0306 Task was not found during delete
$0307 Firmware task was unsuccessful
$0308 Detected damaged heartbeat queue
$0309 Attempted dispatch to a device that is disconnected
$030B ID tag not available

$0401 QuickDraw already initialized
$0402 Cannot reset
$0403 QuickDraw is not initialized
$0410 Screen is reserved
$0411 Bad rectangle
$0420 Chunkiness is not equal
$0430 Region is already open
$0431 Region is not open
$0432 Region scan overflow

398

----------Error Codes----------

$0433 Region is full
$0440 Poly is already open
$0441 Poly is not open
$0442 Poly is too big
$0450 Bad table number
$0451 Bad color number
$0452 Bad scan line

$0510 Desk accessory is not available
$0511 Window pointer does not belong to the NDA

$0601 The Ev.ent Manager has already been started
$0602 Reset error
$0603 The Event Manager is not active
$0604 Bad event code number (greater than 15)
$0605 Bad button number value
$0606 Queue size greater than 3639
$0607 No memory for event queue
$0681 Fatal error: event queue is damaged
$0682 Fatal error: event queue handle is damaged

$0810 No DOC chip or RAM found
$0811 DOC address range error
$0812 No SApplnt call made
$0813 Invalid generator number
$0814 Synthesizer mode error
$0815 Generator busy error
$0817 Master IRQ not assigned
$0818 Sound Tools already started
$08FF Fatal error: unclaimed sound interrupt

$0910 Command not completed
$0982 Busy, command pending
$0983 Device not present at address
$0984 List is full

$0B01 Bad input parameter
$0B02 Illegal character in input string
$0B03 Integer or long-integer overflow
$0B04 String overflow

$0£01 First word of parameter list is the wrong size
$0£02 Unable to allocate window record
$0£03 Bits 14-31 not clear in task mask

$1101 Segment or en try not found
$1102 Incompatible object module format (OMF) version
$1104 File is not a load file
$1105 System Loader is busy

399

---------Appendix D ----------

$1107 File version error
$1108 UseriD error
$1109 Segment number is out of sequence
$11 OA Illegal load record found
$110B Load segment is foreign

$1401 The LEStartUp call has already been made
$1402 Reset error
$1404 The desk scrap is too big

$150A Bad item type
$150B New item failed
$150C Item not found
$1500 Not a modal dialog

$1610 Unknown scrap type

$1 BO 1 Font Manager has already been started
$1B02 Can't reset Font Manager
$1 B03 Font Manager is not active
$1 B04 Family not found
$1 BOS Font not found
$1 B06 Font is not in memory
$1B07 System font cannot be purgeable
$1 B08 Illegal family number
$1 B09 Illegal size
$1 BOA Illegal name length
$1BOB FixFontMenu never called

$1C01 Unable to create list control or scroll bar control

400

______ Appendix E _____ _

Event and TaskMaster Codes

Programs written for the Apple IIGS Toolbox center themselves on
one event-oriented loop. Everything that happens in your programs
is based upon a certain event-a mouse click, a drag, a selection.
The Event Manager and its cousin the TaskMaster are at the heart
of most DeskTop applications.

These events provide user input to your program. To deter
mine which event has taken place (a mouse click, menu selection,
or press of a key), your program makes a call to either the Event
Manager's GetNextEvent function, or the Window Manager's Task
Master function. Both of these procedures are covered within this
book.

The Event Manager
The primary function of the Event Manager is GetNextEvent:

Function: $0A06
Name: GetNextEvent

Returns the status of the event queue.
Push: Result Space (W); Event Mask (W); Event Record (L)
Pull: Logical Result (W)

Errors: None
Comments: If the Result is a logical true, an event is available. The event

is then removed from the queue.

GetNextEvent deals with two items, the event mask and the
event record. The event mask is used to scan only for specific types
of events. The event record contains information about the event
when GetNextEvent returns a logical true.

The event mask. The event mask is a word-sized value used
to filt~r out ~~rtain type5 of event§, By §etting §_pedfk bit§ in th~
event mask, your program can direct GetNextEvent to return only
the results of specific events. The following chart shows which bits
in the event mask affect which events.

401

-------------------Appendix E -------------------

Table E-1. Bit in the Event Mask

Bit Events Scanned for, if Set
0 Not used
1 Mouse-down events
2 Mouse-up events
3 Keyboard (key-down) events
4 Not used
5 Auto-key events
6 Update events
7 Not used
8 Activate events
9 Switch events

10 Desk accessory events
11 Device drive events
12 User-defined events
13 User-defined events
14 User-defined events
15 User-defined events

When GetNextEvent returns a true value, the event record will
contain information detailing the event.

Figure E-1. The Event Record

Fir<t 'Word Stcond Vord

What Event Code

Message Event Mess~e (vanes)

When Clock 1icks smce startup

Where Mouse's Y position Mouse's X position

Modifiers Event det8ils

The Event Record

402

------ Event and TaskMaster Codes ------

The structure of the event record is as shown in Table E-2.

Table E-2. Structure of Event Record

Field
What
Message

When
Where

Modifiers

Size
Word
Long

Long
Long

Word

Description
Code describing event
Value or pointer providing more detail about the
event
Number of clock ticks since the computer was started
Two word values; theY and X position of the mouse
at the time of the event
Describes the state of certain keys, the mouse button,
and other information

What. The What field contains the event code. This describes
which event took place. The events are numbered 0-15 (these are
not bit values). The value found in the What field will be one of
those shown in Table E-3.

Table E-3. Events in What Field

Event Code
0
1
2
3
4
5
6

7
8

9

10

11
12
13
14
15

Description
Null Event: Nothing has happened.
The mouse button was just pressed.
The mouse button has been released.
A key on the keyboard is being pressed.
Not used.
Auto-key event: a key is being held down.
Update event: a window is being changed, redrawn, sized,
or its contents updated.
Not used.
Activate event: generated when a window becomes either
active or inactive.
Switch event: activated when one program switches control
to another.
Control-Open Apple-Esc has been pressed (this event is
handled by the Desk Manager).
A device driver has generated an event.
User-defined (can be defined by your application).
User-defined.
User-defined.
User-defined.

Message. The Message field's value depends on the event code
found in the What field.

403

-------------------Appendix E -------------------

Table E-4. Message Returned

Event Code
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Message Field Contents
Undefined.
Button number (low-order word only).
Button number (low-order word only).
ASCII character (lowest byte only).
Undefined.
ASCII character (lowest byte only).
Window pointer.
Undefined.
Window pointer.
Undefined.
Undefined.
Value is returned from the device driver.
Value is returned from the user-defined application.
Value is returned from the user-defined application.
Value is returned from the user-defined application.
Value is returned from the user-defined application.

When. The When field contains the number of clock ticks
since the computer was started. Each tick equals 1/60 second.

Where. The Where field gives the location of the mouse
pointer at the time of the event, even if the event isn't mouse
oriented. The first word of the Where field contains the mouse's Y
(vertical) position; the second word contains the mouse's X (hori
zontal) position.

Modifiers. The Modifiers field allows further description of the
event pulled from the event queue.

Table E-5. Modifiers

Bit Description
0 If set, the window pointed to in Message field is being deactivated;

otherwise, the window is activated.
1 If set, the active window is changing from the system window to an

application's window, or vice versa.
2 Not used.
3 Not used.
4 Not used.
5 Not used.
6 If set, mouse button number 1 is down.
7 If set, mouse button number 0 is down.
8 If set, the Open Apple key is down.
9 If set, a Shift key is down.

404

------ Event and TaskMaster Codes ------

Bit Description

10 If set, the Caps Lock key is down.
11 If set, the "option" (Solid Apple) key is down.
12 If set, the Control key is down.
13 If set, a key on the keypad is down.
14 Not used.
15 Not used.

TaskMaster
TaskMaster, though a function of the Window Manager, is similar
to GetNextEvent. It adds extra functions for managing windows
and pull-down menus and, secretly, calls GetNextEvent internally:

Function: $1 DOE
Name: TaskMaster

Returns status of the event queue as well as checks for cer
tain window jmenu events.

Push: Result Space (W); Event Mask (W); Event Record (L)
Pull: Extended Event Code (W)

Errors: $0E03

TaskMaster uses the same event mask as described above. It
adds, however, two fields to the event record, TaskData and
TaskMask:

Figure E-2. Event Record with TaskMaster Fields Added

First Vort Secolld Vori

What Event Code

Message Event Message (varies)

When Clock ticks since s18rtup

Where Mouse's Y position Mouse's X position

Modifiers Event de18ils

TaskData Additional information from Ta:~kMa.s1er

TaskMask Events Ta.skMa.s1er viii scan for

The Event Record plus
TaskMaster Fields

405

----------Appendix E ----------

Extended event codes. Unlike GetNextEvent, which returns a
true or false value, TaskMaster returns either an event code or 0.
When an event occurs, TaskMaster returns a value representing the
event code. This code incorporates all the values found in the What
field of the event record after a GetNextEvent function, plus 13 ex
tended events .

Remember, the event codes are returned from the Toolbox
when TaskMaster is called. You don't have to examine the What
field of the Event Record, as is done with GetNextEvent, to deter-
mine which event took place.

The 13 extra values, or extended event codes, are shown in Ta
ble E-6 .

Table E-6. Extended Event Codes

Event Code
16
17
18
19
20
21
22
23
24
25
26
27
28

Description
Mouse is in desk.
A menu item was selected.
Mouse is in the system window.
Mouse is in the content of a window.
Mouse is in drag.
Mouse is in grow.
Mouse is in goaway.
Mouse is in zoom.
Mouse is in info bar.
Mouse is in vertical scroll.
Mouse is in horizontal scroll.
Mouse is in frame.
Mouse is in drop.

TaskData. The two extra fields on the event record help to
further describe the above codes. TaskData contains additional
information about the extended event code. For the standard event
codes 0-15, TaskData will be blank. But for the extended event
codes 16-28, Task Data contains the values shown in Table E-7.

Table E-7. Meaning of TaskData

Code TaskData Values
16 Not used
17 Not used
18 Not used
19 Not used
20 HOW = Menu ID, WW = ~UtJUt:J

406

------ Event and TaskMaster Codes ------

Code TaskData Values
21 HOW= Menu 10, IDW =Menu Item
22 Window pointer
23 Window pointer
24 Window pointer
25 Window pointer
26 Window pointer
27 Window pointer
28 Window pointer

See examples from Chapters 8 and 9 on how this field is used.
TaskMask. The TaskMask field is similar to the event mask.

It's used to filter out certain types of events monitored by the Task
Master. These events are above and beyond those already filtered
by the event mask. Both an event mask and a TaskMask are re
quired by TaskMaster.

By setting specific bits in the TaskMask, your program can di
rect TaskMaster to return only the results of specific events. Table
E-8 shows which bits in the TaskMask field affect which events.
Note that bits 13-31 must always be set to 0, or an error results.

Table E-8. Bits in TaskMask

Bit
0
1
2
3
4
5
6
7
8
9

10
11
12

13-31

TaskMaster Scans for, if Set
MenuKey: menu item key equivalents
Update handling
FindWindow: mouse click in a window
MenuSelect: choosing a menu item
OpenNDA: new desk accessories in the Apple menu
System click
Drag window
Select window
Track goaway button
Track zoom button
Grow window
Allow scrolling
Handle special menu items
Must be set to 0

It's generally a good idea to set all the important bits. When
this field is set to a value of $000003FFF, it will scan for and be
able to handle all conceivable events.

407

______ Appendix F _____ _

QuickDraw II Color Information

In the current version of the Apple IIGS, the color tables used by
QuickDraw II are stored at the following addresses. Each color ta
ble is $20 bytes long. (These address may change with future re
leases of the Apple IIGS ROMs):

Table F-1. Color Table Locations

Color Table Address
0 $E19EOO
1 $E19E20
2 $E19E40
3 $E19E60
4 $E19E80
5 $E19EAO
6 $E19ECO
7 $E19EEO
8 $E19FOO
9 $E19F20

10 $E19F40
11 $E19F60
12 $E19F80
13 $E19FAO
14 $E19FCO
15 $E19FEO

Colors in the 320 mode. In the 320 mode, nibble positions for
each color are as follows:

Table F-2. Color Nibble Positions

Color Value Low Intensity
Blue $0001
Green $0010
Red $0100

High Intensity
$000F
$00FO
$0FOO

A color value of $0000 is black (all three colors are turned off).
A color value of $0FFF is white (all three colors are at their highest
intensity). Note how each color has 16 steps of intensity (from $0
to $F).

408

QuickDraw II Color Information

Table F-3. Standard Color Table in 320 Mode

Color Value Color Number Setting
Black 0 $0000
Dark Gray 1 $0777
Brown 2 $0841
Purple 3 $07C2
Blue 4 $000F
Dark Green 5 $0080
Orange 6 $0F70
Red 7 $0DOO
Beige 8 $0FA9
Yellow 9 $0FFO
Green 10 $00EO
Light Blue 11 $04DF
Lilac 12 $0DAF
Periwinkle 13 $078F
Light Gray 14 $DCCC
White 15 $0FFF

Colors in the 640 mode. In the 640 mode, nibble positions for
each color are as follows:

Table F-4. Color Nibble Positions

Color
Blue
Green
Red

Value
$000F
$00FO
$0FOO

Unlike the 320 mode, there are only two values for each color
in the 640 mode: $0 for off and $F for on.

Table F -5. Standard Color Table in 640 Mode

Color Value Color Number Setting
Black 0 $0000
Red 1 $0FOO
Green 2 $00FO
White 3 $0FFF
Black 4 $0000
Blue 5 $000F
Yellow 6 $0FFO
White 7 $0FFF
Black 8 $0000
Red 9 $0FOO

409

----------Appendix F ----------

410

Color Value
Green
White
Black
Blue
Yellow
White

Color Number Setting
10 $00FO
11 $0FFF
12 $0000
13 $000F
14 $0FFO
15 $0FFF

Index
abort interrupt 276
About ... dialog box examples 229-35
alert box 191, 192-93, 210-17
Alert function 211
alert program example 214-17
alerts

psychology of 214
types of 210-11

alert stages 213
AlertTemRlatePtr tem_plate 212
ALlDCJNT RRU PT ProDOS function

285
Apple computers, history of 11
Apple logo, menus and 117
Apple lie emulation 19-20
Apple lies, how different from other

Apples 10-11
APW (Apple Programmer's Workshop) C

and ML kit 2
APW assembler 19, 68

requirements 68
arguments, Toolbox and 52-53
assembler macros, ProDOS 16 and 332
BASIC programming language 2-3
bell, modifying 277-282
bit twiddling 14-15
blink rate, menu item, changing 137
block 28
book, how to use 4
books, other noteworthy 7
booting ProDOS 16 30-33, 331
Bootlnit function 51
Boot Loader 28-29
Boot ROM 28, 30
byte 5, 6
CASE ON APW directive 70
CautionAlert function 211
CDA (Classic Desk Accessories) 310,

311-16
DOS and 311 - 312

CDA header 312
check box 249-51

color table 250-51
items 249

CloseDialog function 199, 204
CloseWindow function 151-52
closing

dialog box 245

Toolbox 56-57
window 151-52

ClrHeartBeat function 301
color

controls and 259-60
programming standards for 382-83
scroll bar and 256-57

colors
menu bar 137-39
QuickDraw II and 408-10
radio button 253
standard, 320 mode 139

command key equivalents, recommended
116

CompactMem function 107
COMPUTE!'s Mastering the Apple lies

Toolbox 2
computer startup 26-27
Control Manager tool set 146, 242-44

requirements for starting 243
controls 241-69

dimming 264-65
highlighting 265-66
types of 244-45

conventions used in book 5-6
COPY ML directive 69
C programming language 2
CRC.ASM program 359-61
CRC.C program 350-59
CRC.PAS program 361-63
Ct!ShutDown 244
CtlStartUp call 243
cyclic redundancy checksum 349
DEALlDC_INTERRUPT ProDOS func-

tion 285
default button, importance of 194
DeleteMenu function 136-37
DeleteMltem function 136-37
De!HeartBeat function 300
desk accessories 309-28
DeskTop 77-94, 373-74

menus and 114
DeskTop program, parts of 80-81
DeskTop programs, sample 81-94
dialog box 187- 239

closing 245
controls 193- 98
modal 190, 192, 200-201

411

rnodeless 190, 192, 217-25
placing on screen 198-209
planning for 191-93
programming standards for 380-81
types of 188
very large 229

Dialog Manager 188-93
requirements for starting 188-89

DialogSelect function 219
DialogShutdown function 189
DialogStartUp function 189
directory record 346-47
direct pages 53
disk

contents, ProDOS 16 33-35
error codes, list of 363-64
tool sets 53-55

DisposeHandle function 107
dithering 12
DOC (Digital Oscillator Chip) 15-16
DrawMenuBar function 123
DrefCorn 199
edit lines, scroll bar 257-58
equate files, APW assembler 65-66
ErrChk C program 392
ErrChk ML program 391
ErrChk Pascal program 392
error codes 396-400

disk list of 363-64
error handling 391-95

c 56
Pascal 56

errors
fatal system, list of 397
ProDOS 16 and 334-35, 397-98
Toolbox 55-56, 398-400

Event Manager 79, 401-5
event mask 401-2
event record 124, 403
false value 6
Fatal Error Handler ML program 393-95
file manipulation 344-50
filenames, ProDOS 160
Finder program 23, 36
FixMenuBar function 123
Font Manager tool set 330
function

list 57-59
number, tool set 44-45·

functions
ProDOS 16 335-36
standard, tool set 50-51
Toolbox 44
tool set prefix 51

GetDitern Value function 197
GetN ew D I tern

function 193, 205, 219, 245, 257
template 205

412

GetNewiD function 278, 293
GetNewModalDialog

function 193, 257
template 208

GetNextEvent function 401
GetVector function 283-84
Guidelines, Human Interface 115, 191,

371-83
handle 98
header files 6 7
HEARTBEAT.ASM program 301-5
HeartBeat task manager 299-301
HideDitern function 229
Human Interface Guidelines 115, 191,

371-83
icons

alert 211
defining 225-28

lnser.tMenu function 121-23, 135-36
InsertMitern function 135-36
interrupts 271-307

abort 276
action of 276-77
Apple lies, types of 273-76
enabling and disabling 287-88
handler 272, 277-282, 287-96
keyboard 298-99
rnaskable 274-75
nonrnaskable 275
ProDOS 16 and 284-86
serial port and 273
software 275
sources, clearing 297-98
vectors 282-84

IntSource function 287, 298
IsDialogEvent function 219
JternColor dialog box parameter 198
IternDescr dialog box parameter 196-98
JternFlag dialog box parameter 198
item flags, setting 130-31
item handlers 126-27
Item ID, as index 126
Itern!D dialog box parameter 193-94
IternRect dialog box parameter 194-95
items

check box 249
Push Button 246
radio button 252-53
scroll bar 254-56

lternType dialog box parameter 195-96
keyboard interrupts 298-99
key equivalents, programming standards

for 378-79
Launcher program 36-37
launching applications 36-37, 40-42
load file types 41
LoadTools function 53-54
long word 5, 6

machine language. See ML
Macintosh emulation 10, 78
macros

in source code 73-75
list 70
ML 69-75

MAGNIFY.NDA program 319-28
maskable interrupt 274-75
Mega II chip 19-20
memory

additional 3, 22
addressing 20-22
block 95-96, 104-6
handles, reusing 107
management 95-111
manager function list 108-11
purge level 107
relocating 98
removing 106-7
requesting 1 01-3

memory-block record 103-4
Memory Manager tool set 21, 31, 52,

95-111
error codes Ill
starting 99

menu
Apple logo and 117
bar, drawing 123-24
bar colors 137-39
designing 116-20
DeskTop and 114
flags, setting 130
ID 119-20
installing 121-23
item, changing 128-30
item, changing blink rate 137
item, renaming 132-34
list 116-18

Menu Manager tool set 49, 114-43
starting 121-22

menus, programming standards for
376-78

menus, pull-down 113-43
renaming 134-35
strings and 116, 120-21
text style, changing 131-32
title, unhighlighting 127-28

ML
calling ProDOS 16 from 332
calling Toolbox from 47-49
modular programming 68-69
support files and 68-75
window naming and 159-61

ML programs, fatal-error handler 393-95
Moda!Dialog function 199, 204, 207, 208
MODEL.ASM program 81-87
MODEL.C program 87-90
MODEL.PAS program 90-93
modeless dialog box, example of use 218,

220-25

modem 273
modes and resolutions, chart of 12
modular programming, ML 68-69
MONDO.ASM program 168-73

C language source for 173-77
Pascal source for 178-82

mouse 79
programming standards for 375-76

MtStartUp function 47-48
native mode, turning on 46-47
NDA (New Desk Accessories) 310,

316-19
action codes 319
DeskTop and 316
header 317
requirements for 316-17

NewDitem function 193, 202-3, 205,
219, 226, 245

NewHandle function 53, 101-2, 103-4,
278, 280-81

NewMenu function 116, 121
NewModa!Dialog function 201-2, 207
NewModelessDialog function 219

parameters 219-20
NewWindow function 146-47, 149
nonmaskable interrupt 275
NoteAlert function 211
NUMCONV.CDA program 313-16
older chips, emulation of 17-19
opening window 149-51
operating system, ProDOS 16 22-23
panic button program examples 260-64
parameter list, ProDOS call 336-38
parameters, window record 153-56
parameter tables, ProDOS calls 338-44
permanent initialization files 32
planning for dialog boxes 191-93
port address, window 147
ProDOS 8 operating system 22-23,

330-31
booting 28-30

ProDOS 16 operating system 22-23,
329-67

assembler macros and 332
booting 30-33, 331
calling 331-32
calling from C and Pascal 332-34
calling from ML 332
call parameter list 336-38
calls, list of 338-44
calls parameter tables 338-44
disk contents 33-35
errors and 334-35, 397-98
filenames 160
functions 335-36
interrupts and 284-86
Kernel Relocator 29
Quit function 37-38

program, relocatable 40
program ID 39

413

programming hints, language-specific
61-75

programming standards
for color 382-83
for dialog boxes 380-81
for key equivalents 378-79
for menus 516-ti:!
for mouse 375-76
for sound 381-82

programs
how they work 25-42
switching between 39-40

push buttons 245-49
frame style 247

PushLong macro 71-73
QuickDraw II tool set 14, 49, 259
Quit call 39-40
Quit function, ProDOS 16 37-38
quit-parameter word 39-40
Quit Return Stack 39
radio button 251-53

colors 253
items 252-53

ramdisk 22
ReallocHandle function 107
" refertorial " approach of book 4
relocatable code 278
reply record 348
requirements for

APW assembler 68
NDA 316-17
starting Control Manager 243
using book 2

reset function 51
reset interrupt 275
screen, secret memory location of 10, 13
scroll bar 254-59

edit lines 257-58
sector 28
serial port, interrupts and 273
SetBarColors function 138
SetDitem Value function 197
SetHeartBeat function 300
SetMenuFlag function 130
SetMenuTitle function 135
SetMitemBiink function 137
SetMitemFiag function 130-31
SetMitem function 133
SetMitemName function 133-34
SetVector function 282-84, 293, 298
SFAllCaps function 349
SFGetFile function 345-48
SFPutFile function 348-49
ShowDitem function 229
ShutDown function 51
65816 chip 17

414

software interrupt 275
sound 14-16

programming standards for 381-82
spelling checker 218
Standard File Operations tool set 330,

344-50
&tanaaras, 1 po ta c r 1 o
startup device 26
StartUp function, tool set 47, 51, 52-53
status function 51-52
StopAlert function 211
strings, menus and 116
style bit 131
super hi res 12, 14
support files 62-66

C and 66-67
ML and 68-75
Pascal and 67-68
tool set, list of 64-65

SYSTEM/DESK.ACCS subdirectory 310
system loader, Apple lies 31, 40
system menu bar 115
SYSTEM/ TOOLS subdirectory 53
TaskMaster 80, 114, 124-26, 148-49,

152, 218, 405-7
template, dialog 198
temporary initialization files 32-33
terminal program 132
text style, menu, changing 131-32
TML Pascal 2, 67
Toolbox 3, 43-59

calling 47-49
calling from ML 47-49
closing 56-57
errors returned from 398-400
functions , errors and 55-56
importance of using 10
starting 46-4 7

Tool Locator 330
tools, disk-based 44
tool set 44

function list, menu 139-43
interdependencies 49-50

tool sets
disk 53- 55
list of 45, 384
order in which to start 49-50

true value 6
TV.C program 385-90
type styles 119
UCSD Pascal 67
User ID 99-101
version, tool set 385
Version function 51
VGC (Video Graphics Controller) chip

11-12

voice, musical IS
wColor parameter, window record 162
wContDefProc 165-66
window 145-85

closing 151-52
color in 162-65
contents 165-66
controls and 244-45

controls in 147-48
naming 159-62
opening 149-51
record 146, 152-59, 162

Window Manager 80, 145-66
starting 146

word 5, 6

415

