"I E B B EEEEEEEEEEEENEDNE

{

Includes ROM Listings.

Copyright

This manual is copyrighted by Apple or by Apple’s
suppliers, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in
part, without the written consent of Apple. This
exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased
may be sold, given, or lent to another person. Under the
law, copying includes translating into another language.

©Apple Computer, Inc., 1985
20525 Mariani Avenue
Cupertino, California 95014

Apple, the Apple logo, ProDOS, ProFile, and Disk II are
trademarks of Apple Computer, Inc.
CP/M is a registered trademark of Digital Research, Inc.

SOFTCARD is a registered trademark of Microsoft
Corporation.

Z-80 is a registered trademark of Zilog, Inc.

Z-Engine is a trademark of Advanced Logic Systems, Inc.

Simultaneously published in the United States and
Canada.

Limited Warranty on Media and Replacement

If you discover physical defects in the manuals
distributed with an Apple product or in the media on
which a software product is distributed, Apple will
replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof
of purchase to Apple or an authorized Apple dealer
during the 90-day period after you purchased the
software. In addition, Apple will replace damaged
software media and manuals for as long as the software
product is included in Apple's Media Exchange Program.
While not an upgrade or update method, this program
offers additional protection for up to two years or more
from the date of your original purchase. See your’
authorized Apple dealer for Program coverage and
details. In some countries the replacement period may
be different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA
AND MANUALS, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and reviewsd
the documentation, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO SOFTWARE, ITS
QUALITY, PERFORMANCE, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. AS
A RESULT, THIS SOFTWARE IS SOLD “AS 1S,”
AND YOU THE PURCHASER ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility
of such damages. In particular, Apple shall have no
liability for any programs or data stored in or used with
Apple products, including the costs of recovering such
programs or data.

THE WARRANTY AND REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or limitation of
implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives yom
specific legal rights, and you may also have other nghis
which vary from state to state.

Warning

This equipment has been certified to comply with the
limits for a Class B computing device pursuant to
Subpart J of Part 15 of FCC rules. Only peripherals
(computer input/output devices, terminals, printers, =z}
certified to comply with Class B limits may be zitached
to this computer. Operation with non-certified penphersis
is likely to result in interference to radio and televisim
reception.

|

Apple® Ile Technical
Reference Manual

A

vv

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California

Don Mills, Ontario Wokingham, England Amsterdam
Sydney Singapore Tokyo Mexico City Bogotd
Santiago San Juan

Copyright © 1985 by Apple Computer, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photoco
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

ISBN 0-201-17720-X

ABCDEFGHIJ-DO-898765
First printing, July 1985

EEEEEEEEEEEEEENEEE

|

Apple®Ile Technical
Reference Manual

PREFACE

CHAPTER 1

Contents

List of Figures and Tables Xviii
Radio and Television Interference XXV
About This Manual XXvii

Contents of This Manual xxvii

The Enhanced Apple [le xxix
Physical Changes xxix
Startup Drives xxix
Video Firmware xxx
Video Enchancements xxx
Applesoft 80-Column Support xxx
Applesoft Lowercase Support xxxi
Apple II Pascal xxxi
System Monitor Enhancements xxxi
Interrupt Handling xxxi

Symbols Used in This Manual xxxii

Introduction 1
Removing the Cover 2

The Keyboard 3

The Speaker 3

The Power Supply . 4

The Circuit Board 4

Connectors on the Circuit Board 6

Connectors on the Back Panel 8

Contents

CHAPTER 2

Built-in 1/0 Devices
The Keyboard 10
Reading the Keyboard 12
The Video Display Generator 16
Text Modes 18
Text Character Sets 19
40-Column Versus 80-Column Text 20
Graphics Modes 22
Low-Resolution Graphics 22
High-Resolution Graphics 23
Double-High-Resolution Graphics 25
Video Display Pages 26
Display Mode Switching 28
Addressing Display Pages Directly 30
Secondary Inputs and Qutputs 37
The Speaker 37
Cassette Input and Output 38
The Hand Control Connector Signals 39
Annunciator Qutputs 40
Strobe Output 40
Switch Inputs 41
Analog Inputs 42
Summary of Secondary /0 Locations 42

Contents

CHAPTER 3 Built-in /0 Firmware
Using the I/0 Subroutines 47
Apple Il Compatibility 48
The 80-Column Firmware 49
The Old Monitor 50
The Standard 1/0 Links 50
Standard Qutput Features 51
COUT Output Subroutine 51
Control Characters With COUT1 and BASICOUT 52
The Stop-List Feature 54
The Text Window 54
Inverse and Flashing Text 56
Standard Input Features 57
RDKEY Input Subroutine 57
KEYIN Input Subroutine 58
Escape Codes 58
Cursor Motion in Escape Mode 58
GETLN Input Subroutine 60
Editing With GETLN 61
Cancel Line 61
Backspace 61
Retype 62
Monitor Firmware Support 62
BASICOUT 63
CLREOL 63
CLEOLZ 64
CLREOP 64
CLRSCR 64

vi Contents

CLRTOP 64
COUT 64
COUT1 64
CROUT 64
CROUT1 65
HLINE 65
HOME 65
PLOT 65
PRBL2 66
PRBYTE 65
PRERR 65
PRHEX 66
PRNTAX 66
SCRN 66
SETCOL 66
VTABZ 66
VLINE 66
1/0 Firmware Support 67

PINIT 67
PREAD 67
PWRITE 68
PSTATUS 69

Contents vii

CHAPTER 4 Memory Organization 71
Main Memory Map 72
RAM Memory Allocation 74
Reserved Memory Pages 75
Page Zero 75
The 65C02 Stack 75
The Input Buffer 76
Link-Address Storage 76
The Display Buffers 76
Bank-Switched Memory 79
Setting Bank Switches 80
Reading Bank Switches 83
Auxiliary Memory and Firmware 84
Memory Mode Switching 86
Auxiliary-Memory Subroutines 88
Moving Data to Auxiliary Memory 89
Transferring Control to Auxiliary Memory 90
The Reset Routine 91
The Cold-Start Procedure 92
The Warm-Start Procedure 92
Forced Cold Start 93
The Reset Vector 93
Automatic Self-Test 95

viii Contents

CHAPTER 5

Using the Monitor 97
Invoking the Monitor 98
Syntax of Monitor Commands 99
Monitor Memory Commands 100
Examining Memory Contents 100
Memory Dump 100
Changing Memory Contents 103
Changing One Byte 103
Changing Consecutive Locations 104
ASCII Input Mode 104
Moving Data in Memory 105
Comparing Data in Memory 107
Searching for Bytes in Memory 108
Examining and Changing Registers 108
Monitor Cassette Tape Commands 109
Saving Data on Tape 109
Reading Data From Tape 110
Miscellaneous Monitor Commands 112
Inverse and Normal Display 112
Back to BASIC 112
Redirecting Input and Output 113
Hexadecimal Arithmetic 114
Special Tricks With the Monitor 114
Multiple Commands 114
Filling Memory 115
Repeating Commands 116
Creating Your Own Commands 117

Contents ix

Machine-Language Programs 118
Running a Program 118
Disassembled Programs 119
The Mini-Assembler 121
Starting the Mini-Assembler 121
Restrictions 121
Using the Mini-Assembler 122
Mini-Assembler Instruction Formats 124
Summary of Monitor Commands 125
Examining Memory 125
Changing the Contents of Memory 126
Moving and Comparing 126
The Examine Command 126
The Search Command 126
Cassette Tape Commands 126
Miscellaneous Monitor Commands 127
Running and Listing Programs 127
The Mini-Assembler 128

CHAPTER 6 Programming for Peripheral Cards
Peripheral-Card Memory Spaces 130
Peripheral-Card /0 Space 130
Peripheral-Card ROM Space 131
Expansion ROM Space 132
Peripheral-Card RAM Space 134

X Contents

1/0 Programming Suggestions 135
Finding the Slot Number With ROM Switched In 136
1/0 Addressing 136
RAM Addressing 138
Changing the Standard /0 Links 139
Other Uses of 1/0 Memory Space 140
Switching I/0 Memory 141
Developing Cards for Slot 3 143
Pascal 1.1 Firmware Protocol 144
Device Identification 144
1/0 Routine Entry Points 145
Interrupts on the Enhanced Apple lle 146
What Is an Interrupt? 147
Interrupts on Apple Ile Series Computers 148
Rules of the Interrupt Handler 149
Interrupt Handling on the 65C02 and 6502 150
The Interrupt Vector at SFFFE 150
The Built-in Interrupt Handler 151
Saving the Apple Ile’s Memory Configuration 152
Managing Main and Auxiliary Stacks 152
The User's Interrupt Handler at $3FE 1564
Handling Break Instructions 155
Interrupt Differences: Apple Ile Versus Apple llc 156

Contents

CHAPTER 7

il

Hardware Implementation 157
Environmental Specifications 158
The Power Supply 159
The Power Connector 161
The 66C02 Microprocessor 161
65C02 Timing 162
The Custom Integrated Circuits 164
The Memory Management Unit 164
The Input/Output Unit 166
The PAL Device 168
Memory Addressing 168
ROM Addressing 169
RAM Addressing 170
Dynamic-RAM Refreshment 170
Dynamic-RAM Timing 171
The Video Display 173
The Video Countérs 174
Display Memory Addressing 175
Display Address Mapping 176
Video Display Modes 179
Text Displays 179
Low-Resolution Display 182
High-Resolution Display 183
Double-High-Resolution Display 185
Video Output Signals 186

Contents

Built-in 1/0 Circuits 187
The Keyboard 187
Connecting a Keypad 188
Cassette [/0 189
The Speaker 189
Game /0 Signals 190
Expanding the Apple Ile 192
The Expansion Slots 192
The Peripheral Address Bus 192
The Peripheral Data Bus 193
Loading and Driving Rules 193
Interrupt and DMA Daisy Chains 193
Auxiliary Slot 197
80-Column Display Signals 197

APPENDIX A The 65C02 Microprocessor 205
Differences Between 6502 and 65C02 206
Different Cycle Times 206
Different Instruction Results 207
Data Sheet 207

APPENDIX B Directory of Built-in Subroutines 217

Contents xiii

APPENDIX C

APPENDIX D

xiv

Apple II Family Differences 225
Keyboard 226

Apple Keys 226

Character Sets 226

80-Column Display 227

Escape Codes and Control Characters 227
Built-in Language Card 227

Auxiliary Memory 228

Auxiliary Slot 228

Back Panel and Connectors 228

Soft Switches 228

Built-in Self-Test 229

Forced Reset 229

Interrupt Handling 229

Vertical Sync for Animators 229
Signature Byte 230

Hardware Implementation 230

Operating Systems and Languages 231
Operating Systems 232

ProDOS 232

D0OS 3.3 232

Pascal Operatiing System 232

CP/M 233

Contents

APPENDIX E

APPENDIX F

APPENDIX G

Languages 233
Assembly Language 233
Applesoft BASIC 233
Interger BASIC 233
Pascal Language 234
FORTRAN 234

Conversion Tables 236
Bits and Bytes 236

Hexadecimal and Decimal 238

Hexadecimal and Negative Decimal 240

Graphics Bits and Pieces 242

Eight-Bit Code Conversions 244

Frequently Used Tables 253

Using an 80-Column Text Card 267
Starting Up With Pascal or CP/M 268

Starting Up With ProDOS or DOS 3.3 269

Using the GET Command 269

When to Switch Modes Versus When to Deactivate 270

Display Features With the Text Card 270

INVERSE, FLASH, NORMAL, HOME 270

Contents XV

APPENDIX H

xvi

Tabbing With the Original Apple Ile 271
Comma Tabbing With the Original Apple Ile 271
HTAB and POKE 1403 272

Using Control-Characters With the Card 272
Control Characters and Their Functions 273
How to Use Control-Character Codes in Programs 274
A Word of Caution to Pascal Programmers 275

(W]
b |
8|

Programming With the Super Serial Card
Locating the Card 278
Operating Modes 278
Operating Commands 279
The Command Character 280
Baud Rate, nB 280
Data Format, nD 281
Parity, nP 281
Set Time Delay, nC, nL, and nF 282
Echo Characters to the Screen, E_E/D 283
Automatic Carriage Return, C 283
Automatic Line Feed, LE/D 284
Mask Line Feed In, M_E/D 284
Reset Card, R 284
Specify Screen Slot, S 284
Translate Lowercase Characters, nT 284
Suppress Control Characters, 7z 285
Find Keyboard, F_E/D 285
XOFF Recognition, X_E/D 286
Tab in BASIC, T_E/D 286

Contents

APPENDIX [

Terminal Mode 286
Entering Terminal Mode, T 286
Transmitting a Break, B 287
Special Characters, S_E/D 287
Quitting Terminal Mode, @ 287

SSC Error Codes 287

The ACIA 289

SSC Firmware Memory Use 289
Zero-Page Location 290
Peripheral Card [/0 Space 290
Scratchpad RAM Location 292

Monitor ROM Listing 293
Glossary 377
Bibliography 399
Index 401
Tell Apple Card

Contents xvii

B
Figures and Tables
I
X
CHAPTER 1 Introduction 1 .
Figure 1-1 Removing the Cover 2
Figure 1-2 The Apple Ile With the Cover Off 2 .
Figure 1-3 The Apple Ile Keyboard 3
Figure 1-4 The Circuit Board 5
Figure 1-5 The Expansion Slots 7 .
Figure 1-6 The Auxiliary Slot 7
Figure 1-7 The Back Panel Connectors 8 .
CHAPTER 2 Built-in I/0 Devices 9 .
Figure 2-1 The Keyboard 11
Table 2-1 Apple Ile Keyboard Specifications 11 .
Table 2-2 Keyboard Memory Locations 12
Table 2-3 Keys and ASCII Codes 14 .
Table 2-4 Video Display Specifications 17
Table 2-5 Display Character Sets 20
Figure 2-2 40-Column Text Display 21 .
Figure 2-3 80-Column Text Display 21
Table 2-6 Low-Resolution Graphics Colors 23 .
Figure 2-4 High-Resolution Display Bits 24
Table 2-7 High-Resolution Graphics Colors 25 .
Table 2-8 Double-High-Resolution Grahies Colors 26
Table 2-9 Video Display Page Locations 28
Table210 Display Soft Switches 29 o
Figure 2-5 Map of 40-Column Text Display 32
Figure 2-6 Map of 80-Column Text Display 33 .
Figure 2-7 Map of Low-Resolution Graphics Display 34
N
xviil Figures and Tables .

Figure 2-8 Map of High-Resolution Graphics Display 35
Figure 2-9 Map of Double-High-Resolution Graphics Display 36
Table 2-11 Annunciator Memory Locations 40
Table 2-12 Secondary I/0 Memory Location 43
CHAPTER 3 Built-in I/0 Firmware 45
Table 3-1 Monitor Firmware Routines 46
Table 3-2 Apple Il Mode 48
Table 3-3a Control Characters With 80-Column Firmware Off 52
Table 3-3b Control Characters With 80-Column Firmware On 52
Table 3-4 Text Window Memory Locations 55
Table 8-5 Text Format Control Values 56
Table 3-6 Escape Codes 59
Table 3-7 Prompt Characters 60
Table 3-8 Video Firmware Routines 62
Table 3-9 Port 3 Firmware Protocol Table 67
Table 3-10 Pascal Video Control Functions 68
CHAPTER 4 Memory Organization 71
Figure 4-1 System Memory Map 73
Figure 4-2 RAM Allocation Map 74
Table 4-1 Monitor Zero-Page Use 77
Table 4-2 Applesoft Zero-Page Use 77
Table 4-3 Integer BASIC Zero-Page Use 78
Table 4-4 DOS 3.3 Zero-Page Use 78
Table 4-5 ProDOS MLI and Disk-Driver Zero-Page Use 79
Figures and Tables Xix

CHAPTER

CHAPTER 6

XX

Figure 4-3 Bank-Switched Memory Map 80

Table 4-6 Bank Select Switches 82

Figure 4-4 Memory Map With Auxiliary Memory 85

Table 4-7 Auxiliary-Memory Select Switches 87

Table 4-8 48K RAM Transfer Routines 88

Table 4-9 Parameters for AUXMOVE Routine 89

Table 4-10 Parameters for XFER Routine 90

Table 4-11 Page 3 Vectors 94

Using the Monitor 97

Table 5-1 Mini-Assembler Address Formats 124

Programming for Peripheral Cards 129

Table 6-1 Peripheral-Card I/0 Memory Locations Enabled by
DEVICE SELECT” 131

Table 6-2 Peripheral-Card ROM Memory Locations Enabled by
I/0 SELECT” 132

Figure 6-1 Expansion ROM Enable Circuit 133

Figure 6-2 ROM Disable Address Decoding 133

Table 6-3 Peripheral-Card RAM Memory Locations 134

Table 6-4 Peripheral-Card 1/0 Base Addresses 137

Figure 6-3 I/0 Memory Map 141

Table 6-5 [/0 Memory Switches 142

Table 6-6 Perpheral-Card Device-Class Assignments 144

Table 6-7 [/0 Routine Offsets and Registers Under

Figures and Tables

Pascal 1.1 Protocol 146

CHAPTER 7

Figure 6-4 Interrupt Handling Sequence 151

Table 6-8 BRK Handler Information 155

Table 6-9 Memaory Configuration Information 155
Hardware Implementation 157
Table 7-1 Summary of Environmental Specifications 158
Table 7-2 Power Supply Specifications 159

Table 7-3 Power Connector Signal Specifications 161
Table 7-4 65C02 Microprocessor Specifications 162
Table 7-5 65C02 Timing Signal Descriptions 163

Figure 7-1 66C02 Timing Signals 163

Figure 7-2 The MMU Pinouts 165

Table 7-6 The MMU Signal Descriptions 165

Figure 7-3 The IOU Pinouts 167

Table 7-7 The 10U Signal Descriptions 167

Figure 7-4 The PAL Pinouts 168

Table 7-8 The PAL Signal Descriptions 168

Figure 7-5 The 2364 ROM Pinouts 169

Figure 7-6 The 2316 ROM Pinouts 169

Figure 7-7 The 2333 ROM Pinouts 169

Figure 7-8 The 64K RAM Pinouts 170

Table 7-9 RAM Address Multiplexing 171

Figure 7-9 RAM Timing Signals 172

Table 7-10 RAM Timing Signal Descriptions 173

Table 7-11 Display Address Transformation 176

Figure 7-10 40-Column Text Display Memory 177

Table 7-12 Display Memory Addressing 178

Figures and Tables xxi

&
O
O
Table 7-13 Memory Address Bits for Display Modes 178 .
Figure 7-11a 7 MHz Video Timing Signals 180
Figure 7-11b 14 MHz Video Timing Signals 181
Table 7-14 Character-Generator Control Signals 182 .
Table 7-15 Internal Video Connector Signals 186
Table 7-16 Keyboard Connector Signals 188 .
Table 7-17 Keypad Connector Signals 188
Table 7-18 Speaker Connector Signals 189
Table 7-19 Game [/0 Connector Signals 191 .
Figure 7-12 Peripheral-Signal Timing 194
Table 7-20 Expansion Slot Signals 195 .
Table 7-21 Auxiliary Slot Signals 198
Figure 7-13 Schematic Diagram 200 .
APPENDIX A The 65C02 Microprocessor 205 .
Table A-1 Cycle Time Differences 206
o
APPENDIX E Conversion Tables 235
Table E-1 What a Bit Can Represent 236 .
Figure E-1 Bits, Nibbles, and Bytes 237
Table E-2 Hexadecimal /Decimal Conversion 238 .
Table E-3 Hexadecimal to Negative Decimal Conversion 240
Table E-4 Hexadecimal Values for High-Resolution Dot Patterns
242 .
Table E-5 Control Characters, High Bit Off 245
Table E-6 Special Characters, High Bit Off 246 .
=
Xxil Figures and Tables
H

Table E-7 Uppercase Characters, High Bit Off 247
Table E-8 Lowercase Characters, High Bit Off 248
Table E-9 Control Characters, High Bit On 249
Table E-10 Special Characters, High Bit On 250
Table E-11 Uppercase Characters, High Bit On 251
Table E-12 Lowercase Characters, High Bit On 252
APPENDIX F Frequently Used Tables 263
Table 2-3 Keys and ASCII Codes 254
Table 2-2 Keyboard Memory Location 265
Table 2-4 Video Display Specifications 256
Table 2-8 Double-High-Resolution Graphics Colors 257
Table 2-9 Video Display Page Locations 257
Table 2-10 Display Soft Switches 258
Table 3-1 Monitor Firmware Routines 259
Table 3-3a Control Characters With 80-Column Firmware Off 260
Table 3-3b Control Characters With 80-Column Firmware On 260
Table 3-5 Text Format Control Values 261
Table 3-6 Escape Codes 262
Table 3-10 Pascal Video Control Functions 263
Table 4-6 Bank Select Switches 264
Table 4-7 Auxiliary-Memory Select Switches 265
Table 4-8 48K RAM Transfer Routines 266
Table 6-5 /0 Memory Switches 266
Table 6-6 I/0 Routine Offsets and Registers Under

Pascal 1.1 Protocol 266

Figures and Tables Xxiii

N
i
APPENDIX G Using an 80-Column Text Card 267 .
Table G-1 Control Characters With 80-Column Firmware On 273
L
APPENDIX H Programming With the Super Serial Card 277
Table H-1 Baud Rate Selections 280 |
Table H-2 Data Format Selections 281
Table H-3 Parity Selections 281 .
Table H-4 Time Delay Selections 282
Table H-5 Lowercase Character Display Options 285
Table H-6 STSBYTE Bit Definitions 287 .
Table H-7 Error Codes and Bits 288
Table H-8 Memory Use Map 289 .
Table H-9 Zero-Page Locations Used by the SSC 290
Table H-10 Address Register Bits Interpretation 291
Table H-11 Scratchpad RAM Locations Used by the SSC 292 .
&
B
o
i
=
[
XXiv Figures and Tables
=

A shielded cable is a cable that uses a
metallic wrap around the wires to reduce
the potential effects of radio frequency
interference.

Radio and Television Interference

The equipment described in this manual generates and uses
radio-frequency energy. If it is not installed and used properly—that is, in
strict accordance with our instructions—it may cause interference with
radio and television reception.

This equipment has been tested and complies with the limits for a Class B
computing device in accordance with the specifications in Subpart J,

Part 15, of FCC rules. These rules are designed to provide reasonable
protection against such interference in a residential installation. However,
there is no guarantee that the interference will not occur in a particular
installation, especially if a “rabbit ear” television antenna is used. (A “rabbit
ear” antenna is the telescoping-rod type usually contained on television
receivers.)

You can determine whether your computer is causing interference by
turning it off. If the interference stops, it was probably caused by the
computer or its peripherals. To further isolate the problem, disconnect the
peripheral devices and their input/output cables one at a time. If the
interference stops, it was caused by either the peripheral device or the 1/0
cable. These devices usually require shielded 1/0 cables. For Apple
peripherals, you can obtain the proper shielded cable from your dealer.
For non-Apple peripheral devices, contact the manufacturer or dealer for
assistance.

If your computer does cause interference to radio or television reception,
you can try to correct the interference by using one or more of the following
measures:

o Turn the television or radio antenna until the interference stops.
o Move the computer to one side or the other of the television or radio.
o Move the computer farther away from the television or radio.

Radio and Television Interference XXV

XXVi

o Plug the computer into an outlet that is on a different circuit than the
television or radio. (That is, make certain the computer and the radio or
television set are on circuits controlled by different circuit breakers or
fuses.)

o Consider installing a rooftop television antenna with coaxial cable lead-in
between the antenna and television.

If necessary, you should consult your Apple-authorized dealer or an
experienced radio/television technician for additional suggestions.

Radio and Television Interference

Preface

About This Manual

This is the reference manual for the Apple Ile personal computer. It
contains detailed descriptions of all of the hardware and firmware that
make up the Apple Ile and provides the technical information that
peripheral-card designers and programmers need.

This manual contains a lot of information about the way the Apple Ile
works, but it doesn’t tell you how to use the Apple Ile. For this, you should
read the other Apple Ile manuals, especially the following:

o Apple Ile Owner's Manual
o The Applesoft Tutorial

Contents of This Manual

—
The material in this manual is presented roughly in order of increasing
intimacy with the hardware; the farther you go in the manual, the more
technical the material becomes. The main subject areas are

o introduction: Preface and Chapter 1

o use of built-in features: Chapters 2 and 3

o how the memory is organized: Chapter 4

o information for programmers: Chapters 5 and 6

o hardware implementation: Chapter 7

o additional information: appendixes, glossary, and bibliography.

Chapter 1 identifies the main parts of the Apple Ile and tells where in the
manual each part is described.

The next two chapters describe the built-in input and output features of the
Apple Tle. This part of the manual includes information you need for
low-level programming on the Apple Ile. Chapter 2 describes the built-in I/0
features and Chapter 3 tells you how to use the firmware that supports
ther.

Contents of This Manual xxvil

Xxviii

Chapter 4 describes the way the Apple Ile’s memory space is organized,
including the allocation of programmable memory for the video display
buffers.

Chapter 5 is a user manual for the Monitor that is included in the built-in
firmware. The Monitor is a system program that you can use for program
debugging at the machine level.

Chapter 6 describes the programmable features of the peripheral-card
connectors and gives guidelines for their use. It also describes interrupt
programming on the Apple Ile.

Chapter 7 is a description of the hardware that implements the features
described in the earlier chapters. This information is included primarily for
programumers and peripheral-card designers, but it will also help you if you
Just want to understand more about the way the Apple Ile works.

Additional reference information appears in the appendixes. Appendix A is
the manufacturer’s description of the Apple Ile’s microprocessor.

Appendix B is a directory of the built-in I/O subroutines, including their
functions and starting addresses.

Appendix C describes differences among Apple II family members.

Appendix D describes some of the operating systems and languages
supported by Apple Computer for the Apple Ile.

Appendix E contains conversion tables of interest to programmers.

Appendix F contains additional copies of some of the tables that appear in
the body of the manual. The ones you will need to refer to often are
duplicated here for easy reference.

Appendix G contains information about using Apple Ile 80-column text
cards with the Applalle and high level languages.

Appendix H discusses programming on the Apple Ile with the Apple Super
Serial Card.

Appendix I contains the source listing of the Monitor firmware. You can
refer to it to find out more about the operation of the Monitor subroutines
listed in Appendix B.

Following Appendix I is a glossary defining many of the technical terms
used in this manual. Some terms that describe the use of the Apple [le are
defined in the glossaries of the other manuals listed earlier.

Following the glossary, there is a selected bibliography of sources of
additional information.

Preface: About This Manual

The Enhanced Apple lle

Opcode is short for operation code and is
used to describe the basic instructions
performed by the central processing unit of
a computer.

Changes have been made in the Apple Ile since the original version was
introduced. The new version is called the enhanced Apple Ile and is
described in this manual. Where there are differences in the original
Apple Ile compared with the enhanced Apple Ile, they will be called out in
the manual. Otherwise, the two machines operate identically.

You can tell whether you have an original or enhanced Apple lle when you
start up the system. An original Apple Ile will display Apple 1t at the top
of the monitor screen, while an enhanced Apple Ile will display

Apple //e.

The changes embodied in the enhanced Apple Ile are described in the
following sections of this preface.

Physical Changes

T e e
The enhanced Apple lle includes the following changes from the original
Apple Ile:

o The 65C02 microprocessor, which is a new version of the 6502
microprocessor found in the original Apple Ile. The 65C02 uses less
power, has 27 new opcodes, and runs at the same speed as the 6502,
(See Chapter 7 and Appendix A.)

o A new video ROM containing the same MouseText characters found in
the Apple Ilc. (See Chapter 2.)

o New Monitor ROMs (the CD and EF ROMs) containing the enhanced
Apple Ile firmware. (See Chapter 5.)

o The identification byte at $FBCO has been changed. In the original
Apple Ile it was $EA (decimal 234), in the enhanced Apple Ile it is SE0
(decimal 224).

Startup Drives

You can use startup (boot) devices other than a Disk II to start up ProDOS
on the enhanced Apple Ile.

Apple Il Pascal versions 1.3 and later may start up from slots 4, 5, or6on a
Disk II, ProFile, or other Apple I disk drive. Apple Il Pascal versions 1.0
through 1.2 must start up from a Disk Il in slot 6.

DOS 3.3 may be started from a Disk II in any slot.

The Enhanced Apple lle Xxix

XXX

When you turn on your Apple Ile, it searches for a disk drive controller to
start up from, beginning with slot 7 and working down toward slot 1. As
soon as a disk controller card is found, the Apple Ile will try to load and
execute the operating system found on the disk. If the drive is not a Disk II,
then the operating system of the startup volume must be either ProDOS or
Apple II Pascal (version 1.3 or later). If it is a Disk II, then the startup
volume may be any Apple Il operating system.

Video Firmware
[

The enhanced Apple Ile has improved 80-column firmware;

o The enhanced Apple Ile now supports lowercase input.

| CONTROL H E | passes most control characters to the screen.

o traps most control characters before they get to the
screen.

o (R] was removed because uppercase characters are no longer
required by Applesoft.

Video Enhancements

Both 80-column Pascal and 80-column mode Applesoft output are faster
than before and scrolling is smoother. 40-column Pascal performance is
unchanged.

In the original Apple Ile, characters echoed to COUT1 during 80-column
operation were printed in every other column; the enhanced Apple lle
firmware now prints the characters in each colurn.

Applesoft 80-Column Support
= —-"+->* >

The following Applesoft routines now work in 80-column mode:

o HTAB

o TAB

o SPC

o Comma tabbing in PRINT statements

Preface: About This Manual

To find out more, see the Pascal ProF'ile
Manager Manual.

Applesoft Lowercase Support
| I R L e

Applesoft now lets you do all your programming in lowercase. When you list
your programs, all Applesoft keywords and variable names automatically
are in uppercase characters; literal strings and the contents of DATA and
REM statements are unchanged.

Apple Il Pascal

= =i
Apple II Pascal (version 1.2 and later) can now use a ProFile hard disk
through the Pascal ProFile Manager.

The Pascal 1.1 firmware no longer supports the control character that
switches from 80-column to 40-column operation. This control character is
no longer supported because it can put Pascal in a condition where the
exact memory configuration is not known.

System Monitor Enhancements
N T i e e i e Rl

Enhancements to the Apple Ile’s built-in Monitor (described in Chapter b in
this manual) include the following:

o lowercase input

o ASCII input mode

o Monitor Search command
o the Mini-Assembler

Interrupt Handling

R e (R, <]
Interrupt handler support in the enhanced Apple Ile firmware now handles
any Apple lle memory configuration.

The Enhanced Apple Ile XXXi

Symbols Used in This Manual

e e
Special text in this manual is set off in several different ways, as shown in
these examples.

AWarning | Important warnings appear in red like this. These flag potential danger to
| the Apple lle, its software, or you.

Important! The information here is important, but non-threatening. The ways in
which the original Apple Ile differs from the enhanced Apple Ile are
called out this way with the tag Original IIe in the margin.

By the Way: Information that is useful but is incidental to the text is set
off like this. You may want to skip over such information and return to it

' Definitions, cross-references, and other later.
short items appear in marginal glosses like .) .) .
this. Terms that are defined in a marginal gloss or in the glossary appear in
boldface.

Preface; About This Manual

Introduction

Chapter 1

This first chapter introduces you to the Apple Ile itself. It shows you what
the inside looks like, identifies the major components that make up the
machine, and tells you where to find information about each one.

Removing the Cover

Figure 1-1. Removing the Cover

Remove the cover of the Apple lle by pulling up on the back edge until the
fasteners on either side pop loose, then move the cover an inch or so toward

the rear of the machine to free the front of the cover, as shown in Figure 1-1.

What you will see is shown in Figure 1-2.

Figure 1-2. The Apple Ile With the Cover Off

(RERESEREERRRNANE

Chapter 1: Introduction

AWarning ’ There is a red LED (light-emitting diode) inside the Apple Ile, in the left

rear corner of the circuit board. If the LED is on, it means that the power
is on and you must turn it off before you insert or remove anything, To

t avoid damaging the Apple Ile, don't even think of changing anything
inside it without first turning off the power.

The Keyboard

ASCII stands for American Code for
Information Interchange.

The keyboard is the Apple Ile’s primary input device. As shown in

Figure 1-3, it has a normal typewriter layout, uppercase and lowercase, with
all of the special characters in the ASCII character set. The keyboard is
fully integrated into the machine; its operation is described in the first part
of Chapter 2. Firmware subroutines for reading the keyboard are described
in Chapter 3.

Figure 1-3. The Apple Ile Keyboard

The Speaker

The Apple Ile has a small loudspeaker in the bottom of the case. The
speaker enables Apple lle programs to produce a variety of sounds that
make the programs more useful and interesting. The way programs control
the speaker is described in Chapter 2.

The Speaker 3

The Power Supply

AWarning

EEm———— a0, e = e e e e e
The power supply is inside the flat metal box along the left side of the
interior of the Apple Ile. It provides power for the main board and for any
peripheral cards installed in the Apple Ile.

The power supply produces four different voltages: +5V, -5V, +12V, and
-12V. It is a high-efficiency switching supply; it includes special circuits that
protect it and the rest of the Apple Ile against short circuits and other
mishaps. Complete specifications of the Apple Ile power supply appear in
Chapter 7.

| The power switch and the socket for the power cord are mounted directly
| on the back of the power supply’s metal case. This mounting ensures that
| all the circuits that carry dangerous voltages are inside the power supply.

Do not defeat this design feature by attempting to open the power supply.

The Circuit Board

All of the electronic parts of the Apple Ile are attached to the circuit board,
which is mounted flat in the bottom of the case.

Figure 1-4 shows the main integrated circuits (ICs) in the Apple Ile. They
are the central processing unit (CPU), the keyboard encoder, the keyboard
read-only memory (ROM), the two interpreter ROMs, the video ROM, and
the custom integrated circuits: the Input/Output Unit (I0U), the Memory
Management Unit (MMU), and the Programmed Array Logic (PAL) device.

Chapter 1: Introduction

Keyboard ROM
Keyboard Encoder

Video ROM

ircuit Board

The C

1-4.

U

Interpreter ROMs

M
10U

Figure
CPU
PAL

M

D

The Circuit Board

o
il

Original lle

The CPU is a 656C02 microprocessor. The 656C02 is an enhanced version of
the 6502, which is an eight-bit microprocessor with a sixteen-bit address
bus. It uses instruction pipelining for faster processing than comparable
microprocessors. In the Apple Ile, the 65C02 runs at 1.02 MHz and performs
up to 500,000 eight-bit operations per second. The specifications of the
65C02 and its instruction set are given in Appendix A.

The original version of the Apple Ile uses the 6502 microprocessor. You can
tell which version of Apple Ile that you have by starting up your machine.
An original Apple Ile displays Apple 1 at the top of the screen during
startup, while an enhanced Apple Ile displays Apple //e. This manual
will call out specific areas where the two versions of the Apple Ile are
different.

The 6502 is very similar to the 65C02, but lacks 10 instructions and 2
addressing modes found on the 65C02. The 6502 is an NMOS device and
s0 uses more power than the CMOS 65C02. Except for the differences
listed above, and some minor differences in the number of clock cycles
used by some instructions, the two microprocessors are identical.

The keyboard is decoded by an AY-3600-type integrated circuit and a
read-only memory (ROM). These devices are described in Chapter 7.

The interpreter ROMs are integrated circuits that contain the Applesoft
BASIC interpreter. The ROMs are described in Chapter 7. The Applesoft
language is described in the Applesoft Tutorial and the Applesoft BASIC
Programmer’s Reference Manual.

Two of the large ICs are custom-made for the Apple Ile: the MMU and the
I0U. The MMU IC contains most of the logic that controls memory
addressing in the Apple Ile. The organization of the memory is described in
Chapter 4; the circuitry in the MMU itself is described in Chapter 7.

The 10U IC contains most of the logic that controls the built-in input/output
features of the Apple Ile. These features are described in Chapter 2 and
Chapter 3; the I0U circuits are described in Chapter 7.

Connectors on the Circuit Board

The seven slots lined up along the back of the Apple Ile circuit board are the
expansion slots, sometimes called peripheral slots. (See Figure 1-5.) These
slots make it possible to attach additional hardware to the Apple lle.
Chapter 6 tells you how your programs deal with the devices that plug into
these slots; Chapter 7 describes the circuitry for the slots themselves.

Chapter 1: Introduction

Figure 1-5. The Expansion Slots

The large slot next to the left-hand side of the circuit board is the auxiliary
slot (Figure 1-6). If your Apple Ile has an Apple Ile 80-column text card, it
will be installed in this slot. The 80-colurmn display option is fully integrated
into the Apple Ile; it is described along with the other display features in
Chapter 2. The hardware and firmware interfaces to this card are described
in Chapter 7.

Figure 1-6. The Auxiliary Slot

There are also smaller connectors for game I/0 and for an internal RF
(radio frequency) modulator. These connectors are described in Chapter 7.

Connectors on the Circuit Board 7

Connectors on the Back Panel

e e e
The back of the Apple Ile has two miniature phone jacks for connecting a
cassette recorder, an RCA-type jack for a video monitor, and a 9-pin D-type
miniature connector for the hand controls, as shown in Figure 1-7. In
addition to these, there are spaces for additional connectors used with the
peripheral cards installed in the Apple Ile. The installation manuals for the
peripheral cards contain instructions for installing the peripheral
connectors.

Figure 1-7. The Back Panel Connectors

Chapter 1: Introduction

Built-in I/0 Devices

Chapter 2

For descriptions of the built-in I/0
hardware refer to Chapter 7.

Built-in I/0 firmware routines are
described in Chapter 3.

This chapter describes the input and output (I/0) devices built into the
Apple Ile in terms of their functions and the way they are used by
programs. The built-in I/0 devices are

o the keyboard

o the video-display generator

o the speaker

O the cassette input and output

o the game input and output.

At the lowest level, programs use the built-in I/0 devices by reading and
writing to dedicated memory locations. This chapter lists these locations for
each I/0 device. It also gives the locations of the internal soft-switches that
select the different display modes of the Apple Ile.

Built-in 1/0 Routines: This method of input and output—loading and
storing directly to specific locations in memory—is not the only method
you can use. For many of your programs, it may be more convenient to
call the built-in 1/0 routines stored in the Apple Ile’s firmware,

The Keyboard

“
The primary input device of the Apple Ile is its built-in keyboard. The
keyboard has 63 keys and is similar to a typewriter keyboard. The Apple Ile
keyboard has automatic repeat on all keys: hold the key down to repeat. It
also has N-key rollover, which means that you can hold down any number
of keys while typing another. Of course, if you hold the keys down much
longer than the length of time you would hold them down during normal
typing, the automatic-repeat function will start repeating the last key you

pressed.

The keyboard arrangement shown in Figure 2-1 is the standard one used in
the United States. The specifications for the keyboard are given in

Table 2-1. Apple Ile’s manufactured for sale outside the United States have
a slightly different standard keyboard arrangement and include provisions

for switching between two different arrangements.

Chapter 2: Built-in 1/0 Devices

Figure 2-1. The Keyboard

] o
SHBABARNANRGAS|=
w lolwlelrltlvluli]olef[t]i]n
oo | A s p|Fle]ulofxfr]i] |
ser |z xlclvlia{n{m|S{2]7] o
ook | + (j ‘ el Eadl t
Table 2-1. Apple Ile Keyboard Specifications
Number of keys: 63
Character encoding; ASCI
Number of codes: 128
Fesatures: Automatic repeat, two-key rollover

Special function keys: (REsET), (&, (&)

Cursor movement keys: (=), (=), 3), (1), [RETURN], [DELETE], [TAB]

Modifier keys: (ConTROL), [SHIFT), [CAPS LOCK], [ESC]
Electrical Interface: AY-5-3600 keyboard encoder

In addition to the keys normally used for typing characters, there are four
cursor-control keys with arrows: left, right, down, and up. The
cursor-control keys can be read the same as other keys; their codes are $08,
$15, $0A, and $0B. (See Table 2-3.)

Three special keys, [CONTROL), [SHIFT), and (CAPS_Lock], change the
codes generated by the other keys. The key is similar to the
ASCII CTRL key.

Three other keys have special functions: the key, and two keys
marked with apples, one outlined, or open ([&]), and one solid, or closed
([&)]). Pressing the key with the key depressed resets
the Apple Ile, as described in Chapter 4. The Apple keys are connected to
the one-bit game inputs, described later in this chapter.

The Keyboard

See Chapter 7 for a complete descriptionof ~ The electrical interface between the Apple Ile and the keyboard is a ribbon .
the elecrtical interface to the keyboard. cable with a 26-pin connector. This cable carries the keyboard signals to the
encoding circuitry on the main board.

Reading the Keyboard
e e o)

The keyboard encoder and ROM generate all 128 ASCII codes, so all of the
special character codes in the ASCII character set are available from the
keyboard. Machine-language programs obtain character codes from the
keyboard by reading a byte from the keyboard-data location shown in
Table 2-2.

Table 2-2. Keyboard Memory Locations

Location
Hex Necimal Description

$C000 49152 -lwasy Keyboard data and strobe
$C010 49168 -16368 Amy-key-down flag and clear-strobe switch

Your programs can get the code for the last &=y pressed by reading the
keyboard-data location. Table 2-2 gives this location in three different
Hexadecimal refers to the base-16 number ~ forms: the hexadecimal value used in assembly kanguage, indicated bya
system, which uses the digits 0 through 9 preceding dollar sign (8$); the decimal value used in ADplesoft BASIC, and
and the six letters A through F'to represent the complementary decimal value used in Apple Integer BASJC. (Integer
BB BASIC requires that values greater than 32767 be written as the number
obtained by subtracting 65536 from the value. These are the decimal
numbers shown as negative in tables in this manual; refer to the.q I
BASIC Programming Manual.) The low-order seven bits of the at
the keyboard location contain the character code; the high-order bit v thjs
byte is the strobe bit, described later in this section. —

Your program can find out whether any key is down, except the
(CoNTROL]}, [SHIFT), [CAPS LOCK], [&], and [&] keys by reading from
location 49168 (hexadecimal $C010 or complementary decimal -16368). The
high-order bit (bit 7) of the byte you read at this location is called
any-key-down; it is 1 if a key is down, and 0 if no key is down. The value of
this bit is 128; if a BASIC program gets this information with a PEEK, the
value is 128 or greater if any key is down, and less than 128 if no key is
down.

!

12 Chapter 2: Built-in 1/0 Devices

Important!

The reset routine is described in Chapter 4.

The (&) and [&] keys are connected to switches 0 and 1 of the game [/0
connector inputs. If (&] is pressed, switch 0 is “pressed,” and if [&] is
pressed, switch 1 is “pressed.”

The strobe bit is the high-order bit of the keyboard-data byte. After any key
has been pressed, the strobe bit is high. It remains high until you reset it by
reading or writing at the clear-strobe location. This location is a combination
flag and switch; the flag tells whether any key is down, and the switch
clears the strobe bit. The switch function of this memory location is called a
soft switch because it is controlled by software. In this case, it doesn't
matter whether the program reads or writes, and it doesn’t matter what
data the program writes: the only action that occurs is the resetting of the
keyboard strobe. Similar soft switches, described later, are used for
controlling other functions in the Apple Ile.

Any time you read the any-key-down flag, you also clear the keyboard
strobe. If your program needs to read both the flag and the strobe, it must
read the strobe bit first.

After the keyboard strobe has been cleared, it remains low until another key
is pressed. Even after you have cleared the strobe, you can still read the
character code at the keyboard location. The data byte has a different
value, because the high-order bit is no longer set, but the ASCII code in the
seven low-order bits is the same until another key is pressed. Table 2-3
shows the ASCII codes for most of the keys on the keyboard of the

Apple Ile.

There are several special-function keys that do not generate ASCII codes.
For example, you cannot read the [CONTROL), [SHIFT , and [CAPS LOCK]
keys directly, but pressing one of these keys alters the character codes
produced by the other keys.

Another key that doesn’t generate a code is located at the
upper-right corner of the keyboard; it is connected directly to the Apple Ile’s
circuits. Pressing [RESET] with [CONTROL] depressed normally causes the
system to stop whatever program it's running and restart itself. This
restarting process is called the reset routine.

Two more special keys are the Apple keys, [&]and [&], located on either
side of the bar. These keys are connected to the one-bit game
inputs, which are described later in this chapter in the section “Switch
Inputs.” Pressing them in combination with the [CONTROL] and [RESET
keys causes the built-in firmware to perform special reset and self-test
cycles, described with the reset routine in Chapter 4.

The Keyboard 13

Table 2-3. Keys and ASCII Codes

Note: Codes are shown here in hexadecimal, to find the decimal equivalents, refer
to Table E-2.

Normal Control Shift Both

Key Code Char Code Char Code Char Code Char
F DEL F DEL TF DEL TF DEL
= 08 BS 08 BS 08 BS 08 BS
TAB 09 HT 09 HT 09 HT 09 HT
0 0A LF 0A LF 0A LF 0A LF
0B VT 0B VT 0B VT 0B VT
0D CR 0D CR 0D CR 0D CR
156 NAK 16 NAK 15 NAK 156 NAK
1B ESC 1B ESC 1B ESC 1B ESC
20 SP 20 SP 20 SP 20 SP

27 | 27 : 22 " 22 "

, < 2C : 20 ; 30 < 3C &
- 1y S IF US BF IF US
> 28 .) VR 3 > E >
/9 9F 2F) 8F 9 3F 9
0) 30 0 30 0 29) 29)
1! 31 1 31 1 21 ! 21 !
2@ 2 2 00 NUIL 40 @ 00 NUL
3# 33 3 33 3 23 # 23 #
48 34 4 3 4 24§ 24 8
5% % 5 % b 25 % 25 %
6" 36 6 IE RS 5E : IE RS
& A (A 26 & 2 &
8* 38 8 38 8 24 ¢ 2A ¢
9(39 9 39 9 28 28 (
P 3B : 3B : 3A : 3A :
=+ 3D = 3D = 2B + 2B +
[{ 5B B ESC 7B 1B ESC
\l 5C \ I FS C | IC FS
1} 5D] ID GS m) ID GS
T 60) 60) TE . E)

Chapter 2: Built-in I/0 Devices

Table 2-3—Continued. Keys and ASCII Codes

Note: Codes are shown here in hezadecimal; to find the decimal equivalents, refer

to Table E-2.

Normal

Key Code

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
1
2
73
74
7
76
i
78
7
TA

N X sSs<oHurdodpvozZzgzoOoRC"TITDo=EEHOOE>

The Keyboard

Char

N=<:><gc:ﬁm-«.o*co::s;'—‘wh-u'::rm'-»maowm

Control
Code Char
01 SOH
02 STX
03 ETX
04 EQT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
0C FF
0D CR
0E S0
OF SI
10 DLE
11 DC1
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB

Code

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
b3
b4
b5
56
b7
58
59
bA

Shift

Char

MM Es<oc3lIwogovozZzZgoORT"IDOoOEEOO®E>

Code

01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
OF
10
11
12
13
14
15
16
17
18
19
1A

Both

Char

SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
S0
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB

15

The Video Display Generator

Important!

Original lle

For a full description of the video signal
and the connections to the Molex-type pins,
refer to the section “Video Qutput Signals”
in Chapter 7.

16

e e e e e e e iR e |
The primary output device of the Apple Ile is the video display. You can use
any ordinary video monitor, either color or black-and-white, to display video
information from the Apple Ile. An ordinary monitor is one that accepts
composite video compatible with the standard set by the NTSC (National
Television Standards Committee). If you use Apple Ile color graphics with a
black-and-white monitor, the display will appear as black and white (or
green or amber or...) and various patterns of these two shades mixed
together.

If you are using only 40-column text and graphics modes, you can use a
television set for your video display. If the TV set has an input connector for
composite video, you can connect it directly to your Apple Ile; if it does not,
you'll need to attach a radio frequency (RF") video modulator between the
Apple Ile and the television set.

With the 80-column text card installed, the Apple Ile can produce an
80-column text display. However, if you use an ordinary color or
black-and-white television set, 80-column text will be too blurry to read.
For a clear 80-column display, you must use a high-resolution video
monitor with a bandwidth of 14 MHz or greater.

The specifications for the video display are summarized in Table 2-4.

Note that MouseText characters are not included in the original version
of the Apple Ile.

The video signal produced by the Apple Ile is NTSC-compatible composite
color video. It is available at three places: the RCA-type phono jack on the
back of the Apple Ile, the single Molex-type pin on the main circuit board
near the back on the right side, and one of the group of four Molex-type pins
in the same area on the main board. Use the RCA-type phono jack to
connect a video monitor or an external video modulator; use the Molex pins
to connect the type of video modulator that fits inside the Apple Ile case.

Chapter 2: Built-in I/0 Devices

Table 2-4. Video Display Specifications

Display modes: 40-column text; map: Figure 2-5
80-column text; map: Figure 2-6

Low-resolution color graphics; map: Figure 2-7
High-resolution color graphics; map: Figure 2-8

Double-high-res. color graphics; map: Figure 2-9

Text capacity: 24 lines by 80 columns (character positions)
Character set: 96 ASCII characters (uppercase and lowercase)
Display formats: Normal, inverse, flashing, MouseText (Table 2-5)

Low-resolution graphics: 16 colors (Table 2-6) 40 horizontal by 48 vertical;
map: Figure 2-7

High-resolution graphics: 6 colors (Table 2-7) 140 horizontal by 192 vertical

(restricted)
Black-and-white: 280 horizontal by 192 vertical;
map: Figure 2-8
Double-high-resolution 16 colors (Table 2-8) 140 horizontal by 192 vertical
graphics: (no restrictions)

Black-and-white: 560 horizontal by 192 vertical;
map: Figure 2-9

The Apple Ile can produce seven different kinds of video display:

o text, 24 lines of 40 characters

o text, 24 lines of 80 characters (with optional text card)

o low-resolution graphics, 40 by 48, in 16 colors

o high-resolution graphics, 140 by 192, in 6 colors

o high-resolution graphics, 280 by 192, in black and white

o double high-resolution graphics, 140 by 192, in 16 colors (with optional
64K text card)

o double high-resolution graphics, 560 by 192, in black and white (with
optional 64K text card)

The two text modes can display all 96 ASCII characters: the uppercase and
lowercase letters, numbers, and symbols. The enchanced Apple Ile can also
display MouseText characters.

The Video Display Generator 17

18

Any of the graphics displays can have 4 lines of text at the bottom of the
screen. The text may be either 40-column or 80-column, except that
double-high-resolution graphics may only have 80-column text at the
bottom of the screen. Graphics displays with text at the bottom are called
mixed-mode displays.

The low-resolution graphics display is an array of colored blocks, 40 wide by
48 high, in any of 16 colors. In mixed mode, the 4 lines of text replace the
bottom 8 rows of blocks, leaving 40 rows of 40 blocks each.

The high-resolution graphics display is an array of dots, 280 wide by 192
high. There are 6 colors available in high-resolution displays, but a given dot
can use only 4 of the 6 colors. In mixed mode, the 4 lines of text replace the
bottom 32 rows of dots, leaving 160 rows of 280 dots each.

The double-high-resolution graphics display uses main and auxiliary
memory to display an array of dots, 560 wide by 192 high. All the dots are
visible in black and white. If color is used, the display is 140 dots wide by
192 high with 16 colors available. In mixed mode, the 4 lines of text replace
the bottom 32 rows of dots, leaving 160 rows of 560 (or 140) dots each. In
mixed mode, the text lines can be 80 columns wide only.

Text Modes

The text characters displayed include the uppercase and lowercase letters,
the ten digits, punctuation marks, and special characters. Each character is
displayed in an area of the screen that is seven dots wide by eight dots high.
The characters are formed by a dot matrix five dots wide, leaving two blank
columns of dots between characters in a row, except for MouseText
characters, some of which are seven dot wide. Except for lowercase letters
with descenders and some MouseText characters, the characters are only
seven dots high, leaving one blank line of dots between rows of characters.

The normal display has white (or other single color) dots on a black
background. Characters can also be displayed as black dots on a white
background:; this is called inverse format.

Chapter 2: Built-in 1/0 Devices

Text Character Sets

The Apple Ile can display either of two text character sets: the primary set
or an alternate set. The forms of the characters in the two sets are actually
the same, but the available display formats are different. The display
formats are

o normal, with white dots on a black screen
o inverse, with black dots on a white screen
o flashing, alternating between normal and inverse.

With the primary character set, the Apple Ile can display uppercase
characters in all three formats: normal, inverse, and flashing. Lowercase
letters can only be displayed in normal format. The primary character set is
compatible with most software written for the Apple Il and Apple II Plus
models, which can display text in flashing format but don’t have lowercase
characters.

The alternate character set displays characters in either normal or inverse
format. In normal format, you can get

O uppercase lefters

o lowercase letters

O numbers

o special characters.

In inverse format, you can get

MouseText characters (on the enhanced Apple Ile)
uppercase letters

lowercase letters

numbers

special characters.

B3 B 0o g

The MouseText characters that replace the alternate uppercase inverse
characters in the range of $40-S5F in the original Apple Ile are inverse
characters, but they don't look like it because of the way that they have
been constructed.

You select the character set by means of the alternate-text soft switch,
ALTCHAR, described later in the section “Display Mode Switching.”
Table 2-5 shows the character codes in hexadecimal for the Apple Ile
primary and alternate character sets in normal, inverse, and flashing
formats.

The Video Display Generator 19

20

Original lle

Each character on the screen is stored as one byte of display data. The
low-order six bits make up the ASCII code of the character being displayed.
The remaining two (high-order) bits select inverse or flashing format and
uppercase or lowercase characters. In the primary character set, bit 7
selects inverse or normal format and bit 6 controls character flashing. In the
alternate character set, bit 6 selects between uppercase and lowercase,
according to the ASCII character codes, and flashing format is not available.

Table 2-5. Display Character Sets

Note: To identify particular characters and values, refer to Table 2-3.

Hex Primary Character Set Alternate Character Set

Values Character Type Format Character Type Format
$00-81F Uppercase letters Inverse Uppercase letters Inverse
$20-$3F Special characters Inverse Special characters Inverse

$40-$5F Uppercase letters Flashing ~ MouseText

$60-$7F Special characters ~ Flashing Lowercase letters Inverse
$80-59F Uppercase letters Normal Uppercase letters Normal
$A0-$BF Special characters ~ Normal Special characters ~ Normal
$CO-SDF Uppercase letters Normal Uppercase letters Normal

$E0-$FF Lowercase letters Normal Lowercase letters Normal

In the alternate character set of the original Apple Ile, characters in the
range $40-$5F are uppercase inverse.

40-Column Versus 80-Column Text

The Apple Ile has two modes of text display: 40-colurnn and 80-column,
(The 80-column display mode described in this manual is the one you get
with the Apple Ile 80-Column Text Card or other auxiliary-memory card
installed in the auxiliary slot.) The number of dots in each character does
not change, but the characters in 80-column mode are only half as wide as
the characters in 40-column mode. Compare Figure 2-2 and Figure 2-3. On
an ordinary color or black-and-white television set, the narrow characters in
the 80-column display blur together; you must use the 40-column mode to
display text on a television set.

Chapter 2: Built-in I/0 Devices

Figure 2-2. 40-Coluran Text Display

ILIST 8,108
18 REM APPLESOFT CHARACTER DEMO

28 TEXT : HOME

38 PRINT : PRINT "Applesoft char
acter Demo"

48 PRINT : PRINT "Which characte
r set--"

S8 PRINT : INPUT "Primary (P) or
Alternate (A) ?";AS

68 IF LEN (A$) < 1 THEN 58

65 LET A$ = LEFTS (A$,1)

78 IF A$ = "“P"™ THEN POKE 49166,

8

88 IF A$ = "A" THEN POKE 49167,
?

98 PRINT : PRINT "...printing th

e same line, first"

188 PRINT "™ in NORMAL, then INVE
RSE ,then FLASH:"™: PRINT

1

Figure 2-3. 80-Column Text Display

L1

=1

108
158
168
178
180
19¢
200
188
118
i |

ST

REM APPLESOFT CHARACTER DEMOD

TEXT : HOME

PRINT : PRINT "Applesoft Character Demo"

PRINT : PRINT "Which character set--"

PRINT : INPUT "Primary (P) or Alternate (A) ?";AS$
IF LEN (A$) < 1 THEN 58

LET A$ = LEFTS$ (A$,1)

IF A$ = "P"™ THEN POKE 49166,8

IF A$ = "A"™ THEN POKE 49167,8

PRINT : PRINT *"...printing the same line, first"
PRINT ™ in NORMAL, then INVERSE ,then FLASH:": PRINT
NORMAL : GOSUB 1088
INVERSE : GOSUB 1688

FLASH : GOSUB 1088

NORMAL : PRINT : PRINT : PRINT "Press any key to repeat."
GET A$

GOTOD 18

B PRINT : PRINT "SAMPLE TEXT: Now is the time--12:88"

@ RETURN

The Video Display Generator 21

Graphics Modes

[——— i

The Apple Ile can produce video graphics in three different modes. All the
graphics modes treat the screen as a rectangular array of spots. Normally,
your programs will use the features of some high-level language to draw
graphics dots, lines, and shapes in these arrays; this section deseribes the
way the resulting graphics data are stored in the Apple Ile’s memory.

Low-Resolution Graphics

In the low-resolution graphics mode, the Apple lle displays an array of 48
rows by 40 columns of colored blocks. Each block can be any one of sixteen
colors, including black and white. On a black-and-white monitor or
television set, these colors appear as black, white, and three shades of gray.
There are no blank dots between blocks; adjacent blocks of the same color
merge to make a larger shape.

Data for the low-resolution graphics display is stored in the same part of
memory as the data for the 40-column text display. Each byte contains data
for two low-resolution graphics blocks. The two blocks are displayed one
atop the other in a display space the same size as a 40-column text
character, seven dots wide by eight dots high.

Half a byte—four bits, or one nibble—is assigned to each graphics block.
Each nibble can have a value from 0 to 15, and this value determines which
one of sixteen colors appears on the screen. The colors and their
corresponding nibble values are shown in Table 2-6. In each byte, the
low-order nibble sets the color for the top block of the pair, and the
high-order nibble sets the color for the bottom block. Thus, a byte
containing the hexadecimal value $D8 produces a brown block atop a
yellow block on the screen.

Chapter 2: Built-in 1/0 Devices

Table 2-6. Low-Resolution Graphics Colors

Note: Colors may vary, depending upon the controls on the monitor or TV set.

Nibble Value Nibble Value
Dec Hex Color Dec Hex Color
0 $00 Black 8 $08 Brown
1 $01 Magenta 9 $09 Orange
2 $02 Dark Blue 10 $0A Gray?2
3 $03 Purple 1 $0B Pink
4 $04 Dark Green 12 $0C Light Green
5 $05 Gray 1 13 $0D Yellow
6 $06 Medium Blue 14 $0E Aquamarine
7 $07 Light Blue 15 $0F White

As explained later in the section “Display Pages,” the text display and the
low-resolution graphics display use the same area in memory. Most
programs that generate text and graphics clear this part of memory when
they change display modes, but it is possible to store data as text and
display it as graphics, or vice-versa. All you have to do is change the mode
switch, described later in this chapter in the section “Display Mode
Switching,” without changing the display data. This usually produces
meaningless jumbles on the display, but some programs have used this
technique to good advantage for producing complex low-resolution graphics
displays quickly.

High-Resolution Graphics

In the high-resolution graphics mode, the Apple Ile displays an array of
colored dots in 192 rows and 280 columns. The colors available are black,
white, purple, green, orange, and blue, although the colors of the individual
dots are limited, as described later in this section. Adjacent dots of the same
color merge to form a larger colored area.

Data for the high-resolution graphics displays are stored in either of two
8192-byte areas in memory. These areas are called high-resolution Page 1
and Page 2; think of them as buffers where you can put data to be
displayed. Normally, your programs will use the features of some high-level
language to draw graphics dots, lines, and shapes to display; this section
describes the way the resulting graphics data are stored in the Apple lle’s
memory.

The Video Display Generator 23

Figure 2-4. High-Resolution Display
Bits

Bits in Data Byte

i71654321{)

-

0)1]2|3]4|5]6

Dots on Graphics Screen

For more details about the way the
Apple [le produces color on a TV set, see
the section “Video Display Modes” in
Chapter 7.

The Apple Ile high-resolution graphics display is bit-mapped: each dot on
the screen corresponds to a bit in the Apple Ile’s memory . The seven
low-order bits of each display byte control a row of seven adjacent dots on
the screen, and forty adjacent bytes in memory control a row of 280

(7 times 40) dots. The least significant bit of each byte is displayed as the
leftmost dot in a row of seven, followed by the second-least significant bit,
and so on, as shown in Figure 2-4. The eighth bt (the most significant) of
each byte is not displayed; it selects one of two color sets, as described later.

On a black-and-white monitor, there is a simple correspondence between
bits in memory and dots on the screen. A dot is white if the bit controlling it
ison (1), and the dot is black if the bit is off (0). On a black-and-white
television set, pairs of dots blur together; alternating black and white dots
merge to a continuous grey.

On an NTSC color monitor or a color television set, a dot whose controlling
bit is off (0) is black. If the bit is on, the dot will be white or a color,
depending on its position, the dots on either side, and the setting of the
high-order bit of the byte.

Call the left-most column of dots column zero, and assume (for the moment)
that the high-order bits of all the data bytes are off (0). If the bits that
control dots in even-numbered columns (0, 2, 4, and so forth) are on, the
dots are purple; if the bits that control odd-numbered columns are on, the
dots are green—but only if the dots on both sides of a given dot are black. If
two adjacent dots are both on, they are both white.

You select the other two colors, blue and orange, by turning the high-order
bit (bit 7) of a data byte on (1). The colored dots controlled by a byte with
the high-order bit on are either blue or orange: the dots in even-numbered
columns are blue, and the dots in odd-numbered colurnns are orange—
again, only if the dots on both sides are black. Within each horizontal line of
seven dots controlled by a single byte, you can have black, white, and one
pair of colors. To change the color of any dot to one of the other pair of
colors, you must change the high-order bit of its byte, which affects the
colors of all seven dots controlled by the byte.

In other words, high-resolution graphics displayed on a color monitor or
television set are made up of colored dots, according to the following rules:

o Dots in even columns can be black, purple, or blue.
o Dots in odd columns can be black, green, or orange.
o If adjacent dots in a row are both on, they are both white.

o The colors in each row of seven dots controlled by a single byte are either
purple and green, or blue and orange, depending on whether the
high-order bit is off (0) or on (1).

Chapter 2: Built-in /0 Devices

For information about the way NTSC color
television works, see the magazine articles
listed in the bibliography.

These rules are summarized in Table 2-7. The blacks and whites are
numbered to remind you that the high-order bit is different.

Table 2-7. High-Resolution Graphics Colors

Note: Colors may vary depending upon the controls on the monitor or television
set.

Bits 0-6 Bit 7 Off Bit 7 On
Adjacent columns off Black 1 Black 2
Even columns on Purple Blue
0dd columns on Green Orange
Adjacent columns on White 1 White 2

The peculiar behavior of the high-resolution colors reflects the way NTSC
color television works. The dots that make up the Apple Ile video signal are
spaced to coincide with the frequency of the color subcarrier used in the
NTSC system. Alternating black and white dots at this spacing cause a
color monitor or TV set to produce color, but two or more white dots
together do not.

Double-High-Resolution Graphics

Double-high-resolution graphics is a bit-mapping of the low-order seven bits
of the bytes in the main-memory and auxiliary-memory pages at
$2000-$3FFF. The bytes in the main-memory and auxiliary-memory pages
are interleaved in exactly the same manner as the characters in 80-column
text: of each pair of identical addresses, the auxiliary-memory byte is
displayed first, and the main-memory byte is displayed second. Horizontal
resolution is 560 dots when displayed on a monochrome monitor.

Unlike high-resolution color, double-high-resolution color has no restrictions
on which colors can be adjacent. Color is determined by any four adjacent
dots along a line. Think of a 4-dot-wide window moving across the screen: at
any given time, the color displayed will correspond to the 4-bit value from
Table 2-8 that corresponds to the window's position (Figure 2-9). Effective
horizontal resolution with color is 140 (560 divided by four) dots per line.

To use Table 2-8, divide the display column number by 4, and use the
remainder to find the correct column in the table: ab0 is a byte residing in
auxiliary memory corresponding to a remainder of 0 (byte 0, 4, 8, and so on);
mbl is a byte residing in main memory corresponding to a remainder of 1
(byte 1, 5,9 and so on), and similarly for ab3 and mb4.

The Video Display Generator 25

Table 2-8. Double-High-Resolution Graphics Colors

Repeated
Color ab0 mbl1 ab2 mb3 Bit Pattern
Black 500 $00 $00 300 0000
Magenta $08 $11 $22 $44 0001
Brown $44 $08 §11 $22 0010
Orange $4C $19 $33 366 0011
Dark Green $22 544 $08 $11 0100
Gray 1 $2A $65 $2A $65 0101
Green $66 $4C $19 $33 0110
Yellow S6E $5D $3B $77 0111
Dark Blue $11 $22 $44 508 1000
Purple $19 $33 366 $4C 1001
Gray 2 $55 $2A $55 $2A 1010
Pink 35D $3B §77 $6E 1011
Medium Blue $33 $66 $4C $19 1100
Light Blue $3B 877 $6E $5D 1101
Aqua $77 $6E 85D $3B 1110
White $TF $7F $7F $TF 1111

Video Display Pages
eeee=m0u_ . &~]

The Apple [le generates its video displays using data stored in specific areas
in memory. These areas, called display pages, serve as buffers where your
programs can put data to be displayed. Each byte in a display buffer
controls an object at a certain location on the display. In text mode, the
object is a single character; in low-resolution graphics, the object is two
stacked colored blocks; and in high-resolution and double-high-resolution
modes, it is a line of seven adjacent dots.

Chapter 2: Built-in 1/0 Devices

The 40-column-text and low-resolution-graphics modes use two display
pages of 1024 bytes each. These are called text Page 1 and text Page 2, and
they are located at 1024-2047 (hexadecimal $0400-807FF) and 2048-3071
($0800-$0BFF) in main memory. Normally, only Page 1 is used, but you can
put text or graphics data into Page 2 and switch displays instantly. Either
page can be displayed as 40-column text, low-resolution graphics, or
mixed-mode (four rows of text at the bottom of a graphics display).

The 80-column text mode displays twice as much data as the 40-column
mode— 1920 bytes—but it cannot switch pages. The 80-column text display
uses a combination page made up of text Page 1 in main memory plus
another page in auxiliary memory located on the 80-column text card. This
additional memory is %ot the same as text Page 2—in fact, it occupies the
same address space as text Page 1, and there is a special soft switch that
enables you to store data into it. (See the next section “Display Mode
Switching.”) The built-in firmware I/0 routines described in Chapter 3 take
care of this extra addressing automatically; that is one reason to use those
routines for all your normal text output.

The high-resolution graphics mode also has two display pages, but each
page is 8192 bytes long. In the 40-column text and low-resolution graphics
modes each byte controls a display area seven dots wide by eight dots high.
In high-resolution graphics mode each byte controls an area seven dots wide
by one dot high. Thus, a high-resolution display requires eight times as
much data storage, as shown in Table 2-9.

The double-high-resolution graphics mode uses high-resolution Page 1 in
both main and auxiliary memory. Each byte in those pages of memory
controls a display area seven dots wide by one dot high. This gives you 560
dots per line in black and white, and 140 dots per line in color. A
double-high-resolution display requires twice the total memory as
high-resolution graphics, and 16 times as much as a low-resolution display.

The Video Display Generator 27

Table 2-9. Video Display Page Locations

Display Lowest Address Highest Address
Display Mode Page Hex Dec Hex Dec
40-column text, 1 $0400 1024 $0TFF 2047
low-resolution graphics 2 * $0800 2048 $OBFF 3071
80-column text 1 $0400 1024 $OTFF 2047

2* $0800 2048 $0BFF 3071
High-resolution 1 $2000 8192 $3FFF 16383
graphics 2 $4000 16384 $5FFF 24575
Double-high- Lt $2000 8192 $3FFF 16383
resolution graphics 2t $4000 16384 $6FFF 24575

* This is not supported by firmware; for instructions on how to switch pages, refer to the
next section “Display Mode Switching.”

T See the section “Double-High-Resolution Graphics,” earlier in this chapter.

Display Mode Switching
e e e e T

You select the display mode that is appropriate for your application by
reading or writing to a reserved memory location called a soft switch. In the
Apple Ile, most soft switches have three memory locations reserved for
them: one for turning the switch on, one for turning it off, and one for
reading the current state of the switch.

Table 2-10 shows the reserved locations for the soft switches that control
the display modes. For example, to switch from mixed-mode to full-screen
graphics in an assembly-language program, you could use the instruction

STA scgs2
To do this in a BASIC program, you could use the instruction
POKE 49234,8

Some of the soft switches in Table 2-10 must be read, some must be written
to, and for some you can use either action. When writing to a soft switch, it
doesn't matter what value you write; the action occurs when you address
the location, and the value is ignored.

Chapter 2: Built-in [/0 Devices

Table 2-10. Display Soft Switches

Note: W means write anything to the location, R means read the location, B/W
means read or write, and R7 means read the location and then check bit 7.

Name Action Hex Function

ALTCHAR W $CO0E Off: display text using primary character set

ALTCHAR W $CO0F On: display text using alternate character set

RDALTCHAR RT $COIE Read ALTCHAR switch (1 = on)

80COL W $C00C Off: display 40 columns

80COL W $C00D On: display 80 columns

RD8OCOL R7 $COIF Read 80COL switch (1 = on)

80STORE W $0000 Off: cause PAGEZ on to select auxiliary RAM

80STORE W $C001 On: allow PAGE2 to switch main RAM areas

RDSOSTORE R7 $C018 Read 80STORE switch (1 = on)

PAGE2 R/W §C054 Off: select Page 1

PAGE2 R/W $C055 On:select Page 2 or, if B80STORE on, Page 1 in
auxiliary memory

RDPAGE2 R7 $C0IC Read PAGE2 switch (1 =on)

TEXT R/W 8C050 Off: display graphics or, if MIXED on, mixed

TEXT R/W 8C051 On:display text

RDTEXT RT7 $C01A Read TEXT switch (1 = on)

MIXED R/W $C052 Off: display only text or only graphics

MIXED R/W $C053 On:if TEXT off, display text and graphics

RDMIXED R7 $COIB Read MIXED switch (1 = on)

HIRES R/W $C056 Off: if TEXT off, display low-resolution graphics

HIRES R/W $C057 On:if TEXT off, display high-resolution or, if
DHIRES on, double-high-resolution graphics

RDHIRES R7 $C0ID Read HIRES switch (1 = on)

I0UDIS $COTE On: disable I0U access for addresses $C058 to
$CO5F; enable access to DHIRES switch *

I0UDIS $COTF Off: enable 10U access for addresses $C058 to
$CO5F; disable access to DHIRES switch *

RDIOUDIS R7 $COTE Read IOUDIS switch (1 = off) T

DHIRES R/W $COBE On:if IOUDIS on, turn on double-high-res.

DHIRES R/W $COSF Off: if IOUDIS on, turn off double-high-res.

RDDHIRES R7 $COTF Read DHIRES switch (1 =on) T

* The firmware normally leaves IOUDIS on. See also 7.

+ Reading or writing any address in the range $C070-8COTF also triggers the paddle timer
and resets VBLINT (Chapter 7).

The Video Display Generator

29

For a full description of the way the

Apple lle handles its display memory, refer
to the section “Display Memory
Addressing” in Chapter 7.

30

By the Way: You may not need to deal with these functions by reading
and writing directly to the memory locations in Table 2-10. Many of the
functions shown here are selected automatically if you use the display
routines in the various high-level languages on the Apple Ile.

Any time you read a soft switch, you get a byte of data. However, the only
information the byte contains is the state of the switch, and this occupies
only one bit—bit 7, the high-order bit. The other bits in the byte are
unpredictable. If you are programming in machine language, the switch
setting is the sign bit; as soon as you read the byte, you can do a Branch
Plus if the switch is off, or Branch Minus if the switch if on.

If you read a soft switch from a BASIC program, you get a value between 0
and 255, Bit 7 has a value of 128, so if the switch is on, the value will be
equal to or greater than 128; if the switch is off, the value will be less

than 128.

Addressing Display Pages Directly
e e e G |

Before you decide to use the display pages directly, consider the
alternatives. Most high-level languages enable you to write statements that
control the text and graphics displays. Similarly, if you are programming in
assembly language, you may be able to use the display features of the
built-in I/0 firmware. You should store directly into display memory only if
the existing programs can’t meet your requirements.

The display memory maps are shown in Figures 2-5, 2-6, 2-7, 2-8, and 2-9.
All of the different display modes use the same basic addressing scheme:
characters or graphics bytes are stored as rows of 40 contiguous bytes, but
the rows themselves are not stored at locations corresponding to their
locations on the display. Instead, the display address is transformed so that
three rows that are eight rows apart on the display are grouped together and
stored in the first 120 locations of each block of 128 bytes ($30
hexadecimal). By folding the display data into memory this way, the

Apple Ile, like the Apple I1, stores all 960 characters of displayed text within
1K bytes of memory.

Chapter 2: Built-in I/0 Devices

For more details about the way the displays
are generated, see Chapter 7.

The high-resolution graphics display is stored in much the same way as
text, but there are eight times as many bytes to store, because eight rows of
dots occupy the same space on the display as one row of characters. The
subset consisting of all the first rows from the groups of eight is stored in
the first 1024 bytes of the high-resolution display page. The subset
consisting of all the second rows from the groups of eight is stored in the
second 1024 bytes, and so on for a total of 8 times 1024, or 8192 bytes. In
other words, each block of 1024 bytes in the high-resolution display page
contains one row of dots out of every group of eight rows. The individual
rows are stored in sets of three 40-byte rows, the same way as the text
display.

All of the display modes except 80-column mode and double-high-resolution
graphics mode can use either of two display pages. The display maps show
addresses for each mode’s Page 1 only. To obtain addresses for text or
low-resolution graphics Page 2, add 1024 ($400); to obtain addresses for
high-resolution Page 2, add 8192 ($2000).

The 80-column display and double-high-resolution graphics mode work a
little differently. Half of the data is stored in the normal text Page-1
memory, and the other half is stored in memory on the 80-column text card
using the same addresses. The display circuitry fetches bytes from these
two memory areas simultaneously and displays them sequentially: first the
byte from the 80-column text card memory, then the byte from the main
memory. The main memory stores the characters in the odd columns of the
display, and the 80-column text card memory stores the characters in the
even columns.

To store display data on the 80-column text card, first turn on the 80STORE
soft switch by writing to location 49153 (hexadecimal $C001 or
complementary -16383). With 80STORE on, the page-select switch, PAGEZ,
selects between the portion of the 80-column display stored in Page 1 of
main memory and the portion stored in the 80-column text card memory. To
select the 80-column text card, turn the PAGE2 soft switch on by reading or
writing at location 49237.

The Video Display Generator 31

Figure 2-5. Map of 40-Column Text Display

&'.DOOEQOHCT!ACDL\D»—-O-%U

il et Tt e e T o S S G,
WO 00 =1 O U = WO DN = O

$400
$480
$500
3580
5600
$680
$700
$780
$428
$4A8
$528
$5A8
3628
86A8
§728
$7A8
$450
$4D0
8650

§5D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

0 $00

$01
2 $02
3 $03
4 8§04
5 $05
6§06
T 807
8 $08
9 $09
10 $0A

1

$0B
12 $0C
13 $0D
14 $0E
15 $0F
16 $10
17 $11
18 $12
19 §$13
20 $14

11

$15
22§16
23 817
24 518
26 $19
26 $1A
27 $IB
28 $1C
29 $1D
30 SIE

21

$1F
32 $20
33 21
34§22
35 $23
36 $24
37§25
38 $26
39§27

31

02 DD DO DO
(=S LG]

$650
$6D0
$760
87D0

1616
1744
1872
2000

Chapter 2: Built-in I/0 Devices

. Figure 2-6. Map of 80-Column Text Display

. I ManMemory L _ _ _ _ _——
$00 $01 $02 $03 $04 $05 $06 820 S21 822 823 24 825 826 .sij
Row G L L R 97, e L5586 T 99
. 0 $400 1024 | ‘ Ll |
1 $480 1152 b
2 $500 1280]
. 3 $580 1408 _ ‘B B
4 $600 1536 '
. 5 $680 1664
6 $700 1792)
T $780 1920 gl
. 8 $428 1064 {
9 $4A8 1192 l
. 10 $528 1320 \ VLT E
11 $5A8 1448
12 $628 1576
. 13 $6A8 1704
14 $728 1832 { B}
16 $7A8 1960 | _
. 16 $450 1104 ' \ \
17 $4D0 1232 : ; 3
. 18 $550 1360
19 $5D0 1488 D
20 $650 1616
. 21 $6D0 1744
22 $750 1872 \
l 23 $7D0 2000 i L /
$00 01 $02 $03 $04 $05 $06 $07([$20 $21 $22 $23 $24 $25 $26 827
0 1 2 3 4 5 6 7T 2 33 3% % 3% 37 B 3N
. Auxiliary Memory [~ T T T 7
. The Video Display Generator 33

Figure 2-7. Map of Low-Resolution Graphics Display

Row

o0 O = DN O

12
14
16
18
20
22
24
26
28
30
32
34
36
38

$400
$480
$500
3580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
8TAS
$450
$4D0
$550
$5D0

1024
1162
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488

1 $01
2 802
3 $03
4 804
5 $05
6 $06
7 807
8 $08
9 809
10 $0A
11 $0B
12 $0C
13 $0D
14 $0E
15 $0F
16 $10
17 $11
18 $12
19 $13
20 $14
21 $15
22 $16
23 $17
24 $18
25 $19
26 $1A
27 $1B
28 $1C
29 $1D
30 SIE
31 $IF
32 $20
33§21
34 $22
36 $23
36 $24
37§25
38§26
30 $27

[

0 $00

40
42

46

34

$650
36D0
$750
3700

1616
1744
1872
2000

Chapter 2: Built-in 1/0 Devices

Figure 2-8. Map of High-Resolution Graphics Display

SRR R R e e P SRR RS
Row CmNm TR NN R R RN RN SNSRI BRI RS SR
0 $2000 8192
1 $2080 8320
2 $2100 8448
3 $2180 8576
4 $2200 8704
5 $2280 8832
6 $2300 8960
7 $2380 9088
8 $2028 8232
9 $20A8 8360
10 $2128 8488 ~l |
11 $21A8 8616 T
12 $2098 8744 \
13 $2248 8872 + 0 +80000
14 $2328 9000
15 $23A8 9128 \ +I: +90H0
$2050 8272 \ +2048 +80800
17 $20D0 8400 \
18 $2150 8528 \ +3072 +$0C00
19 $21D0 8656 \
20 $2250 8784) 96 -+5H000
21 $22D0 8912 -
22 $2350 9040 \
23 $23D0 9168 \ +6144 +$1800
\ +7168 +81C00

llﬁ

The Video Display Generator

Figure 2-9. Map of Double-High-Resolution Graphics Display

[MainMemory | '
~ $00 $01 $02 $03 $04 $05 806 \ $20 $21 $22 $23 $24 §$25 926 827
B s BRI e 82 33 B34 3 36 31 33 39

Row

<

$2000 8192
$2080 8320
$2100 8448
$2180 8576
$2200 8704
$2280 8832
$2300 8960
$2380 9088 \ A
$2028 8232 : [
$20A8 8360 B
$2128 8488 | | L |
$21A8 8616 | | | [| | “B \ Bt :
$2208 8744 | | e BT B 0 80000
$2248 8872 | ;]
$2328 9000
§23A8 9128
$2050 8272
$2000 8400
$2150 8528
$21D0 8656

T S T s

o 0o =3 G O W= O DD

—
<o

—
—_

[
DO

—
o

+1024 +$0400 7

—_
.

—
ot

+2048 +$0800 _|

—_
o

—_
b |

+3072 +$0000 |

I

]
S B B BN BB NN NN N EEEEm

—
oo

+4096 +$1000 -

—
— T =

—_
w0

[
(o=

$2260 8784 | Ll LU LA B P P +5120 +§1400 _
sepo so2 | P LU BT I BT BT B
$2350 9040

$23D0 9168

Do
—_

Do
(%)

+6144 +$1800

Do
S5

e—d

Il

1 2 3 4 b 6 7
Auxiliary Memory |

7(+7168 +$1C00

@: 01 $02 $03 $04 $05 $06 $0
0

36 Chapter 2: Built-in I/0 Devices

Secondary Inputs and Outputs

Important!

Electrical specifications of the speaker
circuit appear in Chapter 7.

e e ey e T
In addition to the primary I/0 devices—the keyboard and display—there
are several secondary input and output devices in the Apple Ile. These
devices are

o the speaker (output)
o cassette input and output
o annunciator outputs
o strobe output
o switch inputs
o analog (hand control) inputs.

These devices are similar in operation to the soft switches described in the
previous section: you control them by reading or writing to dedicated
memory locations. Action takes place any time your program reads or
writes to one of these locations; information written is ignored.

Some of these devices toggle—change state—each time they are
accessed. If you write using an indexed store operation, the Apple Ile’s
microprocessor activates the address bus twice during successive clock
cycles, causing a device that toggles each time it is addressed to end up
back in its original state. For this reason, you should read, rather than
write, to such devices.

The Speaker

===y

The Apple Ile has a small speaker mounted toward the front of the bottom
plate. The speaker is connected to a soft switch that toggles; it has two
states, off and on, and it changes from one to the other each time it is
accessed. (At low frequencies, less than 400 Hz or so, the speaker clicks
only on every other access.)

If you switch the speaker once, it emits a click; to make longer sounds, you
access the speaker repeatedly. You should always use a read operation to
toggle the speaker. If you write to this soft switch, it switches twice in rapid
succession. The resulting pulse is so short that the speaker doesn’t have
time to respond; it doesn't make a sound.

Secondary Inputs and Outputs 37

BELLI1 is described in Appendix B.

Detailed electrical specifications for the
cassette input and output are given in
Chapter 7.

WRITE is described in Appendix B.

The soft switch for the speaker uses memory location 49200 (hexadecimal
$C030). From Integer BASIC, use the complementary address -16336. You
can make various tones and buzzes with the speaker by using combinations
of timing loops in your program. There is also a routine in the built-in
firmware to make a beep through the speaker. This routine is called BELLI.

Cassette Input and Output
[E=asmpeee_——nes e orae |

There are two miniature phone jacks on the back panel of the Apple Ile. You
can use a pair of standard cables with miniature phone plugs to connect an
ordinary cassette tape recorder to the Apple Ile and save programs and data
on audio cassettes.

The phone jack marked with a picture of an arrow pointing towards a
cassette is the output jack. It is connected to a toggled soft switch, like the
speaker switch described above. The signal at the phone jack switches from
zero to 25 millivolts or from 25 millivolts to zero each time you access the
soft switch.

If you connect a cable from this jack to the microphone input of a cassette
tape recorder and switch the recorder to record mode, the signal changes
you produce by accessing this soft switch will be recorded on the tape. The
cassette output switch uses memory location 49184 (hexadecimal $C020;
complementary value -16352). Like the speaker, this output will toggle
twice if you write to it, so you should only use read operations to control the
cassette output.

The standard method for writing computer data on audio tapes uses tones
with two different pitches to represent the binary states zero and one. To
store data, you convert the data into a stream of bits and convert the bits
into the appropriate tones. To save you the trouble of actually programming
the tones, and to ensure consistency among all Apple Il cassette tapes, there
is a built-in routine called WRITE for producing cassette data output.

Chapter 2: Built-in [/0 Devices

READ is described in Appendix B.

Complete electrical specifications of these
inputs and outputs are given in Chapter 7.

The phone jack marked with a picture of an arrow coming from a cassette is
the input jack. It accepts a cable from the cassette recorder’s earphone jack.
The signal from the cassette is 1 volt (peak-to-peak) audio. Each time the
instantaneous value of this audio signal changes from positive to negative,
or vice-versa, the state of the cassette input circuit changes from zero to one
or vice-versa. You can read the state of this circuit at memory location
49248 (hexadecimal $C060, or complementary decimal -16288).

When you read this location, you get a byte, but only the high-order bit

(bit 7) is valid. If you are programming in machine language, this is the sign
bit, so you can perform a Branch Plus or Branch Minus immediately after
reading this byte. BASIC is too slow to keep up with the audio tones used for
data recording on tape, but you don't need to write the program: there is a
built-in routine called READ for reading data from a cassette.

The Hand Control Connector Signals
e R R s O S TR

Several inputs and outputs are available on a 9-pin D-type miniature
connector on the back of the Apple Ile: three one-bit inputs, or switches,
and four analog inputs. These signals are also available on the 16-pin IC
connector on the main circuit board, along with four one-bit outputs and a
data strobe. You can access all of these signals from your programs.

Ordinarily, you connect a pair of hand controls to the 9-pin connector. The
rotary controls use two analog inputs, and the push-buttons use two one-bit
inputs. However, you can also use these inputs and outputs for many other
jobs. For example, two analog inputs can be used with a two-axis joystick.
Table 7-19 shows the connector pin numbers.

Secondary Inputs and Qutputs 39

For electrical specifications of the
annunciator outputs, refer to Chapter 7.

40

Annunciator Outputs

The four one-bit outputs are called annunciators. Each annunciator can be
used to turn a lamp, a relay, or some similar electronic device on and off.

Each annunciator is controlled by a soft switch, and each switch uses a pair
of memory locations. These memory locations are shown in Table 2-11.
Any reference to the first location of a pair turns the corresponding
annunciator off; a reference to the second location turns the annunciator
on. There is no way to read the state of an annunciator.

Table 2-11. Annunciator Memory Locations

Annunciator Address

No. Pin* State Decimal Hex

0 15 off 49240 -16296 $C058
on 49241 -16295 $C059

1 14 off 49242 -16294 $C05A
on 49243 -16293 $C05B

2 13 off 49244 -16292 $C05C
on 49245 -16291 $C05D

3 12 off 49246 -16290 $CO5E
on 49247 -16289 $COBF

* Pin numbers given are for the 16-pin IC connector on the circuit board.

Strobe Output

The strobe output is normally at +5 volts, but it drops to zero for about half
a microsecond any time its dedicated memory location is accessed. You can
use this signal to control functions such as data latching in external devices.
If you use this signal, remember that memory is addressed twice by a write;
if you need only a single pulse, use a read operation to activate the strobe.
The memory location for the strobe signal is 49216 (hexadecimal $C040 or
complementary -16320).

Chapter 2: Built-in /0 Devices

AWarning

Switch Inputs

The three one-bit inputs can be connected to the output of another
electronic device or to a pushbutton. When you read a byte from one of
these locations, only the high-order bit—bit 7—is valid information; the rest
of the byte is undefined. From machine language, you can do a Branch Plus
or Branch Minus on the state of bit 7. From BASIC, you read the switch with
a PEEK and compare the value with 128. If the value is 128 or greater, the
switch is on.

The memory locations for these switches are 49249 through 49251
(hexadecimal $C061 through $C063, or complementary -16287 through
-16285), as shown in Table 2-12. Switch 0 and switch 1 are permanently
connected to the [&) and (&] keys on the keyboard; these are the ones
normally connected to the buttons on the hand controls. Some software for
the older models of the Apple Il uses the third switch, switch 2, as a way of
detecting the shift key. This technique requires a hardware modification
known as the single-wire shift-key mod.

You should be sure that you really need the shift-key mod before you go
ahead and do it. It probably is not worth it unless you have a program that
requires the shift-key mod that you cannot either replace or modify to work
without it.

| If you make the shift-key modification and connect a joystick or other
hand control that uses switch 2, you must be careful never to close the

| switch and press at the same time: doing so produces a short
circuit that causes the power supply to turn off. When this happens, any

| programs or data in the computer’s internal memory are lost.

Shift-Key Mod: To perform this modification on your Apple Ile, all you
have to do is solder across the broken diamond labelled X6 on the main
circuit board. Remember to turn off the power before changing anything
inside the Apple Ile. Also remember that changes such as this are at your
own risk and may void your warranty.

Secondary Inputs and Outputs 41

Refer to the section “Game /0 Signals” in
Chapter 7 for details.

PREAD is described in Appendix B.

Analog Inputs

The four analog inputs are designed for use with 150K ohm variable
resistors or potentiometers. The variable resistance is connected between
the +5V supply and each input, so that it makes up part of a timing circuit.
The circuit changes state when its time constant has elapsed, and the time
constant varies as the resistance varies. Your program can measure this
time by counting in a loop until the circuit changes state, or times out.

Before a program can read the analog inputs, it must first reset the timing
circuits. Accessing memory location 49264 (hexadecimal $C070 or
complementary -16272) does this. As soon as you reset the timing circuits,
the high bits of the bytes at locations 49252 through 49255 (hexadecimal
$C064 through $C067 or complementary -16284 through -16281) are set to 1.
If you PEEK at them from BASIC, the values will be 128 or greater. Within
about 3 milliseconds, these bits will change back to 0—byte values less
than 128—and remain there until you reset the timing circuits again. The
exact time each of the four bits remains high is directly proportional to the
resistance connected to the corresponding input. If these inputs are open—
no resistances are connected—the corresponding bits may remain high
indefinitely.

To read the analog inputs from machine language, you can use a program
loop that resets the timers and then increments a counter until the bit at the
appropriate memory location changes to 0, or you can use the built-in
routine called PREAD. High-level languages, such as BASIC, also include
convenient means of reading the analog inputs: refer to your language
manuals.

Summary of Secondary I/O Locations
e e e

Table 2-12 shows the memory locations for all of the built-in /0 devices
except the keyboard and display. As explained earlier, some soft switches
should only be accessed by means of read operations; those switches are
marked.

Chapter 2: Built-in /0 Devices

Table 2-12. Secondary I/0 Memory Locations

For connector identification and pin numbers, refer to Tables 7-18 and 7-19.

Address

Function Decimal Hex Access
Speaker 49200 -16336 $C030 Read only
Cassette out 49184 -16352 $C020 Read only
Cassette in 49248 -16288 $C060 Read only
Annunciator 0 on 49241 -16295 $C059

Annunciator 0 off 49240 -16296 $C068

Annunciator 1 on 49243 -16293 3C05B

Annunciator 1 off 49242 -16294 $C0BA

Annunciator 2 on 49245 -16291 $C05D

Annunciator 2 off 49244 -16292 $C05C

Annunciator 3 on 49247 -16289 $CO5F

Annunciator 3 off 49246 -16290 $CO5E

Strobe output 49216 -16320 $0040 Read only
Switch input 0 (&) 49249 -16287 5C061 Read only
Switeh input 1 ([&]) 49250 -16286 $C062 Read only
Switch input 2 49251 -1628H $C063 Read only
Analog input reset 49264 -16272 $CO70

Analog input 0 49252 -16284 $C064 Read only
Analog input 1 49253 -16283 $C065 Read only
Analog input 2 49254 -16282 $C066 Read only
Analog input 3 49265 -16281 $C067 Read only

Secondary Inputs and Outputs

43

Chapter 3

Built-in I/0 Firmware

The Monitor, or System Monitor, is a
computer program that is used to operate
the computer at the machine language

level.

16

Important!

Almost every program on the Apple Ile takes input from the keyboard and
sends output to the display. The Monitor and the Applesoft and Integer
BASICs do this by means of standard [/0 subroutines that are built into the
Apple Ile’s firmware. Many application programs also use the standard [/0
subroutines, but Pascal programs do not; Pascal has its own I/0

subroutines.

This chapter describes the features of these subroutines as they are used by
the Monitor and by the BASIC interpreters, and tells you how to use the
standard subroutines in your assembly-language programs.

High-level languages already include convenient methods for handling
most of the functions described in this chapter. You should not need to
use the standard 1/0 subroutines in your programs unless you are
programming in assembly language.

Table 3-1. Monitor Firmware Routines

Location

$C305
5C307
SFCAC

SFCIE

$FC42
$F832
$F836
SFDED

$FDFO
$FDBE
$FD8B

SFDBA

$F819
$FCH8

Name

BASICIN

BASICOUT

CLREOL
CLEOLZ

CLREOP
CLRSCR
CLRTOP
couT

COUT1
CROUT
CROUT!

GETLN

HLINE
HOME

Description

With 80-column dirmware active, displays solid,
blinking cursor. Accepts character from keyboard.

Displays a character on the screen; used when the
80-column firmware is active (Chapter 3).

(Clears to end of line from current cursor position.

Clears to end of line using contents of Y register as
cursor position.

Clears to bottom of window.
(Clears the low-resolution screen.
Clears top 40 lines of low-resolution screen.

Calls output routine whose address is stored in CSW
(normally COUT1, Chapter 3).

Displays a character on the screen (Chapter 3).
Generates a carriage return character.

Clears to end of line, then generates a carriage return
character.

Displays the prompt character; accepts a string of
characters by means of RDKEY.

Draws a horizontal line of blocks.

Clears the window and puts cursor in upper-left
corner of window.

Chapter 3: Built-in 1/0 Firmware

Table 3-1—Continued. Monitor Firmware Routines

Location Name Description

$FDIB KEYIN With 80-column firmware inactive, displays
checkerboard cursor. Accepts character from
keyboard.

$F800 PLOT Plots a single low-resolution block on the screen.

SFO4A PRBL2 Sends 1 to 256 blank spaces to the output device.

$FDDA PRBYTE Prints a hexadecimal byte.

$FF2D PRERR Sends err and Control-G to the output device.

$FDE3 PRHEX Prints 4 bits as a hexadecimal number,

$F941 PRNTAX Prints contents of A and X in hexadecimal,

$FDOC RDKEY Displays blinking cursor; goes to standard input
routine, normally KEYIN or BASICIN.

$F871 SCRN Reads color value of a low-resolution block.
$F864 SETCOL Sets the color for plotting in low-resolution.
$FC24 VTABZ Sets cursor vertical position.

$F828 VLINE Draws a vertical line of low-resolution blocks.

The standard /0 subroutines listed in Table 3-1 are fully described in this

chapter. The Apple Ile firmware also contains many other subroutines that

you might find useful. Those subroutines are described in Appendix B. Two
AUXMOVE and XFER are described inthe of the built-in subroutines, AUXMOVE and XFER, can help you use the

section “Auxiliary-Memory Subroutines” in optional auxiliary memory.
Chapter 4.

Using the 1/O Subroutines

T EESEEeR e e e e
Before you use the standard 1/0 subroutines, you should understand a little
about the way they are used. The Apple Ile firmware operates differently
when an option such as an 80-column text card is used. This section
describes general situations that affect the operation of the standard 1/0
subroutines. Specific instances are described in the sections devoted to the
individual subroutines.

Using the 1/0 Subroutines 47

Original lle

The primary and alternate character sets
are described in Chapter 2 in the section
“Text Character Sets.”

Original lle

The ALTCHAR soft switch is described in
Chapter 2.

48

Apple Il Compatibility
=

Compared to older Apple Il models, the Apple Ile has some additional
keyboard and display features. To run programs that were written for the
older models, you can make the Apple Ile resemble an Apple II Plus by
turning those features off. The features that you can turn off and on to put
the Apple Ile into and out of Apple Il mode are listed in Table 3-2.

Table 3-2. Apple 1l Mode

Apple I1e Apple IT Mode
Keyboard Uppercase and lowercase Uppercase only
Display characters Inverse and normal only Flashing, inverse, and
normal
Display size 40-column; also 80-column 40-column only

with optional card

If the Apple Ile does not have an 80-column text card installed in the
auxiliary slot, it is almost in Apple Il mode as soon as you turn it on or reset
it. One exception is the keyboard, which is both uppercase and lowercase.

On an original Apple Ile, DOS 3.3 commands and statements in Integer
BASIC and Applesoft must be typed in uppercase letters. To be
compatible with older software, you should switch the Apple Ile keyboard
to uppercase by pressing [CAPS LOCK].

Another feature that is different on the Apple Ile as compared to the

Apple I is the displayed character set. An Apple II displays only uppercase
characters, but it displays them three ways: normal, inverse, and flashing.
The Apple Ile can display uppercase characters all three ways, and it can
display lowercase characters in the normal way. This combination is called
the primary character set. When the Apple Ile is first turned on or reset,
it displays the primary character set.

The Apple Ile has another character set, called the alternate character
set, that displays a full set of normal and inverse characters, with the
inverse uppercase characters between $40 and $5F replaced on enhanced
Apple Ile’s with MouseText characters.

In the original Apple Ile, uppercase inverse characters appear in place of
the MouseText characters of the enhanced Apple Ile and the Apple Ilc.

You can switch character sets at any time by means of the ALTCHAR soft
switch.

Chapter 3: Built-in I/0 Firmware

See the section “"Switching I/0 Memory” in
Chapter 6 for details.

Important!

SLOTC3ROM is described in Chapter 6 in
the section “Switching 1/0 Memory.”

For more information about interrupts, see
Chapter 6.

The 80-Column Firmware

There are a few features that are normally available only with the optional
80-column display. These features are identified in Table 3-3b and

Table 3-6. The firmware that supports these features is built into the

Apple Ile, but it is normally active only if an 80-column text card is installed
in the auxiliary slot.

When you turn on power or reset the Apple Ile, the 80-column firmware is
inactive and the Apple lle displays the primary character set, even if an
80-column text card is installed. When you activate the 80-column
firmware, it switches to the alternate character set.

The built-in 80-column firmware is implemented as if it were installed in
expansion slot 3. Programs written for an Apple II or Apple II Plus with an
80-column text card installed in slot 3 usually will run properly on a
Apple Ile with an 80-column text card in the auxiliary slot.

If the Apple IIe has an 80-column text card and you want to use the
80-column display, you can activate the built-in firmware from BASIC by

typing
PR#3

To activate the 80-column firmware from the Monitor, press (3], then
[conTROL HP). Notice that this is the same procedure you use to activate a
card in expansion slot 3. Any card installed in the auxiliary slot takes
precedence over a card installed in expansion slot 3:

Even though you activated the 80-column firmware by typing PR#3, you
should never deactivate it by typing PR#0, because that just disconnects
the firmware, leaving several soft switches still set for 80-column
operation. Instead, type the sequence [conTROLH @) (See

Table 3-6.)

If there is no 80-column text card or other auxiliary memory card in your
Apple Ile, you can still activate the 80-column firmware and use it with a
40-column display. First, set the SLOTC3ROM soft switch located at $CO0A
(49162). Then type PR#3 to transfer control to the firmware.

When the 80-column firmware is active without a card in the auxiliary slot,
it does not work quite the same as it does with a card. The functions that
clear the display (CLREOL, CLEOLZ, CLREOP, and HOME) work as if the
firmware were inactive: they always clear to the current color. Also,
interrupts are supported only with a card installed in the auxiliary slot.

Using the 1/0 Subroutines 49

50

AWarning

If you do not have an interface card in either the auxiliary slot or slot 3,
don't try to activate the firmware with PR#3. Typing PR#3 with no card
installed transfers control to the empty connector, with unpredictable
results.

Programs activate the 80-column firmware by transferring control to
address $C300. If there is no card in the auxiliary slot, you must set the
SLOTC3ROM soft switch first. To deactivate the 80-column firmware from a
program, write a Control-U character via subroutine COUT.

The Old Monitor

Apple II's and Apple II Pluses used a version of the System Monitor
different from the one the Apple lle uses. It had the same standard I/0
subroutines, but a few of the features were different; for example, there
were no arrow keys for cursor motion. If you start the Apple Ile with a DOS
or BASIC disk that loads Integer BASIC into the bank-switched area in
RAM, the old Monitor (sometimes called the Autostart Monitor) is also
loaded with it. When you type INT from Applesoft to activate Integer
BASIC, you also activate this copy of the old Monitor, which remains active
until you either type FP to switch back to Applesoft, which uses the new
Monitor in ROM, or type

PR#3

to activate the 80-column firmware. Part of the firmware’s initialization
procedure checks to see which version of the Monitor is in RAM. If it finds
the old Monitor, it replaces it with a copy of the new Monitor from ROM.
After the firmware has copied the new Monitor into RAM, it remains there
until the next time you start up the system.

The Standard 1/O Links

When you call one of the character /0 subroutines (COUT and RDKEY),
the first thing that happens is an indirect jump to an address stored in
programmable memory. Memory locations used for transferring control to
other subroutines are sometimes called vectors; in this manual, the
locations used for transferring control to the I/0 subroutines are called I/0
links. In a Apple Ile running without a disk operating system, each /0 link
is normally the address of the body of the subroutine (COUT1 or KEYIN). If
a disk operating system is running, one or both of these links hold the
addresses of the corresponding DOS or ProDOS /0 routines instead. (DOS
and ProDOS maintain their own links to the standard I/0 subroutines.)

Chapter 3: Built-in I/0 Firmware

@ ..

For more information about the I/0 links,
see the section “Changing the Standard 1/0
Links” in Chapter 6.

By calling the 1/0 subroutines that jump to the link addresses instead of
calling the standard subroutines directly, you ensure that your program will
work properly in conjunction with other software, such as DOS or a printer
driver, that changes one or both of the [/0 links.

For the purposes of this chapter, we shall assume that the [/0 links contain
the addresses of the standard [/0 subroutines—COUT1 and KEYIN if the
80-column firmware is off, and BASICOUT and BASICIN if it is on.

Standard Output Features

The standard output routine is named COUT, pronounced C-out, which
stands for character out. COUT normally calls COUT1, which sends one
character to the display, advances the cursor position, and scrolls the
display when necessary. COUT1 restricts its use of the display to an active
area called the text window, described below.

COUT Output Subroutine

e e e s

Your program makes a subroutine call to COUT at memory location SFDED
with a character in the accurnulator. COUT then passes control via the
output link CSW to the current output subroutine, normally COUT1 (or
BASICOUT), which takes the character in the accumulator and writes it
out. If the accumulator contains an uppercase or lowercase letter, a number,
or a special character, COUT1 displays it; if the accumulator contains a
control character, COUT1 either performs one of the special functions
described below or ignores the character.

Each time you send a character to COUT1, it displays the character at the
current cursor position, replacing whatever was there, and then advances
the cursor position one space to the right. If the cursor position is already at
the right-hand edge of the window, COUT1 moves it to the left-most position
on the next line down. If this would move the cursor position past the end of
the last line in the window, COUT1 scrolls the display up one line and sets
the cursor position at the left end of the new bottom line.

The cursor position is controlled by the values in memory locations 36 and
37 (hexadecimal $24 and $25). These locations are named CH, for cursor
horizontal, and CV, for cursor vertical. COUT1 does not display a cursor, but
the input routines described below do, and they use this cursor position. If
some other routine displays a cursor, it will not necessarily put it in the
cursor position used by COUT1.

Standard Output Features 51

Control Characters With COUT1 and BASICOUT
fensE=e e s T R T e i i ST i e B SR)

COUT1 and BASICOUT do not display control characters. Instead, the
control characters listed in Tables 3-3a and 3-3b are used to initiate some
action by the firmware. Other control characters are ignored. Most of the
functions listed here can also be invoked from the keyboard, either by
typing the control character listed or by using the appropriate escape code,
as described in the section “Escape Codes With KEYIN” later in this
chapter. The stop-list function, described separately, can only be invoked
from the keyboard.

Table 3-3a. Control Characters With 80-Column Firmware Off

Control ASCIT Apple Ile

Character Name Name Action Taken by COUT1

Control-G BEL bell Produces a 1000 Hz tone for 0.1 second.

Control-H BS backspace Moves cursor position one space to the
left; from left edge of window, moves to
right end of line above.

Control-J LF line feed Moves cursor position down to next line in
window; scrolls if needed.

Control-M CR return Moves cursor position to left end of next

line in window; scrolls if needed.

Table 3-3b. Control Characters With 80-Column Firmware On

Control ASCIT Apple IIe

Character Name Name Action Taken by BASICOUT

Control-G BEL bell Produces a 1000 Hz tone for 0.1 second.

Control-H BS backspace Moves cursor position one space to the
left; from left edge of window, moves to
right end of line above.

Control-J LF line feed Moves cursor position down to next line in

window; scrolls if needed.

Control-K+ VT clear EOS Clears from cursor position to the end of
the screen.

Control-LT FF home Moves cursor position to upper-left corner
andclear of window and clears window.

Chapter 3: Built-in 1/0 Firmware

Table 3-3b—Continued. Control Characters With 80-Column Firmware On

Control ASCII AppleIle

Character Name Name Action Taken by BASICOUT

Control-M CR return Moves cursor position to left end of next
line in window; scrolls if needed.

Control-NT S0 normal Sets display format normal.

Control-Of SI inverse Sets display format inverse.

Control-Qf DC1 40-column Sets display to 40-column.
Control-RT DC2 80-column Sets display to 80-column.

Control-S* DC3 stop-list Stops listing characters on the display
until another key is pressed.

Control-U NAK quit Deactivates 80-column video firmware.

Control-V SYN scroll Scrolls the display down one line, leaving
the cursor in the current position.

Control-W+ ETB scroll-up Scrolls the display up one line, leaving the
cursor in the current position.

Control-X CAN disable Disable MouseText character display; use
MouseText inverse uppercase.

Control-Y T EM home Moves cursor position to upper-left corner
of window (but doesn’t clear).

Control-Z T SUB clearline Clears the line the cursor position is on.

Control-[ESC enable Map inverse uppercase characters to
MouseText MouseText characters.
Control-\ FS forward Moves cursor position one space to the
space right; from right edge of window, moves it
to left end of line below.

Control-Jt GS clear EOL Clears from the current cursor position to
the end of the line (that is, to the right
edge of the window).

Control-_ US up Moves cursor up a line, no scroll.

* Only works from the keyboard.

1 Doesn't work from the keyboard.

Standard Output Features 63

Original lle

The Stop-List Feature

When you are using any program that displays text via COUT1 (or
BASICOUT), you can make it stop updating the display by holding down
and pressing [s]. Whenever COUT1 gets a carriage return from
the program, it checks to see if you have pressed (ConTRoL S, If you
have, COUT1 stops and waits for you to press another key. When you want
COUT1 to resume, press another key; COUT1 will send the carriage return it
got earlier to the display, then continue normally. The character code of the
key you pressed to resume displaying is ignored unless you pressed
(conTroL H ¢). COUT1 passes Control-C back to the program; if it is a
BASIC program, this enables you to terminate the program while in stop-list
mode.

The Text Window

e

After starting up the computer or after a reset, the firmware uses the entire
display. However, you can restrict video activity to any rectangular portion
of the display you wish. The active portion of the display is called the

text window. COUT1 or BASICOUT puts characters into the window only:
when it reaches the end of the last line in the window, it scrolls only the
contents of the window.,

You can set the top, bottom, left side, and width of the text window by
storing the appropriate values into four locations in memory. This enables
your programs to control the placement of text in the display and to protect
other portions of the screen from being written over by new text.

Memory location 32 (hexadecimal $20) contains the number of the leftmost
column in the text window. This number is normally 0, the number of the
leftmost column in the display. In a 40-column display, the maximum value
for this number is 39 (hexadecimal $27); in an 80-column display, the
maximum value is 79 (hexadecimal $4F).

Memory location 33 (hexadecimal $21) holds the width of the text window.
For a 40-column display, it is normally 40 (hexadecimal $28); for an
80-column display, it is normally 80 (hexadecimal $50).

COUT!1 truncates the column width to an even value on the original
Apple Ile.

Chapter 3: Built-in I/0 Firmware

AWarning On an original Apple Ile, be careful not to let the sum of the window
width and the leftmost position in the window exceed the width of the
display you are using (40 or 80). If this happens, it is possible for COUT1
to put characters into memory locations outside the display page, possibly
into your current program or data space.

Memory location 34 (hexadecimal $22) contains the number of the top line
of the text window. This is normally 0, the topmost line in the display. Its
maximum value is 23 (hexadecimal $17).

Memory location 85 (hexadecimal $23) contains the number of the bottom
line of the screen, plus 1. It is normally 24 (hexadecimal $18) for the bottom
line of the display. Its minimum value is 1.

After you have changed the text window boundaries, nothing is affected
until you send a character to the screen.

AWarning | Any time you change the boundaries of the text window, you should
| make sure that the current cursor position (stored at CH and CV) is inside
| the new window. If it is outside, it is possible for COUT1 to put characters
| into memory locations outside the display page, possibly destroying
programs or data.

Table 3-4 summarizes the memory locations and the possible values for the
window parameters.

Table 3-4. Text Window Memory Locations

Window Location Minimum Normal Values Maximum Values
Parameter Value 40 col. 80 col. 40 col. 80 col.
Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
Left Edge 32 820 00 $00 00 $00 00 $00 39 $27 79 $4F
Width 33 %21 00 $00 40 $28 80 850 40 $28 80§50
Top Edge 34 $22 00 $00 00 $00 00 800 23 817 23 817
Bottom Edge 35 $23 01 801 24 $18 24§18 24 $18 24§18
Standard Output Features 55

56

Important!

Inverse and Flashing Text

TS | N = e

Subroutine COUT1 can display text in normal format, inverse format, or,
with some restrictions, flashing format. The display format for any
character in the display depends on two things: the character set being used
at the moment, and the setting of the two high-order bits of the character’s
byte in the display memory.

As it sends your text characters to the display, COUT1 sets the high-order
bits according to the value stored at memory location 50 (hexadecimal $32).
If that value is 255 (hexadecimal $FF), COUT1 sets the characters to
display in normal format; if the value is 63 (hexadecimal $3F), COUT1 sets
the characters to inverse format. If the value is 127 (hexadecimal $7F) and
if you have selected the primary character set, the characters will be
displayed in flashing format. Note that flashing format is not available in
the alternate character set.

Table 3-5. Text Format Control Values

Note: These mask values apply only to the primary character set (see text).

Mask Value
Dec Hex Display Format
255 SFF Normal, uppercase, and lowercase
127 $TF Flashing, uppercase, and symbols
63 $3F Inverse, uppercase, and lowercase

To control the display format of the characters, routine COUTI uses the
value at location 50 as a logical mask to force the setting of the two
high-order bits of each character byte it puts into the display page. It does
this by performing the logical AND function on the data byte and the mask
byte. The result byte contains a 0 in any bit that was 0 in the mask.
BASICOUT, used when the 80-column firmware is active, changes only the
high-order bit of the data.

If the 80-column firmware is inactive and you store a mask value at
location 50 with zeros in its low-order bits, COUT1 will mask out those
bits in your text. As a result, some characters will be transformed into
other characters. You should set the mask to the values given in Table 3-5
only.

Chapter 3: Built-in I/0 Firmware

Switching between character sefs is
described in the section “Display Mode
Switching” in Chapter 2.

Original lle

If you set the mask value at location 50 to 127 (hexadecimal $7F), the
high-order bit of each result byte will be 0, and the characters will be
displayed either as lowercase or as flashing, depending on which character
set you have selected. Refer to the tables of display character sets in
Chapter 2. In the primary character set, the next-highest bit, bit 6, selects
flashing format with uppercase characters. With the primary character set
you can display lowercase characters in normal format and uppercase
characters in normal, inverse, and flashing formats. In the alternate
character set, bit 6 selects lowercase or special characters. With the
alternate character set you can display uppercase and lowercase characters
in normal and inverse formats.

On the original Apple Ile, the MouseText characters are replaced by
uppercase inverse characters.

Standard Input Features

For more information on GETLN, see the
section “Editing With GETLN," later in this
chapter.

g S A SRS P e e g e B
The Apple lle’s firmware includes two different subroutines for reading
from the keyboard. One subroutine is named RDKEY, which stands for
read key. It calls the standard character input subroutine KEYIN (or
BASICIN when the 80-column firmware is active) which accepts one
character at a time from the keyboard.

The other subroutine is named GETLN, which stands for get line. By
making repeated calls to RDKEY, GETLN accepts a sequence of characters
terminated with a carriage return. GETLN also provides on-screen editing
features.

RDKEY Input Subroutine

e]

A program gets a character from the keyboard by making a subroutine call
to RDKEY at memory location $FDOC. RDKEY sets the character at the
cursor position to flash, then passes control via the input link KSW to the
current input subroutine, which is normally KEYIN or BASICIN.

RDKEY displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to the display
(normally by using the COUT routine, described earlier). The cursor
displayed by RDKEY is a flashing version of whatever character happens to
be at that position on the screen. It is usually a space, so the cursor appears
as a blinking rectangle.

Standard Input Features a7

KEYIN Input Subroutine

|

KEYIN is the standard input subroutine when the 80-column firmware is
inactive; BASICIN is used when the 80-column firmware is active. When
called, the subroutine waits until the user presses a key, then returns with
the key code in the accumulator.

If the 80-column firmware is inactive, KEYIN displays a cursor by
alternately storing a checkerboard block in the cursor location, then storing
the original character, then the checkerboard again. If the firmware is
active, BASICIN displays a steady inverse space (rectangle), unless you are

Escape mode is described in the next in escape mode, when it displays a plus sign (+) in inverse format,

section, “Escape Codes.” s "
KEYIN also generates a random number. While it is waiting for the user to

press a key, KEYIN repeatedly increments the 16-bit number in memory
locations 78 and 79 (hexadecimal $4E and $4F). This number keeps
increasing from 0 to 656535, then starts over again at 0. The value of this
number changes so rapidly that there is no way to predict what it will be
after a key is pressed. A program that reads from the keyboard can use this
value as a random number or as a seed for a random number routine.

When the user presses a key, KEYIN accepts the character, stops displaying
the cursor, and returns to the calling program with the character in the
accumulator.

Escape Codes

KEYIN has special functions that you invoke by typing escape codes on the
keyboard. An escape code is obtained by pressing [ESC], releasing it, and
then pressing some other key. See Table 3-6; the notation in the table means
press [ESC], release it, then press the key that follows.

Table 3-6 includes three sets of cursor-control keys. The first set consists of
followed by A, B, C, or D. The letter keys can be either uppercase or
lowercase. These keys are the standard cursor-motion keys on older

Apple Il models; they are present on the Apple Ile primarily for
compatibility with programs written for old machines.

Cursor Motion in Escape Mode

The second and third set of cursor-control keys are listed together because
they activate escape mode. In escape mode, you can keep using the
cursor-motion keys without pressing again. This enables you to
perform repeated cursor moves by holding down the appropriate key.

on
o0

Chapter 3: Built-in I/0 Firmware

-). -

Table 3-6. Escape Codes

When the 80-column firmware is active, you can tell when BASICIN is in
escape mode: it displays a plus sign in inverse format as the cursor. You
leave escape mode by typing any key other than a cursor-motion key.

The escape codes with the directional arrow keys are the standard
cursor-motion keys on the Apple Ile. The escape codes with the I, J, K, and
M keys are the standard cursor-motion keys on the Apple II Plus, and are
present on the Apple Ile for compatibility with the Apple II Plus. On the
Apple lle, the escape codes with the I, J, K, and M keys function with either
uppercase or lowercase letters.

Escape Code
(e]

(esc](a])or (a]
(Esc](B]or (o]
(Esc(ejor(e]
(esc][pjor(d]
(Escl(E]or[e]
(Esc](FJor 1]
(Esc][or [Jor [Esc][1]
(Escl{y]orfJorEsC](+]
(Esc](K]Jor [iJor [ESC](+]
(esc](m]or[m]or(ESC](¥]

(£55) [CONTROLHD)

(esc][conTROL HE]
[Esc][conTroLHa]

Function

Clears window and homes cursor (places it in upper-left corner of screen), then exits from
escape mode.

Moves cursor right one line; exits from escape mode.

Moves cursor left one line; exits from escape mode.

Moves cursor down one line; exits from escape mode.

Moves cursor up one line; exits from escape mode.

Clears to end of line; exits from escape mode.

Clears to bottom of window; exits from escape mode.

Moves the cursor up one line; remains in escape mode. See text.
Moves the cursor left one space; remains in escape mode. See text.
Moves the cursor right one space; remains in escape mode. See text.
Moves the cursor down one ling; remains in escape mode. See text.

If 80-column firmware is active, switches to 40-column mode; sets links to BASICIN and
BASICOUT; restores normal window size; exits from escape mode.

If 80-column firmware is active, switches to 80-column mode; sets links to BASICIN and
BASICOUT; restores normal window size; exits from escape mode.

Disables control characters; only carriage return, line feed, BELL, and backspace have an
effect when printed.

Reactivates control characters.

If 80-column firmware is active, deactivates 80-column firmware; sets links to KEYIN and
COUT1; restores normal window size; exits from escape mode.

Standard Input Features 59

60

GETLN Input Subroutine

Programs often need strings of characters as input, While it is possible to
call RDKEY repeatedly to get several characters from the keyboard, there is
a more powerful subroutine you can use. This routine is named GETLN,
which stands for get line, and starts at location $FD6A. Using repeated
calls to RDKEY, GETLN accepts characters from the standard input
subroutine—usually KEYIN—and puts them into the input buffer located
in the memory page from $200 to $2FF. GETLN also provides the user with
on-screen editing and control features, described in the next section
“Editing With GETLN.”

The first thing GETLN does when you call it is display a prompting
character, called simply a prompt. The prompt indicates to the user that
the program is waiting for input. Different programs use different prompt
characters, helping to remind the user which program is requesting the
input. For example, an INPUT statement in a BASIC program displays a
question mark (?) as a prompt. The prompt characters used by the
different programs on the Apple Ile are shown in Table 3-7.

GETLN uses the character stored at memory location 51 (hexadecimal $33)
as the prompt character. In an assembly-language program, you can change
the prompt to any character you wish. In BASIC, changing the prompt
character has no effect, because both BASIC interpreters and the Monitor
restore it each time they request input from the user.

Table 3-7. Prompt Characters

Prompt Character Program Requesting Input

? User's BASIC program (INPUT statement)
] Applesoft BASIC (Appendix D)
oy Integer BASIC (Appendix D)

* Firmware Monitor (Chapter 5)

As you type the character string, GETLN sends each character to the
standard output routine—normally COUT1—which displays it at the
previous cursor position and puts the cursor at the next available position
on the display, usually immediately to the right. As the cursor travels across
the display, it indicates the position where the next character will be
displayed.

Chapter 3: Built-in 1/0 Firmware

Important!

GETLN stores the characters in its buffer, starting at memory location $200
and using the X register to index the buffer. GETLN continues to accept and
display characters until you press (RETURNJ; then it clears the remainder of
the line the cursor is on, stores the carriage-return code in the buffer, sends
the carriage-return code to the display, and returns to the calling program.

The maximum line-length that GETLN can handle is 255 characters. If the
user types more than this, GETLN sends a backslash (\) and a carriage
return to the display, cancels the line it has accepted so far, and starts over.
To warn the user that the line is getting full, GETLN sounds a bell (tone) at
every keypress after the 248th.

In the Apple Il and the Apple II Plus, the GETLN routine converts all
input to uppercase. GETLN in the Apple Ile does not do this, even in
Apple Il mode. To get uppercase input for BASIC, use [CAPS LOCK .

Editing With GETLN

= S £ 0 =T 1\ PO]

Subroutine GETLN provides the standard on-screen editing features used
by the BASIC interpreters and the Monitor. For an introduction to editing
with these features, refer to the Applesoft Tutorial. Any program that uses
GETLN for reading the keyboard has these features.

Cancel Line

Any time you are typing a line, pressing causes GETLN to
cancel the line. GETLN displays a backslash (\) and issues a carriage
return, then displays the prompt and waits for you to type a new line.
GETLN takes the same action when you type more than 255 characters, as
described earlier.

Backspace

When you press [=], GETLN moves its buffer pointer back one space,
effectively deleting the last character in its buffer. It also sends a backspace
character to routine COUT, which moves the display position and the cursor
back one space. If you type another character now, it will replace the
character you backspaced over, both on the display and in the line buffer.
Each time you press (<], it moves the cursor left and deletes another
character, until you reach the beginning of the line. If you then press (<]
one more time, you have cancelled the line, and GETLN issues a carriage
return and displays the prompt.

Standard Input Features 61

Retype

[=]has a function complementary to the backspace function. When you
press (=], GETLN picks up the character at the display position just as if it
had been typed on the keyboard. You can use this procedure to pick up
characters that you have just deleted by backspacing across them. You can
use the backspace and retype functions with the cursor-motion functions to
edit data on the display. (See the earlier section “Cursor Motion in Escape
Mode.”)

Monitor Firmware Support

62

Table 3-8 summarizes the addresses and functions of the video display
support routines the Monitor provides. These routines are described in the
subsections that follow.

Table 3-8. Video Firmware Routines

Location Name Description

$C307 BASICOUT Displays a character on the screen when
80-column firmware is active.

$FCIC CLREOL Clears to end of line from current cursor
position.

$FCIE CLEOLZ (Clears to end of line using contents of Y register
as cursor position.

$FC42 CLREOP Clears to bottom of window.

$F832 CLRSCR (Clears the low-resolufion screen.

$F836 CLRTOP (Clears top 40 lines of low-resolution screen.

$FDED couT Calls output routine whose address is stored in
CSW (normally COUT1, Chapter 3).

$FDF0 COUT1 Displays a character on the screen (Chapter 3).

$FD8E CROUT Generates a carriage return character.

$FD8B CROUTI Clears to end of line, then generates a carriage
return character.

$F819 HLINE Draws a horizontal line of blocks.

Chapter 3: Built-in 1/0 Firmware

Table 3-8—Continued. Video Firmware Routines

Location Name Description

$FC58 HOME Clears the window and puts cursor in upper-left
corner of window.

$F800 PLOT Plots a single low-resolution block on the screen.

$F94A PRBL2 Sends 1 to 256 blank spaces to the output device
whose address is in CSW.

$FDDA PRBYTE Prints a hexadecimal byte.

$FF2D PRERR Sends ERR and Control-G to the output device
whose output routine address is in CSW.

$FDE3 PRHEX Prints 4 bits as a hexadecimal number.

$§F941 PRNTAX Prints contents of A and X in hexadecimal.

$F871 SCRN Reads color value of a low-resolution block on
the screen.

$F864 SETCOL Sets the color for plotting in low-resolution.

$FC24 VTABZ Sets cursor vertical position. (Setting CV at
location $25 does not change vertical positon
until a carriage return.)

$F828 VLINE Draws a vertical line of low-resolution blocks.

BASICOUT, $C307

BASICOUT is essentially the same as COUT1—BASICOUT is used instead
of COUT1 when the 80-column firmware is active. BASICOUT displays the
character in the accumulator on the display screen at the current cursor
position and advances the cursor. It places the character using the setting of
the inverse mask (location $32). BASICOUT handles control characters; see
Table 3-3b. When it returns control to the calling program, all registers are
intact.

CLREOL, $FC9C

CLREOL clears a text line from the cursor position to the right edge of the
window. This routine destroys the contents of A and Y.

Monitor Firmware Support 63

See the section “Control Characters With
COUT! and BASICOUT,” earlier in this
chapter for more information on COUT1.

64

CLEOLZ, $FCSE

CLEOLZ clears a text line to the right edge of the window, starting at the
location given by base address BASL, which is indexed by the contents of
the Y register. This routine destroys the contents of A and Y.

CLREOP, $FC42

CLREOQP clears the text window from the cursor position to the bottom of
the window. This routine destroys the contents of A and Y.

CLRSCR, $F832

CLRSCR clears the low-resolution graphics display to black. If you call this
routine while the video display is in text mode, it fills the screen with
inverse-mode at-sign (@) characters. This routine destroys the contents
of AandY.

CLRTOP, $F836

CLRTOP is the same as CLRSCR, except that it clears only the top 40 rows
of the low-resolution display.

COUT, $FDED

COUT calls the current character output subroutine. (See the section
“COUT Output Subroutine” earlier in this chapter.) The character to be sent
to the output device should be in the accumulator. COUT calls the
subroutine whose address is stored in CSW (locations $36 and $37), which

is usually the standard character output subroutine COUT1 (or BASICOUT).

COUT1, $FDFO

COUT!1 displays the character in the accumulator on the display screen at
the current cursor position and advances the cursor. It places the character
using the setting of the inverse mask (location $32). It handles these control
characters: carriage return, line feed, backspace, and bell. When it returns
control to the calling program, all registers are intact.

CROUT, $FDSE

CROUT sends a carriage return to the current output device.

Chapter 3: Built-in I/0 Firmware

. il
ot

CROUT1, $FD8B

CROUT!1 clears the screen from the current cursor position to the edge of
the text window, then calls CROUT.

HLINE, $F819

HLINE draws a horizontal line of blocks of the color set by SETCOL on the
low-resolution graphics display. Call HLINE with the vertical coordinate of
the line in the accumulator, the leftmost horizontal coordinate in the

Y register, and the rightmost horizontal coordinate in location $2C. HLINE
returns with A and Y scrambled and X intact.

HOME, $FC58

HOME clears the display and puts the cursor in the upper-left corner of the
SCreen.

PLOT, $F800

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. Call PLOT with the vertical coordinate of the
line in the accumulator, and its horizontal position in the Y register. PLOT
returns with the accumulator scrambled, but X and Y intact.

PRBL2, $F94A

PRBL2 sends from 1 to 256 blanks to the standard output device. Upon
entry, the X register should contain the number of blanks to send. If
X = $00, then PRBLANK will send 256 blanks.

PRBYTE, $FDDA

PRBYTE sends the contents of the accumulator in hexadecimal to the
current output device. The contents of the accumulator are scrambled.

PRERR, $FF2D

PRERR sends the word ERR, followed by a bell character, to the standard
output device. On return, the accumulator is scrambled.

Monitor Firmware Support 65

66

PRHEX, $FDE3

PRHEX prints the lower nibble of the byte in the accumulator as a single
hexadecimal digif. On return, the contents of the accumulator are
scrambled.

PRNTAX, $F941

PRTAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte printed, and
the X register contains the second. On return, the contents of the
accumulator are scrambled.

SCRN, $F871

SCRN returns the color value of a single block on the low-resolution display.
Call it with the vertical position of the block in the accumulator and the
horizontal position in the Y register. The block’s color is returned in the
accumulator. No other registers are changed.

SETCOL, $F864

SETCOL sets the color used for plotting in low-resolution graphics to the
value passed in the acumulator. The colors and their values are listed in
Table 2-6.

VTABZ, $FC24

VTABZ sets the cursor vertical position. Unlike setting the position at
location $25, change of cursor position doesn’t wait until a carriage return
character has been sent.

VLINE, $F828

VLINE draws a vertical line of blocks of the color set by SETCOL on the
low-resolution display. Call VLINE with the horizontal coordinate of the line
in the Y register, the top vertical coordinate in the accumulator, and the
bottom vertical coordinate in location $2D. VLINE returns with the
accumulator scrambled.

Chapter 3: Built-in I/0 Firmware

I/O Firmware Support

[e e e e T e
Apple Ile video firmware conforms to the /0 firmware protocol of Apple 11
Pascal 1.1. However, it does not support windows other than the full
80-by-24 window in 80-column mode, and the full 40-by-24 window in
40-column mode. The video protocol table is shown in Table 3-9.

Table 3-9. Slot 3 Firmware Protocol Table

Address Value Description

$C30B $01 Generic signature byte of firmware cards

$C30C $88 80-column card device signature

$C30D §ii $C3ii is entry point of initialization routine (PINIT).
$C30E $rr $C3rr is entry point of read routine (PREAD).

$C30F $ww $C3ww is entry point of write routine (PWRITE).
$C310 $ss $C3ss is entry point of the status routine (PSTATUS).

PINIT, $C30D
PINIT does the following:

o Sets a full 80-column window.

o Sets 80STORE ($C001).

Sets 80COL ($C00D).

o Switches on ALTCHAR ($CO0F).

o Clears the screen; places cursor in upper-left corner.
o Displays the cursor.

O

PREAD, $C30E

PREAD reads a character from the keyboard and places it in the
accumulator with the high bit cleared. It also puts a zero in the X register to
indicate IORESULT = GOOD.

1/0 Firmware Support 67

68

PWRITE, $C30F

PWRITE should be called after placing a character in the accumulator with
its high bit cleared. PWRITE does the following:

o Turns the cursor off.

o If the character in the accumulator is not a control character, turns the
high bit on for normal display or off for inverse display, displays it at the
current cursor position, and advances the cursor; if at the end of a line,
does carriage return but not line feed. (See Table 3-10 for control
character functions.)

When PWRITE has completed this, it

o turns the cursor back on (if it was not intentionally turned off)
o puts a zero in the X register (IORESULT = GOOD) and returns to the
calling prograr.

Table 3-10. Pascal Video Control Functions

Control- Hex Function Performed

Eore $05 Turns cursor on (enables cursor display).
Forf $06 Turns cursor off (disables cursor display).
Gorg $07 Sounds bell (beeps).

Horh $08 Moves cursor left one column. If cursor was at beginning of
line, moves it to end of previous line.

Jorj $0A Moves cursor down one row; scrolls if needed.
Kork $0B Clears to end of screen.

Lorl $0C Clears screen; moves cursor to upper-left of screen.
Morm $0D Moves cursor to coluran 0.

Norn $0E Displays subsequent characters in normal video. (Characters
already on display are unaffected.)

Chapter 3: Built-in I/0 Firmware

Table 3-10—Continued. Pascal Video Control Functions

Control- Hex Function Performed

Qoro $0F Displays subsequent characters in inverse video.
(Characters already on display are unaffected.)

Vorv $16 Scrolls screen up one line; clears bottom line.
Worw $17 Scrolls screen down one line; clears top line.
Yory $19 Moves cursor to upper-left (home) position on screen.

Zorz $1A Clears entire line that cursor is on.

lor \ $10 Moves cursor right one column; if at end of line, does
Control-M.
for] $1D Clears to end of the line the cursor is on, including current

cursor position; does not move cursor.

-~

or6 $1E GOTOxy: initiates a GOTOxy sequence; interprets the next
two characters as x+32 and y+32, respectively.

= $1F If not at top of screen, moves cursor up one line.

PSTATUS, $C310

A program that calls PSTATUS must first put a request code in the
accumulator: either a 0, meaning “Ready for output?” or a 1, meaning “Is
there any input?” PSTATUS returns with the reply in the carry bit: 0 (No)
or 1 (Yes).

PSTATUS returns with a 0 in the X register (IORESULT = GOOD), unless
the request was not 0 or 1; then PSTATUS returns with a 3 in the X register
(IORESULT = ILLEGAL OPERATION).

1/0 Firmware Support 69

