VIl Programmer’s Introduction
to the Apple Ilcs

‘& File f: Windows Fonts

1 BEGIN {of ?@iﬁ program
2 Iaztﬁl&&eis

if S;aprmis
SetlipMenus:
SetlpWindows:
SetiipBefault;
Maintvent:

end;

ShutBownTools:

4

€. Apple:ll Programmer’s
Introduction to the
Apple I1GSs

A

vv

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo San Juan

& APPLE COMPIITER, INC,

Copyright @ 1988 by Apple
Compuler, lnc,

All rights reserved. No part of
this publication may be repro-
duced, stored in a retrieval
system, or transmilled, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or atherwise, without
prior written permission of
Apple Computer, Ine Printed in
the United States of America.

Apple, the Apple logo, Apple-
Talk, Apple TGS, AppleWorks,
Dyisk II, ImageWnter, Lisa,
Maciniosh, ProDO8§, and
LaserWriter are repistered
traclemarks of Apple Compuier,
I,

Apple Desktop Bus, and SANE
are trademarks of Apple
Computer, Inc,

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapl
Dingbats are regislersd
trademarks of International
Typeface Corporation,

Microsoft is a4 registered (rade-
mark of Microsoft Corporation,

POSTSCRIPT is a Irademark of
Adobe Systems Incorporaled,

I'ML Pascal is a traclemark of
TML Systems, Inc.

simultaneously published in the
Unitend States and Canada,

[SAMN 0-201-17745-5
ABCDEFGI-DO-898
First printing, March 1988

WARBANTY INFORMATION

ALL IMILIED WARRANTIES ON
THIS MANUAL, INCLUDRNNG
IMPLIED WARRANTIES OF
MERCHANTARBILITY AND
FITNESS FOR A PARTICULAR
PURFOSE, ARE LIMITED TN
DURATION TO NINETY (903}
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASDE
OF TINS PRODTICT,

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY O REPRESENTA-
TION, EITHER TEXPRESS OR
IMPLIED, WITH RESPECT Ty
THIS MANUAL, IT5 QUALITY,
ACCURACY, MERCHANTARITITY,
OR FITNESS FOR A PANTICULAR
PURPOSE. AS A RESULT, TILIS
MANUAL IS SOLE "AS 15, AND
YOU, THE PIIRCHASER, ARE
ASS5UMING THE ENTIRE RISK
ASTO ITS QUALITY AND
ACCUBACY.

IN NG EVENT WILL APPLE RE
LIATRLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, cven if advised of the
possibility of such damapes.

TIE WARRANTY AND REMEDIRS
SET FORTH ABOVE ARE EXCLU-
SIVE ANID} TN LIFU OF ALL
OTIIERS, ORAL OR WIHITTEN,
EXI'RESS OR IMPLIED, No Apple
dealer, apent, ar employee i
authorized 0 make any modilica-
tiog, exlension, o addition to this
waranty,

Some states do not allow the exclu-
slon or limitalion of implied warran-
ties aor liability Jur incidental ar
consequential damages, so the
above limirtation or exclusion may
nel apply to you. This warranty
gives yvou specific legal rights, and
you may also have other rights
which vary from state 1o state,

USE OF PARTICULAR LANGITAGE
PRODUCTS FOR PURPOSES OF
DEMONSTHATION DOLS NOT
CONSTITUTE AN ENDORSEMENT
OF sUCH PRODUCTS TTY APPLE
COMPLITER, INC,

LICENSING REQUIREMENTS

Apple has a licensing program that
allows software developers o
incorporate Apple-developed cject
code files inta their products, A
license s required for both in-house
and external distcibution, Bulure
dislributing any products that
incorporate Apple saltware, pleass
wonlact Software Licensing for
licensing information.

Preface

Chapter 1

Contents

Figures and tables x

Welcome to the Programmer’s Introduction xiii

Roadmap to the Apple IIGS technical manuals xiv
How to use this book xx
Terms and conventions xxi

Apple llcs Concepts 1

A more powerful Apple II 2
The 65816 microprocessor 3
Expanded memory 5
Super Hi-Res video display 6
Digital sound synthesizer 8
Detached keyboard with Apple Desktop Bus 8
Expansion slots and built-in /O 8
Clock-calendar and Control Panel 9
Compatibility with standard Apple II computers 9
The Apple desktop interface 10
Human Interface Guidelines 11
Why write desktop applications? 13
Event-driven programming 13
The main event loop 14
Event handling 15
The Apple IIGS Toolbox 17
What is a tool set? 17
Why use tool sets? 17
The five basic tool sets 20
Desktop-interface tool sets 20
Device-interface tool sets 21
Operating-environment tool sets 22
Specialized tool sets 22
Program segmentation 23

iv

Contents

Chapter 2

Chaopter 3

Absolute and relocatable segments 24
Static and dynamic segments 25
The Programmer’s Workshop 26

HodgePodge: A Sample Event-Driven Application 29

What HodgePodge does 30
HodgePodge’s menus 31
HodgePodge’s picture windows 33
HodgePodge’s font windows 34

How to use the sample program 34
Organization 35
Code-listing convention 36

HodgePodge at a glance: the main program 36

Set the stage 37

Start the program 38
Initialize variables and data structures 38
Start up the tool sets 42
Set up the system menu bar 47

Cycle through the main event loop 48
The loop 49

Handle specific events 51
TaskMaster-handled events 51
Menu-related events 54
Window-related events 56

Shut down the program 58

Conclusion 59

Using the Toolbox (I) 61

Starting up and calling the tools 62
Required tool sets 62
Other tool sets 63
Calling an individual routine 65
Handling events 67
The event queue 68
Responding to events 70
Using TaskMaster 73
Drawing to the screen (and elsewhere) 75
Where QuickDraw II draws 76
How QuickDraw II draws 85
What QuickDraw II draws 88
...And text too 92
Drawing in color 98
Displaying documents in ports: two examples 103

Chapter4 Using the Toolbox (ll) 107

Creating windows 108

Window basics 108

Handling window-related events 113

Opening a window: an example 120
Putting controls in windows 124

Types of controls 124

Scroll bars 126

Active controls and highlighting 128

Using controls 129

Manipulating lists of selectable items 130
Constructing dialog boxes and alerts 131

What are dialog boxes? 131

Dialog and alert windows 136

Dialog records 137

Items 137

Using dialogs 141

Editing text with LineEdit 141

Dialog summary: HodgePodge's “About...” box 142

Chapter 5 Using the Toolbox (lll) 145

Making and modifying menus 146
Menu bars 147
Menu appearance 148
Constructing menus 149
Accepting user input 152
Modifying menus during execution 154
Supporting other desktop features 156
Desk accessories 156
Cutting and pasting 159
Communicating with files and devices 162
Accessing files 162
Printing 166
Sending text to Apple II character devices 173
Commmunicating with Apple Desktop Bus devices 174
Making sounds 174
The sound hardware 174
The Sound Tool Set 176
The Note Synthesizer 177
The Note Sequencer 177
Computing 178
Integer Math 179
High-precision floating-point math (SANE) 179

Contents

Controlling the operating environment 180
The Miscellaneous Tool Set 181
The Scheduler 182

Chapter6 Memory, Segments, and Files 185

The Memory Manager is in charge! 186

What the Memory Manager does 187

Pointers and handles to memory blocks 189

How your application obtains memory 191

Load segments and memory blocks 194
Loading programs and segments 195

How the System Loader works 196

Loading applications 198

Shutting down and restarting programs in memory 199
Quitting and launching under ProDOS 16 200

Quitting, launching, and returning 201
Setting up direct-page/stack space 202

How direct page and stack are organized 203

Creating a direct page/stack segment 204
The ProDOS file system 207

Filenames and pathnames 208

Pathname prefixes 208

Creating and destroying files 210

Opening, closing, and flushing files 210

Reading and writing files 211

File attributes 214

Controlling user access to files 218

Chapter7 Creating a Segmented Application 219

Apple IIGS Programmer’s Workshop 220
Program descriptions 221
Language considerations 225
Source files, object files, and load files 226
Symbolic references and relocatable code 226
Do not write absolute code 227
Four steps to creating a program 228
Segments 230
Defining object segments 230
About load segments 231
Assigning load segments in your source code 234
Assigning load segments with a LinkEd file 236
Library files 238
Creating library files 238

Vi Contents

Chapter 8

Chapter 9

Appendix A

Creating segmented code: three examples 239
A single, static load segment 240
Several static load segments 241
Dynamic segments 245

Debugging 246
Debugging with desk accessories 246
Debugging with the Monitor program 247
Debugging with the Apple 1IGS Debugger 248
The ProDOS 16 Exerciser 253

What Type of Program to Write? 255

General applications 256
Make it self-booting? 257
Make it restartable? 259
Controlling programs 259
Shell applications 261
Desk accessories 262
Writing classic desk accessories 263
Writing new desk accessories 264
Initialization files 266
Interrupt handlers 267
The built-in interrupt handler 267
Interrupt handling under ProDOS 16 271
User tool sets 272

Where to Go from \Here 275

Modify HodgePodge 276

Design your program carefully 277

Join APDA 278

Become an Apple Developer 278
Licensing Apple software 279

Converting Macintosh Programs to the Apple lles 282

High-level languages 282

Assembly language 283

Toolbox differences 284
Resources 285
TaskMaster or GetNextEvent? 286
QuickDraw II 286
File system differences 287
Other toolbox differences 288

Contents Vii

Appendix B Enhancing Standard Apple I Programs 290

Conceptual differences 291

Write a hybrid application 292

Insert parts of your 6502 code 294
Rewrite it to run under ProDOS 16 295
Start from scratch 297

Appendix C Files on an Apple lls System Disk 298

Complete system disk 298
The SYSTEM.SETUP/ subdirectory 300
Application system disks 300

Appendix D HodgePodge Organization 302

HodgePodge subroutines 302
Execution sequence: opening a window 304
Opening a font window 305
Opening a picture window 305
Error handling 306
CheckToolError 306
MountBootDisk 307
CheckDiskError 308

Appendix E HodgePodge Source Code: Assembly Language 311

HP.ASM (main program) 312
INIT.ASM (initialization) 315
MENU.ASM (menus) 324
EVENT.ASM (main event loop) 330
WINDOW.ASM (windows) 337
DIALOG.ASM (dialog boxes) 353
FONT.ASM (fonts) 361

PRINT.ASM (printing) 367

IO0.ASM (pictures and files) 371
GLOBALS.ASM (global data) 373

Viii Contents

Appendix F

Appendix G

HodgePodge Source Code: C 377

HP.CC (main program) 378
MENU.CC (menus) 382
EVENT.CC (main event loop) 385
WINDOW.CC (windows) 390
DIALOG.CC (dialog boxes) 400
FONT.CC (fonts) 405

PRINT.CC (printing) 409

HP.H (global data) 411

HodgePodge Source Code: Pascal 413

HP.PAS (main program) 414
MENU.PAS (menus) 419
EVENT.PAS (main event loop) 422
WINDOW.PAS (windows) 425
DIALOG.PAS (dialog boxes) 429
FONT.PAS (fonts) 434

PRINT.PAS (printing) 437
PAINT.PAS (pictures and files) 439
GLOBALS.PAS (global data) 443

Glossary 447
Bibliography 475
Index 479

Contents

ix

Preface

Chapter 1

Chapter 2

Chapter 3

Figures and tables

Figures and tables

Welcome to the Programmer’s Introduction xiii

Figure P-1 Roadmap to the Apple IIGS technical manuals xv
Table P-1 The Apple IIGS technical manuals xvi

Apple lics Concepts 1

Figure 1-1 Apple IIGS features 3

Figure 1-2 Program registers in the 65816 microprocessor 5
Figure 1-3 Apple IIGS memory map 6

Figure 1-4 The Apple 1IGS desktop 11

Figure 1-5 The main event loop 15

Figure 1-6 Apple IIGS tool sets 19

Figure 1-7 Absolute and relocatable segments 24

Figure 1-8 Static and dynamic segments 25

Figure 1-9 Steps in creating an application 27

Table 1-1 Super Hi-Res graphics modes 7

Table 1-2 Apple IIGS expansion slots and internal-port

equivalents 9

HodgePodge: A Sample Event-Driven Application 29

Figure 2-1 HodgePodge desktop 31

Figure 2-2 A HodgePodge picture window 33

Figure 2-3 A HodgePodge font window 34

Figure 2-4 HodgePodge organization (simplified) 35
Figure 2-5 HodgePodge’s main event loop 49

Figure 2-6 HodgePodge routines called by TaskMaster 52

Figure 2-7 HodgePodge routines that handle menu-related
events 55

Figure 2-8 HodgePodge routines that handle window-related
events 57

Table 2-1 HodgePodge routines described in this book 59

Using the Toolbox (I) 61

Figure 3-1 Events and the event queue 68

Figure 3-2 The QuickDraw II coordinate plane 78

Figure 3-3 Grid lines, points, and pixels on the coordinate
plane 79

Figure 3-4 Pixel image and boundary rectangle 80

Figure 3-5 Boundary rectangle/port rectangle intersection 81

Chapter 4

Chapter 5

Figure 3-6

Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5

Drawing different parts of a document by changing

local coordinates 84

Drawing with pattern and mask 86
How pen mode affects drawing 87
What QuickDraw II draws 88
Drawing lines 89

A rectangle 90

A character image 94

Part of a font strike 95

Master color value format 98

Accessing the color table in 320- and 640 mode 100

Tool set startup order 64
Event Manager event codes 69
TaskMaster task codes 74
Standard palette—320 mode 101
Standard palette-640 mode 102

Using the Toolbox (ll) 107

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14

Window frames 110

Standard window controls 111

A window displays part of its data area 113
Scrolling a pixel image in a window 119
Standard and typical controls 125

Parts of the scroll bars 126

Relation of scroll bars to data area 127
Active controls and inactive controls 128
A modal dialog box 132

A modeless dialog box 133

HodgePodge message dialog box 135
HodgePodge Stop alert 136

Dialog item types 138

“About HodgePodge...” dialog box 144

Using jhe Toolbox (lll) 145

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Table 5-1

The system menu bar 147

A standard menu 148

The Clipboard and the desk scrap 159
The Open File dialog box 163

The Save File dialog box 164

The Choose Printer dialog box 166
Style dialog boxes 168

Job dialog boxes 169

Sound hardware block diagram 175
Menu ID number assignment 151

Figures and tables

Chapter 6 Memory, Segments, and Files 185

Figure 6-1 Memory fragmentation and compaction 188

Figure 6-2 Pointer and handle 189

Figure 6-3 Memory allocatable through the Memory
Manager 191

Figure 6-4 User ID Format 192

Figure 6-5 Loading a direct-page/stack segment 205

Table 6-1 Memory block attributes 187

Table 6-2 Examples of prefix use 209

Table 6-3 ProDOS file types 216

Chapter7 Creating a Segmented Application 219

Figure 7-1 APW programs in the Apple IIGS system 221
Figure 7-2 Creating an executable Apple IIGS program 229

Figure 7-3 Assigning object segments in your source code 231
Figure 7-4 Assigning load segments in your source code 235
Figure 7-5 Assigning load segments with the advanced

linker 237

Figure 7-6 Creating a library file 239

Chapter8 What Type of Program to Write? 255

Figure 8-1 Startup program selection 258

Figure 8-2 Built-in interrupt handler (simplified) 268

Figure 8-3 Interrupt handling through ProDOS 16 271

Table 8-1 Tool sets loaded and available to new desk
accessories 264

Table 8-2 Tool set numbers 273

Table 8-3 Standard tool set routine numbers 274

Appendix C Files on an Apple lies System Disk 298

Table C-1 Contents of a complete system disk 299
Table C-2 Required contents of an application system
disk 301

Appendix D HodgePodge Organization 302

Figure D-1 Execution sequence: opening a font window 305
Figure D-2 Execution sequence: opening a picture window 306
Figure D-3 TLMountVolume screen display 308

Table D-1 HodgePodge routines (complete) 303

Xii Figures and tables

Preface

Welcome to the Programmer’s
Introduction

The Apple 11GS® is a new kind of computer. It offers precise color
graphics, sophisticated sound hardware, a large memory capacity,
and an extensive toolbox of programming routines—giving you
programming resources without precedent among personal
computers. The Programmer’s Introduction to the Apple IIGS gets
you started writing programs that take advantage of these unique
features.

You needn’t be an expert programmer to benefit from this book,
but we do assume that you know some fundamentals. Your
background will most likely determine your approach.

O If you are familiar with programming other Apple® I
computers, and wondering how different Apple IIGS
programming might be...

O If you are familiar with programming the Macintosh®
computer, and wondering how similar Apple IIGS programming
might be...

O If you are familiar with programming other computers, and
wondering how rewarding Apple IIGS programming might be...

0 If you are familiar with using the Apple IIGS, and wondering
how much fun Apple IIGS programming might be...

...this book will help get you started. It can’t be a complete
programming course, but it does cover the major features that set
the Apple IIGS apart and make it an exciting machine to write
programs for.

Xiil

You should be familiar with the Apple 1IGS, at least from a user’s
perspective, before you start this book. In particular, you should

understand how to start the system and how to use the keyboard,
mouse, and disk drives.

We don't teach you any programming languages here. The books
listed in the next section under “Roadmap to the Apple 1IGS
Technical Manuals” can help you with C and 65816 assembly
language. The other Apple 1IGS technical manuals cover
individual topics in far greater detail than we can here; please
consult them as needed.

< Toolbox manual: It is not possible to write the kind of program
described here without the aid of the Apple 1IGS Toolbox
Reference. We give lots of examples and general call
descriptions in this book, but you’ll need both volumes of the
Toolbox Reference if you want to write your own applications.

Roadmap to the Apple IIGS technical
manuals

The Apple IIGS personal computer has many advanced features,
making it more complex than earlier models of the Apple II. To
describe it fully, Apple has produced a suite of technical manuals.
Depending on the way you intend to use the Apple IIGS, you may
need to refer to a select few of the manuals, or you may need to
refer to most of them.

The technical manuals are listed in Table P-1. Figure P-1 is a
diagram showing the relationships among the different manuals.

xiv Preface: Infroduction to the Programmer’s Introduction

To start finding out
about the Apple IIGS
To leamn how

the Apple IIGS works

ing to

program the Apple IIGS

To start learn

To use the development

To use the toolbox
environment

iles

To operate on f

inC
in

To program
assembly language

To program

1

Roadmap to the Apple

Figure P

lles technical manuals

XV

Roadmap to the Apple lics technical manuals

Table P-1
The Apple liss technical manuals

Title Subject
Technical Introduction to the Apple 1IGS What the Apple IIGS is

Apple IIGS Hardware Reference Machine internals—hardware
Apple 1IGS Firmware Reference Machine internals—firmware
Programmer’s Introduction to the Apple 1IGS Concepts and a sample program
Apple IIGS Toolbox Reference, Volume 1 How the tools work and some toolbox

specifications
Apple 1IGS Toolbox Reference, Volume 2 More toolbox specifications
Apple IIGS Programmer’s Workshop Reference The development environment

Apple IIGS Programmer’s Workshop Assembler Reference Using the APW Assembler

Apple IIGS Programmer’s Workshop C Reference Using C on the Apple IIGS
ProDOS 8 Technical Reference Manual Standard Apple II operating system
Apple 1IGS ProDOS 16 Reference Apple IIGS operating system and loader

Human Interface Guidelines: The Apple Desktop Interface Guidelines for the desktop interface

Apple Numerics Manual Numerics for all Apple computers

XVi Preface: Introduction to the Programmer’s Introduction

Introductory manuals

The introductory manuals are for developers, computer
enthusiasts, and other Apple IIGS owners who need technical
information. As introductory manuals, their purpose is to help the
technical reader understand the features of the Apple IIGS,
particularly the features that are different from other Apple
computers.

m The technical introduction: The Technical Introduction to the
Apple 1IGS is the first book in the suite of technical manuals
about the Apple IIGS. It describes all aspects of the Apple IIGS,
including its features and general design, the program
environments, the toolbox, and the development environment.

® The programmer’s introduction (this book): When you start
writing Apple IIGS programs, the Programmer’s Introduction to
the Apple IIGS provides the concepts and guidelines you need.
It is not a complete course in programming, only a starting
point for programmers writing applications that use the Apple
desktop interface (with windows, menus, and the mouse). It
introduces the routines in the Apple IIGS Toolbox and includes
a sample event-driven program.

Machine reference manuals

There are two reference manuals for the machine itself. They
contain detailed specifications for people who want to know
exactly what's inside the machine.

m The hardware reference manual: The Apple IIGS Hardware
Reference is required reading for hardware developers and
anyone else who wants to know how the machine works.
Information for developers includes the mechanical and
electrical specifications of all connectors, both internal and
external. Information of general interest includes descriptions
of the internal hardware and how it affects the machine’s
features.

Roadmap to the Apple lics technical manuals XVii

m The firmware reference manual: The Apple IIGS Firmware
Reference describes programs and subroutines stored in the
machine’s read-only memory (ROM). The Firmware Reference
includes information about interrupt routines and low-level I/O
subroutines for the serial ports, the disk port, and for the
Desktop Bus interface, which controls the keyboard and the
mouse. The Firmware Reference also describes the Monitor
program, a low-level programming and debugging aid for
assembly-language programs.

The toolbox manuals

Like the Macintosh, the Apple IIGS has a built-in toolbox of
software routines. The two volumes of the Apple IIGS Toolbox
Reference completely describe the calls and data structures for all
tool sets, and also tell how to write and install your own tool set.

The desktop interface is If you are developing an application that uses the desktop
described in Chapter 1. interface, or if you want to use the Super Hi-Res graphics display,
you'll find the toolbox indispensable.

The Programmer’'s Workshop manual

The Apple IIGS Programmer’s Workshop (APW) is the
development environment for the Apple IIGS computer—a set of
programs that enables developers to create application programs.
The Apple IIGS Programmer’s Workshop Reference describes the
APW Shell, Editor, Linker, and utility programs; these are the parts
of the workshop that all developers need, regardless of which
programming language they use.

The APW reference manual includes a sample program to show
how to create an application. It also describes object module
format, the file format used by all APW compilers to produce files
loadable by the Apple IIGS System Loader.

Programming-language manuals

Apple currently provides a 65C816 assembler and a C compiler.
Other compilers can be used with the workshop, provided that
they follow the standards defined in the Apple IIGS Programmer’s
Workshop Reference.

xviii Preface: Introduction to the Programmer’s Infroduction

There is a separate reference manual for each programming
language. Each manual includes the specifications of the language
and of the Apple IIGS libraries for the language, and describes
how to use the assembler or compiler for that language. The
manuals for the languages Apple provides are the Apple IIGS
Programmer’s Workshop Assembler Reference and the Apple IIGS
Programmer’s Workshop C Reference.

% Note: The Apple IIGS Programmer’s Workshop Reference and
the two programming-language manuals are available through
the Apple Programmer’s and Developer’s Association (APDA).

Operating-system manuals

There are two operating systems that run on the Apple IIGS:
ProDOS® 16 and ProDOS 8. Each operating system is described
in its own manual: the Apple IIGS ProDOS 16 Reference and the
ProDOS 8 Technical Reference Manual. ProDOS 16 uses the full
power of the Apple IIGS. The ProDOS 16 manual describes its
features and includes information about the System Loader, which
works closely with ProDOS 16 to load program segments into
memory.

ProDOS 8, previously called ProDOS, is the standard operating
system for most Apple II computers with 8-bit CPUs. It also runs
on the Apple IIGS, but it cannot access certain advanced Apple
1IGS features.

All-Apple manuals

There are two manuals that apply to all Apple computers: Human
Interface Guidelines: The Apple Desktop Interface and Apple
Numerics Manual. If you develop programs for any Apple
computer, you should know about those manuals.

Roadmap to the Apple lics technical manuals XiX

The Human Interface Guidelines manual describes Apple’s
standards for the desktop interface of any program that runs on
Apple computers. If you are writing a commercial application for
the Apple IIGS, you should be familiar with the contents of this
manual.

The Apple Numerics Manual is the reference for the Standard
Apple Numeric Environment (SANE™), 3 full implementation of
the EEE Standard for Binary Floating-Point Aritbmetic (IEEE Std
754-1985). If your application requires accurate or robust
arithmetic, you'll probably want to use the SANE routines in the
Apple IIGS.

How to use this book

The Programmer’s Introduction is not a tutorial. Rather than ask
you to type in line after line of code, we've built the book around
a finished example—a sample program named HodgePodge.
HodgePodge is a fully functioning framework of an application
that demonstrates most of the programming concepts we present
in this book. More than that, HodgePodge is a rather
heterogeneous collection of generally useful Apple II1GS
routines—hence its name. You are invited to study, copy, or
incorporate any of those routines, wholesale or piecemeal,
unchanged or greatly altered, into your own programs.

Start by reading Chapter 1. It introduces the basic concepts of this
book—event-driven programming, the desktop user interface, the
Apple 1IGS Toolbox, and program segmentation.

Then run HodgePodge to see what it does. At that point you
should be ready for Chapter 2, an extensively annotated set of
source listings of the principal parts of HodgePodge. The listings
give you the big picture on how event-driven programs are
organized, demonstrate how heavily desktop programming relies
on toolbox calls, and function as templates for you to use in your
own programming. Complete source listings in Pascal, C, and
65816 assembly language, are in Appendixes E through G.

XX Preface: Introduction to the Programmer’s Introduction

Chapters 3 through 8 expand further on the concepts of toolbox
use, memory management, program segmentation, the
development environment, and specialized program
requirements. These chapters include sample source listings where
appropriate, but they also discuss important Apple IIGS concepts
not represented in any of the samples. They are overviews
designed to give you ideas to pursue in your own programming
when aided by other reference manuals.

Chapter 9 is a brief wrap-up that summarizes general program
design ideas and shows where to go for further help.

Appendixes include hints on converting existing Macintosh
applications to run on the Apple IIGS, and enhancing existing
Apple I applications to take full advantage of the new Apple IIGS
features.

% Note: Please don't feel that you need to read this book in any
order. Skipping around among programming examples,
explanations, and theory may be the best way to absorb the
material presented here. Most important of all, experiment on
the Apple IIGS as you go along. Use HodgePodge or write your
own examples.

Terms and conventions

This book may define certain terms in a slightly different manner
from which you are accustomed. Here are two:

m Apple II: A general reference to the Apple II family of
computers. It includes the Apple II, Apple II Plus, Apple Ilc,
Apple Ile, and Apple IIGS.

m standard Apple II: Any Apple II computer that is not an Apple
IIGS. Because previous members of the Apple II family share
many characteristics, it is useful to distinguish them as a group
from the Apple IIGS. A standard Apple II may also be called an
8-bit Apple II, because of the 8-bit registers in its 6502 or 65C02
microprocessor.

Terms and conventions xxi

Important

Warning

Typographic conventions

Each new term introduced in this book is printed in bold type
where it is first defined. That lets you know that the term has not
been defined earlier, and also indicates that there is an entry for
it in the glossary.

Assembly-language labels, entry points, program and subroutine
names, and filenames that appear in text passages are printed in a
special typeface (for example, DowItem and MENU.PAS). There
is one exception: the names of Apple IIGS system software routines
such as toolbox calls and operating system calls (for example,
NewModalDialog and QUIT), are printed in normal type.

% Note: The source-code listings of the program HodgePodge
follow a different, special typographic convention. See “Code-
Listing Convention” in Chapter 2.

Watch for these
The following words mark special messages to you:

 Note: Text set off in this manner presents sidelights or
interesting points of information.

Text set off in this manner—with the word Important—presents
important information or instructions.

Text set off in this manner—with the word Warning—indicates
potential serious problems.

Preface: Introduction to the Programmer’s Introduction

Chapter 1

Apple lles Concepts

Writing well-designed programs for the Apple IIGS computer is
both an adventure and a challenge. It may require some changes
in the way you approach programming, some changes that at first
seem confusing. But don’t worry; there are tools and resources to
help you at every step, to make the shift in programming style
relatively easy. And fast.

As you start, you'll want to keep several key concepts in mind. This
chapter introduces those basic ideas. We'll be building on them
throughout the book, and showing examples of them in action, in
the sample program HodgePodge. They include

O desktop applications—programs with a user inteface based on
Apple’s Human Interface Guidelines

O event-driven programming—creating the fundamental internal
structure of desktop applications

O the Apple IIGS Toolbox—the extensive set of programming
routines that make desktop, event-driven programming
practical

O segmentation—techniques that allow your programs to use
memory more efficiently

O development—steps to follow in creating a running program

A more powerful Apple I

The Apple IIGS personal computer is a new Apple II with many
high-performance features. Some of its highlights are

0 a more powerful microprocessor with faster operation than
processors used in standard Apple II computers, and with a
24-bit address bus

O 256K memory, expandable to 8 megabytes

O high-resolution RGB video display for Super Hi-Res color
graphics and text

O multi-voice digital sound synthesizer
O detached keyboard with Apple Desktop Bus™ connector

O built-in I/O: clock, disk port, and serial ports with AppleTalk®
interface

O slots and game I/O connectors compatible with standard
Apple II computers

Chapter 1: Apple lics Concepts

% Note: If you are not familiar with the Apple II family of
computers, you may want to refer to the Technical Introduction
to the Apple IIGS or your Apple IIGS Owner’s Guide for
explanations of some of the terms in this section.

WL

Super Hi-Res video

Detached keyboard

Apple Desktop Bus
. Mouse support

i« 65C816 processor

Expanded memory
= Toolbox ROM routines
~ Digital sound synthesizer

Built-in AppleTalk

Built-in 1/O ports

7 expansion slots

A 16-bit processor handles data in

- chunks of 16 bits at a time, twice

~ asmuch data per cycle as an
8-bit processor.

Figure 1-1
Apple lles features

The 65816 microprocessor

The microprocessor in the Apple IIGS is a 655C816, a 16-bit
CMOS design based on the 6502 processor used in previous
Apple II computers. Among the features of the 65816 are

O ability to emulate 6502 and 65C02 8-bit microprocessors

O 16-bit accumulator and index registers

A more powerful Apple |I 3

Stack and direct-page concepts
are discussed further in Chapter 6.

The 65816 registers are discussed
in more detail in the Apple lics
Hardware Reference.

O relocatable stack and direct page (zero page)

O 24-bit internal address bus, giving a 16-megabyte memory
space

Two execution modes

The 65816 microprocessor can operate in two different modes:
native mode, with all of its new features, and 6502 emulation
mode, for running programs written for standard (8-bit) Apple I
computers.

Applications written for the Apple IIGS use native mode with the
accumulator and index registers 16 bits long. Also, the size of the
stack and the locations of the stack and direct page within bank
$00 are at the discretion of the application.

Two clock speeds

The microprocessor in the Apple IIGS can operate at either of two
clock speeds: the standard Apple II speed of 1 MHz, or the faster
speed of 2.8 MHz. When running programs in RAM the Apple IIGS
uses a few clock cycles for refreshing memory, making the
elfective processing speed about 2.5 MHz. System firmware,
running in ROM, runs at the full 2.8 MHz.

Transformable registers

If you are an assembly-language programmer, note from Figure
1-2 how the processor’s registers change size to accommodate
mode changes. The accumulator and X- and Y-index registers
change from 8 bits to 16 bits in going from emulation to native
mode. The stack pointer also becomes 16 bits long, meaning that
in native mode the stack can be anywhere in bank $00; in
emulation mode it is confined to page 1 of bank $00. The direct
register is not used in emulation mode; in native mode it is the
base address for all zero-page addressing modes, meaning that in
native mode the Apple IIGS can have several zero pages (called
direct pages), located anywhere in bank $00.

Chapter 1: Apple lics Concepts

For additional memory concepts,
see Chapter 6 of this book. For
more complete Information, read
the Technical Infroduction to the
Apple lics.

6502 Emulation Mode 65816 Native Mode

: [00 | A | Accumulator : A |
: 00 | X | Xindexregister : X]
: 00 | v | Yindexregister : Y |
E : : Data bank register | DBR :
[0 [o1 [s] sStackpointer [00 | S |
: : II| Program stafus : : I:i—_-l
[PBR | PC_ | Program counter | PBR | PC |
Lo 0000 | Directregister | 00 | D l
2I4 1[6 213 (I) 2|4 116 EIS Cl)
Register length in bits Register length in bits
Figure 1-2

Program registers in the 65816 microprocessor

Expanded memory

Thanks to the 24-bit addresses of the 65816, the Apple IIGS can
access a total memory space of 16 megabytes. Of this total, up to 8
megabytes of memory is available for RAM expansion, and one
megabyte is available for ROM expansion. The rest is not used.

The minimum memory configuration for the Apple IIGS is 256K
of RAM. Programs written for the Apple IIGS—that is, programs
that run the 65816 microprocessor in native mode (thereby
gaining the ability to address more than 64K of memory)—can
use up to about 176K of the 256K. The rest is reserved for displays
and for use by the system firmware.

%+ Note: If your application uses the Apple IIGS Toolbox—as this
book strongly recommends—your application will have less
than 176K of available space on a 256K machine. So if you are
writing anything other than a very small program, the program
will probably require an Apple IIGS with a minimum of 512K of
RAM.

A more powerful Apple |I 5

$00 SO] $02

Bank numbers

S7F SEO SE1 SFO SFD_SFE SFF

RAM J K ROM j

For more information on the
memory configuration of
standard Apple Il computers, see
the Apple lle Technical
Reference Manualor Apple lic
Technical Reference Manual.

| Basic configuration :] Expansion memory
[:l Bank-switched memory _ 1/O memory

Figure 1-3
Apple lles memory map

The basic 256K of RAM memory is mapped as four banks ($00,
$01, $EO, and $E1) of 64K each. As Figure 1-3 shows, portions of
those banks are reserved for system use or I/O addresses, just as
in other Apple II computers.

The Apple IIGS has a special card slot dedicated to memory
expansion. All the RAM on an Apple IIGS memory expansion
card is available for Apple 1IGS application programs. Expansion
memory is contiguous: its address space extends without a break
through all the RAM on the card. Expansion RAM on the

Apple IIGS is not limited to use as data storage; program code can
run in any part of RAM.

Super Hi-Res video display

The Apple IIGS gives you the most sophisticated high-resolution
color display of any member of the Apple II family. Now your
applications can mix dazzling color and sharp, 80-column text or
precise line drawings on the same screen. And do it easily, with
the help of built-in toolbox routines.

6 Chapter 1: Apple lics Concepts

Hi-Res, Double Hi-Res, and other
standard-Apple Il video display
modes are described in the
Apple lle Technical Reference
Manual and Apple lic Technical
Reference Manual.

In addition to all the video display modes of the Apple Ilc and
Apple Ile, the Apple IIGS has two new Super Hi-Res display modes
that look much clearer than standard Hi-Res and Double Hi-Res.
Super Hi-Res is also easier to program than Hi-Res or Double Hi-
Res, because it maps entire bytes onto the screen, instead of seven
bits, and because its memory map is linear.

Used with an analog RGB video monitor, the Apple IIGS displays
high-quality, high-resolution color graphics. Table 1-1 lists the
specifications of the two new graphics modes.

Table 1-1
Super Hi-Res graphics modes

Horizontal Vertical Bits per Colors Colors Colors
Mode resolution resolution pixel per line on screen possible
320 320 200 4 bits 16 256 4096
640 640 200 2 bits 16* 256* 4096

*Different pixels in 640 mode use diffe

Pixel is short for picture element. A
pixel corresponds to the smallest
dot you can draw on the screen.

For more Information on using
color, see "Drawing to the
Screen” in Chapter 3.

rent subsets of the available colors.

Each dot on the Super Hi-Res screen is a pixel. The screen image
is either 320 pixels or 640 pixels across, by 200 pixels down. In
memory, each pixel has either a 2-bit (640 mode) or a 4-bit (320
mode) value associated with it. The pixel values select colors from
programmable color tables. A color table consists of 16 entries,
and each entry is a 12-bit value specifying one of 4096 possible
colors.

In 320 mode, each pixel consists of four bits, so it can select any
one of the 16 colors in a color table. Its palette is all 16 colors in
the color table. In 640 mode, each pixel is only two bits, so it can
select from four colors only. However, the 640-mode color table is
divided into four mini-palettes of four colors each, and successive
pixels select from successive groups of four colors. Thus, even
though a given pixel in 640 mode can be one of only four colors,
different pixels in a line can take on any of the colors in a color
table.

To further increase the number of colors available on the display,
there can be up to 16 different color tables in use at the same
time, giving as many as 256 different colors on the screen.

A more powerful Apple i 7

Fleyue 59 shchess The major
components of the sound
horchware,

For muore information on Lsng
sound, sea the saction "Making
Sounds” In Chaptor 5, Soe olso
the Apple Bos Hardware
Reforencefor deteils aboul Tha
sound system and the DOGC,

lFor more information an usng the
Appla Desktop Bus, soo
“CormenUnic ating with Files and
Denices” in Chopter 5, Sea also

the Apoie IS Taothaox Refarancs

ond Apeda S8 Horcware
Heferance

'Digiir:sl sound synthesizer

Like alher computers in the Apple IT family, the Apple 11GS can
produce simple, single-hit sounds such as dicks, beeps, and tones,

But it can also do a whele lot more. The Apple 11GS has a new
digital sampling sound system built around a special-purpose
synthesizer IC called the Digital Osallaler Chip, ar DOC for
short, Using the DOC, the Apple 1165 can produce 15-voice music
and olher complex sounds wilthout tving up its main processor,

The sound system consists of the DOC, an audio amplifisr and
internal speaker, & connector for an external amplifier and
spedker, 64K of independent RAM for storage of sound samples,
and a custom IC called the Sound QLU (general logic unil), The
Sound GLU is the system inlerface 1o the DOC, and also controls
the volume of (he old-style single-bit ourput,

Detached keyboard with Apple Desktop Bus

The new detached keyboard includes cursor keys and a numeric
keypad. The Apple Deskiop Bus, which supparts the keyvboard and
the: Apple Mouse, can also handle other input devices such as
jovsticks and graphics tablets.

Expansion slots and built-in I/0

In addition (¢ the memory expansion slot mentioned eaclier, the
Apple 11GS has seven 1/ expansion slots like those on an Apple
He. Most peripheral cards designed lor the Apple 11 Plus and the
Apple e work in the Apple 1G5 slots. The Apple 1165 also has
game /O connectors for jovsticks and other game hardware,

Like the Apple I, the Apple 11GS has one built-in disk port and
two serial TAD ports, The built-in AppleTalk interface uses one of
the: serial ports. Programs can use either the buill-in ports or
peripheral cards in slots 1o perform input/output functions,

g Chapter 1: Apple llss Concepts

Built-in 140 features are accessed as though they were peripheral
cards in slots. For most of the expansion slots, the user ¢an
choose (on the Control Panel) between using a peripheral card or
using the buili-in feature associated with the slot Table 1-2 shows
the slet-equivalents for the builtin features.

Table 1-2

Apple llzs expansdon dofs and Infermnal-part egulivalants
Slot Avaolioble internal tealure

1 serial port Cprinter)

2 serial ot {eommunicalions)

3 E0-column display Ormware

4 MOusE support

3 SmarPort (dish suppot)

5} Disk n® supprrt

7 AppleTalk suppon

Eibck-cuiendur and Control Fimé’i’ B

The Apple 1IGS has a built-in real-time clock. The user sels the
time and date with the Control Panel, a ROM-based program that
also configures expansion slots, seaal ports, display colo, sound
volume and pitch, and other options

All Conuaol Panel settings, including the clock-calendar values, are
maintained in a special battery-powered RAM thar is maintained
LIV {lunng I'H!-W!H fﬂ!{‘:rﬂ]pllt}ﬂ.ﬁ

Compatibility with standard Apple Il computers

Although the Apple 1IGS is more powertul than previous Apple I
computers, it is still 2 member of the family. With the
microprocessor in 6502 emulation mode, and with the ProDOS &
operating sysiem active, nearly any ProDO5 -8 based Apple 11
application runs just fine on the Apple 1165, The only noticeable
diff{'.r::nr.{'. I3 A 2.5-““’1{’.5 INCreEase 1N 1”.‘.{{’.{:11“:{_]['1 ﬁ[‘rﬁ.ﬁd‘—ﬂﬁd VN
that difference can be eliminated if your software must run ac the
6502 clock speed. Furthermaore, as just noted, most peripheral
cards designed for the Apple 11 Plus or Apple [le sill function
identically in the Apple TIGS.

A more powerful Appla Nl Q

Getting the most out of the Apple IIGS, however, requires
execution in 65816 native mode under the more advanced

ProDOS 16is the Apple liGs disk ProDOS 16 operating system. That's what this book is about:
operating sytem. If is writing programs that take full advantage of the computer. Under
documented in the Apple lIGS . L. .

ProDOS 16 Reference. See also those conditions, existing standard-Apple II applications cannot
Chapter 6 of this book. run without at least some modification. If you have written a

standard-Apple 1I application, see Appendix B for suggestions on
how to modify it for native-mode operation under ProDOS 16.

The Apple desktop interface

Desktop applications are programs of a particular style—a style
that presents an accessible, nonthreatening, and predictably
consistent interface to the user. If your programs show these
qualities, they will be easier to learn and more satisfying to use.

The concepts behind this style of program constitute the Apple
Human Interface Guidelines. This section will help you see what's
involved in writing an application that follows the guidelines.

i,

Figure 1-4 shows some of the common visual features of a desktop
application. The interface is graphics-based rather than text-based.
The screen itself represents the desktop, upon which documents
appear in movable, scrollable, overlapping windows. Pull-down
menus appear across the top of the desktop. Icons instead of text
may represent certain concepts or objects. The user can
manipulate the menus, icons, windows, and window contents with a
mouse or other pointing device as well as with the keyboard.

10 Chapter 1: Apple lics Concepts

& File Edit View Special Color

S HIRTITHIR T = |

CORTLAND
23 items 1803K used 17780K available

GRANNY.SMI TH =—"——=F12
1803K used 17780K available

. WORDMRKER

il

The Apple lics desktop

These visual features are not the real essence of a desktop
application, however. The true importance of desktop applications
lies in their relationship with the user, as explained next.

Human Interface Guidelines

If you are developing application programs for the Apple IIGS
computer, you are strongly encouraged to follow the principles
presented in Human Interface Guidelines: The Apple Desktop
Interface. That manual describes the desktop interface through
which the computer user communicates with the computer and
the applications running on it. This section briefly outlines a few
of the human interface concepts. The Apple Desktop Interface,
first introduced with the Macintosh computer, is designed to
appeal to a nontechnical audience. Whatever the purpose or
structure of your application, it will communicate with the user in
a consistent, standard, and nonthreatening manner if it adheres to
the desktop interface standards. These are some of the basic
principles:

® Human control: Users should feel that they are controlling the
program, rather than the reverse. Give them clear alternatives
to select from, and act on their selections consistently.

The Apple desktop interface 11

12

Dialog: There should be a clear and friendly dialog between
human and computer. Make messages and requests to the user
in plain English.

Direct manipulation and feedback: The user’s physical actions
should produce physical results. When a key is pressed, place
the corresponding letter on the screen., Use highlighting,
animation, and dialog boxes to show users the possible actions
and their consequences.

See-and-point (instead of remember-and-type): The user select
actions from alternatives presented on the screen. In general,
the process is in the order object followed by verb—that is,
one selects first the object to be acted upon, and then the
action to be performed.

Exploration: Give the user permission to test out the
possibilities of the program without worrying about negative
consequences. Keep error messages infrequent. Warn the user
when risky situations are approached, but don’t erect
unnecessary barriers.

Graphic design: Good graphic design is a key feature of the
guidelines. Objects on the screen should be simple and clear,
and they should have visual fidelity (that is, they should look
like what they represent). Use familiar, concrete metaphors to
represent aspects of the computer and program. The desktop is
the primary metaphor in the Apple Desktop Interface.

Avoiding modes: A mode is a portion of an application that
the user must explicitly enter and leave, and that restricts the
operations that can be performed while the mode is in effect.
By restricting the user’s options, modes reinforce the idea that
computers are unnatural and unfriendly. Use modes sparingly.

Device-independence: Make your program as hardware-
independent as possible. Don’t bypass the system-provided
software tool sets and interfaces—your program may become
incompatible with future products and features.

Consistency: As much as possible, all your applications should
use the same interface. Don'’t confuse the user with a different
look for each program.

Evolution: Consistency does not mean that you are restricted to
using existing desktop features. New ideas are essential for the
evolution of the Human Interface concept. If your application
has a feature that is not described in Human Interface
Guidelines, make sure it cannot be confused with an existing
feature. It is better to do something completely different than
to half-agree with the guidelines.

Chapter 1: Apple lics Concepts

Appendix B discusses how writing
Apple liGs desktop applications
differs from programming for
standard Apple Il computers.

Appendix A discusses how writing
Apple lIcs desktop applications
differs from Macintosh
programming.

Why write desktop applications?

The biggest reason for programming desktop applications on the
Apple IIGS is the consistent interface they present. Users spend
less time learning and more time using an application if they
already know their way around.

There are some disadvantages to desktop applications. Apple IIGS
desktop programs will not run on the Apple Ile and Ilc. Because
desktop applications require the use of graphics to support
windows and multiple fonts, the interface can be slower than a
simpler text-based command-line or menu interface. Also it takes
time to learn the techniques of writing desktop applications.

On the other hand, experience with the Apple Macintosh
computer has shown that an interface that is consistent from one
application to another is extremely attractive to users, because it
dramatically cuts down the learning time for each new
application. The Apple desktop and the Human Interface
Guidelines have been refined over several years of studies and
first-hand experience by Apple and independent developers.

The cost to you in development time is minor when you consider
the increase in your product’s appeal due to ease of use and
compatibility with the Macintosh interface. In addition, if you are
an Apple II developer new to the Apple desktop, the techniques
you learn (although not the actual code, in most instances) are
directly applicable to the Macintosh.

Event-driven programming

In the old days of programming, all programs were executed in
batch mode: the entire program was put on computer cards (or
worse, punched paper tape) and fed into the computer all at once.
The computer executed the instructions in the same sequence
every time the program was run (any conditional branching was
controlled by data read in with the program), reading data and
writing out results at specified points in the program.

Batch mode was fine for “crunching data”, but it wasn’t very useful
for applications (such as word processing or drawing) that require
the user to make decisions while the program is running. When
computer terminals were invented, programmers began writing
programs that allowed users to send commands to the computer
and wait for responses—interactive programs were born.

Event-driven programming 13

An event is a nofification to the

application of some occurrence,

internal or external, to which the
application may choose to
respond.

Any interactive program is in some sense event-driven. That is,
the computer spends much of its time waiting for some user input
to occur, usually a key press. Traditional interactive programs,
however, still largely control the choices and the sequence in
which operations are performed. The user, who follows rather
than leads, still feels that the program is in control.

With the introduction of the Apple Macintosh and Lisa®
computers, Apple’s Human Interface Guidelines and event-driven
programming came into prominence. The basic principle of
event-driven programming is that there are many choices
available at any time, and that the user controls the flow of the
program. In a typical Apple IIGS program, for example, the user
can select choices from a half-dozen menus, open or close
windows, use desk accessories, resize or move windows, or do
some sort of work (such as word processing or drawing). With few
exceptions, any of these operations is available at any given time.

Events that cause a response by the program include key presses
and mouse-button clicks, and might also include use of game
paddles, insertion of a disk in a disk drive, data coming over a
communication line, or even events generated by the program
itself.

The main event loop

Although an event-driven program may at first appear extremely
complex, its basic structure is actually quite simple. It spends most
of its time waiting in a program loop called the main event loop.
The only thing the program is waiting for is an event—any event.
When it detects an event, it determines the type of event, takes
whatever action is necessary, and returns to the main event loop
to wait for the next event.

Figure 1-5 is a conceptual representation of the flow of execution
in an event-driven program. For most of the time, the taxi
(program execution) remains in the event loop, circulating
constantly, and stopping at the taxi stand (the event queue) each
time to sce if there is a waiting passenger (an event). The taxi takes
passengers in order, one at a time, to their respective destinations
(various event-handling subroutines). The taxi waits out front while
the event is being handled (execution temporarily leaves the
event loop), then proceeds around the loop once more to pick up
another passenger. Circulation continues until the program ends.

14 Chapter 1: Apple lies Concepts

Event
Handler

Figure 1-5
The main event loop

For a more specific example, assume that the program is a word
processor. From the user’s point of view, any of a large number of
operations are available, from typing a character to reformatting
the entire document to setting control-panel options. The main
event loop, however, need wait for only two types of events:
mouse-button-down and key-down.

Event handling

To illustrate how a program handles an event, let's suppose that
the user decides to select an item in a window titled CORTLAND
(see, for example, Figure 1-4) that is open on the screen but not
currently active. The user moves the mouse to the inactive window
and clicks the mouse button. When the program detects the event,
it handles it like this:

Event-driven programming 15

TaskMaster is described in
Chapter 3.

1. What kind of event was it (mouse-down, key-down, and so
forth)?

Mouse-down

(At this point execution leaves the main event loop to handle
the event.)

2. Was it in a2 window, on the menu bar, or neither?
Window

3. Was it the active window or an inactive window?
Inactive

4. Which inactive window?
CORTLAND

5. Make CORTLAND the active window.

6. Return to the main event loop.

Why return to the main event loop now instead of going to a loop
that can handle events that can occur only within the active
window? Because the user might change his mind and decide to
open a menu, select a different window, or even quit the program,
If you return to the main event loop as soon as possible, the user
retains the feeling of being in control of the program.

The structure of an event-driven program can be fundamentally
different from that of other types of applications. Its principal
subroutines are organized by events to handle (“mouse-down,”
“key-down”), rather than by the specific tasks the program was
wrilten to perform (“text entry,” “drawing™). Chapter 2 illustrates
this difference in detail.

The Apple 1IGS provides a large number of software tools that
make it easier for you to write an event-driven program. The
Event Manager performs the bookkeeping that makes your
program’s main event loop work—it gathers events, determines
their types, and places them in order, for your program to
handle. A toolbox routine called TaskMaster automatically takes
care of simple event-handling such as resizing or moving a
window. Then it passes the information on to your program.

We'll look at events in much greater detail as we go along. Chapters
2 through 5 describe the sequence of tool calls and procedures that
an event-driven program must execute on the Apple 1IGS, and
Appendixes E through G present source code for such a program in
three different programming languages (assembly language, C, and
Pascal).

16 Chapter 1: Apple lics Concepts

- Tooland fool set are
Synonymous.

Pen size and pen mode are
discussed under “Drawing to the
Screen,” in Chapter 3.

Manager is simply another name
for fool set.

The Apple lIGS Toolbox

Trying to write a desktop, event-driven application without the aid
of some powerful system software could be quite difficult.
Fortunately, the Apple IIGS comes equipped with a software
toolbox, which contains a complete complement of tool sets
designed to make your job easier.

The Apple IIGS tools support the standard desktop interface and
provide you with building blocks to help you construct your
application.

What is a tool set?

A tool set in the Apple IIGS environment is a collection of
related software routines that provides one major capability. Each
routine within a tool set performs a fundamental operation. For
example, the QuickDraw II tool set provides routines that handle
graphics on the Apple IIGS. Within QuickDraw II, SetPenSize and
SetPenMode are routines that set the pen size and pen mode. A
routine may take one or more specific parameters as input and
yield one or more values as output.

The tool sets, then, are groups of related routines that perform
many common tasks and are always available for your
application’s use. Taken together, the tool sets are very similar to
the Macintosh toolbox. Many of the capabilities of the Apple IIGS,
even those not directly related to desktop applications, are easily
accessed through the tools. For example, both the Memory
Manager (which allocates all Apple IIGS memory) and the Event
Manager (which controls event-driven programs) are tool sets.

The Apple lles Toolbox 17

You can even use the Tool
Locator to access a too! set you
have wiitten yourself, See “User
Tool Sets” in Chapter 8.

Why use tool sets?

Making use of tool sets allows you to concentrate on your
application’s specific business rather than on background work.

A number of the tools are in ROM. They are therefore available f¢
all programs without using disk space. Additional tools are
available in RAM, but you needn’t worry about where a particular
tool set or routine is. A tool set called the Tool Locator, which
enables tool sets and applications to communicate, takes care of
the necessary bookkeeping functions. All you need to know is the
name of the routine and how to call it in your programming
language.

Tool sets insulate your program from the details of machine
hardware. If the program accesses a hardware feature with a tool
call, the program will remain compatible through future versions
of the Apple IIGS, even if the hardware feature changes.

The tools thus provide an abundance of capabilities at a
minimum cost in programming time and memory space. Their
bookkeeping functions are almost automatic, the interface to them
is simple, and the applications you write will not be rendered
obsolete by future changes to the hardware.

<+ Note: Many of the Apple IIGS tool sets are independent of the
operating system. They are thus available for any Apple 1IGS
application, regardless of the operating system it is written for,

To get an idea of the range of capabilities of the Apple 1IGS
Toolbox, it’s useful to group the tool sets into categories. The
arrangement given in Figure 1-6 is arbitrary; as you get to know the
tools better, you may prefer other groupings.

Brief explanations of the tool sets within each category follow. The
tool sets are described in more detail in Chapters 3 through 6.

18 Chapter 1: Apple liss Concepts

The five basic Desktop-interface tool sets

tool sets
Scrap Manager ﬁ Menu Manager ﬁ

. Tool Locator ﬁ
. Event Manager j Desk Manager ﬁ Dialog Manager ﬁ
List Manager j

. Memory Mcnogerﬁ

Control Manager j

Miscellaneous) .)

E Tool Set j LineEdit Tool Set j ‘ Window Monogerﬁ
: QuickDraw i
. QuickDrcwIlAuxilioJ Font Manager j

Device-interface Operating-environment Specidlized tool sets

tool sets tool sets

. Aﬁﬁlﬁgﬁséé?pj scheduler j
. Text Tool Set j System Locder T
. Print Manager W
! Standard File j
Operations Tool Set

SANE Tool Set j

nteger Math Tool Seﬁ

Sound Tool Set j

Note Synthesizer j

Note Sequencer j

Figure 1-6
Apple lies tool sets

The Apple lics Toolbox 19

The list of tool sets needed to
support desk accessories Is given
In Table 8-1.

The five basic tool sets

The five tool sets listed below provide the framework upon which
the other tools can build. All of these tool sets must be used in
every event-driven application:

m Tool Locator: Handles all tool calls. This tool set relieves you
of having to know where in memory any tools resides; the Tool
Locator finds and passes execution to the proper routine when
you make a tool call. Once you start the Tool Locator, its
operation is automatic.

m Memory Manager: Allocates memory for use by the
application. When your application needs memory, it must
request it from the Memory Manager.

m Miscellaneous Tool Set: Includes mostly system-level routines
that must be available for other tool sets to use.

® QuickDraw II: Controls the graphics environment and draws
basic graphic objects and text on the screen. QuickDraw II
Auxiliary is an extension to QuickDraw II. Other tool sets call
QuickDraw II and QuickDraw II Auxiliary to draw such things as
windows and icons.

® Event Manager: Receives events as they happen, maintains a
queue of events, and passes events on to the application.

Desktop-interface tool sets

Tools in this group support the desktop interface. You will almost
always use the Window Manager and Menu Manager in desktop
programs; you should use the other tool sets if your application
needs their features (for example, you need the Dialog Manager if
your application uses dialog boxes). Many of these tools are also
needed to support desk accessories.

m Window Manager: Creates and updates windows, keeps track of
size changes and overlapping.

m Control Manager: Implements controls—obijects on the screen
such as check boxes—which the user can manipulate with the
mouse to cause instant action or to change settings.

m List Manager: Along with the Control Manager, handles
ordering, display, and selection of lists of selectable items in
windows.

20 Chapter 1: Apple lles Concepts

Dialog Manager: Implements dialog boxes, which your
application should place on the screen when it needs more
information to carry out a command.

LineEdit Tool Set: Presents text on the screen (usually in dialog
boxes), and allows the user to edit that text in limited ways.

Menu Manager: Controls and maintains pull-down menus and
the items in the menus.

Font Manager: Provides fonts in a variety of sizes and styles for
QuickDraw II to use when it draws text.

Scrap Manager: Supports the desk scrap, data to be copied
from one application to another (or from one place to another
within an application).

Desk Manager: Enables applications to support desk
accessories, mini-applications that can be run at the same time
as another application.

Device-interface tool sets

Tools in this group manage input and output between the
computer and peripheral devices.

Print Manager: Carries out page-setup and printing commands
from the user. Provides an interface between the application
and printer drivers.

Standard File Operations Tool Set: Presents dialog boxes to the
user when a file is to be saved or opened. Provides a
standardized interface between the user and ProDOS 16.

Apple Desktop Bus Tool Set: Provides access to Apple Desktop
Bus commands. The Apple Desktop Bus transmits signals to
and from the keyboard, mouse, and other input devices.

Text Tool Set: Allows applications running in native mode to
access Apple II character device drivers, which require the
processor to be in emulation mode.

The Apple lics Toolbox 21

Operating-environment tool sets

Tool sets in this group control low-level hardware and software

functions. The Memory Manager and the Miscellaneous Tool Set
listed under “The Five Basic Tool Sets,” can also be considered
part of this group. Other members are:

m System Loader: Loads all program and data segments into
memory.

® Scheduler: Allows more than one program to access system
resources that normally cannot be shared.

Specialized tool sets

Tool sets in this group perform various specialized functions, as
listed.

Sound generation |
These tools make it easy to take advantage of the advanced sound
capabilities of the Apple IIGS. ‘ ;
® Sound Tool Set: Constitutes the sound hardware’s interface to ;

the Apple IIGS Toolbox, and provides basic sound |

manipulation routines.

m Note Synthesizer: Facilitates creation of musical notes
simulating a variety of instruments.

m Note Sequencer: Strings together notes from the synthesizer
into the sequences, patterns, and phrases that make up a tune. .

Mathematical computation

These tools perform mathematical functions and calculations.

m Integer Math Tool Set: Provides mathematical routines that
manipulate integers, long integers, and signed fractional
numbers. Also converts numbers to hexadecimal and decimal
ASCII strings.

B SANE Tool Set: Implements the Standard Apple Numerics
Environment, which provides extended-precision floating-poi
arithmetic that conforms to IEEE standard 754. Supports
multiplication and division and trigonometric and other
transcendental functions.

22 Chapter 1: Apple lies Concepts

Load files are programs in
machine-executable format.See
the Apple IS Programmer’s
Workshop Referencefor
information on the file format for
program segments.

See the Apple licS ProDOS 16
Referencefor complete
Information on ProDOS 16 and the
System Loader.

See the Apple lics Toolbox
Referencefor complete
Information on the Memory
Manager.

Program segmentation

Another powerful feature available to Apple IIGS programs is that
they can be segmented, and the segments can be relocatable and
dynamic. A segmented program is divided into chunks that can
be loaded into memory piecemeal. A relocatable segment is a
piece of code or data that needn’t be put at any particular
memory address in order to function correctly. A dynamic
segment is one that is not loaded until it is needed during
program execution.

Segmentation of executable programs (load files) gives two
principal advantages: (1) your program might fit into a smaller
memory space to help it run in small-memory machines and
under application-switching programs, and (2) it might load and
start to execute more quickly. Both advantages occur because less-
needed segments can be made dynamic and left on disk until they
are actually called into use. Furthermore, on the Apple I1IGS
computer no single block of code can occupy more than 64K
bytes of contiguous memory. To load a larger program than that,
you must split it up into two or more load segments.

Making your load-file segments relocatable means that the
available memory in the computer can be allocated efficiently
among multiple programs (including system software and desk
accessories).

Segmentation works because the Apple IIGS Memory Manager and
System Loader tool sets, work together with ProDOS 16, the Apple
IIGS operating system, to execute, move, and remove program
segments in a fashion that is sophisticated yet totally transparent
to the program user (and in many cases to the programmer too).
The Memory Manager takes care of assigning each segment to a
block of memory; the System Loader keeps track of where in
memory the segment has been loaded, and patches intersegment
calls in each segment as it is loaded. ProDOS 16 controls
execution of the programs once they are in memory.

Chapter 6 presents a more detailed discussion of load-segment
structure and how the Memory Manager, System Loader, and
ProDOS 16 interact to make it all work.

Program segmentation 23

Patchingis the process of
modifying code once it isin
computer memory.

Absolute and relocatable segments

To make efficient use of memory with segmented programs, the
Memory Manager and System Loader need to be free to place
code and data segments where they choose.

Absolute code is computer code that must be loaded at a specifi
address in memory and never moved. Many standard Apple II
programs contain absolute code. The programmer decides where
the program will sit in memory, and designs all address
references and subroutine jumps accordingly.

Relocatable code is computer code that contains relative and
symbolic address references, and so can execute correctly

wherever it is placed in memory. See Figure 1-7. Once it is in
memory, relocatable code must be patched by the loader so that
its address operands contain the proper values.

For efficient memory use, it is very important that as many
segments as possible be relocatable. The Memory Manager must
be free to place segments so they will not conflict with each other,
and so that contiguous areas of free memory are maximized.
None of your program’s segments should be absolute.

$6000

Absolute $4000
segment can't |—_———> $4000
be loaded:;
another segment
occupies

locati 4000
ocation $ $2000

Relocatable SXXXX :7*
segment = L) o
fits in any

open space

Figure 1-7
Absolute and relocatable segments

24 Chapter 1: Apple lles Concepts

. See Chapter 6 for more
- Information on how static and
- dynamic segments are loaded.

.
7
3

Static and dynamic segments

A dynamic segment is a load segment that can be loaded and run
automatically during program execution. The application itself
needn’t do any loading—whenever the application calls a routine
that is in a dynamic segment, the segment is automatically loaded
and executed. Furthermore, that dynamic segment is not
subsequently unloaded from memory unless the application
permits it, and even then only when the memory is needed for
something else; in most cases the segment remains instantly
available the next time it is called.

A segment that is not dynamic is static. A static segment is
loaded at program startup, and is not unloaded or moved during
execution. The main segment of any program is static; any other
segments may be static or dynamic. See Figure 1-8.

The question of which segments to make static and which ones to
make dynamic is not as easily answered as the question of
absolute and relocatable. At least one segment in each program
must be static; if the program is small, that single segment may
constitute the entire program. But if the program is large or if it is
designed to require little memory, many of its segments may be
dynamic.

Making as many segments dynamic as possible can also decrease
the time required to initially load and start up a program. On the
other hand, there may then be momentary delays during
execution, as the dynamic segments are loaded when called.

. Program's main
static (static) segment
. —{ stays in memory
dynamic

dynamic N .)
dynamic | Dynamic segments loaded and

Y/ S— discarded as needed

Figure 1-8
Static and dynamic segments

Program segmentation 25

An object fileis a program that
has passed through an

assembler or compiler. It contains
machine-language code.

Chapter 6 shows you how to
specify object segments and
load segments.

Asource file is a program in its
original text form, as written by the
programmer.

The Programmer’s Workshop

To help you write application programs that make the most of th
new Apple IIGS features, Apple has produced an integrated
development environment called the Apple IIGS Programmer’s
Workshop (APW for short).

APW helps you create event-driven, segmented desktop
applications that access the full power of the Apple IIGS Toolbox.
With APW you can write modular source-code segments in a ‘
variety of high-level and low-level programming languages, and
then combine them into a single functioning program.

APW'’s object files and load files follow a file specification called"
object module format (OMF). OMF was developed, in part, to
create a system in which program segments written in several
languages could be combined and run together, because they all
would have one uniform object file “language”. With OMF you
can optimize various routines by writing them in different
languages and combining them into a single program. A routine
written for a program in one language can be dropped into
another program in another language, without modification.

Figure 1-9 is a simplified picture of what takes place from writing
to running an application under APW.

1. A program is first created as a source file, using a text editor
appropriate for the language(s) involved. APW includes a full-
featured, multi-language text editor.

2. The source file, in ASCII text form, is then either compiled or
assembled to produce an object file. Directives in the source
file control whether and how the object file is to be segmented.
A single source file can be compiled into more than one
object file.

3. The object file is converted by a linker into a load file.
Directives in the original source file, as well as commands to
the linker, can control segmentation in the load file. More than
one object file can be combined into a single load file. '

4. In the final step (if all goes well), the load file runs correctly whi
the loader places it in memory and it is executed. In the early
stages, of course, program development usually involves at least:
some time with a debugger such as the Apple 1IGS Debugger.

26 Chapter 1: Apple lics Concepts

Text editor Source
‘ file

Assembler/

Object

’ compiler file
Linker Load
file
Loader \

Executable
codein
memory

Figure 1-9
Steps In creating an application

Using APW to design and write segmented programs is covered in
Chapter 7. But before we get too deeply into the how of Apple
1IGS programming, we'd like to show you some more of the what
and why. The next five chapters present an extensive
programming example and give some additional background,
showing what Apple 1IGS programs can do and why they go about
it in the ways they do.

The Programmer’s Workshop 27

Chapter 2

HodgePodge: A Sample
Event-Driven Application

29

30

Chapter 2: HodgePodge: A Sample Event-Driven Application

Now that you've had an overview of the Apple IIGS and
programming concepts, let’s plunge right into an example.

This chapter explores a demonstration application developed
Apple, called HodgePodge. HodgePodge has a recommended
organization for event-driven, desktop applications on the Ap,
IIGS. We walk you through the program, presenting the code as
explaining it in detail as we go along.

You may wonder why we're dissecting the sample program so |
soon—after all, much of its structure and most of its tool calls
parameters aren’t explained until later in the book. Our hope if
that, given the general concepts already presented and the exte
sive commentary accompanying these listings, your quickest ro
to understanding is to see actual code from a functioning prog

On the other hand, there is no required reading order for this |
book. If you want to delve deeper into toolbox concepts before
looking at code samples, by all means skip ahead to Chapters 3
through 5. Come back to this chapter when you’re ready.

Don't forget to look in Appendixes E, F, and G for the complete
source-code listings of HodgePodge in all three languages .’
(assembly language, C, and Pascal). And, whichever order you
read things in, don't forget to try HodgePodge in action on yo

Apple IIGS! i

What HodgePodge does

HodgePodge is a short application that loads stored graphic
images (picture files) from disk and displays them in movable,
scrollable, resizeable, overlapping windows on the screen. It also.
displays, in windows, text samples of the various fonts available

your system. See Figure 2-1. ;

Like a proper desktop application, HodgePodge shows menus,
displays messages in dialog boxes, supports desk accessories,
stores and retrieves files, prints text and graphics, and even
provides an “About HodgePodge” dialog box accessible from
Apple menu.

If you have a copy of the sample program, put it in your computg
and run it now. On the disk that accompanies this book, it’s the

application named HP, in the folder for any of the three language
(There are three files named HP—one for each language.)

New desk accessories are
described under “Supporting
Other Desktop Features” in
Chapter 5.

& File {dit Windows Fonts

Picl

IPeriodic Table o

vemc e 1 q

fumped over the lazy do

rE) (=] (|

Figure 2-1
HodgePodge desktop

HodgePodge’s menus

HodgePodge displays five pull-down menus from a menu bar at
the top of the screen: Apple menu, File menu, Edit menu, Windows
menu, and Fonts menu. Within each menu, items that the user may
select appear in black; items that the user may not select are
dimmed (gray). When the user selects an item on a menu, that
menu’s title is highlighted until the selected task is completed.

Apple menu

The Apple menu is a standard menu that all desktop applications
should have. Its title is a small, colored Apple icon. The first item
in the Apple menu is “About HodgePodge.” Selecting it brings up
a dialog box that explains a bit about the progam and its authors.
“About” dialog boxes are typical of desktop programs.

The Apple menu also lists the new desk accessories available on
the user’s system.

What HodagePodge does 31

The Clipboard and the concepts
of cut, copy, and paste are
described under "Supporting
Other Desktop Features” in
Chapter 5.

File menu

The File menu is a standard menu that all desktop applications
should have. Here it contains seven items:

B Open: Opens a picture file and displays it in a window.
m Close: Closes the frontmost or active window.

B Save As: Allows the user to save 2 picture window with its
present filename or under another name.

® Choose Printer: Allows the user to select a printer.
B Page Setup: Lets the user set certain parameters for printing,

B Print: Prints the contents of either a picture window or a font
window.

B Quit: Shuts down the program.,

All of the items in the File menu are standard, but their
implementation in some cases is specific to HodgePodge.

Edit menu

The Edit menu is a standard menu that all desktop applications
should have. Here it contains five items:

® Undo: Allows the user to reverse the last action undertaken,

m Cut: Deletes the selected part of a document and places the
selection in the Clipboard.

® Copy: Puts a copy of the selected part of a document in the
Clipboard.

B Paste: Copies the contents of the Clipboard into a document.

® Clear: Deletes a selected part of a document, without affecting
the Clipboard.

HodgePodge itself does not use the Edit menu; however, the Edit
menu must be present in case a desk accessory that needs it is
activated.

Windows menu

The Windows menu is nothing but a list of HodgePodge’s
currently open windows. The list is arranged in the order in which
the windows were opened. Selecting the name of a window from
the Windows menu causes that window to be brought in front of
any other open windows on the desktop.

32 Chapter 2: HodgePodge: A Sample Event-Driven Application

Fonts menu

With the Fonts menu, the user can display a piece of sample text
using any font on the system, in any size and with any desired
styling variation (such as bold or italic). Selecting the first item on
the menu brings up a dialog box with which the user selects the
font to display, and then draws the text in a2 window. Selecting the
second item toggles the display of the next-opened font window
between proportionally spaced and monospaced display.

HodgePodge’s picture windows

HodgePodge retrieves, displays, and stores color pixel images in a
particular type of picture file. The user may open a file, view the
picture, and then save the file again with the same or another
name.

With picture windows, HodgePodge demonstrates how to create
windows and how to display images on the screen. It also shows
an example of file access and demonstrates color printing. Figure
2-2 is an example of a picture displayed in a window.

Figure 2-2
A HodgePodge picture window

What HodgePodge does 33

HodgePodge’s font windows

HodgePodge displays sample text in windows on the screen.
text may be in any point size and may have any combination g
styling variations such as bold, italic, or underline. The text m
be in any font available on the user’s system. The actual lines o
‘text that are displayed are specified in HodgePodge; the user]
cannot alter them.

Many different font windows, with different sizes and styles, ma
be open simultaneously. Unlike picture windows, font windows
not opened or saved as files.

With font windows, HodgePodge demonstrates how to create
windows and how to draw text on the screen. Figure 2-3 is an
example of a font window display.

O Shaston 8 (=]
Shaston 8 it
=

The quick brown fox jumps over the lazy dog.
She sells sea shells down by the sea shore.

EREEERERE Beg ﬂﬂﬂé«“ﬂﬂﬂﬂﬂﬂﬂl“ﬂ
|l|u$%& ()*+ - .
f;ﬂﬂBCDEFGHIJKLMNIJPIIRSTUVI»HWZ[\]A
‘abedefghi jklmnoparstuvwxyz{|}”
afCENOUadadadcéecéiitinassosuldi
FOcER NR™ 2R D2 2¥ua3 TN [00N 20
éinff=bon.. analo--"""+ 4 NERERE

B
BEEBERE ER BB R BB BB EE R EE E EREEE
o I

Figure 2-3
A HodgePodge font window

How to use the sample program

The sample program serves two purposes. First, it provides a rez
framework within which to describe how Apple 1IGS application:
operate and how they should be written. Second, it provides yot
with source code modules that you can adapt to your own 4
purposes on your own programs. You are encouraged to use an
modify any applicable parts of HodgePodge for any programs
you write. 4

34 Chapter 2: HodgePodge: A Sample Event-Driven Application

See Appendix D for a complete
listing of HodgePodge
subroutines.

Because you may be writing programs in any of various available
Apple 1IGS languages, we provide the sample program in three
languages—assembly language, C, and Pascal. Complete source
code listings are in Appendixes E through G. The parts of the
program listings reproduced in Chapters 2 through 6 are in
Pascal.

< HodgePodge versions: Source code and executable forms of
HodgePodge, in all three languages, are on the disk that
accompanies this book. Sightly different versions of
HodgePodge, with different features, have been distributed
through other sources such as APDA. See Chapter 9.

Organization

The source code for HodgePodge consists of many individual
subroutines in several separate files. Figure 2-4 shows the overall
organization of the principal routines. The main program (on the
left) calls each of the principal subroutines (on the right) in
order, from top to bottom.

InitGlobals

— StartUpTools J

— SetUpDefault

SetUpMenus

SetUpWindows

Main program Main event loop

HodgePodge MainEvent

Quit
ShutDownTools

Figure 2-4
HodgePodge organization (simplified)

How to use the sample program 35

The most general routines, versions of which will probably appea
in every desktop program you write, are more heavily shaded:
HodgePodge, StartUpTools, SetUpMenus, MainEvent, and
HodgePodge’s main event loop ShutDownTools. Most execution time is spent in the main eve

is described under "Cycle 1 MainE nd in the subroutines that it calls.
Through the Main Event Loop,” oop (MainEvent) and HProutine

later in this chapter. Smaller versions of Figure 2-4, highlighted to show particular
subroutines, accompany discussions of the principal parts of the |
program. Another set of subroutine diagrams, starting with

Figure 2-5, shows the flow of execution within and from the main

event loop.

Code-listing convention

The HodgePodge source code listings in this chapter and
Pascal HodgePodge was written Chapters 3 through 6 are in Pascal. In addition to the standard

In TML Pascal™ for APW. See the Pascal syntax and notation, please note the following conventions:
Bibliography.

O Toolbox calls are in boldface. i
0O Reserved words (such as if; then, begin, end, goto) are in italics.

0O Names of functions, procedures, types, and user-defined
constants begin with capital letters.

O Names of variables, fields within records, and toolbox-defined
constants begin with lowercase letters.

O Boolean values (such as TRUE and FALSE) are all capital
letters.

HodgePodge at a glance:
the main program

Briefly, HodgePodge (and any event-driven application) follows
this sequence of operations when it executes:

1. It starts up:
O It initializes variables and data structures.
O It starts up the tool sets.

O It sets up the program’s menu bar.

[HodgePodge — 2. Tt continually cycles through the main event loop.

3. As necessary, it handles application-specific events.

4. Finally, it shuts down.

36 Chapter 2: HodgePodge: A Sample Event-Driven Application

4 Most of the above tasks are carried out in subroutines, but they are
' The HodgePodge main program controlled by the main program. It is very short; this is what the
i sIn fhe source file HP.PAS. Pascal version looks like:

program HodgePodge; {begin HodgePodge...}

- {.}
{. USES and other declarations}

1.}
- begin

InitGlobals; {Initialize our globals, menus, etc.}
if StartUpTools then {if all tool sets loaded CK..}
begin
SetUpDefault; {Set up print record}
SetUpMenus; {Set up menus}
SetUpWindows; {Set up windows}
MainEvent; {Use the application}
end;
ShutDownTools; {Shut down IIGS tool sets}
end. {End of HodgePodge}

Subsequent sections lead you through the principal subroutines
called from the main program. The subroutines cover the steps
common to most applications—setting up, handling events, and
shutting down.

The details of how HodgePodge performs its own specific tasks,
such as displaying fonts or pictures, are mostly left for later
chapters. Here we are more interested in how HodgePodge
illustrates the general independence of form from function in
event-driven programs. That is, from a general point of view most
desktop applications look pretty much the same.

Step 0. Set the stage

The source code for a typical desktop application begins with
statements that bring in needed library files, sets up the operating
environment, and perhaps defines some data structures. Many of
these statements control what happens when the program is
assembled or compiled, rather than when it executes.

Step 0. Set the stage 37

O For assembly-language programs, this category includes such
tasks as selecting long or short registers, loading macro
libraries, and initializing various toolbox dara structurcs with
using dircctives.

Lt For higher-level programming languages, this category may
include defining variable types, dimensioning arrays, and
leading library [les.

Reler to Appendixes T through G for details.

Many constants arl daa structures are predefined in the interfice
librarics 10 the Apple 11GS Toolbox, and thus need not be defined
within an application, They include formats and field names for
toolbox records and templates, and predefined constants (or
values such as event codes and memory-block atiribues, We'll
discuss these and other data structures as we encounter them in
HodpePodge,

Steﬁ il Start the program

With the preliminaries out of the way, let’s look a1 program
execution. To start a deskiop program off on the right foot, vou nee
o initialize any program-specific variables and data stroctures you
are going Lo use, statt up the tool scts, and set up the system menu
bar,

Initialize variables and data shructures

Where and how you define your data and data structures depend
UpOn your program's purpose, the language you're using, and your
personal preference,

Pascal NodgePodge has three subroutines callod early in program
execution to sol up initial values of imporant components of the
progrant. Even though two of these routines are actually called
gfler lool starup (as Figure 2-4 shows), all three are grouped hers
far simplicity. In general, your programs will do some
initialization before starting tools, and some afier,

Unlike several of the HodgePodge routines described in this
chapter, thesc initialization routines are appplication-specific;
your program may have very different ones,

Chapter 2: HodgePodge: A Sample Bvenl-Driven Appllcation

& Note: The initialization routines InitGlobals and

SetUpWindows do not appear in the assembly-language and C
: versions of HodgePodge. In those languages, variables can be

initialized as they are defined in the source file, rather than

during execution.

InitGlobals

e InitGlobals is the first routine called from the main program.
L """""""""""""""""""" It initializes several variables and text strings used later in the
L program; we will not describe them individually here. It also
defines the text strings that constitute HodgePodge’s menus. (The
unusual formatting of the menu strings is explained under
“Making and Modifying Menus” in Chapter 5.) In addition,

InitGlobals is in the source file InitGlobals creates a large colored Apple icon that is
GLOBALS PAS. displayed in the “About HodgePodge” dialog box (Figure 4-14).
procedure InitGlobals; {begin InitGlobals..}
begin
with plsWtTemp do {template for "Please wait.." dialog}
begin {--format defined by Dialog Manager}
é SatRact(dtBoundsRect,120,30,520,80); {set its size}
5 dtVisible :=TRUE; {make it visible}
; dtRefCon :=0; {no special info here}
: dtItemList [0] :=pointer (0); {we'll insert this pointer later}
§ dtItemList[1] :=NIL; (this terminates the item list}
% end;

{Now define the text of HodgePodge's
menu titles and items:}

AppleMenuStr := concat ('>>@\N300X\0"',
'—About Hodge Podge...\N301\0',
'==-\N302D\0.");

FileMenuStr := concat ('>> File \N400\0',
'=Open. . .\N401*0o\0",
'==Close\N255D\0"',
'==Save As...\N403D\O',
'==—\N404D\0"',
'—Choose Printer...\N405\0',
'=—Page Setup...\N406D\O',
‘==Print...\N407*PpD\O",
'==-\N408D\0"',
'=—=Quit\N409*Qq\0.") ;

Step 1. Start the program 39

EditMenuStr := concat ('>> Edit \N500D\O’,
'==Undo\N250%*2z\0"',
'==-\N501D\0O",
'==Cut\N251*Xx\0"', :
'==Copy\N252*Cc\0"', ‘
'==Paste\N253*vyv\0"',
'==Clear\N254\0."');

WindowMenuStr := concat('>> Window \N60OD\O"',
'== No Windows Allocated\N601D\0.');

FontMenuStr = concat ('>> Fonts \N700\0",
'==Display Font...\N701*Ff\0',
'==Display Font as Mono-spaced\N702*Mm\O0. ') ;
{Now initialize other variables,
records & strings:}
lastWindow := NIL; {window pointer}
noWindstr :=
'==No Windows Allocated\N601D\O.'; {item for Windows menu}
monoStr =
'==Display Font as Mono-spaced’; {Item for Fonts menu}
proStr =
'==Display Font as Proportional'; {Item for Fonts menu)}
isMonoFont := FALSE; {start fonts as proportional}

with desiredFont do

begin {set default font characteristics:}
famNum := $FFFE; {family number}
fontStyle := 0; {plain text}
fontSize = 8; {8 pt.}
end;
wlndex := 0; {WIndex is the number of open windows}

{Last, define the colored Apple icon
to appear in the "About.." box:}

SetRect(AppleIcon.boundsRect,0,0,64,34); {size of icon}

HPStuffHex (@Applelcon.data[l], {HPStuffHex puts pixel values in array}
'OOO00000OOOOOOOOOOOOOOOOOOOOOOOO');

HPStuffHex(@AppleIcon.data[2],
'UbhbrbhhbrbbbrbbbbbrbhbbhbhbbFFO');

-}
. define each pixel of the}
. icon (see Appendix G)}

{
{
{
{.}

40 Chapter 2: HodgePodge: A Sample Event-Driven Application

HPStuffHex (@Applelcon.data[33],
' 0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO ys
HPStuffHex(@AppleIcon.data[34],
'0000000OOO0000000000000000000000');

end;

SetUpDefault is in the source file
PRINT.PAS.

procedure SetUpDefault;

{End of InitGlobals}

SetUpDefault

SetUpDefault creates a default print record. (PrRecHdl is a
handle-type, that references a Print Manager print record.)
SetUpDefault must be called after tool startup because it makes
Memory Manager and Print Manager calls.

{begin SetUpDefault..}

begin
printHndl := PrRecHdl (NewHandle (140, {allocate memory for print record}
myMemoryID, {with our ID}
attrNoCross+attrLocked, {and these attributes}

Ptr(0))):
PrDefault (printHndl);
end;

SetUpWindows Is in the source file
WINDOW.PAS.

procedure SetUpWindows;

{no location restriction}
{fill record with default values}
{end of SetUpDefault}

SetUpWindows

SetUpWindows sets initial window size and position on the
screen. It is called after tool startup, although in this particular
case it could just as easily have been part of InitGlobals.

{begin SetUpWindows...}

begin
wXoffset := 20; {set initial window position}
wYoffset := 12; {from top left corner of screen}
SetRect(iSizPos,10,20,350,80); {the window's port rectangle}
end; {End of SetUpWindows}

Step 1. Start the program 41

........

StartUpTools is in the source file

HP.PAS.

function StartUpTools : Boolean; {begin StartUpTools..}

const TotalDP = $B0O; {11 pages total direct-page space}
DPForQuickDraw = $000; {offset to QuickDraw direct pages}
DPForEventMgr = $300; {offset to Event Mgr direct page}
DPForCtlMgr = $400; {offset to Control Mgr direct page}
DPForLineEdit = $500; {offset to LineEdit direct page}
DPForMenuMgr = $600; {offset to Menu Mgr direct page}
DPForStdFile = $700; {offset to Std. File direct page}
DPForFontMgr = $800; {offset to Font Mgr direct page}
DPForPrintMgr = $900; {offset to Print Mgr direct pages}

var toolRec ToolTable; {Tool Locator record-type} !
paramBlock : FileRec; {ProDOS 16 parameter block}

42 Chapter 2: HodgePodge: A Sample Event-Driven Application

Start up the tool sets

Proper initialization, especially for the Apple I1IGS Toolbox, is |
critical for successfully running an application. For that reaso
you are urged to simply adopt the following code for your ow

programs. It works.]

In HodgePodge, tool startup is in the subroutine StartUpTool
called from the main program right after InitGlobals. The |
steps are shown here in the order in which they are executed i
HodgePodge. Although that is not always the precise order in]
which they must appear in your own source code, tool startup
order is in general very important. If you change the order
without knowing exactly what you are doing, your program ma
crash.

The tool startup subroutine peforms three essential tasks:

1. It loads the absolutely necessary tool sets—the Tool Locator,
the Memory Manager, the Miscellaneous Tool Set, QuickDraw
II, and the Event Manager.

2. Using a tool table and a single LoadTools call, it loads all the
other tools HodgePodge will need.]

S

It starts up those just-loaded tools, in proper order.

0,

% Note: Many of the startup calls shown below require inputs or.
return results. Look at the discussions of individual tool sets in
Chapters 3 through 5 for more information; see the Apple IIG
Toolbox Reference for complete explanations. ‘

StartUpTools begins by starting up the five basic tool sets. It
also reserves some memory space (direct-page space) needed by
several of the tool sets. ‘

baseDP : Integer;
label 1;

begin
StartUptools:=TRUE;
TLStartUp;
CheckToolError ($1) ;

myMemoryID := MMStartUp;

MTStartUp;
CheckToolError ($2) ;

toolsZeroPage :=
NewHandle (TotalDP,
myMemoryID,
attrBank+attrFixed+
attrLockedtattrPage,
Ptr(0));
CheckToolError ($3) ;

baseDP := LoWord (toolsZeroPage®) ;

QDStartUp
(BaseDP+DPForQuickDraw,
ScreenMode,
MaxScan,
myMemoryID) ;
CheckToolError ($4) ;

EMStartUp

(BaseDP+DPForEventMgr,

20,

OI

MaxX,

0,

200,

myMemoryID) ;
CheckToolError ($5) ;

{start address of direct pages}

{label used for disk-mount loop}

{Start by assuming all will go well}
{start up Tool Locator}
{check for error}

{Start up Memory Manager: it returns
a User ID for HodgePodge to use}
{Start up Misc Tools}

{check for error}

{The tools need direct-page space:}
{allocate 11 pages, supplying..}
{..HodgePodge's User ID..}

{..these memory-block attributes..}
{..and make it in bank $00}
{check for error}

{get the 2-byte address of the space}

{address of QuickDraw's 3 dir. pages}
{640 mode}

{max size of scan line}

{HodgePodge's User ID}

{check for error}

{address of Event Mgr's direct page}
{event queue size}

{X min clamp}

{X max clamp}

{Y min clamp}

{Y max clamp}

{HodgePodge's User ID}

{check for error}

Next, StartUpTools loads all RAM-based tools and RAM
patches to ROM-based tools at once, with the LoadTools call. It
first puts a simple message on the screen to notify the user that it
is busy; then it constructs the tool table (the list of all tools to
load); and then it loads them.

MoveTo (20, 20) ;
SetBackColor (0);
SetForeColor (15);

{Foreground color

{Move Pen where we want it}
{Background color black}
white}

Step 1. Start the program 43

DrawString ('One Moment Please...'); {Write the string on screen..}

ShowCursor; {..and display the arrow cursor}
{Now load RAM based tools
(and RAM patches to ROM tools)
—first, define the contents
of the Tool table:}
toolRec.numTools := 14; {14 tool sets to be loaded}
toolRec.tools[1].tsNum := 4; {QuickDraw //}
toolRec.tools[1l] .minVersion := 0;
toolRec.tools[2] .tsNum := 5; {Desk Manager}
toolRec.tools[2] .minVersion := 0;
toolRec.tools[3].tsNum := 6; {Event Manager}
toolRec.tools[3].minVersion := 0;
toolRec.tools[4] .tsNum := 14; {Window Manager} .
toolRec.tools[4] .minVersion := 0; §
toolRec.tools[5] .tsNum := 15; {Menu Manager} §
toolRec.tools[5] .minVersion := 0; i
toolRec.tools[6] .tsNum := 16; {Control Manager}
toolRec.tools[6] .minVersion := 0;
toolRec.tools[7].tsNum := 18; {QuickDraw Aux}
toolRec.tools([7] .minVersion := 0; !
toolRec.tools[8] .tsNum := 19; {Print Manager}
toolRec.tools[8] .minVersion := 0; ;
toolRec.tools[9] .tsNum := 20; {Line Edit}
toolRec.tools[9] .minVersion := 0;
toolRec.tools[10].tsNum := 21; {Dialog Manager}
toolRec.tools[10] .minVersion := 0;
toolRec.tools[11l].tsNum := 22; {Scrap Manager}
toolRec.tools[11l] .minVersion := 0;
toolRec.tools[12].tsNum := 23; {Standard File}
toolRec.tools[12] .minVersion := 0;
toolRec.tools[13].tsNum := 27; {Font Manager}
toolRec.tools[13] .minVersion := 0;
toolRec.tools[14].tsNum := 28; {List Manager}
toolRec.tools[14] .minVersion := 0;

{Now load the tools we've defined:}
1: {here's the label}
paramBlock.pathname := Q'*/SYSTEM/TOOLS'; {=pathname of tool directory}
GET FILE INFO (paramBlock) ; {Look for that directory:}
1f toolErr<>0 then {If it's not there..}
1f MountBootDisk = 1 then {Ask user to mount boot disk..}

goto 1; {..If OK go back and try again}
else {But if user cancels..}
begin
StartUpTools := FALSE; {tool startup fails!}
Exit; {..s0 quit this subroutine}
end;

{But if all is OK..}
{..load the tools named in Tool Table}
{check for error}

LoadTools (toolRec) ;
CheckToolError ($6) ;

44 Chapter 2: HodgePodge: A Sample Event-Driven Application

Note that, if the disk with the needed tools isn't on line,
StartUpTools calls the routine Mount BootDisk, which
prompts the user to remount the boot disk so tool loading can
continue. MountBootDisk is described under “Error Handling”

in Appendix D.

Once all the tool sets have been loaded, they need to be started
up. StartUpTools now starts each one, in the proper order and
with the proper input parameters as needed.

WindStartUp (myMemoryID) ;
CheckToolError ($7) ;

RefreshDesktop (NIL) ;

CtlstartUp

(myMemoryID,
. BaseDP+DPForCt1Mgr) ;
CheckToolError ($8) ;

LEStartUp
(BaseDP+DPForLineEdit,
myMemoryID) ;
CheckToolError ($9) ;

DialogStartUp

(myMemoryID) ;
CheckToolError ($A) ;

MenuStartUp
(myMemoryID,
BaseDP+DPForMenuMgr) ;
CheckToolError (SB) ;

DeskStartUp;
CheckToolError (SC) ;

ShowPleaseWait;

SFstartUp
(myMemoryID,
BaseDP+DPForStdFile) ;
CheckToolError ($D) ;
SFAllCaps (TRUE) ;

QDAuxStartUp;
CheckToolError (SE) ;

{start up Window Manager}
{check for error}

{redraw desktop}

{start up Control Manager}

{User ID for memory blocks}
{address of Ctl Mgr's direct page}
{check for error}

{start up Line Edit}

{address of LineEdit's direct page}
{User ID for memory blocks}

{check for error}

{start up Dialog Manager}
{User ID for memory blocks}
{check for error}

{start up Menu Manager}

{UserID for memory blocks}

{address of Menu Mgr's direct page}
{check for error}

{start up Desk Manager}
{check for error}

{Bring up a dialog box that says
"Please wait while we.."}

{start up Standard File}

{UserID for memory blocks}

{address of Std File's direct page}
{check for error}

{Display file names in all caps}

{start up QuickDraw Aux}
{check for error}

Step 1. Start the program 45

WaitCursor;

FMStartUp {start up Font Manager}
(myMemoryID, {UserID for memory blocks} 1
BaseDP+DPForFontMgr) ; {address of Font Mgr's direct page}
CheckToolError(SF); {check for error} :
ListstartUp; {start up List Manager}
CheckToolError ($10) ; {check for error}
ScrapStartUp; {start up Scrap Manager}
CheckToolError ($11) ; {check for error}
PMstartUp {start up Print Manager}
(myMemoryID, {UserID for memory blocks}]
BaseDP+DPForPrintMgr) ; {address of Print Mgr's 2 dir. pages}
CheckToolError ($12) ; {check for error}
HidePleaseWait; {Remove the "Please wait.."}
InitCursor; {restore normal cursor}
end;

ShowPleaseWait and
HidePleaseWait are descrived
under "“Constructing Dialog Boxes
and Alerts” in Chapter 4,

46 Chapter 2: HodgePodge: A Sample Event-Driven Application

{put up watch cursor,
now that it's available}

{End of StartUpTools}

This completes toolbox initialization. The routine StartUpToo
ends and returns control to the main program which, in additic
to calling the two short initialization subroutines SetUpWindos
and SetUpDefault (described earlier in this section), calls the

subroutine that sets up the menu bar. That routine, SetupMenuﬁ;
is described next.

% ShowPleaseWait: During tool startup, the HodgePodge routi
ShowPleaseWait is called. It puts up a dialog box that infor
the user that the startup process may take a few seconds. e
startup is done, HidePleaseWait removes the dialog box fic
the screen. Keeping the user informed is an important
component of the Human Interface Guidelines.

% Error handling: You may have noted that, after each tool
startup call, the HodgePodge subroutine CheckToolError is
called. CheckToolError is a very simple error handling ?_
routing; it is described under “Error Handling” in Appendix I
It is good practice to routinely check for errors after making
tool calls that can return them. 1

Sehupierus iz in e source lile
Pzl BAS,

propeders Bel Upblonus;
VAT height: Tnteger;

begin
SatMTitlaStart (10}

Set up the sysf_eﬁ{ menu bar

The rouline that sets up the menu bar when HadgeFPodpge slarls ap
iz called detupMenus. SetupHManus s called from the main
program, alter StartUpTools and the two small initialization
TEMALIneS,

For each menu in wrn, Setupkenus calls the Menu Manager
routine NewMenu, passing it 2 pointer to g sel of character strings
|hal define the menu name and the llems it contains. (The men
strings were defined in the routine IndLSlebals,) NewMen
returns a handle 1o the newly cres el e, SetupMenus then
calls InsertMenuy, passing it the menu handle and a position
parameler (here defaulted to zero), to put the menu into the menu
bar,

Finally, SetUpMenus adds all desk accessory names o the Appsle
meny (eith he DeskManaper call FisApplemenu), calculates the
height of the menu bar, and draws the bar,

{bagin SetupMenas.]

{= height of menu Lontl

(Belk starl position, from left edge
of menu hbar, of first memn titlal

InsartMenu (NewMenu (AFonkMenusSLe [L]), 00 ; {oroate a@nd insert Fonts Henu)
InsertMenu (NewMenu (EWindowkenusSco [11), G) 2 {oroate and insert Windows Hanul
InsartMana (HewMonu (AEditMenudts [11), 00 ; {oreate and insert Bdit Menu)
InsaertMan (HeawManu (AR 1 laMor St (110,00 ; {oreate and lnsert Tile Menu)
InsartManu (HowManu (GAnpleMenostr [1]), G) 1 {oreate and insert Apple Menul

FixhpplaManu (AppleMenulIl) ;

haeight = FixMeanuBar;
DrawdenuBar;
end;

{hdd Dhs Teo apple menul
{Zet sizes of menua)

{..- and draw Lhe meoo barcl)
{Bnd. of SetUpMenus]

Step 1. start the program 47

...........................

TaskMaster and GetNextEvent
are further described under
“Handling Events” in Chapter 3.

48 Chapter 2: HodgePodge: A Sample Event-Driven Application

Step 2. Cycle through the main event

A desktop application spends most of its time in the main eve
loop, waiting for an event to handle. How an application functio
is determined by what events it chooses to handle and how it
handles them. The event loops for most programs are quite
similar—it is in the subroutines to which the various events caust
branches that the special personality of each application lies.

HodgePodge’s main event loop is diagrammed in Figure 2-5.
Each time through the loop, HodgePodge checks whether it’s tin
to quit. If it isn’t, HodgePodge adjusts menu items if necessary
and then looks for the next event. It does this by calling the
Window Manager routine TaskMaster. Alternatively, an 1
application could call the Event manager routine GetNextEvent,

HodgePodge uses TaskMaster because TaskMaster automatically
handles many events for it. TaskMaster itself calls GetNextEvent,
and takes care of ecvents that affect the size and shape of windows,
such as a mouse click in the Zoom, Close, or Grow boxes. This is
not a requirement; your application can ignore TaskMaster
entirely and do all event-handling itself. For example, you might
not use TaskMaster if you want the application to respond in an
atypical manner. 3

If TaskMaster can’t completely handle an event, it passes a task
code (described in “Handling Events” in Chapter 3) back to the
application, and the application must deal with the event '
specified by that code. For example, if the user selects 2 menu
item, TaskMaster passes the information back to the application,
which must find out which item was selected and take the :
appropriate action.

When action on an individual event is finished, the application
(or TaskMaster) returns to the main event loop to wait for the nex
event.

MainEvent is in the source file
EVENT.PAS.

Time \\
ITo yes back to

quit? main program

no

™ CheckFrontw

TaskMaster
no
yes
DoMenu
A
(;'Ose yes
window DoCloseltem
event?

Figure 2-5
HodgePodge’s main event loop

The loop

Here is the code for HodgePodge’s main event loop. Compare it

with Figure 2-5. Depending on its features, your application may

have an identical event loop, or it may respond to a different set

of events.

Step 2. Cycle through the main event loop

49

procedure MainEvent; {begin MainEvent...}

var code: Integer; {the task code (or event code)
: returned by TaskMaster}
begin
Event.wmTaskMask := SO0001FFF; {pass all events to TaskMaster}
done := FALSE; {initialize the Quit flag}
repeat
CheckFrontW; {adjust menu items if necessary}
code := TaskMaster (SFFFF, Event); {Call TaskMaster: let it handle
all events; record name=Event; it
returns the task code}
case code of {If the task code represents..}
wInGoAway: {If a window close box selected..}
DoCloseItem; {..go to DoCloselItem}
wlnSpecial, {If an Edit-menu item or a..}
wInMenuBar: {..regular menu item selected..}
DoMenu {..go to DoMenu}
end; {end of Case statement}
until done; {Stop when Done=TRUE}
end; {End of MainEvent}

The different events are specified by toolbox-defined constants
(such as wInMenuBar) that define Event Manager and TaskMas
event codes. See Chapter 3.

The main event loop here is much shorter than it would be if

TaskMaster were not used. Without TaskMaster, there might have
been as many as 16 separate items in the above case statement,
each with its own subroutine call. :

 Check front window: Each time through the loop, before
checking for events, HodgePodge determines which window (i
any) is the frontmost, and adjusts menu items accordingly. Fo
example, if the front window is a font window, the Save item 0
the File menu should be disabled because HodgePodge does -
not save font-window contents to disk. If the front window isa
desk accessory window, the Edit menu should be enabled.

The routine that does this menu manipulation is CheckF ront|
It is in the source file EVENT . PAS. See Appendix G.

50 Chapter 2: HodgePodge: A Sample Event-Driven Application

Window closing Is described
under “Window-Related Events,”
later In this section.

Window-content definition
procedures are discussed
under “Creating Windows” in
Chapter 4.

Step 3. Handle specific events

It may already seem that the organization of this program is a
little different from what you expected. So far, we've seen no
major divisions of the code into “Picture Window Stuff” and
“Font Window Stuff,” as you might expect in a program whose
principal tasks are the manipulation of picture windows and font
windows.

Event-driven programs have the equivalents to such modules, but
they are chopped up and arranged in different ways. Elements of
them are distributed throughout the flow of events in the program.

Therefore let’s continue along the path of execution, seeing where
we go when we leave the main event loop to handle the events
that HodgePodge responds to. We'll mention each of the types of
events and point you to where in the book to look for the specific
routine that handles that event type.

TaskMaster-handled events

In HodgePodge, TaskMaster automatically handles all moving,
resizing, scrolling, activating, updating, and redrawing of windows.
It handles nearly all window events automatically. This is a great
convenience (as you can imagine if you are a Macintosh
programmer) and it means that, apart from closing a window,
there is little for HodgePodge to do in terms of window
manipulation.

In general, there is one thing that TaskMaster cannot do for an
application, and that is draw the contents of a window. TaskMaster
cannot know what purpose the application created the window for.
But, if a window’s contents can always be described by a routine,
an application can provide TaskMaster with a way to call that
routine whenever a window is drawn. That routine, although part
of your program, acts as a sort of extension to TaskMaster, and it
can do the redrawing of the window’s contents. Such routines are
called window-content definition procedures.

HodgePodge uses this trick for both picture windows and font
windows. Figure 2-6 is an extension to part of the event-loop
diagram of Figure 2-5, and shows the window-drawing routines that
are called from within TaskMaster.

Step 3. Handle specific events 51

Paint is in the source file
PAINT.PAS.

procedure Paint;

var tmpPort : GrafPortPtr; {pointer to a grafPort}
myDataHandle: WindDataH; {handle to a window-data record
--defined in GLORALS.PAS}
begin
tmpPort := GetPort; {get a pointer to current port}
myDataHandle := WindDataH ({Get a handle to the window-data..}
GetWRefCon (tmpPort)) ; {..record for the current port}
{Using the picture pointer in the..}
PaintIt (myDataHandle”*.pict); {..record, call the routine that
draws picture-window contents}
end; {end of Paint}

52 Chapter 2: HodgePodge: A Sample Event-Driven Application

Paint

TaskMaster

A DispFontWindow.
no . Any
<+ event »
‘.l,'yes
Figure 2-6

HodgePodge routines called by TaskMaster

< Note: Don't get the impression from Figure 2-6 that drawing
window contents is al/ that TaskMaster does. TaskMaster does
many more things, as already discussed, but Paint and
DispFontWindow are the only HodgePodge routines that
TaskMaster calls.]

Picture window contents

When a picture window’s contents need to be drawn or redrawn,
TaskMaster calls the definition procedure Paint, which sets up.
the proper parameters and then calls the routine PaintIt to d
the actual drawing. Paint It is described under “Drawing to the
Screen (and elsewhere)” in Chapter 3. Paint looks like this:

{begin Paint..}

DispFontWindow is in the source
file FONT.PAS.

procedure DispFontWindow;

var tmpPort

begin
tmpPort

with myDataHandle”* do

ShowFont (theFont, isMono) ;

end;

: GrafPortPtr;
myDataHandle: WindDataH;

:= GetPort;
myDataHandle := WindDataH (
GetWRefCon (tmpPort)) ;

Note that Paint (and Paint It too, as you will see) is completely
unconcerned about where on the screen the window to be drawn
appears, what other windows may or may not be in front of it, and
even how big the window is or what part of the picture is being
displayed. All these details are taken care of by the toolbox!

Font window contents

When a font window’s contents need to be drawn or redrawn,
TaskMaster calls the definition procedure DispFontWindow,
which sets up the proper parameters and then calls the routine
ShowFont to do the actual drawing. ShowFont is described in
Chapter 3, under “Drawing to the Screen.” DispFontWindow
looks like this:

{begin DispFontWindow...}

{pointer to a GrafPort}
{handle to a window-data record
—--defined in GLOBALS.PAS}

{Get pointer to current port}
{Get a handle to the window-data..}
{..record for the current port}

{Using font info from the record..}
{..call the routine that draws
font-window contents}

{End of DispFontWindow}

Just as in the case of picture windows, DispFontWindow and
ShowFont are completely unconcerned about where on the
screen the window to be drawn appears, what other windows may
or may not be in front of it, and even how big the window is or
what part of the font display is to be drawn. The toolbox does it
all.

Step 3. Handle specific events 53

DoMenu is in the source file
MENU.PAS

procedure DoMenu;

var menuNum: Integer;
itemNum: Integer;
begin
menuNum := HiWord (Event.wmTaskData) ; {get number of menu and item}

itemNum := LoWord (Event.wmTaskData);

case itemNum of

AboutItem: DoAboutItem; {bring up "About HodgePodge" dialog}

OpenItem: DoOpenItem; {open a picture window}

Closeltem: DoCloseItem; {close a window}

SaveAsItem: DoSaveltem; {save a picture file}

ChoosePItem: DoChooserItem; {choose a printer}

PageSetItem: DoSetupItem; {do page-setup}

PrintItem: DoPrintItem; {print contents of a window}

QuitItem: DoQuitItem; {quit HodgePodge}

UndoItem: ;

CutItem: ;

CopyIltem: ; {ignore special menu items}

PasteItem: ;

ClearItem: H

FontItem: DoOpenItem; {open a font window}

MonoItem: DoSetMono; {set font spacing}
otherwise

DoWindow (itemNum) ; {bring the chosen window to front}
end; {of Case statement}

HiliteMenu (FALSE, menuNum) ;

end;

54 Chapter 2: HodgePodge: A Sample Event-Driven Application

Menu-related events

Each of the subroutines listed in this section is called as the re
of a menu selection made by the user. Thus there is one]
subheading for each HodgePodge menu entry. Figure 2-7 is an
extension to part of Figure 2-5; it shows which routines can be -
called when the main event loop sends a menu-related event (g
the routine DoMenu. ;

When a menu item is selected (either with the mouse or with a
keyboard-equivalent), TaskMaster returns 17 (= wInMenuBar—
see “Handling Events” in Chapter 3) as the value of myEvent,
which causes execution to pass to the subroutine DoMenu.]
TaskMaster also sets the taskData field of the extended task
event record equal to the menu ID and the ID of the item ‘
selected, and then passes control back to HodgePodge so it mat
perform the specific task. DoMenu looks like this: '

{begin DoMenu...}

{unHighlight menu title}

{End of DoMenu}

The menu ID variables (CloseItem, About Item, and so forth)
are defined in the source file GLOBALS .PAS.

M DoWindow
- DoCloseltem
— DoAboutltem
l B DoQuitltem
Menu yes 1
“. event DoMenu DoOpenltem
I}vo u DoSaveltem
— DoChooseltem
H DoSetupltem
— DoPrintltem
= DoSetMono
Figure 2-7

HodgePodge routines that handle menu-related events

The various routines called by DoMenu are listed either elsewhere
in this book or in Appendix G. In brief, this is what each does:

m DoAboutltem: Brings up the “About HodgePodge” dialog box.
DoAbout Item is listed under “Constructing Dialog Boxes and
Alerts” in Chapter 4.

® DoOpenlItem: Opens a font or picture window. DoOpenItem
calls OpenWindow to open the window, then calls AddToMenu
to add the window’s name to the Windows menu. DoOpenItem
is listed under “Opening a Window: An Example” in Chapter 4.

Step 3. Handle specific events 55

56

Chapter 2: HodgePodge: A Sample Event-Driven Application

® DoCloseltem: Closes a font or picture window, releases its
allocated memory, and adjusts the Windows menu.

DoCloseItem is listed under “Window-Related Events,” lat‘
in this section.

® DoSaveltem: Saves the contents of a picture window as a disk,

file. DoSaveItem is listed under “Communicating With Files
and Devices” in Chapter 5,

® DoChooserItem: Brings up a dialog box permitting the user
choose a printing device. DoChooserItem is listed under
“Communicating With Files and Devices” in Chapter 5.

® DoSetupltem: Brings up a dialog box permitting the user to
page-setup parameters. DoSetupItem is listed under
‘Communicating With Files and Devices” in Chapter 5.

B DoPrintItem: Prints the contents of the frontmost window.

DoPrintItem is listed under “Communicating With Files an(
Devices” in Chapter 5.

¥ DoQuitltem: Assigns the value TRUE to the boolean variable 1
done. That causes temination of the main event loop. s
DoQuitItemis in the source file MENU . PAS. See Appendix G,

® DoSetMono: Toggles a flag that controls whether fonts are |
displayed as monospaced or proportional, and updates the
Fonts menu accordingly. DoSetMono is in the source file
FONT.PAS. See Appendix G.

® DoWindow: Brings the selected window (chosen from the
Windows menu) to the front. DoWindow is in the source file
MENU. PAS. See Appendix G.

Window-related events

Closing is the only window-related event that HodgePodge must
respond to explicitly. Figure 2-8 is an extension to part of Figure |
2-5; it shows the routines that can be called when the main event
loop encounters a window-related event,

Close yes

window “——_ DoCloseltem ———1 AdjWind
. event i
N9 T
T no
Figure 2-8

HodgePodge routines that handle window-related events

, Closing is a window event, but it is also a menu event . When the
user clicks in an active window’s close box, or selects Close from

the File menu, TaskMaster returns that information to
DoCloseltem is in the source file HodgePodge, which in turn calls DoCloseItem DoCloseItemis
WINDOW.PAS. also called at program shutdown, to close all windows. Its source
code looks like this:
procedure DoCloseltem; {begin DoCloseItem..}
var theWindow : GrafPortPtr; {ptr to window to be closed}
myDataHandle: WindDataH; {window-data-record handle}
begin
theWindow := FrontWindow; {Get a pointer to the front window}
CloseNDAbyWinPtr (theWindow) ; {Assume that it's a desk acc. window}
if isToolError then {If it wasn't an NDA window...}
begin
AdjWind (theWindow) ; {Call AdjWind to update menu}
myDataHandle := WindDataH({Get a handle to window's..}
GetWRefCon (theWindow)) ; {.window-data record}
DisposeHandle (Handle (myDataHandle)) ; {Get rid of the window-data record}
CloseWindow (theWindow) ; {Get rid of the window completely}
Dec (wIndex) ; {decrease number of open windows}
end; {end of IF wasn't an NDA}
end; {end of DoCloseltem}

% AdjWind: DoCloseItem calls the HodgePodge routine
Adjwind, which removes the name of the just-closed window
from the Windows menu. Ad3jWind is described under “Making
and Modifying Menus” in Chapter 5.

Step 3. Handle specific events 57

Step 4. Shut down the program

When it’s time for your application to quit, the following steps:
ensure a graceful exit: :

1. Shut down all tool sets in reverse order from the way you
“started them up.

2. Release any memory your application requested from the
. Memory Manager.

L 3. Shut down the Memory Manager (with your application’s Ust

1D as inpud)

4. Shut down the Tool Locator.

S. In assembly language, use the ProDOS 16 QUIT call to leave
application. (In C and Pascal, this is taken care of for you).

HodgePodge terminates when the user selects Quit from the Fi ?
menu. The routine DoQuit Item executes, setting the variable d¢
to TRUE, which causes the main event loop to stop. Execution p:
to the main program, which calls ShutDownTools and ends.

ShutDownTools is in the source file ShutDownTools shuts down all tool sets, in reverse order fro '
HP.PAS. startup. You may be able to use this code verbatim in your]
programs. It looks like this:

procedure ShutDownTools; {begin ShutDownTools...}
begin
DeskShutDown; {shut down Desk Manager}
if WindStatus <> 0 then {make sure Window Mgr. active..}
HideAllWindows; {close all windows—--this may take
some time if many open windows!}
ListShutDown; {shut down List Manager}
FMShutDown; {shut down Font Manager}
ScrapShutDown; {shut down Scrap Manager}
PMShutDown; {shut down Print Manager}
QDAuxShutDown; {shut down Quick Draw Aux}
SFShutDown; {shut down Standard File}
MenuShutDown; {shut down Menu Manager}
DialogShutDown; {shut down Dialog Manager}
LEShutDown; {shut down Line Edit}
CtlShutDown; {shut down Control Manager}
WindShutDown; {shut down Window Manager}
EMShutDown; {shut down Event Manager}
QDShutDown; {shut down QuickDraw II}
MTShutDown; {shut down Misc. Tool Set}

58 Chapter 2: HodgePodge: A Sample Event-Driven Application

if MMStatus <> 0 then

{If Memory Mgr. active..}

begin {delete the direct-page memory..}
DisposeHandle (toolsZeroPage) ; {..allocated at startup}
MMShutDown (myMemoryID) ; {shut down Memory Manager}
end;
TLShutDown; {shut down Tool Locator}

end;

{End of ShutDownTools}

& HideAllWindows: Note that ShutDownTools calls
HideAllWindows, which simply closes all windows and
releases their associated memory. HideAllWindows is in the
source file WINDOW. PAS. See Appendix G.

Conclusion

This completes our overview of the organization of HodgePodge.
You can see that it has a structure almost independent of the tasks
it was written to perform. That, of course, is the intention—if all
event-driven programs execute in a similar manner, they can
present a uniform interface to the user. In addition, they can be
extended easily to add new features, and they can remain
compatible with future revisions of system software.

The rest of the book gives more details on how HodgePodge
actually performs its individual tasks, and gives some of the
concepts behind the tool calls that HodgePodge, like any event-
driven program, needs to make. Most discussions are general, but
HodgePodge listings are included where appropriate. See Table 2-1.

Table 2-1

HodgePodge routines described in this book

Routine See chapter and section...

AddToMenu Chap. 5: “Making and Modifying Menus”
Adjwind Chap. 5: “Making and Modifying Menus”
AskUser Chap. 5: “Communicating With Files...”

CheckToolError App. D: “Error Handling”
CheckDiskError App. D: “Error handling”
DispFontWindow Chap. 2: “Handle Specific Events”

DoAboutItem Chap. 4: “Constructing Dialog Boxes...”

Conclusion 59

Table 2-1 (continued)
HodgePodge routines described in this book

Routine See chapter and section...
DoChooseFont Chap. 3: “Drawing to the Screen”
DoChooserItem Chap. 5: “Communicating With Files...”
DoCloseItem Chap. 2: “Handle Specific Events”
DoMenu Chap. 2: “Handle Specific Events”

DoPrintItem Chap. 5: “Communicating With Files. ..

DoSaveItem Chap. 5: “Communicating With Files. ..
DoSetUpItem Chap. 5: “Communicating With Files. ..
DoTheOpen Chap. 4: “Creating Windows”
DrawTopWindow Chap. 5: “Communicating With Files...
HodgePodge Chap. 2: “HodgePodge at a Glance”
InitGlobals Chap. 2: “Start the Program”
StartUptools Chap. 2: “Start the Program”
LoadOne Chap. 6: “The ProDOS File System”

MainEventLoop Chap. 2: “Cycle Through the MainEvent”

OpenWindow Chap. 4: “Creating Windows”

Paint Chap. 2: “Handle Specific Events”
PaintIt Chap. 3: “Drawing to the Screen”
SaveOne Chap. 6: “The ProDOS File System”
SetUpDefault Chap. 2: “Start the Program”
SetUpMenus Chap. 2: “Start the Program”
SetUpWindows Chap. 2: “Start the Program”

ShowFont Chap.

5

5

5

4

5

2

2

2

6

2
MountBootDisk App. D: “Error Handling”

4

2

3

6

2

2

2

3: “Drawing to the Screen”

2

ShutDownTools Chap. 2: “Shut Down the Program”

60 Chapter 2: HodgePodge: A Sample Event-Driven Application

Chapter 3

Using the Toolbox (I)

61

The compilete reference for all
toolbox calls is the Apple lics
Toolbox Reference,intwo
volumes.

62 Chapter 3: Using the Toolbox)

In Chapter 2, the sample program HodgePodge showed an
example of toolbox use in action. Now let’s examine some of thy
concepts behind the toolbox calls HodgePodge makes. Even
though an introductory book like this can only get you started y :
each tool set, the overall view of what the tools can do for you
and the example of how HodgePodge integrates them should tak
you a long way toward understanding and exploiting their power;

The Apple 1IGS Toolbox is made up of about 30 tool sets. Each
tool set is made up of many routines. In all, there are more than
800 toolbox routines in ROM and RAM, covering a wide variety
tasks from managing memory to drawing to the screen to giving
you the time of day. And don’t WOITy—you needn’t memorize ;
them all to write an Apple IIGS application. Just the few you lea

from this book will get you started.

You can think of the toolbox as a very large library of prewritten
subroutines, optimized and integrated to relieve you of a large
part of your programming burden. They exist to free you to
concentrate on the fundamental, creative aspects of the program
yOu want to write.

In this chapter we discuss events and how to handle them, and
basic process of drawing to the Apple IIGS screen by using .
QuickDraw II. Chapters 4 and 5 describe the remaining tool sets,
We'll include actual examples from HodgePodge where '
appropriate, but otherwise the details of individual calls and thej
parameters are left for other books.

Starting up and calling the tools

Required tool sets

There are three tool sets required for any application using the
Apple 1IGS Toolbox. Start them first, and start them in this order:

1. The Tool Locator

Refer o “Set the Stage” in
Chapter 2 to see how closely
HodgePodge follows this
sequence.

HodgePodge's tool table is
initialized in the routine
StartUpTools.

Important

For a list of all current tool sets and
their numbers, see “User Tool
Sets” in Chapter 8.

2. The Memory Manager
3. The Miscellaneous Tool Set
Beyond these three, there are two other tool sets that, while not

absolutely required for the Apple IIGS to function, are nevertheless
used in nearly every application. Start them up in this order:

4. QuickDraw II
5. The Event Manager

Other tool sets

After the required tool sets are in place, you should load and start
up all other tool sets your application might use.

Loading

To simplify things, and to ensure that the correct versions of tool
sets are available, it's best to load all of your needed tool sets at
once, with the Tool Locator’s LoadTools call. LoadTools does two
things: it loads RAM-based tools into the computer (remember,
some tools are not in ROM), and it checks the version numbers of
all the specified tool sets, whether in ROM or RAM. That version
check is important because some tool sets will not function
without the proper minimum versions of other tool sets.

When you make the LoadTools call, you pass it a pointer to a tool
table, which lists the total number of tool sets to load, and the
number and minimum acceptable version of each tool set.

Make sure that all the RAM-based tools your program needs are in
the TOOLS subdirectory of the SYSTEM directory on the system disk.
See Appendix C.

Starting up

After you have loaded the remaining tool sets, you must then start
up each one. Each tool set has its own startup call; some calls
require or return parameters, others have no inputs or outputs.
Because some tool sets require the presence of other tool sets in
order to function, tool sets must be started in proper order. Table
3-1 gives the suggested startup order.

Starting up and calling the tools 63

64

Chapter 3: Using the Toolbox (1)

Table 3-1
Tool set startup order

Hex. Dec. Name

$01 1 Tool Locator

$02 2 Memory Manager

$03 3 Miscellaneous Tool Set
$04 4 QuickDraw II

$06 6 Event Manager

$0E 14 Window Manager

$10 16 Control Manager

$OF 15 Menu Manager

$14 20 LineEdit Tool Set

$15 21 Dialog Manager

$05 5 Desk Manager

$17 23 Standard File Operations Tool Set
$16 22 Scrap Manager

$1C 28 List Manager

$13 19 Print Manager

$1B 27 Font Manager

You can assume that tool sets not on this list are either started
already, or can be started in any order.

% HodgePodge: You may have noticed that HodgePodge doe:
follow this sequence exactly when it starts its tool sets. ,
Specifically, it starts up the Menu Manager after starting the
LineEdit Tool Set and the Dialog Manager. So in some
instances it may be possible to alter startup order slightly,
is safest just to follow the order given in Table 3-1.

In addition to the dependencies reflected in the startup order
tool sets, there are additional, complex dependencies among &
sets because a routine in one tool set may call routines in othe
tool sets (which may call routines in still other tool sets, and s¢
on). These dependencies are beyond the scope of this book; se
the individual tool set and routine descriptions in the Apple Il
Toolbox Reference.

The Tool Locator is documented
fully under “The Tool Locator” in
the Apple lIcs Toolbox
Reference

The input and output parameters
for each assembly-language tool
call are described in the Apple
lles Toolbox Reference.

Calling an individual routine

You can access toolbox routines easily from either assembly
language or high-level languages. The initial languages offered
with the Apple 1IGS Programmer’s Workshop (APW, described in
Chapter 7) are 65816 assembly language and C; macro libraries
and interface libraries are available for these languages. Any other
languages with similar interface libraries (such as the TML Pascal
used to write the Pascal version of HodgePodge) allow similar
tool-calling procedures.

The Tool Locator

Every time you make a tool call, your request goes through the
Tool Locator, the first tool set started up at the beginning of your
program. The Tool Locator (in ROM) keeps tables in RAM that
point to the individual routines (which may be in either ROM or
RAM). The pointer tables are kept in RAM so that they may be
easily modified when tool sets are updated, moved to ROM from
RAM, or otherwise changed. Your application needn’t know or
care where a routine is—it just tells the Tool Locator to get it.

Calling from assembly language

The simplest way to make tool calls from assembly language is to
use macros. The macros provided with APW relieve you of having
to remember the tool set number and routine number for each
call. Assembly-language HodgePodge makes all its calls with
macros.

Make a tool call as follows:

1. If the function has any output, push the correct amount of
space for it on the stack.

2. If the function has any inputs, push them on the stack in the
specified order.

3. Invoke the appropriate macro by name. A macro name is the
same as the routine it calls, except that, by convention, it has a
leading underline character.

4. Check for errors, as described under “Machine State on Return
from the Call,” later in this section.

5. Pull the output, if any, from the stack.

Starting up and calling the tools 65

The names of the parameters for
each tool routine in the C
language are described in the
Apple lics Toolbox Reference.

For a complete description of
register and flag states after a
toolbox call, see “Using the
Apple liGs Tool Sets” in the Apple
llcs Toolbox Reference

66 Chapter 3: Using the Toolbox (1)

You can make an assembly-language tool call without macros,
course. The method is almost identical to that just described,
except that instead of calling the routine by name, you jump:
the Tool Locator’s entry point ($E1 0000) with a JSL instructio
with the tool set number and routine number as the high-ord
and low-order bytes in the X register. All tool set and routine
numbers are documented in the Apple 1IGS Toolbox Referenc
Nevertheless, it is probably best to use macros because names
easier to remember and read. :

Calling from a high-level language

The interface libraries that allow C programmers to access the
Apple IIGS Toolbox are included in APW C. Those libraries
contain the function definitions for the tools. The steps to call
routine are as follows. Other high-level languages will have sim
libraries, appropriate to the languages’ structures.

1. Make the routine accessible by using an #include statemes
that includes the appropriate file (for example, QuickDra
for QuickDraw II calls). The included file will provide the ‘
function declarations and the necessary constants and data
structures. '

2. Invoke the call by entering its name and supplying the cor g
parameters. '

3. Examine the global error variable (_toolErr in C,
ToolErrorNum in Pascal) for errors, if necessary. If the
variable is equal to zero, no errors occurred; otherwise, it
contains the number of the error.

Machine state on return from the call

When it completes a call, a toolbox routine returns control
directly to the application that called it. The accumulator conta
zero and the ¢ flag (carry bit) is cleared to zero if the call was
completed successfully. Other flags and registers have values
dependent on the specific routine called.

If an error occurred during the call, the carry bit is set (=1) and
the accumulator contains an error code in this format: ‘

high-order byte = tool set number
low-order byte = error number

All toolbox error codes are
summarized in an appendix fo
Volume Il of the Apple IicS
Toolbox Reference.

& Error passing: With this method, an error can be properly
identified even if it occurs during a call to one tool set, but
doesn’t actually show up until a call returns from another tool
set. For example, using this method, a QuickDraw II call can
pass on an error message from the Memory Manager.

Handling events

The central part of any event-driven program is its main event
loop. As Figure 2-5 shows in the case of HodgePodge, the program
continually cycles through the event loop, waiting for an event to
act upon. The application decides what to do from moment to
moment by looking at each event and responding to it
appropriately.

What constitutes an event? An event is a notification to the
program that something has occurred, something that the
program may wish to respond to. It may be a signal from outside
the program, such as a keystroke. Or it may be something internal,
such as the need to redraw part of a window when an overlapping
window has been moved.

< Interrupts: An event is different from an interrupt in that it is
generated in software, and that it does not force action by the
application. An application can ignore any event it does not
need to act upon.

The Event Manager is the Apple IIGS tool set that notes these
occurrences and records them as events (by creating event
records). For example, whenever the user presses or releases the
mouse button, the Event Manager records the action in an event
record. The Event Manager collects events from a variety of
sources and reports them to the application on demand, one at a
time. The Event Manager doesn’t necessarily report the events in
the exact order they occur, because some have higher priority
than others.

The Event Manager is also used by other parts of the toolbox. For
instance, when HodgePodge calls TaskMaster in its main event
loop, TaskMaster in turn calls the Event Manager. See “Using
TaskMaster,” later in this section.

Handling events 67

68

Application- _)|
defined
events

Desk __,
accesory
events

Device _,|
driver
events

Keyboard __,|
events

Mouse

System
event
mask

events

Window Manager events
(activate, update)

Switch events

Chapter 3: Using the Toolbox (1)

Events and the event queue

The event queue

Most events are placed in an event queue, which is an ordered i
of event records. As events occur, they are placed at one end of
the queue; as the application cycles through its event loop, it pul
events off the other end, one at a time, by making a call such as -
GetNextEvent. :

< TaskMaster: Rather than call GetNextEvent directly, we suggest
that your application call TaskMaster instead. The end result,
however is the same—Taskmaster calls GetNextEvent, which
pulls events off the event queue as usual. See “Using
TaskMaster,” later in this section.

Figure 3-1 shows a simplified view of how events are presented to’
an application. All event types, except switch events and the]
window-related events activate and update, pass through the event
queue. The various types of events are ordered by priority before:
the application sees them. Also, the application can filter out, or :
mask, types of events that don’t apply to a particular situation.

The event queue

T queue ————

! :

! |

! |

|

L Event v Event Event :_, Event | |

| record record record | | mask
|

! :

! |

e 3

Figure 3-1

Event types

Events are of various types. Some report actions by the user;
others are generated by the Window Manager, device drivers, or
the application itself for its own purposes. The system handles
some events before the application ever sees them, and it leaves
others for the application to handle.

Each event's type is described by an event code, a numeric value
that the Event Manager returns to the application getting the
event. For programming convenience, there is also a set of
predefined constants for these codes. Table 3-2 lists the codes and
constants. The first half of the TaskTable in the assembly-
language version of HodgePodge’s main event loop (in the file
EVENT .ASM) is a code equivalent to Table 3-2; C and Pascal
HodgePodge, on the other hand, use the predefined constants to
describe event codes.

Table 3-2

Event Manager event codes

Value Constant Meaning

0 nullEvt null event

1 mouseDownEvt mouse-down event

2 mouseUpEvt mouse-up event

3 keyDownEvt key-down event

4 (undefined)

5 autoKeyEvt auto-key event

6 updateEvt update event

7 (undefined)

8 activateEvt activate event

9 switchEvt switch event

10 deskAccEvt desk-accessory event

11 driverEvt device-driver event

12 applEvt application-defined event
13 app2Evt application-defined event
14 app3Evt application-defined event
15 app4Evt application-defined event

Handling events 69

70

Chapter 3: Using the Toolbox (1)

From Table 3-2 you can see that 16 is the maximum number
cases your main event loop has to consider if your applicati
calls GetNextEvent. If it calls TaskMaster instead, many of the
events are handled automatically; however, there is an addii
set of codes, called task codes, returned by TaskMaster. See
TaskMaster,” later in this section.

Event records and masks

Every event is represented by an event record containing all
pertinent information about that event. The event record inc
the following information:

® What: the event code, such as mouse-down
® When: the time the event was posted (the tick cound

® Where: the location of the mouse at the time the event was
posted, in global coordinates (see “Global and Local
Coordinate Systems,” in this chapter)

m Modifiers: the state of the mouse buttons and modifier key
the time the event was posted, such as Option key down

m Message: any additional, event-specific information, such
which key the user pressed or which window is being acti

Some of the Event Manager routines can be restricted to ope
on a specific event type or group of types; in other words, sor
event types are enabled while all others are disabled. For ins
instead of just requesting the next available event, the applic:
can specifically ask for the next keyboard event. It does so b ¢
supplying an event mask as a parameter. The mask disables 2
unwanted event types.

There’s also a global system event mask that controls which e
types, the Event Manager posts into the event queue in the fir
place. When the system starts up, the system event mask is set.
post all events.

Responding to events

Here are some typical application responses to commonly
occurring events.

% TaskMaster: These responses apply to a program that uses
GetNextEvent in its event loop. If you are using TaskMaster
instead, see “Using TaskMaster,” later in this section.

Mouse events

Mouse-down and mouse-up events occur when the mouse button
is pressed or released. Mouse movements cause the cursor
position to be updated, but do not create events.

On receiving a mouse-down event, an application should first call
the Window Manager to find out where the cursor was on the
screen when the mouse button was pressed, and then respond in
whatever way is appropriate. Depending on where the cursor was
when the button was pressed, the application may have to call
toolbox routines in the Menu Manager, the Desk Manager, the
Window Manager, or the Control Manager.

If the application attaches special significance to the user pressing
a modifier key or keys along with the mouse button, it can
discover the state of the modifier keys by examining the
appropriate flags in the modifiers field of the event record.

If you want your application to respond to mouse double-clicks, it
must detect them itself. It can do so by comparing the time and
location of a mouse-up event with the time and location of the
mouse-down event immediately following the mouse-up event.

Mouse-up events can be significant in other ways; for example,
they can signal that the user has stopped dragging the mouse after
selecting a group of objects. Most applications, however, can
ignore mouse-up events, and handle dragging with other calls
such as TrackControl.

< HodgePodge: HodgePodge does not need to respond to mouse
events directly. See “Using TaskMaster,” later in this section.

% Alternative pointing devices: All applications that use the Event
Manager work with alternative devices just as they do with the
mouse. When a device such as a graphics tablet is being used,
its X-Y location and button status appear in the event records
in place of the mouse information. Mouse-up and mouse-down
events are posted when the alternative device’s buttons change
state.

Keyboard events

Key-down events occur when character keys are pressed. Modifier
keys (Shift, Caps Lock, Control, Option, and Apple) generate no
keyboard events of their own—whenever an event is posted, the
state of the modifier keys is reported in a field of the event
record. The character keys also generate auto-key events when the
user holds them down.

Handling events 71

For a key-down event, the application should first check thé
modifiers field to see whether the character was typed wi
Apple key held down; if so, the user may have been choosit
menu item by typing its keyboard equivalent.

If the key-down event is not a menu command, the applical
should respond to the event in whatever way is appropriate
example, if one of the windows is active, the application cot
insert the typed character into the active document; if none
windows is active, it might choose to ignore the event.

Most applications can handle auto-key events the same way.
handle key-down events. However, you may want your appli
to ignore auto-key events that invoke commands you don't
continually repeated.

< HodgePodge: The only key events in HodgePodge are
keyboard equivalents to menu commands. TaskMaster ha
those events and returns the menu-selection information
HodgePodge, so HodgePodge itself needn’t respond to ke
events at all.

Window events

To coordinate the display of windows on the screen, the Wi _‘
See “Creating Windows” in Manager generates activate events and update events. Acti !
Chapter 4 for a discussion of events occur whenever an inactive window becomes active ol
window features. :
active window becomes inactive. Update events occur when 2
part of a window’s contents need to be drawn or redrawn, ust
as a result of the user’s opening, closing, activating, or movi
window. '

When the application receives an activate event for one of its
windows, the Window Manager will already have done all of 1
normal housekeeping associated with the event, such as i
highlighting or unhighlighting the window. The application
then take any further necessary action, like showing or hiding’
scroll bar, or highlighting or unhighlighting a selection.

On receiving an update event for one of its own windows, the

application is responsible for updating (redrawing) the contel
of the window. 4

“ HodgePodge: Activate and update events in HodgePodge
handled automatically through TaskMaster.

72 Chapter 3: Using the Toolbox (1)

For a full discussion of
TaskMaster, see “Window
Manager” in the Apple lIGS
Toolbox Reference.

Event codes are listed in
Table 32

Window regions are discussed
under “Creafing Windows” in
Chaopter 4.

Other events

Device-driver events are generated by device drivers in certain
situations; for example, an application might set up a driver to
report an event when its transmission of data is interrupted.

A desk accessory event occurs whenever the user enters the
special keystoke (Control-Apple-Escape) to invoke a classic desk
accessory. See “Supporting Other Desktop Features” in Chapter 5.

An application can define as many as four application-defined
events of its own and use them for any purpose.

Switch events are reserved for future use.

The Event Manager returns a null event if it has no other events to
report. Most applications ignore null events and continue through
the event loop.

Using TaskMaster

TaskMaster is a routine that can handle many standard events.
Technically, it is part of the Window Manager, and it handles
window-related events such as drawing, scrolling, activating, and
updating windows. It is discussed here because it replaces the
GetNextEvent call for an application, and it also does preliminary
event-handling for mouse-down and key-down events.

When your program calls TaskMaster instead of GetNextEvent, the
following happens:

1. TaskMaster calls GetNextEvent.

2. If no event is ready to be handled, TaskMaster returns zero.

3. If an event is ready, TaskMaster looks at it and tries to handle it.
4

. If Taskmaster can’t handle the event, it returns the Event
Manager event code to your application. The application can
handle the event as if the event were coming from GetNextEvent.

5. If TaskMaster can handle the event, it calls standard toolbox
functions to carry out the task. For example, if the user presses
the mouse button in an active window’s zoom region,
TaskMaster detects it and calls TrackZoom; it then calls
ZoomWindow if the user actually selects the zoom region; and
finally it returns no event.

Handling events 73

74

Chapter 3: Using the Toolbox (1)

When calling TaskMaster, you pass a pointer to a TaskMaste g
record, the extended task event record. The beginning of I
is the same as an event record, as described under “Event '_
and Masks,” earlier in this section. When TaskMaster calls
GetNextEvent, it passes the provided pointer, so the event re
part of that record is set by GetNextEvent. The record also in
a task mask, similar to the event mask; it tells TaskMaster whi
types of events to handle. ;

Sometimes TaskMaster can handle an event only up to a poit
user presses the mouse in the active window’s content region,
Master detects it, but won't be able to go any further, so it el
application that a mouse-down event occurred in the active w
dow’s content region, and lets the application decide what to
next. 1

Because it only partially handles some events, TaskMaster
generates its own set of “events” that a program’s main event
loop needs to respond to. Each type of TaskMaster event has.
task code, a numeric value that TaskMaster returns to the
application. Just as for the Event Manager events described e
in this section, there is a set of predefined constants for the
codes. Table 3-3 lists the codes and constants. The second ha
TaskTable in the assembly-language version of HodgePod‘
main event loop (in the file EVENT . ASM) is a code represents
of Table 3-3; C and Pascal HodgePodge, on the other hand, us
the predefined constants.

* Note: Many of these task codes are just the results returned |
the call FindWindow, which TaskMaster makes after calhng,
GetNextEvent. :

Table 3-3

TaskMaster task codes

Value Constant Meaning

16 wInDesk in the desktop area

17 wInMenuBar in the system menu bar

18 (undefined)

19 wInContent in a window’s content region

20 wInDrag in a window’s drag (title bar) region
21 wInGrow in a2 window’s grow (size box) regi
22 wInGoAway in a window’s go-away (close box) re
23 wInZoom in a window’s zoom (zoom box) re

24 wInInfo in a window’s information bar

25 wInSpecial in the special menu item bar
(predefined items in the Edit menu)

26 wInDeskItem in a desk accessory menu item on the
Apple menu

27 wInFrame in a window, but not in any of the

above parts of it
28 wInactMenu in an inactive menu item

$8xxx wInSysWindow in a system (desk-accessory) window

Together, Table 3-2 and Table 3-3 show that TaskMaster can return
to your application up to 25 or so events that your main event
loop may have to deal with. In most situations, though, TaskMaster
handles most of them automatically. HodgePodge, as we saw in
Chapter 2, responds only to task codes 17, 22, and 25
(wInMenuBar, wInGoAway, and wInSpecial).

You should use TaskMaster for at least two reasons:

0O It can help you get an application running as quickly as
possible, still taking advantage of the standard user interface.
TaskMaster represents one of the steps taken to remove the
most tedious user-interface chores from the application.

O TaskMaster will help assure upward compatiblity. New, as yet
unknown, features may be added to the Apple IIGS system in
the future. It may be possible to incorporate those features by
modifying TaskMaster without adversely affecting past
applications. In other words, your application may be able to
use new features without any modification on your part.

Drawing to the screen (and elsewhere)

Any time your desktop application needs to draw something, it uses
the Apple IIGS tool set QuickDraw II (and its extension, QuickDraw
II Auxiliary). QuickDraw II is an adaptation and extension of the
Macintosh toolbox component QuickDraw—it performs similar
operations but has been enhanced to support Apple IIGS color.

QuickDraw II allows you to perform graphic operations easily and
quickly. QuickDraw draws text in different fonts with styling
variations such as italics and boldface. It draws lines and shapes
of various sizes and patterns. It can draw items in a variety of
colors or in gray scales.

Drawing to the screen (and elsewhere) 75

The Print Manager is described
under "Communicating With Files
and Devices,” in Chapter 5,

76 Chapter 3: Using the Toolbox)

QuickDraw II can draw to the screen or to other parts of Ap
IIGS memory. In fact, printing a document with the Print Ma
involves using QuickDraw to “draw” your document into a
memory buffer used by the Print Manager.

 Note: For brevity, we'll use the terms QuickDraw and
QuickDraw II synonymously here. Unless otherwise explic
stated, QuickDraw means the Apple IIGS tool sets QuickDr:
and QuickDraw II Auxiliary, not the Macintosh version.

To get our bearings, we'll first consider where QuickDraw II
Then we'll briefy discuss how it draws, and finally look at wh

draws. The chapter ends with two examples that tie together.
several of the key ideas. ;

Where QuickDraw Il draws

0 Drawings are stored in Apple IIGS memory as pixel imag
ordered collections of bytes that represent rectangular arr
of pixels. Screen memory contains a special pixel image—
contents are displayed on the computer’s monitor. '

0 QuickDraw II draws its text and graphic objects on an ab. g
dimensional mathematical surface called the coordinate ¢
Points on a plane are much easier to visualize and manipt
than addresses in memory. Locations on the QuickDraw II
coordinate plane are related to pixel-image memory locat
specific location information supplied to QuickDraw.

O Quickdraw draws most objects within the context of graphi
ports. A port is a complete drawing environment and defi
among other things, a specific part of memory and a spec
rectangular area on the coordinate plane where drawing c:
occur. There can be many open ports at a time—some for
drawing to the screen, some for drawing to other parts of -
memory. Different ports’ drawing spaces may be separate
each other or they may overlap.

Important

0 QuickDraw II can be made to clip, or constrain its drawing, to
within limits of arbitrary size, shape, and location.

0 By manipulating two independent sets of coordinates (global
coordinates and local coordinates), an application can easily
control both what gets drawn inside a port’s drawing space and
where, on the screen or other pixel image, that drawing space
appears.

The coordinate plane

QuickDraw locates every action it takes in terms of coordinates on
a two-dimensional grid (Figure 3-2). The grid is QuickDraw’s
coordinate plane; coordinates on the plane are integers ranging
from —16K to +16K in both the X- and Y-directions. The point
(0,0, therefore, is in the middle of the grid. Note also that grid
values increase to the right and downward on the plane; this is
different from what you might be used to, but it is the same
direction and order in which video scan lines are drawn.

Distances on the grid are measured in pixels. Thus a 10 x 10
“square” on the coordinate plane is equivalent to a rectangle 10
pixels by 10 pixels on the display screen (which would not be a
square, of course, because Apple IIGS pixels are not square). Only
a very small portion of the coordinate plane can be displayed on
the screen at any one time—the plane is 32,000 pixels on a side,
whereas the screen can show a maximum of 640 pixels by 200
pixels at a time. Figure 3-2 shows the approximate size of the
screen (and user) compared to the coordinate plane.

QuickDraw must not be asked to draw outside the coordinate
plane. Commands to draw outside this space will produce
unpredictable results. They won’t generate errors.

% Macintosh programmers: This conceptual drawing space is not
the same size as that used by QuickDraw on the Macintosh. On
the Macintosh, the drawing space is 64K by 64K pixels centered
around 0,0, thus making the boundary coordinates -32K,-32k
and 32K,32K.

Drawing to the screen (and elsewhere) 77

-16,384

-16,384 e +1

+16,384

Figure 3-2
The QuickDraw Il coordinate plane

To understand how QuickDraw does its drawing, we need to ¢
how it represents some basic graphic elements. On the coordi
plane, grid lines are considered to be infinitely thin. A point i
defined as the intersection of two grid lines, so it also has no |
dimensions. Pixels, on the other hand, have a definite size; the
thought of as falling between the lines of the grid. The smalles
clement that QuickDraw can draw is a pixel, so if it were to dra
point at the location (3,3) on the coordinate plane, it must dra
single pixel. But which one? Four pixels touch the point. Quick
defines the pixel corresponding to each point on the plane as
pixel immediately below and to the right of the point. See Figy

78 Chapter 3: Using the Toolbox)

0.0 1 2 3 4

Grid lines

1
Poin’r(3,3)\2

) —
Pixel

4
Figure 3-3

Grid lines, points, and pixels on the coordinate plane

Pixel images and the coordinate plane

A pixel image is an area of memory that contains a graphic
image. The image is organized as a rectangular grid of pixels
occupying contiguous memory locations. Each pixel has a value
that determines what color in the graphic image is associated with
that pixel.

% Macintosh programmers: QuickDraw II's pixel images are
similar to Macintosh QuickDraw’s bit images. The major
difference is that a pixel is described by more than a single bit.

As described above, QuickDraw II draws to the coordinate plane.
However, the coordinate plane is really just an abstract concept.
Inside the Apple IIGS, drawing actually occurs by modifying pixel
images—that is, by modifying the contents of certain memory
locations. In particular, drawing something visible on the screen
involves modifying the contents of screen memory.

The data structure that ties the coordinate plane to memory is the
LoclInfo (for location information) record. The LocInfo record
tells QuickDraw where in memory to draw, how the pixel image in
that part of memory is arranged, and what its position on the
coordinate plane is. In Pascal, the LocInfo record definition looks
like this:

LocInfo = Record

portSCB : Word

ptrToPixImage : Ptr

width : Integer

boundsRect : Rect
end

Drawing to the screen (and elsewhere) 79

80

The scan-line control byte and
the differences between 640
mode and 320 mode are

discussed further under “Drawing

In Color,” later in this section,

Chapter 3; Using the Toolbox)

The record consists of four fields:

B portSCB (a replica of the scan-line control byte) tells
QuickDraw how many bits per pixel there are in this
image—two for 640 mode, four for 320 mode,

® ptrToPixImage (or image pointe? is the memory addre
the image. It points to the first byte of the pixel image, wh
contains the first (upper-leftmost) pixel.

® width (or image widih) specifies the width (in bytes, not p
of each line in the pixel image. QuickDraw needs to know
$0 it can tell where each new row in the image starts, (Th :
image width must be an even multiple of 8 bytes.)

® boundsRect (for boundary rectangle) is a rectangle that
the pixel image onto the coordinate plane. The upper-left
in the rectangle corresponds to the first pixel in the ima
lower-right corner of the rectangle describes the exten of
pixel image (as far as QuickDraw is concerned). See Figure

/—* Image width ﬁ

Image ;:>
pointer

Origin = (0,0) EEmsSEEsseEEESRESSSaaE
Boundary ———
rectangle NS RN
L Pixel image in memory—/
0 1byte (= 2 pixels in 640 mode)
Figure 3-4

Pixel image and boundary rectangle

GrafPort, port rectangle, and clipping

Most drawing takes place in conjunction with a data structure
called a GrafPort (for graphic port). Each GrafPort contains a
complete specification of a drawing environment, including the
location information (LocInfo record) described above. In
addition to the location information, a GrafPort contains three
other fields that restrict where drawing in a pixel image can take
place: the port rectangle, clipping region, and visible region.

The port rectangle (or portRect) is a rectangle on the
coordinate plane. Any drawing in a GrafPort occurs only inside
Windows are described further its portRect. When you look at a window on the screen in a
gr;’cégrtercllrechng Windows® in desktop application, its interior (everything but its frame)
' corresponds to a port rectangle.

The port rectangle can coincide with the boundary rectangle or it
can be different. You can think of it as a movable opening,
allowing access to all or part of the pixel image. As Figure 3-5
shows, QuickDraw can draw only where the boundary rectangle
and port rectangle overlap.

Boundary rectangle -

Port rectangle

Figure 3-5
Boundary rectangle/port rectangle intersection

Drawing to the screen (and elsewhere) 81

The origin of a rectangle, in
QuickDraw I, is its upper-left
corner.

82 Chapter 3: Using the Toolbox)

The clipping region (or clipRgn) is provided for an applical
use. When a GrafPort is opened or initialized, the clipping r¢
is set to the entire coordinate plane (effectively preventing 2
clipping from occuring). The program can use the clipRgn i
way it wants. Any drawing to a pixel image through a GrafPo
occurs only inside the clipping region.

The visible region (or visRgn) is normally maintained by the
Window Manager. An application can have multiple window:
the screen, each one associated with a GrafPort. Windows caj

overlap, and each port’s visible region represents the parts
window that are visible.

In summary, drawing occurs in a pixel image only in the
intersection of the boundary rectangle, port rectangle, clippl
region, and visible region. '

Global and local coordinate systems

Everything is positioned in QuickDraw’s universe in terms o
coordinates on the plane. However, if you think of multiple o
windows on the screen, you can see that there are at least two
different ways in which you might want to locate objects;:

0 You may want to specify where windows appear on the scr
(for example, when they are moved). ’

O You may want to specify where objects appear within wind

(for example, when scrolling), independently of where on “
screen the windows may be. "

* HodgePodge: Because TaskMaster takes care of all windowf
events related to tasks such as moving and scrolling,

HodgePodge itself doesn’t worry about coordinates at all
it draws a window.

The toolbox needs global coordinates whenever more than 0!
GrafPort share the same pixel map; the global coordinates tell
QuickDraw exactly where every port rectangle is compared to’
cvery other one. The global coordinate system for each Graf®t
is that in which the boundary rectangle for its pixel map has its
origin at (0,0) on the coordinate plane. For drawing to the screg
you can think of global coordinates as screen coordinates, wher
the upper-left corner of the screen is the point (0,0). '

However, each port also has its own local coordinate system. For
example, when drawing into a port it might be more convenient
to think in terms of distance from the port rectangle’s origin
rather than the boundary rectangle’s origin. By defining the port
rectangle as starting at (0,0), you can base all your drawing
commands on distance in from the left edge and down from the
top of the portRect.

That’s convenient for drawing in a window, but local coordinates
are more of a convenience than that. They aren’t constrained to a
value of (0,0) for the port rectangle origin—you can set them to
any coordinate-plane value. Why would you want to? Because of
the way drawing commands work.

Suppose you are using a window to display portions of a
document that is larger than the port rectangle in size—a fairly
common occurrence. You are using drawing commands that draw
the entire document, and you know that's no problem because the
drawing will be automatically clipped to the port rectangle. But
how do you control which part of the document shows in your
window? You do it by adjusting local coordinates.

All QuickDraw’s drawing commands are based on the current
port’s local coordinate system. So if location (0,0) in your
GrafPort’s local coordinates corresponds to the port rectangle’s
upper-left corner, any time you draw your document into that
port, its upper-left corner will be displayed. If you define your
local coordinates differently, different parts of your document will
appear in the window. Thus you can think of local coordinates as
document coordinates—the upper-left corner of the document
being viewed in the port has the value (0,0) in local coordinates.
See Figure 3-6.

Drawing to the screen (and elsewhere) 83

Port
rectangle

Size of
document
being drawn
into port

Pen location and other pen
characteristcs are described
next, under “How QuickDraw |l
Draws.”

84 Chapter 3: Using the Toolbox (1)

(
a. PortRect origin = (0,0)

0.0)

in local coordinates

L 25755006

| YR ——

©.0

(50,250)

b. PortRect orig
in local coor

Figure 3-6
Drawing different parts of a document by
changing local coordinates

K
0.0

Note: When the local coordinates of a GrafPort are chany
the coordinates of the GrafPort’'s boundary rectangle anc
visible region are similarly recalculated, so (as noted) the
will not change its relative position on the screen or in
to other open ports on the screen. ‘

However, when the local coordinates are changed the
GrafPort’s clipping region and pen location are not
changed—that is, they appear to shift right along with the
image that is being viewed iz the port. It makes sense to I
the pen, which is used to modify the image being viewed,
the clipping region, which is used to mask off parts of
image being viewed, “stick” to it.

How QuickDraw Il draws

How QuickDraw II draws any of its objects depends on the
drawing environment specified in the current GrafPort. Each
GrafPort record includes location and clipping information
(described above), information about the graphics pen
(described next), information about any text that will be drawn
(described under “...And Text Too,” later in this section), and
other information such as pen patterns to draw with.

The drawing pen

Each open port has its own drawing pen. By means of several
characteristics modifiable by the application, the pen controls
where and how drawing (of both text and graphics) occurs.

Pen location: The pen has a coordinate-plane location (in local
coordinates). The pen location is used for drawing lines and text
only—other shapes are drawn independently of pen location.

Pen size: The pen is a rectangle that can have almost any width
or height. Its default size is 1 x 1 (pixels). If either the width or
height is set to 0, the pen will not draw.

Pen pattern: The pen pattern is a repeating array (8 pixels by 8
pixels) that is used like ink in the pen. Wherever the pen draws,
the pen pattern is drawn in the image. The pattern is always
aligned with the coordinate plane so that adjacent areas of the
same pattern drawn at different times will blend in a continuous
manner.

Background pattern: The background pattern is an array similar
to the pen pattern. Erasing is the process of drawing with the
background pattern.

Drawing mask: The drawing mask is an 8-bit by 8-bit pattern that
is used to mask, or screen off, parts of the pattern as it is drawn.
Only those pixels in the pattern aligned with an on (=1) bit in the
mask are drawn. Figure 3-7 shows how a mask affects drawing with
a pattern.

Drawing to the screen (and elsewhere) 85

All eight pen modes (also called
transfer modes) are described
and diagrammed under
“QuickDraw II” in the Apple liGs
Toolbox Reference.

Repeated
8x8 pattern every 8 pixels

8x8
drawing mask

8x8 pattern
with mask applied

Figure 3-7
Drawing with pattern and mask

Note that drawing with a mask in which every bit has the value :
like drawing with no mask at all—all pen pixels are passed throl
to the image. Likewise, drawing with a mask that is all zeros is lik
not drawing at all—all pen pixels are blocked.

Pen mode: The pen mode specifies one of eight Boolean
operations (COPY, notCOPY, OR, notOR, XOR, notXOR, BIC a
notBIC) that determine how the pen pattern is to affect an
existing image. When the pen draws, QuickDraw II compares
pixels in the existing image with their corresponding pixels in
pattern, and then uses the pen mode to determine the value of
resulting pixels. For example, with a pen mode of COPY, the
existing pixels’ values are ignored—a solid black line is black
regardless of the image already on the plane. With a pen mode
notXOR, the bits in each pen pixel are inverted and then ‘
combined in an exclusive-OR operation with the bits in each
corresponding existing pixel. Figure 3-8 shows a rectangle draws
over an existing circle, in both COPY and notXOR mode. '

86 Chapter 3: Using the Toolbox (1)

QuickDraw’s shapes are
described next, under *What
QuickDraw Il Draws.”

COPY mode notXOR mode

Figure 3-8
How pen mode affects drawing

Basic drawing functions

QuickDraw draws lines with the current pen size, pen pattern,
drawing mask, and pen mode.

QuickDraw draws other shapes (rectangles, rounded-corner
rectangles, ovals, arcs, polygons, and regions) in five different
ways:

Frame: QuickDraw draws an outline of the shape, using the
current pen size, pen pattern, drawing mask, and pen mode.

Paint: QuickDraw fills the shape, using the current pen pattern,

drawing mask, and pen mode.

Erase: QuickDraw fills the shape, using the current background

pattern and drawing mask.

Invert: QuickDraw inverts the pixels in the shape, using the
drawing mask.

Fill: QuickDraw fills the shape, with a specified pattern and
using the drawing mask.

QuickDraw draws text as described under “...And Text Too,” later
in this section.

Drawing to the screen (and elsewhere)

87

88

Chapter 3: Using the Toolbox (1)

What QuickDraw Il draws

QuickDraw II can draw a number of graphic objects into a
image. It draws text characters in a variety of monospaced
proportional fonts, with styling variations that include italic
boldfacing, underlining, outlining, and shadowing. It dray ‘;
lines of any length, width, and pattern. It draws hollow or p
filled rectangles, circles, and polygons. It draws elliptical af
filled wedges, irregular shapes and collections of shapes. It
draws pictures—combinations of these simple shapes. Fig
summarizes them.

Lines Rectangles and Circles
rounded-corner and ovals
rectangles

Normal
51 ® yore
Italic

Underlined

Polygons Regions Text

Figure 3-9
What QuickDraw Il draws

Points and lines

A point is represented mathematically by its Y- and X- |
coordinates—two integers. A line is represented by its ends-
points, or four integers. Like a point, a line is infinitely thin.
drawing a line, QuickDraw II moves the upper-left corner of|
pen along the straight-line trajectory from the current pen
location to the destination location. The pen hangs below ai
the right of the trajectory, as illustrated in Figure 3-10.]

Starting
pen location \

)

Pen size and \
pattern \

)

N

+,_//

|
Destination location __/

The line as drawn

Figure 3-10
Drawing lines

Before drawing a line, you can use QuickDraw calls to set the
current pen location and other characteristics such as pen size,
mode, and pattern.

Important QuickDraw’s data structure that defines a point has the vertical
coordinate first: (y x) rather than (x.y).

Rectangles

A rectangle (Figure 3-11) is also represented by two points: its
upper-left and lower-right corners. The borders of a rectangle are
infinitely thin. Rectangles are fundamental to QuickDraw; there are
many functions for moving, sizing, and otherwise manipulating
rectangles.

Drawing to the screen (and elsewhere) 89

Oval width
Oval height

Important

0 1 2 3 4 5 6 1

The rectangle is

defined by the points 2
(1.2) and (7.6). It

encloses 24 pixels. 3

4

5

6

7

8
Figure 3-11
A rectangle

The pixels associated with a rectangle are only those within
rectangle’s bounding lines. Thus the pixels immediately bele
and to the right of the bottom and right-hand lines of the
rectangle are not part of it. ;

Rectangles may have square or rounded corners. The corn '
rounded-corner rectangles are sections of ovals (described
they are specified by an oval bheight and oval width.

The QuickDraw data structure that defines a rectangle has

coordinates in the following order: top, left, bottom, right. Thus
defining coordinates for the rectangle in Figure 3-11 are (1.27,
may seem strange, but it is consistent with the (y.x) ordering of
points. ;

Circles, ovals, arcs, and wedges

Ellipses and portions of ellipses form another class of shapg
drawn by QuickDraw II. An oval is an ellipse, and it is define
like a rectangle—the only difference is that QuickDraw is tol
draw the ellipse inscribed within the rectangle rather than tt
rectangle itself. If the enclosing rectangle is a square, the res
oval is a circle.]

 Pixel shape: Remember, Apple IIGS pixels are not square.
circle on the screen, or a true square, will have unequal
horizontal and vertical dimensions in terms of pixels.

Q0 Chapter 3: Using the Toolbox (1)

Start angle

Arc angle

SE R s 57

An arc is a portion of an oval, defined by the oval’s enclosing
rectangle and by two angles (the starting angle and the arc angle),
measured clockwise from vertical.

If an arc is painted, filled, inverted, or erased, it becomes a
wedge; its fill pattern extends to the center of the enclosing
rectangle, within the area defined by the lines bounding the arc
angle.

Polygons

A polygon is any sequence of connected lines. You define a
polygon by moving to the starting point of the polygon and
drawing lines from there to the next point, from that point to the
next, and so on.

Polygons are not treated in exactly the same manner as other
closed shapes such as rectangles. For example, when QuickDraw II
draws (frames) a polygon, it draws outside the actual boundary of
the polygon, because the line-drawing routines draw below and to
the right of the pen locations. When it paints, fills, inverts, or
erases a polygon, however, the fill pattern stays within the
boundary of the polygon. If the polygon’s ending point isn’t the
same as its starting point, QuickDraw adds a line between them to
complete the shape.

Regions

A region is another fundamental element of QuickDraw, one that
can be considerably more complex than a line or a rectangle. A
region can be thought of as a collection of shapes or lines (or
other regions), whose outline is one or more closed loops. Your
application can draw, erase, move, or manipulate regions just like
any other QuickDraw structures.

You can define regions by drawing lines, framing shapes,
manipulating existing regions, and equating regions to rectangles
or other regions.

Regions are particularly important to the Window Manager, which
must keep track of often irregularly shaped, noncontiguous
portions of windows in order to know when to activate the
windows or what parts of them to update.

Drawing to the screen (and elsewhere) 91

Pictures are used for transferring
data between applications, via
the Clipboard. See “Scrap
Manager” in the Apple lIGs
Toolbox Reference.

Text modeis similar to pen mode,
discussed earlier in this section.

92 Chapter 3: Using the Toolbox (1)

Pictures

A picture is a collection of any QuickDraw drawing commal
data structure consists of little more than the stored comm
QuickDraw plays the commands back when the pictute is
reconstructed with a DrawPicture call. A complex mechani
drawing produced from an Apple IIGS drafting program m
saved as a single QuickDraw II picture.

...And text too

QuickDraw II doesn’t draw graphic images only—it also doe
text drawing for desktop applications. As an application
programmer, you can easily control the placement, size, styl
font, and color of display text with QuickDraw calls.

Your program can provide QuickDraw II with text in a numf
formats:

m character: a single ASCII character at a time

m Pascal string: a length byte followed by a sequence of ASC
characters

m C string: a sequence of ASCII characters terminated by 2 &
byte i

m text block: an arbitrary number of ASCII characters in a s

However it receives the text, QuickDraw II draws it in the s2 m
way. It draws each character at the current pen location, wi
current font, using the current text mode, with the current
character style, and using the current foreground and
background colors. After drawing each character, QuickDraw:
updates the pen location for drawing the next one. :

Providing QuickDraw with various fonts and character styles
job of the Font Manager. The Font Manager is a tool set t
supports QuickDraw’s character-drawing ability by providing
application with different fonts and styled variations of fonts
you want to allow the user to choose from all of the fonts :
available when the application is run, or if you're developing
application that requires a specific font, the Font Manager can
help you.

Characters

To help understand just where text appears and how much space
it takes up, let’s define a few terms. Refer to Figure 3-12.

Text fonts are made up of individual characters. A character is
represented in memory as a rectangular array of bits, called a
character image, representing rows and columns of pixels. The on
(=1) bits are the foreground pixels; the off (=0) bits are the
background pixels.

Every character in a font has a base line. The base line is a
horizontal line, in the same position for every character in the
font. Any foreground pixels of a character image that lie below
the base line constitute the character’s descender (characters like
p and q have descenders). The ascent line is the horizontal line
just above the top row of a character (including any blanks); the
distance from the base line to the ascent line is the font’s ascent,
and is equal to the height of the tallest character in the font. The
descent line is the line just below the bottom row of the character
(including any blanks); the distance from the base line to the
descent line is the font’s descent, and is equal in size to the largest
descender in the font.

Each character’s origin is a point on the base line that is used to
position the character for drawing. This point need not touch any
foreground pixels of the character image. When the character is
drawn, it is placed in the destination location so that its character
origin coincides with the current pen location. For many letters,
the character origin is located on the left edge of the character
image; then, when the character is drawn, its leftmost foreground
pixels fall just to the right of the pen location.

The font height is the sum of the ascent and descent heights, and
it is the same for all characters in a font. The character width is
the number of pixels the pen position is to be advanced after the
character is drawn. It includes the width of the character itself and
any needed space between it and the next character to be drawn.

Font height, ascent, descent, character width, and leading (the
space between lines of text) are needed for calculating string
lengths and line spacings when you display text on the screen.

Drawing to the screen (and elsewhere) Q3

94

MoveTo(20,20);
SetBackColor (0)
SetForeColor(lS);
DrawString ('One Moment

Character width

|
Ascent C g

line

height

Base
line

Descent
line

Character Next character
origin origin

Figure 3-12

A character image

The basic commands necessary to draw characters on the screen
are quite simple. Recall from Chapter 2 how HodgePodge puts up
the “One moment please...” message when the program loads
tools:

{move pen to upper left of screen}
{background color = black}
{foreground color = white}

Please...'); {write the message}

Once the foreground and background colors are set, all that’s
needed to display a character string is to move the pen to the
desired location, and call the QuickDraw routine DrawString,

Fonts

Each collection of related characters is called a font. With the
font manipulation capabilities of the Font Manager, your Apple
IIGS applications can show sophisticated text display in a variety
of fonts, sizes, and styles.

The font strike: All the character images making up a font are
stored in memory as a font strike. A font strike is a long,
rectangular array of bits consisting of the character images of
every defined character in the font, placed sequentially in order
of increasing ASCII code. The character images in the font strike
abut each other; no blank columns are left between them,

Chapter 3: Using the Toolbox D]

Ihe family name of the Apple IIGS
system font (in ROM) is Shaston

Figure 3-13
Part of a font strike

A given font strike need not contain a character image for every
possible ASCII code. The font may leave some characters
undefined; these are called missing characters. Immediately
following the last defined character in the font strike is a character
known as the missing symbol, which is to be used in place of any
missing character. In many fonts the missing symbol is a hollow
rectangle; in the Apple I1IGS system font, it's a white-on-black
question mark. Whenever the QuickDraw II text-handling routines
encounter a missing character, they substitute the missing symbol
for the character.

Choosing a font: Fonts for the Apple IIGS are grouped into font
families. Individual fonts within families can have various
characteristics, as noted in the following list. When your
application requests a font, the Font Manager searches all
available fonts and chooses the one that most closely matches the
request, in these categories:

m Name: Every font family has a name. The name refers to both
plain-styled characters of all sizes, and any styled variations,
such as bold or italics.

® Number: Every font family has a number, also independent of
point size or style modifications. Every family number is
unique, and corresponds to a single family name. $0000
represents the system font.

Whenever an application requests a font whose family number
is not available, the Font Manager substitutes the system font.

m Size: An individual font has a size, described in points. A point
is a typesetting measure equal to about 1/72nd of an inch.

Drawing to the screen (and elsewhere) 95

The Font Manager can provide both real and scaled fonts. A
real font is one that actually exists on disk at a particular point
size. Conversely, a scaled font is one that was enlarged or
reduced by calculation from a font of a different size. The Font
Manager may scale a font from an existing size if the requested
size is not available. Real fonts generally have a better screen
appearance than scaled fonts.

m Style: An individual font also has a style (or combination of
styles). The presently defined styles are

Plain

Bold

ltalic

Underline

Outline

Shadow

There are two different ways to obtain styled variations of fonts,
First, the Font Manager will provide a styled font if one is
available—one whose characters are designed with (for
example) bold or italic styling. Second, QuickDraw II can style
a font—that is, it can produce a bold or italicized version of a
plain-styled font. In fact, it can produce any combination of the
defined styles.

O 0o o o o

% Note: Fonts that are already styled will not be further styled (in
the same manner) by QuickDraw II, regardless of the text
styling selected. For example, an italic font is not further
italicized if that option is selected on a style menu. However, it
could be underlined.

X3

* Underlining: Text cannot be underlined unless the font’s
characters have a descent value (distance between the base line
and descent line) of at least 2 pixels. The Apple IIGS system
font (Shaston 8) has a descent value of 1, and therfore cannot
be underlined.

o

Important The Font Manager looks for fonts in the subdirectory called FONTS/ in
the SYSTEM/ subdirectory on the system disk. This subdirectory must
contain all fonts (except the system font) that are to be available to
applications. See Appendix C. ’

Q6 Chapter 3: Using the Toolbox)

DoChooseFont is in the source file Your application can allow the user to select a font by calling the
FONT.PAS. Font Manager routine ChooseFont. That's what HodgePodge does
in its DoChooseFont subroutine, called from the routine DoMenu:

function DoChooseFont: Boolean;

var theFont : FontID;
dummy : Integer;
tmpPort : GrafPortPtr;
tmpPortRec: GrafPort;
famName : Str255;
begin

tmpPort := GetPort;
OpenPort (@tmpPortRec) ;

theFont := ChooseFont (desiredFont,0);

if LongInt (theFont) = O then
DoChooseFont := FALSE
else
begin
desiredFont := theFont;
dummy := GetFamInfo (dDesiredFont.famNum,
famName) ;
myReply.filename :=
concat (famName,
IntToString
(desiredFont.fontsize));
DoChooseFont := TRUE;
end;

ClosePort (@tmpPortRec) ;
SetPort (tmpPort) ;
end;

{begin DoChooseFont..}

{Save current port..}

{..and open new one, so that

the current port is not affected}
{Bring up a dialog prompting

the user to select a font}

{If the user cancels..}
{DoChooseFont unsuccessful}

{Update global variable DesiredFont}

{Get the font name from its number..}

{.and put the font name and size in..}

{..global variable myReply.filename}
{DoChooseFont completed successfully}
{end of IF user doesn't cancel}

{Close the temporary port..}
{..and restore the current port}
{End of DoChooseFont}

ShowFont is listed under The ShowFont subroutine in HodgePodge is an example of how

*Displaying Documents in Ports:
Two Examples,” later in this

to draw text strings in a specific font with QuickDraw. It is called

section. when a font window is first opened and also whenever it needs to

be redrawn.

Drawing to the screen (and elsewhere) 97

98

Chapter 3: Using the Toolbox (1)

Drawing in color

The video display hardware of the Apple 1IGS includes advanced
color capabilities. Although tool calls make it unneccessary for
you to manipulate the hardware directly, knowledge of a few
background concepts will help you understand the way QuickDraw
II manipulates the colors on the screen.

The Apple IIGS offers two Super Hi-Res graphics modes. Both
modes have 200 scan lines, but the scan lines differ in horizontal
resolution—one mode has 320 pixels (the color of each specified
by 4 bits), and the other has 640 pixels (the color of each specified
by 2 bits). In changing from 320 mode to 640 mode, the horizontal
resolution is doubled at the expense of dividing the color resolution
by four.

Both modes use a chunky pixel organization (in which the bits for
a given pixel are contained in adjacent bits within one byte), as
opposed to bit planes (in which adjacent bits in memory affect
adjacent pixels on the screen). Therefore the 4 bits of a pixel in
320 mode are in the same memory locations as the 4 bits of a
pair of adjacent 2-bit pixels in 640 mode.

Colors on the Apple 1IGS are determined from master color values,
which are mathematical combinations of the primary red, blue, and
green hues available on a color monitor. A master color value is a
2-byte number. The low-order nibble of the low-order byte, controls
the intensity of the color blue. The high-order nibble of the low-
order byte, controls the intensity of the color green. The low-order
nibble of the high-order byte, controls the intensity of the color red,
The high-order nibble of the high-order byte is not used. Figure 3-14
illustrates the format of a master color value.

Byte 1 Byte 0
Bit: (1514 13 12|11 wlols]7Te[s[als]2]17]0
Value: (not used) red green blue

Figure 3-14
Master color value format

A 3-digit hexadecimal number can describe each master color,
with one digit (§0-$F) for each primary color. Thus a master
color value of $000 denotes black, $FFF is white, $00F is the
brightest possible blue, $080 is a medium-dark green, and so on.
Because each primary color has 16 possible values, a total of 4096
colors are possible.

At any one time, the Apple IIGS can display only a small subset of
all possible colors. An application specifies its colors by
constructing one or more color tables, short lists of the available
colors for any one pixel.

Color tables and palettes

Applications cannot specify pixel colors directly by using master
color values. Pixels contain only 2 or 4 bits, and it takes 12 bits to
specify a master color value. That's why color tables are
necessary. A color table is a table of 16 2-byte entries. Each entry
in the table is a master color value; any of the 4096 possible color
values may appear in any position in the color table.

An application determines the color of a given pixel by
specifying an offset into the color table. The number of bits used
to describe a pixel limits how far into the table it can reach. The
colors available to the application, as specified in its color tables,
constitute its palette. See Figure 3-15.

Pixels in 320 mode are represented in memory by 4-bit integers.
For each pixel, that 4-bit value is used as an offset in a color table.
With 4 bits, there are 16 possible pixel values, so the palette in 320
mode is 16 colors—the entire color table.

Pixels in 640 mode are represented in memory by 2-bit integers.
With 2 bits, there are 4 possible pixel values to offset into the
color table, so the palette in 640 mode consists of only 4 colors.
That would seem to leave three-quarters of the color table unused
in 640 mode, and severely restrict the use of color, but it’s not
really so.

In the first place, each 4 adjacent pixels in 640 mode use 4
different parts of the same color table; a color table, then, consists
of four mini-palettes, which needn’t have the same sets of master
colors. Therefore, although each individual pixel in 640 mode can
have one of only four colors, groups of four pixels can have a
total of 16 colors from which to choose. How to use this ability to
create a large variety of colors is described under “Dithered
Colors in 640 Mode,” later in this section.

Drawing to the screen (and elsewhere) 99

Color Color

Table Table
5 1 pixel = 4 bits o [F' 1 pixel = 2 bifs
(] Mini-] Pixel vglue = 3
5 palette 3 5 < offset into table
<— (Maximum
S K S value = 3)
4 (4
S Mini- S
6 < Pixel value = palette 4 6
- offset into table
7 | 7
Palette
8 /8
9 Mini- 9
10 palette 1 10
1 | n
12 2
13 Mini- 13
14 palette 2 14
< (Maximum
K 15 value = 15) k 15
320 640
mode mode
Figure 3-15
Accessing the color table in 320- and 640 mode
An application may construct as many as 16 different color tables
to choose from. Each of the 200 scan lines in Super Hi-Res
graphics can use any one of the 16 tables. For each scan line, a
The scan line control byte is scan line control byte (SCB) decides which color table is
gzictgsf'dinuf?\%e; Trluee ”\C’;'geo active. The SCB also controls screen display mode (320 or 640),
Ha?d\zare Refe,e%%ecnd under interrupt mode (whether or not to generate an interrupt during
“QuickDraw II” in the Apple lics horizontal blanking), and fill mode (whether or not pixel

Toolbox Reference. values of zero can be used to fill areas of color in 320 mode).

Standard color palette (320 mode)

The standard palette (the default color table) for 320 mode is
shown in Table 3-4. In the table, offset means positon in the color
table, and value means master color value, the hexadecimal value
controlling the fundamental red-green-blue intensities.

100 Chapter 3: Using the Toolbox (1)

Table 3-4
Standard palette—320 mode

Offset Color Value
0 Black 000
1 Dark Gray 777
2 Brown 841
3 Purple 72C
4 Blue OOF
5 Dark Green 080
6 Orange F70
7 Red DOO
8 Beige FA9
9 Yellow FFO
10 Green OEO
11 Light Blue 4DF
12 Lilac DAF
13 Periwinkle Blue 78F
14 Light Gray ccCcCcC
15 White FFF

The standard palette was selected because of its flexibility and
appearance; we recommend that you use it unless you have a
specific need to change it.

Dithered colors in 640 mode

As explained above, only four colors are available for each pixel in
640 mode. But when small pixels of different colors are next to eacl
other on the screen, their colors blend. For example, a black pixel
next to a white pixel appears to the eye as a larger gray pixel. By
cleverly choosing the entries in the color table we can make more
colors appear on the screen. This process is called dithering.

At the same time, in order to preserve the maximum resolution for
displaying text, both black and white must be available for each
pixel. This leaves only two remaining colors per pixel to choose
from, which seems like a severe restriction. But with dithering, you
can have 640-mode resolution for text and still display 16 or more
colors, if you are willing to resort to a few simple tricks.

Drawing to the screen (and elsewhere) 101

Consider the following byte with four pixels in it:

Bit value 0i1]oi1Jol1]oiT]
Pixel number 1 2 3 4

Each pixel has the value 1, which is an index into the second p
in each of the color table’s minipalettes (as shown in Figure 3-1
So pixel 1's color is determined by entry 1 in minipalette 1, pix
color is determined by entry 1 in minipalette 2, and so on. If we
the standard 640-mode color table (shown in Table 3-5) then pi

can assume in 640 mode, meaning that you can obtain 16 colors
by this dithering method. To implement it, just make sure that !
pattern you use for drawing or filling consists of a repeating arra
of 4-bit (= 2-pixel) values.

Table 3-5
Standard palette—640 mode

Offset Color Value (minipalette offset)
0 Black 000 0
1 Blue OO0F 1
2 Yellow FFO 2
3 White FFF 3
4 Black 000 0
5 Red D00 1
6 Green OEO 2
7 White FFF 3
8 Black 000 0
9 Blue O0F 1
10 Yellow FFO 2
11 White FFF 3
12 Black 000 0
13 Red D00 1
14 Green 0EO 2
15 White FFF 3

02 Chapter 3: Using the Toolbox O]

% Black and white: Note that the entries in the minipalettes for
the standard 640-mode color table are set up so that black and
white appear in the same positions in each palette. This
arrangement provides pure black and white at full 640
resolution, allowing crisper text display.

Displaying documents in ports: two examples

Commonly you may want to have an application open up a port
and display, within its port rectangle, a portion of a previously
created drawing or text document. You might even want to allow
the user to scroll around within that document, showing different
parts of it in the port.

This is not as complicated as it sounds. We'll just give you a brief
idea here of two simple ways to approach it—two of the methods
used in HodgePodge. Please consult the Apple IIGS Toolbox
Reference for more details. See also “Creating Windows” in
Chapter 4 for more information on scrolling.

< Note: Ultimately, you are likely to want to let the user altera
part of a document while viewing it in a port, and be sure that
the changes made are reflected in updates to the document
itself. HodgePodge does not have that capability; you may want
to add it as a programming exercise.

Pixel images

The keys to displaying a portion of a pixel image in a GrafPort are
the QuickDraw (and QuickDraw Auxiliary) routines that copy
pixels from one region to another. One is CopyPixels; the one we
use here is PPToPort (for Paint-Pixels-to-Port). PPToPort transfers
pixels from a given source pixel image to the current GrafPort’s
pixel image (the destination pixel image). To use this method to
view a document you might try the following:

1. Define a LocInfo record that describes the offscreen pixel
image you wish to display.

2. Open an onscreen GrafPort; its boundary rectangle is the
screen image boundary rectangle. Make its port rectangle any
size you wish, up to full screen size. Now anything you draw into
that port will be visible on screen.

3. Set your port’s local coordinates, to control which portion of
the image you want to display first. To show the upper-left
corner of the image, set the port rectangle’s origin to (0,0).

Drawing to the screen (and elsewhere) 103

Paintlt is in the source file

PAINT.PAS.

procedure PaintIt

var

begin

srcLoc : LocInfo
srcRect: Rect;

HLock (pict) ;

with srcLoc do
begin

SetRect (srcRect, 0,0, 640,200) ;

portSCB

(pict: Handle); {begin PaintIt..}

’

$0080;

ptrToPixImage := pict”;
width 1=

SetRect (boundsRe

end;

PPToPort (srcloc,

srcRect,
0,

0,
srcCopy) ;

HUnLock (pict) ;

end;

104

Chapter 3: Using the Toolbox (1)

160;

ct,0,0,640,200) ; {boundary-rectangle coordinates}

4. Call PPtoPort to copy the offscreen image onto the onscreen:
rectangle. The call asks QuickDraw to draw the entire image, b
because drawing is automatically clipped to the port rectangle,
you only get the part you want.

HodgePodge uses PPtoPort to draw the contents of its picture
windows. Here is the routine that does the drawing (PaintIt,
called by the routine Paint) :

{a LocInfo record}
{a rectangle}

{Lock the image's memory block}
{Define the LocInfo fields:}

{set 640 mode}
{pointer to the image}
{row-width of image in bytes}

{rectangle to copy FROM}

{Copy pixels from this LocInfo..}
{..and this source rectangle..}

{.to location (0,0) in the current..}
{..GrafPort's local coordinates..}
{.with a pen mode of COPY}

{Unlock the image now that we're done}‘
{End of PaintIt}

Text documents

Many documents, such as text files, have no explicit pixel image
in memory that represents the contents of the file. If you want =
your application to permit displaying or scrolling through such a
document in a port, you wouldn’t transfer pixels from one image
to another—you would draw directly into the port you opened.

Nevertheless, the concept of local coordinates is still important
and is used identically. Instead of using an actual pixel image
somewhere in memory, you need to calculate a “virtual image” of

The pixel-based image of a the document. You need to know its exact size, in pixels, and be
document as seen in @ window s able to place it properly in relation to the port rectangle so that
commonly called the data area. . . s Th

. See “Creating Windows” in the part you want displayed is within the rectangle. Then you can
Chapter 4. set local coordinates accordingly and draw the document to the

port, knowing that it will be clipped appropriately.

% Note: Pascal HodgePodge calculates document height when it
creates a text window, but it simply assumes a particular width.
Assembly-language and C versions of HodgePodge, on the
other hand, calculate document width also, in the routine
FindMaxWidth. See Appendixes E and F.

HodgePodge calculates line height in pixels and locates all
drawing in relation to the document origin—point (0,0)0— when it
displays the contents of a font window using the routine
ShowFont is in the source file ShowFont. The routine first installs a font (loads it into memory),
FONT.PAS. then calculates line height, and then uses that information to draw
the text. ShowFont is called from the routine DispFontWindow.

procedure ShowFont (TheFontID: FontID;

IsMono: Boolean); {Begin ShowFont..}
var fontInfo : FontInfoRec; {a record to hold font information}
currHeight: Integer; {line height of selected font}
i,3 : Integer;
theCh : Integer;
currPt : Point;
fontStr : Str255; {string variable to hold characters}
begin
InstallFont (TheFontID, 0); {Load the font into memnory...}
GatFontInfo (fontInfo) ; {..and store its data in FontInfo}
- currHeight := fontInfo.ascent +
fontInfo.descent +
fontInfo.leading; {Calculate the font's line height}

i := GetFamInfo (TheFontID.famNum, fontStr); {Get the font's name..}

fontStr := concat (fontStr,' ',
IntToString
(TheFontID.fontsize)); {.make a title string with
font's name and size}

i := GetFontFlags; {Get current mono/prop. setting}
if IsMono then {If menu selection says "mono"...}
i := BitOr (i, $0001) {..set bottom bit = fixed width}

else (Otherwise:}
i := BitAnd (i, $0000); {Clear bottom bit = proportional}
SetFontFlags (i) {Store result in font flags}

Drawing to the screen (and elsewhere) 105

{Now draw the lines of text:}

MoveTo(S,currHeight); {Move pen to start of first line}
DrawString(fontStr); {Draw the title string}
MoveTo(S,currHeight*3); {Skip a line, move to start of next}
DrawString ({Draw second line}

'The quick brown fox Jjumps over the lazy dog.');
- MoveTo (5, currHeight *4) ;
DrawString ({Draw third line}
'She sells sea shells down by the sea shore.');

MoveTo(S,currHeight*S); {Now draw all characters in the font:}
for i := 0 to 7 do {For each of 7 lines...}
begin
GetPen (currPt) ; {starting at current pen location..}
MoveTo (5, currPt.v + currHeight) ; {..drop to start of next line}
theCh := i * 32; {..calculate starting character..}
for j :=1 to 32 do {For each of 32 chars. in the line..}
begin
fontStr(j] := chr (theCh) ; {put the character into fontStr}
Inc (theCh); {go to the next character}
end; {end filling fontStr for this line}
fontStr[0] := chr (32) ; {Now set the length byte to 32..}
DrawString(fontStr); {..and draw the character string}
end; {end of drawing the line}
end; {End of ShowFont}

106 Chapter 3: Usina the TanlkAay 713

Chapter 4

Using the Toolbox (ll)

107

The concepts of GrafPort and
port rectangle are covered in
Chapter 3.

108 Chapter 4: Using the Toolbox (1)

This chapter continues the discussion of the Apple IIGS Toolbox.
Starting up, handling events, and basic drawing to the screen were
covered in Chapter 3; here we look at tool sets that help you
create windows, dialog boxes, and alerts. Chapter 5 presents the
remaining tools.

Creating windows

A window is basically a port rectangle with a frame; when you
create a window you create a GrafPort, along with some
additional information that makes a window. When you draw into
a window, you are drawing into the port rectangle of the GrafPort
associated with that window. The Window Manager is the Apple
IIGS tool set that creates these “ports with frames,” keeps track of
their characteristics, and makes it easy for you to deal with the
fact that there may be multiple, movable, scrollable, overlapping
windows on the screen at any one time. ‘

Window basics

To begin to understand windows, let’s look at some basic
concepts, specifically:

O how windows relate to GrafPorts

O what data structures define a window’s features

O what types of window frames and controls are available
0

what window regions are, and how the content region of a
window relates to its data area

Windows and GrafPorts

IU's easy to use windows—a window is a port that your application
can draw into conveniently with QuickDraw II routines. When you
first create a window, the pixel image and boundary rectangle for
its GrafPort correspond to the entire screen (QuickDraw II's
default assignment), and the pen pattern and other characteristics -
are also the default values for a GrafPort. You can accept these
default characteristics unchanged, or you can easily change them
with QuickDraw II routines,

For examples of the use of these
fields in HodgePodge., see the
listings of Paint or

DispFontWindow under "Handle
Specific Events” in Chapter 2. See
also the listing of the routine
DoTheOpen, under “"Opening a
Window: An Example,” later in
this section.

But there is more to a window than the port in which the
application draws. The other part of a window is called the
window frame. It usually surrounds the window, and is not part of
the window’s GrafPort. You don’t draw into the window’s frame
area directly—the Window Manager takes care of that.

% Note: For drawing window frames, the Window Manager uses a
GrafPort that has the entire screen as its port rectangle; this
GrafPort is called the Window Manager port.

Window records and templates

The Window Manager keeps all the information it requires for its
operations on a particular window in a window record. The record
consists of the window’s GrafPort record plus other information
the Window Manager needs to manage windows. Application
access to record information is restricted to calls through the
Window Manager and directly to the GrafPort part of the window
record. As in the case of any toolbox records, accessing their
fields through calls instead of reading them directly, helps to
guarantee that your application will remain compatibile with
future toolbox revisions.

When you create a new window with the NewWindow call, you pass
the Window Manager a NewWindow parameter list, a template that
defines the details of the window to be created, including its size
and location and what controls it will have. The Window Manager
uses this information to construct the window’s record. Three
fields in the NewWindow parameter list are worth specific
mention:

O wFrame, a set of bit flags that controls, among other things,
whether the window is to have frame scroll bars. Simply by
setting bits in this field, HodgePodge specifies that its windows
are to have both horizontal and vertical scroll bars.

O wRefCon, which can have any contents an application wants.
HodgePodge uses this field to store a pointer to information
about the type of window (font or picture) being created.

O wContDefProc, which, if nonzero, contains a pointer to a
routine (definition procedure, or defProc) that draws the
contents of the window. HodgePodge stores pointers to the
routines Paint or DispFontWindow in this field.

Creating windows 109

Some of the standard window
parts are controls. Controls are
described in more detail in the
following section, “Putting
Controls in Windows.”

Clicking refers to pressing and
releasing the mouse button while
the mouse poinfer is stationary on
the screen.

Dragging refers to pressing

the mouse button to select
something and holding the button
down while moving the mouse.

110 Chapter 4: Using the Toolbox (II)

Window frames and controls

There are two kinds of predefined window frames, document and
alert. Figure 4-1 illustrates them. ‘

Figure 4-1
Window frames

The alert window is used by the Dialog Manager; see
“Constructing Dialog Boxes and Alerts,” later in this chapter. The
document window is what an application typically uses. Inside a
document window can be standard window parts, which include
the following;:

Document window frame Alert window frame

Title bar, a rectangle at the top of the window that displays the]
window’s title, may hold the close and zoom boxes, and may
be a drag region for moving the window.

Close box (go-away box), a small square in the title bar that
the user clicks on to remove the window from the screen.

Zoom box, a small square in the title bar that the user clicks on
to alternately make the window its maximum size or return it to
its previous size and position. 1

Right scroll bar, a rectangle on the right side of the window that
the user manipulates to scroll vertically through the data shown.
in the window.]

Bottom scroll bar, a rectangle at the bottom of the window that
the user manipulates to scroll horizontally through the data
shown in the window.

Size box, a small square at the lower-right corner of the
window that the user drags to change the size of the window.

Information bar, a rectangular area where the application can
display information that won't be affected by the scroll bars.

Color in an application should be
designed carefully. Please refer
to Human Interface Guidelines:
The Apple Desktop Interfacefor
suggestions.

It's possible to define your own
type of window, such as round or
hexagonal. See the Apple lIGS
Toolbox Referencefor more
Information.

Close box — =

Information bar ——+

These standard parts may be used in document windows only;

they may not be added to alert windows. They are illustrated in
Figure 4-2.

Title bar

|
r N

—— Zoom box
~

|E:> i

= % Window

!

[€«— Content ————>

— Right scroll bar

-/
—— Size box

<ol |]

AN R

|
Bottom scroll bar

Figure 4-2
Standard window controls

A document window may have any or all of the standard window
parts. The only restrictions are that if there is a close or zoom box,
there must also be a title bar, and if there is a size box, there must
also be a vertical scroll bar. Common sense suggests that there be
a zoom box if there is a size box, but this is not a requirement.

% Color: You can specify the colors of the frame and controls of
a window you create. Colors are selected from a color table.

See “Window Manager” in the Apple IIGS Toolbox Reference
for details.

You can use the standard window types, or you can create your
own window types. Some windows may be created indirectly for
you when you use other parts of the toolbox—for example, the
Dialog Manager creates a window to display an alert. Windows
created either directly or indirectly by an application are
collectively called application windows. There’s also a class of
windows called system windows; those are the windows in
which desk accessories are displayed.

Creating windows 111

Aregionis a graphic object
defined by QuickDraw II. See
"Drawing to the Screen” in
Chapter 3.

The routines Paintlt and ShowFont
in Chapter 3 show how
HodgePodge represents the
data areas of its windows.

How scrolling is accomplished is
described later in this section
under “Handling Window-
Related Events.”

112 Chapter 4: Using the Toolbox (II)

Content region and data area

A window is composed of regions. The window as a whole (the

structure region) is made up of the content region and the fram

region: ‘

0 The content region is bounded by the rectangle you specify |
when you create the window (that is, the port rectangle of the
window’s GrafPort). The content region is where your
application presents information to the user.

O The frame region is the rest of the window. It may include
several subregions that correspond to the locations of the
standard window parts described earlier. When the user
manipulates a certain control, the Window Manager sees it 2
an event occurring in a certain subregion. See “Handling
Window-Related Events,” later in this section.

The content region of a window is what the user “sees” within the
window. It commonly represents a larger area, containing more.
information than the screen can display at one time. The windoy
is then like a microfiche machine—what is seen at any one time
in its content region, like what is seen in a microfiche viewer,
might be only a small portion of the window’s entire data area, |
equivalent to the microfiche sheet. |

The data area is a pixel-based “picture” of whatever document i§
being displayed in the window. For a pixel image (suchasa
HodgePodge picture file), the data area is the pixel image itself. |
For a text document (such as a HodgePodge font window display.
the data area is a conceptual representation of what the documes
would look like if it were a pixel image. The document doesn’t
exist in that form anywhere; the appropriate parts of it are
calculated and drawn in the window’s GrafPort each time the
window is drawn or updated.

Scroll bars are the controls used to scroll the data area through
the content region of the window. The size box and zoom box ar¢
used to display more, or less, of the data area at one time. When
the window as a whole is moved to another location on the :
screen, the data area is moved with it, so the view in the content |
region remains the same. ’

A window’s plane is its front-to-
back position on the screen. in
relation to other windows.

Figure 4-3
A window displays part of its data area

Handling window-related events

The Window Manager’s principal function is to keep track of
overlapping windows. Your application can draw in any window
without running over onto windows in front of it. You can move
windows to different places on the screen, change their plane, or
change their size, all without concern for how the various windows
overlap. The Window Manager keeps track of any newly exposed
areas and provides a convenient mechanism for you to ensure
that they are properly redrawn.

There are two ways to handle user input in relation to windows.
You can poll the user with the Event Manager routine
GetNextEvent, or with the Window Manager routine TaskMaster,
which handles most events dealing with standard user interfaces.
See “Using TaskMaster” in Chapter 3.

Creating windows 113

Compare these results from
FindWindow with the TaskMaster
“task codes in Table 3-3.

114 Chapter 4: Using the Toolbox (II)

O The grow area corresponds to the size box in the window’s

If you are using GetNextEvent, you should call FindWindow even
time a mouse-down event occurs, to see if the mouse button was
pressed inside a window. The FindWindow call determines whic
region is affected, and returns the information to you. The ‘
following are the various subregions recognized by FindWindow,
and the standard actions to take in each case.

O The content region has already been described. If the mouse’
button is pressed in a window’s content region, call "
SelectWindow if the window is not the active window. Otherwi
handle the event according to your application.

O The drag area corresponds to the window’s title bar (except fi
the close and zoom boxes, if present). Dragging in this
subregion pulls an outline of the window across the screen,
moves the window to a new location, and makes it the active
window (if it isn’t already). :

If the mouse button is pressed in a window’s drag region, call’
DragWindow.

O The go-away area corresponds to the close box in the window
title bar. Clicking in this subregion closes the window. ,,
Depending on your application, the window may disappear
permanently or simply become hidden.

If the mouse button is pressed in the active window’s close box
call TrackGoAway. If TrackGoAway returns TRUE, call
CloseWindow, or HideWindow, perhaps after saving whatever
the user was working on inside the window. You may also want
to close any disk file associated with the closed window. :

O The zoom area corresponds to the zoom box in the window’s
title bar. Clicking in this subregion toggles between the current
position and size, to a maximum size and back again.

If the mouse button is pressed in the active window’s zoom
area, call TrackZoom. If TrackZoom returns TRUE, call
ZoomWindow.

lower-right corner. Dragging in this region pulls the lower-righ
corner of an outline of the window across the screen with the
window’s origin fixed, and then resizes the window when the
mouse button is released.

It the mouse button is pressed in the active window’s grow are
call GrowWindow. When the button is released, call
SizeWindow.

The visible regionis the portion of
awindow that is not offscreen or
hidden by other windows. It is one
of the fields in a GrafPort that clips
drawing commands. See
‘Drawing to the Screen” in
Chapter 3.

The update region is the portion of
a window that needs to be
redrawn. It may be a part

exposed by moving or closing
another window, or it may be a
new part of the data area

exposed during scrolling.

O The menu bar is not a2 window subregion, but a result returned
by FindWindow that means “not on the desktop.”

If the mouse button is pressed somewhere outside the desktop,
it is most likely in the system menu bar. Call MenuSelect.

s Inactive window: Clicking in any region (other than the drag
region) of an inactive window should have no effect other than
making it the active window. It is brought to the front and
highlighted to indicate that it is active.

% TaskMaster: If you are using TaskMaster, it calls FindWindow for
you. It also calls MenuSelect, DragWindow, TrackGoAway, or
other appropriate calls depending on the results of
FindWindow. In general, you needn’t handle any window-
related mouse events, except possibly in the content region of
an active window. TaskMaster may not know what you want
drawn in an active window.

Drawing or redrawing a window

When a window is drawn or redrawn, the window frame is drawn
first, followed by the window contents. The Window Manager
handles all frame drawing.

When a window’s contents need to be redrawn, the Window
Manager generates an update event that includes a pointer to the
affected window in the message field of the event record. Your
application should respond to update events as follows:

1. Call BeginUpdate. This procedure temporarily replaces the
visible region of the window’s GrafPort with the intersection of
the visible region and the update region. It then clears (resets
to zero size) the update region for that window.

2. Draw the window contents. Because of step 1, the redrawing is
automatically clipped, or limited, to the part of the visible
region that needs updating.

3. Call EndUpdate to restore the actual visible region.

% TaskMaster: If you use TaskMaster, this procedure is done for
you, as long as you provide TaskMaster with a routine that
draws your window’s contents (equivalent to step 2, above).

Creating windows 115

* HodgePodge: Although it uses TaskMaster and doesn't really.
need an update routine, HodgePodge has a short example of
an update routine in the code that creates one of its dialog
boxes. See the listing of ShowPleaseWait, under

“Constructing Dialogs and Alerts,” later in this chapter.

Making a window active

A number of Window Manager routines change the state of a
window from inactive to active or from active to inactive. For
each such change, the Window Manager generates an activate
event. When the Event Manager finds out from the Window

Manager that an activate event has been generated, it passes the
event on to the application through GetNextEvent.]

Activate events for dialog and alert windows are handled by the
Dialog Manager, so your application doesn’t have to bother with
them. In response to activate events for windows created directly
by your application, you might take actions such as the following

O Inactivate controls in inactive windows, and activate controls
active windows. {

O In a window that contains text being edited, remove the ;
highlighting or blinking cursor from the text when the window:
becomes inactive, and restore it when the window becomes
active.

O Enable or disable a menu or certain menu items as appropriat
to match what the user can do when windows become active o
inactive.

% TaskMaster: If you use TaskMaster, highlighting of standard
windows and controls is handled for you. Enabling and
disabling of menu items is not.

% HodgePodge: To keep menu highlighting in agreement with
activate events, HodgePodge calls its subroutine CheckFront}
each time through the event loop. i

116 Chapter 4: Using the Toolbox (II)

Local coordinates are discussed
under “Drawing to the Screen” in
Chapter 3.

Your application determines how
many pixels are needed to shift
the Image. See “Putting Controls
In Windows,” later in this chapter.

Scrolling

Scrolling is the process by which the user can bring different parts
of a document (data area) into view in a window. To accomplish
scrolling, the user manipulates scroll bars, standard window
controls managed by the Control Manager. An application (or
TaskMaster) responds to user manipulation of scroll bars by:

1. Updating the appearance of the scroll bars to reflect the
change in position of the data area. This step is described
under “Putting Controls in Windows,” later in this chapter.

2. Showing a new part of the document in the window. The
application (or TaskMaster) does this by shifting the image in
the window, then changing the window’s local coordinates and
redrawing the parts of the data area brought into view. This step
is described below.

% TaskMaster: If your application uses TaskMaster, it can have
TaskMaster-controlled scroll bars (frame scroll bars) in its
windows. In that case the application need have no scrolling
routines at all. The following applies only if your application
creates and manipulates its own scroll brars.

% HodgePodge: Because it calls TaskMaster, HodgePodge has no
scrolling procedure.

Consider a pixel image, part of which is displayed in a window,
such as the dollar bill in Figures 3-5 and 3-6. Let’s say that the
window presently shows George Washington’s face (Figure 4-4),
and the user wants to scroll the image to bring into view the
circular Federal Reserve seal to the left of Washington. With the
mouse, the user activates the left-facing arrow on the bottom
scroll bar. When your application determines that there has been
a mouse-down event in that part of the scroll bar, it should
respond as follows:

1. Call the QuickDraw routine ScrollRect and tell it to move all
the pixels in the content area of the window a certain number
of pixels to the right. George shifts a bit to the right. The way
ScrollRect works, any pixels moved off the right edge of the
window are lost, and extra pixels added to the left edge of the
image are blank (colored with the background pattern).

2. Your onscreen image has been shifted, but QuickDraw hasn'’t
automatically filled in the new part of the image that has come
into view. However, ScrollRect returns information to you that
tells you exactly what part of your window needs redrawing. Call
InvalRgn to add that newly exposed area to the window’s
update region.

Creating windows 117

3. Call BeginUpdate.

4. Call your routine that draws window contents. What that rou
should do is:

a. Set the local origin to its scrolled value: what it was the last
time the window’s contents were drawn PLUS the (negative |
value of the) number of pixels that ScrollRect shifted the
image.

b. Draw the window’s contents (perhaps by calling PPToPort
The image is properly shifted and clipped so that just the
needed part is drawn. There’s the seal!

¢. Set the local origin back to (0,0).
5. Call EndUpdate.

See the toolbox reference for If you put the above steps into a control action procedure, they
Z’gtr'ig?g‘;coe’:jmgc”””g a control will be called repeatedly as long as the user holds the mouse
' button down with the pointer in the scroll bar. The image will

scroll continuously.

Alternatively, if continuous scrolling is unnecessary, you can

ignore steps 3 through 5. The InvalRgn call causes the Window
Manager to generate an update event for exactly that part of the
window, and the next time through the event loop, your regular
update routine redraws the window. The redrawing won’t happen,
though, until the user releases the mouse button.

118 Chapter 4: Using the Toolbox (1)

a. Part of a document displayed

in a GrafPort

—

ED STATES OF AMERIC:
N L 25755(

WASHINGT!

vvvvvv

b. Application scrolls image to
the right. Pixels moving off right
edge are lost; new area filled
with background pixels.

THE UNITED STATES OFAMIERI[C

HISHOTE sLeam Tenoen.
Fon ALCORS BUBLIC AND P

'@

| 25755006

PP

ATE

727" L 25755

c. Application updates the new
area scrolled info view by shifting
coordinates and redrawing.

Figure 4-4
Scrolling a pixel image in a window

Creating windows

119

Important

The sequence of subroutine calls
described In this section is
diagrammed in Appendix D.

DoOpenltem is in the source file
MENU.PAS.

procedure DoOpenItem;

begin

if windex < LastWind then

if OpenWindow then
AddtoMenu

else

else
ManyWindDialog;

end;

120 Chapter 4: Using the Toolbox (1)

When a window is created, the Window Manager assigns ifs port
rectangle origin a value of (0.0) in local coordinates. Whenever |t
redraws the window frame, the Window Manager requires the orig
to have that same value.

Therefore, every time you draw your window’s contents you shou d
(1) set the origin to whatever is appropriate, (2) draw the contents,
and then (3) restore the origin to (0,0). 4

Opening a window: an example

The following example from HodgePodge shows the steps ‘
involved in allocating the memory for, creating, and drawing the
initial contents of a window. Remember that in HodgePodge thee
are two types of window: one type displays picture files and the
other displays lines of text using a particular font.

The sequence starts when the user chooses Open from the File
menu or Show Font from the Font menu. In either case execution
passes from DoMenu to the routine DoOpenItem. DoOpenItemis
very short:

{begin DoOpenlItem..}

{If there's room for another window..}
{call OpenWindow. If it opens OK..}
{.add its name to the Windows menu}

{If 16 windows already open..}
{put up a dialog and disallow open}
{End of DoOpenItem}

Note that DoOpenItem calls both OpenWindow (to open the
window) and AddToMenu (to add the window’s name to the
Windows menu). AddToMenu is described under “Making and
Modifying Menus” in Chapter 5. If 16 windows are already open
HodgePodge does not allow another to be opened.

OpenWindow is in the source file
WINDOW.PAS.

function OpenWindow: Boolean;
begin
OpenWindow := FALSE;

i1f (LoWord (Event.wmTaskData =FontItem)

begin
1f DoChooseFont then
1f DoTheOpen then
OpenWindow := TRUE
end
else
begin
if AskUser then
1f DoTheOpen then
OpenWindow := TRUE
end;

end;

DoTheOpen is in the source file
WINDOW.PAS.

The complete format for the
NewWindow parameter list is
given under “Window Manager”
inthe Apple lics Toolbox
Reference

function DoTheOpen :

var theWindow

theMenuStr : Str255;
ourFontInfo :

Boolean;

: GrafPortPtr;
myDataHandle: WindDataH;

FontInfoRec;

OpenWindow determines which type of window is to be opened,
and prompts the user for the necessary information (picture
filename or font characteristics). It then calls the routine
DoTheOpen, which actually opens the window. OpenWindow looks
like this:

{begin OpenWindow...}

{initial value of function = FALSE}

then {if it is a font window..}

{..and if the user doesn't.cancel..}
{..and if the window opens OK..}
{OpenWindow completes successfully}

{if it is a picture window..}

{..and if the user doesn't cancel..}
{..and if the window opens OK..}
{OpenWindow completes successfully}

{End of OpenWindow}

DoChooseFont was described earlier in this chapter. AskUser is
described in Chapter 5, under “Communicating With Files and
Devices.”

Once it has all the information it needs, OpenWindow calls
DoTheOpen to open the window. DoTheOpen looks like a long
and complex routine, but that's partly because it is two routines in
one; it handles two types of windows. It also does a lot of
assignment and initialization that your programs may not need at
this point. We'll break its description into chunks to make it easier
to follow.

DoTheOpen starts by allocating memory for the window data
record (a structure defined by HodgePodge), and putting some
initial values into the NewWindow parameter list, a toolbox-
defined structure that is a required input to the NewWindow call.

{begin DoTheOpen...}

{a pointer to our window}

{a handle to our own window-data
record--defined in GLOBALS.PAS}
{window's title for menu display}

{to hold font information}

Creating windows 121

begin

DoTheOpen := FALSE;
myDataHandle := WindDataH (
NewHandle (sizeof (WindDataRec),
myMemoryID,
attrLocked+tattrFixed,
Ptr(0))):;

1f isToolError then

Exit;

with myWind do

begin

paramLength := sizeof (ParamList);
wFrameBits = SDDAO;
wRefCon = LongInt (myDataHandle) ;
SetRect (wZoom, 0,26,520,190);
wColor := NIL;

wYOrigin = 0;

wXOrigin = 0;

wDataH := 188;
wDataW := 640;
wMaxH := 200;

wMaxW = 640;
wScrollVer = 4;
wScrollHor = 16;
wPageVer = 40;

wPageHor := 160;
wInfoRefCon = 0;
wInfoHeight = 0;
wFrameDefProc:= NIL;
wInfoDefProc := NIL;
wPlane = -1;

wStorage := NIL;

end;

theMenuStr := concat ('==',

myReply.filename,
l\Nl,

IntToString(
FirstWindItem+wIndex),
'\0.");

with myDataHandle”* do

begin
name
menuStr :
menulD
end;

myReply.filename;
theMenuStr;
:= FirstWindItem+wIndex;

122 Chapter 4: Using the Toolbox (1)

{initial value of function = FALSE}

{get a handle to our record by..}
{..requesting memory with these..}

{attributes: size, User ID,}
{locked and fixed,}
{anywhere}

{terminate if memory unavailable} :
{myWind is a window parameter block, }
{..required input to NewWindow call}
{Initialize the window's features:}
{total size of list}

{this specifies scroll bars, etc.}
{handle to our window data record}
{window size & postion when zoomed}
{no colors for this window}

{y-coord. of port rect origin}
{x-coord. of port rect origin}
{document height}

{document width}

{max. window height to grow}

{max. window width to grow}

{amt. to scroll if v. arrow clicked)
{amt. to scroll if h. arrow clicked)
{amt. to scroll if v. page clicked)
{amt. to scroll if h. page clicked)
{no info. bar for this window}

{no info bar for this window}

{no special frame-drawing routine}
{no special info-bar content routine}
{make this window frontmost}

{let Window Mgr allocate the memory}

{Make a title for the..}

{.window to appear in..}

{.theWindows menu.}
{In the window-data record..}

{..fill in the name field}
{..fi1l in the menu title field}

After this initial allocation, DoTheOpen sets up the window to
display either text or a picture. It inserts into the NewWindow
parameter list a pointer to the procedure that draws the window’s
interior, and sets the remaining fields in the window-data record.

if LoWord (Event .wmTaskData) = FontItem then

begin
myWind.wContDefProc := @DispFontWindow;
with myDataHandle”” do
begin
flag = 1;
theFont := DesiredFont;
isMono := isMonoFont;
end;
InstallFont (desiredFont, 0);
GetFontInfo (ourFontInfo);
myWind.wDataH := 15*% (ourFontInfo.ascent+
ourFontInfo.descent) ;
end

else
begin
myWind.wContDefProc := @Paint;
with myDataHandle”” do

begin
flag := 0;
pict := picHndl;
end;
end;

{if it is a font window..}

{DispFontWindow will draw contents}

{1 means it's a font window}
{store present font ID in theFont}
{store present setting of isMonoFont}

{load the desired font into memory}
{.get its characteristics..}

{..and calculate document height--}
{15 = 2 + no. of lines in document}
{end of IF it's a font window}

{But if it's a picture window..}
{Paint will draw contents}

{0 means it's a picture window}
{store handle to desired picture..}

{..(determined by AskUser)}
{end of IF it's a picture window}

Now DoTheOpen determines where on the screen the window is to
appear. Each newly-opened window is offset down and to the right
from the previously opened window. Recall from SetUpWindows
(Chapter 2) that ISizPos is the initial position and size of a

window.

with myWind do
begin
wTitle := @myDataHandle””.name;
SetRect (wPosition,
wXoffset + iSizPos.hl,
wYoffset + iSizPos.vl,
wXoffset + iSizPos.h2,
wYoffset + iSizPos.v2);
end;

wXoffset := wXoffset + 20;

wYoffset := wYoffset + 12;

if wYoffset > 120 then
wYoffset := 12;

{In the window-data record..}

{set window title to name field}
{Add the window dimensions to the...}
{..current X- and Y- offsets}

{end of setting record fields}

{Then increment offsets..}
{.to set position of next window}

{ (after 10 windows make another row) }

Creating windows 123

Finally, now that everything is all set up, DoTheOpen creates
window itself. It uses the NewWindow call, passing to NewWind
the parameter list that DoTheOpen just filled in. You can see fr
the following code that opening a window is quite simple and
short. It is the preparation and initialization that makes the
routine seem long and complicated.

theWindow := NewWindow (myWind) ; {Open the window--NewWindow
returns a pointer to it}

SetPort (theWindow) ; {Make the window the active port}

SatOriginMask(SFFFE,theWindow); {Adjust window origins to make
dithered colors come out right}

InitCursor; {Go back to the arrow cursor}

DoTheOpen := TRUE; {DoTheOpen completes successfully}

end; {End of DoTheOpen}

Putting controls in windows

A control is an object on the IIGS screen with which the user, |
using the mouse, can cause instant action with graphic results or,
change settings to modify a future action. Controls are
fundamental to the concepts behind the Human Interface
Guidelines; they provide a simple, intuitive interface, permitting
the user to affect the course of an application. If well-designed, |
they reinforce the feelings of user control, friendliness, and '
consistency that mark a good desktop application.

The Control Manager is the part of the Apple 1IGS Toolbox that ,'
helps you create and manipulate controls. The Control Manager.

Controls may be of various types, each with its own characteristic
appearance on the screen and responses to the mouse. Each
individual control has its own specific properties—such as its
location, size, and setting—but controls of the same type behave .
in the same general way. 1

Types of controls

Certain standard types of controls are predefined for you. Your
application can easily use these standard types, or define its own 1
custom controls. Predefined controls perform a number of ;
functions:

124 Chapter 4: Using the Toolbox (1)

s Buttons cause an immediate or continuous action when clicked
or pressed with the mouse. They typically appear on the screen
as rounded-corner rectangles with a title centered inside.

Check boxes retain and display a setting, either checked (on)
or unchecked (off); clicking with the mouse reverses the setting.
On the screen, a check box appears as a small square with a
title to the right of it; the box is either filled in with an X
(checked) or empty (unchecked). Check boxes are frequently
used to control or modify some future action, instead of
causing an immediate action of their own. More than one box
may be checked at any one time.

Radio buttons also retain and display an on-or-off setting.
They’re organized into families; only one button in a family
should be on at a time. Clicking any button on should turn off
all the others in the family, like the buttons on a car radio. The
radio button that’s on is filled with a small black circle.

Dials display a quantitative setting or value, typically in some
pseudo-analog form such as the position of a sliding switch, the
reading on a thermometer scale, or the angle of a needle on a
gauge. The setting may be displayed numerically as well.

The control’s moving part that displays the current setting is
called the indicator. The user may be able to change a dial’s
setting by dragging its indicator with the mouse, or the dial
may simply display a value not under the user’s direct control
(such as the amount of free space remaining on a disk).

The standard controls and a few other typical controls are
illustrated in Figure 4-5.

Button1

Button 2

X Check box 1 L[liuls
X Check box 2

[Check box 3

O Radio button1
@ Radio button 2
O Radio button 3

Figure 4-5
Standard and typical controls

Putting controls in windows 125

126

Chapter 4: Using the Toolbox (II)

Scroll bars

Scroll bars are predefined dials. Selecting the arrows in a scroll
bar scrolls data a line at a time (or an analogous number of pix
in the horizontal direction); selecting the paging regions scrolls
data a page at a time; and dragging the thumb to any position
within the scrolling area locates the window equivalently within
the data area. Although each of these components may seem (0
behave like individual controls, they are all parts of a single
control, the scroll-bar type of dial. You can define other dials 0
any shape or complexity if your application needs them.

% Note: For scrolling, what constitutes a page and what constitul
a line are definable by your application.

Figure 4-6 shows the parts of the vertical and horizontal scroll ba

Up arrow

Page-up region

Thumb

Down arrow —
|

Figure 4-6
Parts of the scroll bars

Scroll bars are proportional—that is, they show the relationship
between the total amount of data and the amount viewed (and
where the view is in the data). As Figure 4-7 shows, the thumbis ¢
the same ratio to the scrolling area (the total distance between
arrows) as the content region is to the data area.]

When the user clicks in a scroll bar, the Control Manager returns
to your application a part code, telling it what part of the scroll
bar the event occurred in. Depending on whether it is in an arrow,
paging region, or thumb, your application probably should scroll
the document by a different amount. Once you know how much
the view should be scrolled, you can recalculate the scroll bar
values to keep the proportions as illustrated in Figure 4-7. Then,
call SetCtlvalue to redraw the scroll bar with the thumb in the
proper new position.

& Note: Part codes are returned for all types of controls, but they
are most significant for complex controls such as scroll bars.

With the SetCtlParams call, you can store in a scroll bar’s record

the current sizes of your document’s data area and content region
(window size). Then you can easily calculate their proportions for
setting scroll bar values after scrolling or resizing.

Data Area

Content region

- D

Figure 4-7
Relation of scroll bars to data area

Putting controls in windows 127

Highlighting can mean different
things in different instances, but it
often consists of inverting an
object—that is, changing all its
black pixels to white, and vice
versa .

Eve controls and highlighting

If the user presses the mouse button when the cursor is over a
control, the control is usually highlighted; see Figure 4-8. It's
also possible for just part of a control to be highlighted: for
example, if the user presses the mouse button when the pointer s
inside an arrow in a scroll bar, the arrow, not the whole scroll bar,
becomes highlighted.

A control may be active or inactive. Active controls respond to
the user’s mouse actions; inactive controls don’t, A control should
be made inactive when it has no meaning or effect in the current
context, such as an Open button when no document has been
sclected to open, or a scroll bar when there’s currently nothing to
scroll to. An inactive control is shown in some special way,
depending on its control type. Figure 4-8 illustrates some active
and inactive controls,

L Button | [Button | | Button]
q Check box (] Check box L. Cheek bay
QX Radio button O Radio button (> Radio button

=N)
[]
Active (high lighted) Active Inactive

Figure 4-8
Active controls and Inactive controls

The title and outline of 2 button, check box, or radio button are
dimmed automatically when the control s made inactive. Figure
4-8 shows two different appearances that an inactive scroll bar can
take.

You can make a control inactive by setting its value to a particular
number. You can also render a control inactive by, making it
invisible. Invisible controls are inactive in the sense that they
can’t be selected.

128 Chapter 4: Using the Toolbox an

Using controls

Controls and windows

Every control belongs to a window: when the control is displayed,
it appears within that window’s content region; when manipulated
with the mouse, it acts on that window. All coordinates pertaining
to the control (such as those describing its location) are given in
the window’s local coordinate system. Even the state of the
control can be tied to the state of the window. A bit in the
window’s record can be set so the controls in the window will be
considered inactive if the the window is inactive. See “Window
Manager” in the Apple IIGS Toolbox Reference.

% Frame scroll bars: Frame scroll bars (manipulated by
TaskMaster) work the same as other controls, but are part of a
window’s frame region rather than its content region.

Controls and events

When GetNextEvent reports that an update event has occurred for 2
window, your application should call DrawControls to redraw the
window’s controls as part of the process of updating the window.

% TaskMaster: If you're using TaskMaster, you needn’t redraw
controls that are part of the window frame—TaskMaster takes
care of it for you.

When GetNextEvent reports a mouse-down event for a window
that contains controls, do this:

1. Call FindWindow to determine which part of which window the
cursor was in when the user pressed the mouse button. If it was
in the content region of the active window, continue with step 2.

2. Call FindControl to find out where the event occurred.

3. If FindControl indicates that the event occurred in an active
control, call TrackControl to handle user interaction with the
control. TrackControl handles the highlighting of the control
and determines whether the mouse is still in the control when
the mouse button is released. The routine also handles the
dragging of the thumb in-a scroll bar and responds to presses
or clicks in the other parts of a scroll bar.

Putting controls in windows 129

4. If TrackControl confirms that a valid control was selected, do.
whatever is appropriate as a response. (If no control was
selected, then of course no action is necessary).

The application’s exact response to mouse activity in a control
that retains a setting depends upon the current setting of the
control. For example, when a check box or radio button is clicke
you'll make a Control Manager call to change the setting and
draw or clear the mark inside the control.

* TaskMaster: If your application calls TaskMaster, the above
procedure is handled automatically for frame scroll bars in |
standard windows. Only if you have other controls will you
need a control-drawing routine.

< HodgePodge: Because it uses only window-frame controls, and
because it calls TaskMaster, HodgePodge has no specific '
routine to manipulate or draw controls.

Defining your own controls

In addition to predefined controls, you can also define your own
custom controls. Perhaps you need a three-way selector switch, a.
memory-space indicator that looks like a thermometer, a thrustes

To define your own type of control, you place a control definitios
procedure in your application. The Control Manager stores the
address of the procedure in the ctlProc field of the control recos
when you create the control with 2 NewControl routine. Later,
when the Control Manager needs to perform a type-dependent
action on the control, it calls the control definition procedure.
See the Apple IIGS Toolbox Reference for details.

Manipulating lists of selectable items

If your program displays a list of available fonts, files, telephone
numbers, icons, or other items in a window, it may put them in
lists, as defined by the Apple IIGS Toolbox. A list is a vertical
arrangement of similar items on the screen, with a scroll bar to |
the right. Each item in the list is selectable, meaning it can be
highlighted individually, with a mouse click or other action.

130 Chapter 4: Using the Toolbox n

The List Manager is the Apple IIGS tool set that creates, manipu-
lates and supports lists. It relieves you (the programmer) of much
of the housekeeping involved with building and maintaining
complicated lists of items the user may select from. Lists created
by the List Manager are custom controls, called list controls; that’s
why we mention the List Manager here, under the Control
Manager.

You create a list as a Jist record, with a specific format. You may
use the List Manager to sort the list, if desired, and then to create
the list control. Once the list control is drawn on the screen, the
user can select individual items or a range of items from the list.
How your application handles those selections is, of course, up to
you.

Constructing dialog boxes and alerts

Two of the most useful and versatile means of commmunicating
with your application’s user are provided by dialog boxes and
alerts. The Dialog Manager provides these capabilities in a way
consistent with the Apple Human Interface Guidelines.

The Dialog Manager is a sophisticated window- and control-
manipulation tool set. It automatically performs many functions
your application would otherwise have to manage explicitly
through Event Manager, QuickDraw II, Window Manager, LineEdit,
and Control Manager calls.

What are dialog boxes?

Your application typically puts a dialog box on the screen when it
needs more information from the user in order to carry out a
command. As shown in Figure 4-9, a dialog box resembles a form
on which the user checks boxes and fills in blanks.

Constructing dialog boxes and alerts 131

132

ﬁrint the document

@®81/2" x 11" paper

O 81/2" x 14" paper

BJStop printing after each page
Title: [Annual report]

Figure 4-9
A modal dialog box

By convention, a dialog box appears slightly below the menu bar
is somewhat narrower than the screen, and is centered between
the left and right edges of the screen. It may contain any of the
following:

O informative or instructional text

O rectangles in which text may be entered (initially blank or
containing default text that can be edited)

O controls of any kind
O graphics (icons or QuickDraw II pictures)
O anything else your application wants

The user provides the necessary information in the dialog box,
for example by entering text or clicking a check box. There’s
usually a button labeled OK to tell the application to accept the
information provided and perform the command, and a button
labeled Cancel to cancel the command as though it had never
been given (retracting all actions since its invocation). Some
dialog boxes may use a more descriptive word than OK; for
simplicity, we'll refer to the button as the OK button. There may
even be more than one button that will perform the command,
each in a different way.

Chapter 4: Using the Toolbox an

Modal or modeless

Most dialog boxes require the user to respond before doing
anything else. Clicking a button to perform or cancel the command
makes the box go away; clicking outside the dialog box only causes a
beep from the speaker. This type of box is called a modal dialog
box because it puts the user in the state (or mode) of being able to
work only inside the dialog box. Figure 4-9 is an example of how a
modal dialog box might look; note that it has no close box.

One of the buttons in a modal dialog box may be boldly outlined; it
is called the OK button (whatever text it may contain). Pressing the
Return key has the same effect as clicking the OK button; it should
initiate the preferred (or safest) action in the current situation. If
there’s no boldly outlined button, pressing the Return key has no
effect. A Cancel button, if present, closes the dialog box and cancels
the effects of all work done while the box was open.

Other dialog boxes do not require the user to respond before
doing anything else. They are called modeless dialog boxes. The
user can work in a document window on the desktop between
clicking buttons in a modeless dialog box. Modeless dialog boxes
can be set up to respond to the standard editing commands in
the Edit menu. Clicking a button in a modeless dialog box does
not make the box go away; it stays on the desktop so that the user
can perform the command again.

As shown in Figure 4-10, a modeless dialog box typically looks like
a document window. It can be moved, made inactive and active
again, or closed like any document window. When you’re finished
with the command and want the box to go away, you can click its
close box, or you can choose Close from the File menu if the
dialog box is the active window.

i

O0=—= (hange =—":

Find text: [Guide Lines |

Change to: [Guide lines |

[Chunge neﬂ fChunge All]

Figure 4-10
A modeless dialog box

Constructing dialog boxes and alerts 133

Update routines are described
under "Creating Windows,”
earlier in this chapter

ShowPleaseWait and
HidePleaseWait are in the source
file DIALOG.PAS.

procedure ShowPleaseWait;

var r : Rect;
origPort : GrafPortPtr;
msgWindPtr: GrafPortPtr;
begin
origPort := GatPort;
msgWindPtr :=

GetNawModalDialog(@PlsWtTemp); {..created in InitGlobals}

SatRect(r,70,19,640,200);
NewDItem (
mngindPtr,lSOZ,r,lS,

@'Please wait while we set things up.', {..displaying this string..}

0,0,Pointer (0)) ;
BeginUpdate (msgWindPtr) ;
DrawDialog (msgWindPtr) ;
EndUpdate (msgWindPtr) ;
end,;

procedure HidePleaseWait;

begin
CloseDialog (msgWindPtr) ;
SetPort (origPort) ;
end;

134 Chapter 4: Using the Toolbox an

Some dialog boxes may in fact require no response at all. For
example, while an application is performing a time-consumi
process, it can display a dialog box that contains only a mess;
telling what it’s doing; then, when the process is complete,
application can simply remove the dialog box. HodgePodge
this with the ShowPleaseWait and HidePleaseWait routi
called up during tool initialization. ShowPleaseWait also
demonstrates how to bring up a dialog box and show it

immediately, without even waiting for an update event to triggt

its display. It does this by having its own little update routine: :

{begin ShowPleaseWait..}

{rectangle to display dialog in}
{common variable with HidePleaseWait
{common variable with HidePleaseWait}

{Save the current GrafPort} :
{Open the dialog, with the template..}

{Define rectangle dimensions}
{Create an item for the dialog:}
{..with these parameters..}

{..and with these other parameters}
{Treat this like an update...}
{.manually draw the dialog..}
{..and end the update-handling}
{End of ShowPleaseWait}

{begin HidePleaseWait..}

{Remove dialog from the screen}
{Restore the original GrafPort}
{End of HidePleaseWait}

If you want to write a custom alerf
sound procedure, see
*Miscellaneous Tool Set” and
*Sound Tool Set” in the Apple lIGS
Toolbox Reference.

Figure 4-11 shows what the dialog box created by
ShowPleaseWait looks like. It is a message dialog box because it
requires no response from the user, and disappears on its own
when no longer needed.

Please wait while we set things up.

Figure 4-11
HodgePodge message dialog box

Alerts

With alerts, your applications have a standardized way to report
errors or give warnings. An alert box is similar to a modal dialog
box, but appears only when something has gone wrong or must be
brought to the user’s attention. The alert box is usually placed
slightly farther below the menu bar than a dialog box. To help the
user who isn’t sure how to proceed when an alert box appears, the
preferred button to use in the current situation is doubly outlined
so that it stands out from the other buttons in the alert box. The
outlined button is the alert box’s default button; if the user presses
the Return key, the effect is the same as clicking this button.

There are three standard kinds of alerts—Stop, Note, and
Caution—each indicated by a particular icon in the upper-left
corner of the alert box. Figure 4-12 illustrates a Stop alert. You can
put anything you like in the upper-left corner of an alert, including
blank space.

The alert mechanism also provides another type of signal: sound
from the speaker. The application can base its response on the
number of consecutive times an alert occurs; the first time, it
might simply beep, and thereafter it may present an alert box.
The sound isn’t limited to a single beep but may be any sequence
of tones, and may occur éither alone or along with an alert box.
As an error is repeated, there can also be a change in which
button is the default button (perhaps from OK to CanceD). You
can specify different responses for up to four occurrences (stages)
of the same alert.

Constructing dialog boxes and dlerts 135

HodgePodge’s main error handler, CheckDiskError, is an ;
example of a routine that puts up a Stop alert (Figure 4-12). The.
éxact message displayed depends on the particular error that
occurred. CheckDiskError is listed and described under “B
Handling” in Appendix D. Some of its features are described
under “Item Lists,” later in this section.

@ Disk Error $002B occurred at $19.

Figure 4-12
HodgePodge Stop alert

Dialog and alert windows

A dialog box appears in a dialog window. When you call a Dialo,
Manager routine to create a dialog, you supply the same kind of
information as when you create a window with a Window Manag
routine. You can manipulate a modeless dialog window with
Window Manager or QuickDraw routines, just like any other ;
window—showing it hiding it, moving it, or changing its size and
plane, for example. If you want clipping to occur, you can set the.
dialog box GrafPort’s clipping region with QuickDraw calls. ‘

An alert box appears in an alert window. You don’t have the sam
flexibility in defining and manipulating an alert window, however,
The Dialog Manager chooses the window definition procedure, s
that all alert windows have a standard appearance and behavior.
The size and location of the box are supplied as part of the 1
definition. You don’t specify the alert window’s plane; it always |
comes up in front of all other windows, Because an alert box
requires the user to respond before doing anything else, and the;
response makes the box go away, the application doesn’t
manipulate the alert window:.

136 Chapter 4: Using the Toolbox (1))

Item ID’s are discussed in this
section, under “ltem Lists.”

Ifanitemis enabled, the Dialog
Manager notifies the application
whenever the user selects the
ifem.

Dialog records

To create a dialog, you pass information to the Dialog Manager,
with which it creates a dialog record. The dialog record contains
the window record for the dialog window, a handle to the dialog’s
item list, and some additional fields. The Dialog Manager creates
the dialog window by calling the Window Manager.

The Dialog Manager passes to your application a pointer to the
dialog port, which you use thereafter to refer to the dialog in
Dialog Manager routines or even in Window Manager or
QuickDraw II routines. The dialog pointer is equivalent to the
window pointer for the dialog box. It is not a pointer to the dialog
record or even to the window record. It is a pointer to the
GrafPort record only.

You can do all the necessary operations on a dialog without
accessing the fields of the dialog record directly. To get or change
information about an item in a dialog, you pass the dialog pointer
and the item ID to a Dialog Manager routine. You'll rarely access
information directly through the handle to the item.

Items

A dialog box or alert is a window with items. To create a dialog
box or an alert, the Dialog Manager needs to know what items the
window contains. It also needs to know the following information
for each item:

O The item type. This includes not only whether the item is a
standard control, editable text, or other type, but also whether
it is enabled.

0O A display rectangle, which determines the location of the item
within the dialog or alert box.

O An item ID number uniquely identifying the item in the dialog.
All subsequent Dialog Manager calls referring to that item will
need its ID number.

O Other information specific to certain types of items, such as the
item’s title, its initial value, its colors, its orientation, and
whether it is visible or invisible.

Constfructing dialog boxes and alerts 137

ltem type

Only a few types of items normally appear in dialog boxes and
alerts; Figure 4-13 shows most of them. Item types are specified b
predefined constants or combinations of constants. See “Dialog
Manager” in the Apple 1IGS Toolbox Reference for more details.

lcon Static text Button

Lail, p .

=7 Print the document
®81/2" x 11" paper C K]
O 81/2" x 14" paper

Check box / £ Stop printing after each page

Radio button

Choose file
to print: Mydocument
] Calc.Sheet

Figymaie

User-defined control

Scroll bar

Title: |Annual report

User-defined dialog item

Progress of printing B

Figure 4-13
Dialog item types

An editable text item (predefined constant = editLine) initially
may be empty or it may have default text. Text entry and editing is
handled by the LineEdit Tool Set, described later in this section, |

If the predefined constant itemDisable is specified for an item,
the Dialog Manager ignores events involving that jtem. For ;
cxample, if you want to prevent the user temporarily from
manipulating an item, you can disable it

Important Some dialog items are also controls. Disabling an item is not quite -
the same as making a confrol inactive with the Control Manager

You can make an item invisible if you want. This technique can be
uselul, for example, if your application needs to display a number
of similar dialog boxes with one item missing or different in some -
of them,]

138 Chapter 4; Using the Toolbox an

The view rectangle and other
aspects of Linekdit are described
under “LineEdit Tool Set” in the
Apple lIGS Toolbox Reference.

Display rectangle
Each item in the item list is displayed within its display rectangle:

O For standard controls, scroll bars and user controls, the display
rectangle becomes the control’s enclosing rectangle.

O For an editable text item, it becomes LineEdit’s view rectangle.
The text is clipped (not drawn) wherever it extends beyond the
rectangle. In addition, the Dialog Manager uses QuickDraw II to
draw a bordering rectangle outside the display rectangle.

O Static text items are displayed in generally the same way as
editable text items, except that a rectangle isn’t drawn outside
the display rectangle. Also, there are three different formats for
static text.

0O Icons are aligned with the display rectangle’s origin.

®,
*

.

Note: Clicking anywhere within the display rectangle is
considered a click in that item. If display rectangles overlap, a
click in the overlapping area is considered a click in whichever
item comes first in the item list.

item ID

Each item in an item list is identified by an item ID, a unique
number within the list. By convention, the OK button in an alert’s
item list should have an ID of 1 and the Cancel button should
have an ID of 2. The Dialog Manager provides predefined
constants equal to the item ID for OK and Cancel, as follows:

ok = 1
cancel = 2

In a modal dialog’s item list, the item whose ID is 1 is assumed to
be the dialog’s default button (unless specified otherwise); if the
user presses the Return key, the Dialog Manager normally returns
the ID of the default button, just as when that item is actually
clicked.

To conform with the Apple Human Interface Guidelines, the
Dialog Manager automatically outlines the default button in bold,
unless there is no default button (that is, no button item with ID

D.

< Note: If you don’t want a default button, do not create any item
with an ID of 1.

Constructing dialog boxes and alerts 139

MakeATemplate is in the source

file DIALOG.PAS.

procedure MakeATemplate (TheTemplate:

AlertTempPtr;
TheStr: StringPtr); {begin MakeATemplate..}
var currentIteml: ItemTemplate; {toolbox-defined structure}
currentItem2: ItemTemplate;
begin
with TheTemplate” do {First define alert box:}
begin
SetRect (atBoundsRect,120,30,520,80); {bounding rectangle for alert}
atAlertID := 1500;
atStagel := $80;
atStage2 = $80; {at each stage, make alert..}
atStage3 = $80; {..visible but silent}
atStaged = $80;
atIteml := QcurrentIteml; {ptr to first item's template}
atItem2 := @QcurrentItem2; {ptr to 2nd item's template}
atItem3 := NIL; {terminates item list}
end; {end of defining box template}
with currentIteml do {Now define item 1:}
begin
itemID = 1; {item #1 = default item}
SetRect (itemRect, 320,25,0,0); {display rectangle}
itemType := 10; {it's a buttton item}
itemDescr := Q'OK'; {text in button}
itemValue := 0; {initial value = 0}
itemFlag = 0; {=default style}
itemColor := NIL; {no color}
end; {end of item 1}
with currentItem2 do {Now define item 2:}
begin
itemID = 2;
SetRect (itemRect,72,11,639,199); {display rectangle}
itemType := 15 + $8000; {disabled static text}
itemDescr := Pointer (TheStr); {the string passed to this routine}
itemValue := 0; {no initial value}
itemFlag := 0; {default style}
itemColor := NIL; {no color}
end; {end of item 2}
end; {End of MakeATemplate}

140 Chapter 4: Using the Toolbox (II)

Example

MakeATemplate is a routine called by CheckDiskError
(described earlier and listed in Appendix D) in order to fill in th
dialog record and the item list for the HodgePodge stop alert
shown in Figure 4-12. MakeATemplate describes the basic alert
box, including what is to happen at each stage, and defines two
items: an OK button for the user to click, and a static text item
contains the error message.

The desk scrap is described
under “Supporting Other Desktop
Features” in Chapter 5.

Using dialogs

In most cases, you probably won’t have to make any changes to
the dialogs from the way they’re defined at their creation.
However, there are calls to modify items, move controls, or
change text. If you want the font in your dialog and alert windows
to be something other than the system font, call SetDAFont to
change the font.

To handle events in a modal dialog, call the routine ModalDialog
after putting up the dialog box. If your application includes any
modeless dialog boxes, they’re a bit more complex to handle;
part of your event-handling will include determining whether
events need to be handled as part of the dialog box. You can
support the use of the standard cut, copy, paste, and delete editing
commands in a2 modeless dialog box.

You can substitute text in static text items with text that you specify
in the ParamText routine. This means, for example, that a
document name supplied by the user can appear in an error
message.

Editing text with LineEdit

To provide simple text-editing capabilities needed for dialog
boxes and other general purposes, the Apple IIGS Toolbox
includes the LineEdit Tool Set. The routines in LineEdit provide
basic text-editing capabilities that follow the Apple Human
Interface Guidelines. These capabilities include

inserting new text
deleting characters that are backspaced over

O

o

O translating mouse activity or arrow keys into text selection
O deleting selected text and possibly inserting it elsewhere
]

copying selected text without deleting it

LineEdit uses inverse highlighting to show the current text
selection, or a blinking vertical bar to show the insertion point.
LineEdit places cut or copied text into the LineEdit
scrap—different from the desk scrap.

Constructing dialog boxes and alerts 141

DoAboutitem is
DIALOG.PAS.

142 Chapter 4: Using the Toolbox (11

in the source file

LineEdit is not a complete text editor. It does not support

U more than 256 characters per line (except when using
LETextBox or LETextBox2)

O fully justified text; that is, text aligned with both the left and
right margins (except when using LETextBox2)

automatic word wrap (except when using LETextBox2)
scrolling

fonts that kern characters

0O 0 o o

using LETextBox2)

0 “intelligent” cut and paste (adjusting spaces between words
during cutting and pasting)

O tabs

The Dialog Manager automatically handles editing of text in
dialog boxes by making calls to LineEdit. If you wish to use

LineEdit yourself in other situations, see “LineEdit Tool Set” in
Apple IIGS Toolbox Reference.

The routine starts out by accessing and allocating space for the 1
Apple icon we want to display in the box. It then defines an OK

button for the user to click. Finally, it draws the text items in the
box.

procedure DoAboutItem; {begin DoAboutItem..}

var aboutDlog : GrafPortPtr; {pointer to this dialog}
r : Rect;
itemHit : Integer; {item selected by user}
appleIconP: Ptr; {pointer and handle to the Apple..}
appleIconH: Handle; {..icon created in InitGlobals}
begin
SetRect (r,146,20,495,192); {= rectangle the dialog appears in}
aboutDlog := NewModalDialog(r, TRUE,O) ; {Open the dialog: in rectangle r,
visible, no reference value}
SetRect (r,270,153,0,0); {Define a display rectangle and..}
NewDItem (aboutDlog, 1, r,ButtonItem, {.make a dialog item for it:..}
Q'CK',0,0,NIL); {.the OK button}
SetRect (r,20,135,0,0); {Define another display rectangle..}
appleIconP := @Applelcon;
appleIconH := @ApplelconP; {..get a handle to the Apple icon..}

NewDItem(aboutDlog, 3, r,
iconltemt+itemDisable,
ApplelconH,0,0,NIL); {make it a disabled icon item}

{For the rest of the text, simply
write it directly in the port,
rather than creating dialog items}

SetPort (aboutDlog); {make sure this is the active port}
SetForeColor (0); {foreground color = black}
SetBackColor (15); {background color = white}

MoveTo (40,17); {move the pen to starting position..}
SetTextFace (8) ; { (change to outline text)}
DrawString

(' HodgePodge') ; {Draw the first line..}
SetTextFace (0); { (go back to plain text)}

MoveTo (40,27); {Move to next line and continue..}
DrawString

(' A potpourri of routines that');
MoveTo (40,37);
DrawString

(' demonstrate many features of');
MoveTo (40,47);
DrawString

(' the Apple IIGS Tools.');
MoveTo (40,67);
DrawString

(' By the Apple IIGS Development Team');
MoveTo (36,77);
DrawString

('Translated to TML Pascal by TML Systems');

Constructing dialog boxes and dlerts 143

MoveTo (40,87);
DrawString

(' Copyright Apple Computer, Inc.');
MoveTo (40,117);

Drawstring

(' 1986-87, A1l rights reserved') ;
MoveTo (40,127) ;

Drawstring
(' v4.0', 23—Sep—87');

itemHit := ModalDialog(NIL); {call ModalDialog; it returns when

any enabled item ig selected}

CloseDialog(aboutDlog); {Close the Dialog when OK clicked}

end; {End of DoAboutItem}

Figure 4-14 shows what the dialog box constructed by this rout
looks like (the assembly-language and C versions have slightly §
different text from the Pascal example).

HodglelPoldge
A potpourri of routines that
demonstrate many features of
the Apple 1165 Tools.

By the Apple 1168 Development Team
Translated to THL Pascal by THL Systems
Copyright Apple Computer, Inc.

1986-87, A1l rights reseryed
vi.0 23-8ep-87

- o

Figure 4-14
The “About HodgePodge...” dialog box

144 Chapter 4: Using the Toolbox ()

Chapter 5

Using the Toolbox (lll)

145

This chapter concludes our brief discussion of the Apple 1IGS
Toolbox. The tool sets described here can help you accomplis
these tasks: E

O creating menus

O supporting other desktop features such as desk accessories 2
- cut-and-paste ;

accessing external devices and files
generating and playing sounds
performing mathematical computations

O 0 o o

controlling parts of the Apple IIGS operating environment

Making and modifying menus

Pull-down menus are an important part of the desktop
environment. Menus allow users to examine all choices available
to them at any time without being forced to choose one of them,
and without having to remember command words or special ke

The Menu Manager is the Apple IIGS tool set that supports men $
of the style recommended by the Apple Human Interface]
Guidelines. The user displays a menu by positioning the cursor in
the menu bar and pressing the mouse button over a menu title.

The Menu Manager highlights the selected title (by redrawing it
inverted colors) and “pulls down” the menu below it. As long as
the mouse button is held down, the menu is displayed. Dragging
through the menu causes each of its menu items (commands) to
be highlighted in turn. If the mouse button is released over an
item, that item is considered chosen. The item blinks briefly to
confirm the choice, and the menu disappears. '

When the user chooses an item, the Menu Manager tells the ‘
application which item was chosen, and the application performs
the corresponding action. When the application completes the
action, it removes the highlighting from the menu title, indicating
to the user that the operation is complete,

If the user moves the cursor out of the menu with the mouse
button held down, the menu remains visible, though no menu :
items are highlighted. If the mouse button is released outside the
menu, no choice is made; the menu just disappears and the
application takes no action. The user can always look at a menu
without causing any changes in the document or on the screen.

146 Chapter 5: Usina the Toolhay 111

All applications should support
desk accessories. See
“Supporting Other Desktop
Features,” later in this chapter.

Window menu bars are
described under “Menu
Manager” in the Apple IIGS
Toolbox Reference.

Menu bars

A menu bar is an outlined rectangle that holds the titles of all the
menus associated with the bar. A menu in the bar may be enabled
or temporarily disabled. A disabled menu can still be pulled
down, but its title and all the items in it are dimmed and not
selectable.

The principal menu bar is the system menu bar; see Figure 5-1.
There can only be one system menu bar on the screen at one
time. The system menu bar always appears at the top of the Apple
IIGS screen; nothing but the cursor ever appears in front of it. In
applications that support desk accessories, the first (leftmost)
menu should be the desk accessory menu (also called Apple
menu, the menu whose title is a colored apple symbol). The desk
accessory menu contains the names of all available desk
accessories, and usually the name of a dialog box that gives brief
information about the application itself. When the user chooses a
desk accessory from the menu, the title of the menu belonging to
the desk accessory may appear in the menu bar for as long as the
accessory is active, or the entire menu bar may be replaced by
menus belonging to the desk accessory.

Titles of enabled menus Titles of disabled menus

N o !

Menubar{| ® File Edit View Special Lsls

Figure 5-1
The system menu bar

In addition to the system menu bar, your application can have
various window menu bars. These can appear anywhere on the
screen and in windows. Window menu bars are provided to give
you more menu space, particularly because of the limited
resolution in 320 mode. Window menu bars should be used
moderately, if at all.

Making and modifying menus 147

Menu appearance

A standard menu consists of a number of menu items listec

A shadowed rectangle is one that vertically inside a shadowed rectangle. Items on a menu :
appears fo have a thin shadow the text of a command, a solid color, or just a line dividing
just below and to the right of it, f choi M 1 in front of ~
making it appear to stand out groups of choices. Menus always appear in front of everythi

slightly from the desktop. except the cursor. Figure 5-2 shows a menu with six items,
including two dividing lines.

€ File QXN View Special (oler

Keyboard equivalent: ndo al
tems ot of
Dividing line \\\\Copu al
Mark Paste aV

NClear

vihow Cliphoard
Disabled item

Figure 5-2

A standard menu

Figure 5-2 shows some of the typical variations in an item'’s
appearance:

O A mark may appear on the left side of the item, to denot
status of the item or of the mode it controls. :

O An Apple logo followed by a capital letter may appear t
right of the item, to show that the item may be invoked fi
the keyboard (that is, it has a keyboard equivaleni). If the
presses the letter key while holding down the Apple key, i
menu item is invoked just as if it had been chosen from
menu.

O Each item’s text may have its own text style.

O An item can be dimmed to indicate that it is disabled an
can’t be chosen.

O A dividing line is a separate menu item. Dividing lines s 5
always be disabled.

148 Chapter 5: Using the Toolbox (lI1)

See "Menu Manager” in the
Apple licS Toolbox Referencefor
information on how to create
custom menus.

If a standard menu doesn’t suit your needs—for example, if you
want more graphics, or perhaps a nonlinear text arrangement—
you can write a custom menu definition procedure. The Menu
Manager will call that procedure when it draws the menu. The
custom menu can be visibly very different, and yet respond to
your application’s Menu Manager calls just like a standard menu.
The items in the menu can have any appearance.

Keyboard equivalents

Your program can set up a keyboard equivalent for any of its
menu commands in order to allow the user to invoke the
command from the keyboard. The character you specify for a
keyboard equivalent should be a letter that the user can type in
either uppercase or lowercase. For example, typing either “G” or
“g” while holding down the Apple key invokes the command
whose equivalent is “Q G.”

< Note: For consistency among applications, you should specify
the letter in uppercase in the menu.

Constructing menus

It’s simple to construct your application’s menus. All you need to
do is define the text of the menu titles and items, and assign ID
numbers to each menu title and item.

% Note: The menu bar does not allow for a large number of
menus or menus with lengthy titles. If you're having trouble
fitting your menus into the menu bar, you should review their
organization and titles. Furthermore, if your program is likely to
be translated into other languages, remember that translated
menu titles may take up more space.

Menu lines and item lines

You create menus by constructing a list of menu and item lines,
and passing a pointer to that list to the NewMenu routine.
NewMenu parses the menu and item lines, allocates enough
memory for necessary records, and initializes those records. The
menu and item lines must remain in memory as long as the menu
exists.

Making and modifying menus 149

For a complete discussion of
menu- and item-line syntax,
including a description of all
special characters, see “Menu
Manager” in the Apple IIGS
Toolbox Reference.

The list must follow a specific syntax; here is an example:

>>Title 1\N1

--Item string 1\N256
--Item string 2\N257
-—-Item string 3\N258

This is a simple list of one menu line and three item lines. The
first character on the first line is the title character; it denotes the
start of a menu. The first character on any line other than a title
line is the item character; it denotes an item in the menu. The
second character in each line can be anything (it is changed by
the Menu Manager)—here it just repeats the first character. Each
line is terminated by a return (decimal 13) or a null byte (0).
Finally, a termination character, different from the menu and item
character, denotes the end of the list.

In the example above, “>” is the title character, “” is the item
character, and a period is the termination character. But you may
use any characters, as long as the title and item characters are
different, and the termination character is different from the item
character. (Thus, the title and termination character may be the
same.)

Before the terminating character of each line, “N” followed by a
number specifies the menu and menu item ID number.

For an example of menu and item lines using multiple special
characters and different title, item, and terminating characters, see
the HodgePodge source code listing of InitGlobals, under
“Start the Program” in Chapter 2. In InitGlobals the title
character is “>”, the item character is “=”, and the termination
character is a period. The second character in each line repeats
the first. You can see from the listing that, depending on how you
want your menus to appear, the syntax can be quite complex.

Using just the “@” symbol in a title provides the Apple logo. The
@ must follow the character denoting a menu title, and then be
followed by an end-of-line mark (carriage return). Do not place a
space before or after the @, as you must with other menu titles.
See the InitGlobals example.

150 Chapter 5: Using the Toolbox (i)

Important

Menu and item ID numbers

ID numbers are assigned in the menu/item line list. The ID
numbers must be allocated as shown in Table 5-1.

A Menu ID must be unique for each menu:; that is, no two menus can
have the same ID. Similarly, no two items, whether in the same or
separate menus, can have the same ltem ID.

Table 5-1

Menu ID number assignment

Hexadecimal Decimal Meaning

Menu ID numbers

$0000 0 Internal use, generally means
front, or first menu in bar.

$0001-$FFFE 1-65534 Reserved for application use.

$FFFF 65535 Internal use, generally means
end, or last menu in bar.

Item ID numbers

$0000 0 Internal use, generally means
front, or first item in menu.

$0001 - $00F9 1-249 Reserved for desk accessory
items.

$00FA 250 Undo edit item.

$O0FB 251 Cut edit item.

$00FC 252 Copy edit item.

$00FD 253 Paste edit item.

$00FE 254 Clear edit item.

$00FF 255 Close command item.

$0100 - $FFFE 256-65534 Reserved for application use.

$FFFF 65535 Internal use, generally means

end, or last item in menu.

Making and modifying menus

151

182

AppleMenulID
AboutItem
FileMenuID
OpenItem
CloseItem
SaveAsItem
ChoosePItem
PageSetItem
PrintItem
QuitItem
EditMenuID
UndoItem
CutItem
CopyItem
PasteItem
ClearItem
WindowsMenulID

NoWindowsItem

300;
301;
400;
401;
255;
403;
405;
406;
407;
409;
500;
250;
251;
252;
253;
254;
600;
601;

FirstWindItem = 2000;

FontsMenuID
FontItem
MonoItem

I

700;
701;
702;

HodgePodge uses symbolic constants for menu ID numbers in its
menu- and item-line definitions. It assigns menu ID’s to those
constants in the file GLOBALS . PAS, as follows:

{reserved ID number}
{reserved ID number }
{reserved ID number }
{reserved ID number}
{reserved ID number}

{window menu ID's are allocated
dynamically starting at 2000}

How HodgePodge sets up the menu bar when the program
executes is demonstrated in Chapter 2.

Accepting user input

How your application responds to menu selections made by the
user depends largely on whether or rot the application calls
TaskMaster.

Without TaskMaster, an application typically calls GetNextEvent

each time through the event loop. If the user selects a menu item
with the mouse, a mouse-down event occurs and the application
responds as follows:

1. It calls FindWindow, which (in this case) returns to the
application the information that the mouse button was pressed
in the menu bar.

Chapter 5; Using the Toolbox iy

Tracking means following
changes in cursor position
befwen the time a mouse button

is pressed and when it is released.

That way a user’s selection is not
finalized until the mouse button is
released.

DoMenu s listed and described
under “Handle Specific Events” in
Chapter 2.

2. It then calls MenuSelect, which tracks the mouse, opening
menus and highlighting selections until the mouse button is
released. If it is released in 2 menu selection, MenuSelect
returns to the application the number of the menu and the
number of the item in the menu that was selected. It also
highlights the menu’s title.

3. The application then branches to the subroutine that handles
the menu item selected.

4. When the task is completed, the application unhighlights the
menu title and continues in the main event loop.

% Keyboard equivalent: If the menu item was selected with its
equivalent keystroke combination rather than with the mouse, a
key-down event occurs. The application must look at the
modifiers field of the event record to know that the Apple key
was pressed at the same time, meaning a menu selection has
been made. The application then highlights the menu title and
proceeds from step 3 (above).

On the other hand, if your application calls TaskMaster instead of
GetNextEvent each time through the event loop, most of the
above procedure is handled automatically. For both mouse-down
and key-down events, TaskMaster takes care of finding out whether
they represent menu-selection actions. If the user selects a menu
item with the mouse or with a keyboard-equivalent, TaskMaster
highlights the menu and returns a task code of wInMenuBar
(meaning a menu selection was made). Your application can
examine the taskData field of the extended task event record to
see which item in which menu was selected. Then it can branch
directly to the appropriate subroutine.

% HodgePodge: HodgePodge uses TaskMaster. After receiving a
wInMenuBar task code from TaskMaster, HodgePodge jumps
to its menu-event dispatcher, DoMenu. DoMenu gets the
individual menu item’s ID number from the Event .taskDate
field of the extended event record, and jumps to the proper
subroutine.

Making and modifying menus 153

AddToMenu is in the source file
MENU.PAS.

procedure AddToMenu;

Modifying menus during execution

If your menu bar, or items in a menu, are going to change while
on the screen, you can use Menu Manager calls to rearrange the
menus and items. In the routine AddToMenu (called from the
routine DoMenuItem), HodgePodge adds a new item to the
Windows menu when a new window is opened on the desktop.
AddToMenu does this principally by calling InsertMItem and
DeleteMItem. AddToMenu also adjusts the window list—a list of
pointers to all open windows.

{begin AddToMenu...}

var theWindow : GrafPortPtr;

myDataHandle: WindDataH;

{window-data-record handle}

begin
theWindow := FrontWindow; {Get a pointer to the front window..}
windowList [wIndex] := theWindow; {add the pointer to the window list}
myDataHandle := WindDataH ({.then get a handle to its..}
GetWRefCon (theWindow)) ; {.window-data record, to get name}
InsertMItem(@myDataHandleA‘.menustr[l], {Insert window's name at the end...}
SFFFF, WindowsMenulID) ; {..of the Windows menu}

if windex = 0 then

{If this is the first open window...}

begin
DeleteMItem(NoWindowsItem); {..remove "No Windows Allocated" item}
SetMenuFlag(SFF7F,WindowsMenuID); {..enable the Windows menu..}
DrawMenuBar; {.and draw it}
end;
CachanuSize(0,0,WindowsMenuID); {Recalculate the size of the menu }

Inc (wIndex) ;
end;

{Increment the number of open windows}
{End of AddToMenu}

The above example shows how HodgePodge adds items to a
menu. On the other hand, when windows are removed from the
desktop, HodgePodge deletes the corresponding menu item with
code in the routine Ad§Wind. Adjwind is called from
DoCloseItem when the user selects Close from the File menu or
when the user clicks the close box of the frontmost window.

154 Chapter 5: Using the Toolbox (lIl)

AdWind is in the source file
WINDOW.PAS.

AdjWind makes the menu-related calls InsertMItem, DeleteMItem
and CalcMenuSize. It also adjusts the window list to reflect the fact

that a window has been removed.

procedure AdjWind (TheWindow: GrafPortPtr);

var i ': Integer;
theOne : Integer;

begin
i := FirstWind;
while windowList [i] <> TheWindow do
Inc (i);
theOne:=i;

if windex = 1 then
begin
InsertMItem (@noWindStr[1l],
FirstWindItemt+theOne,
WindowsMenulID) ;
SetMenuF'lag ($0080,WindowsMenulD) ;
DrawMenuBar;
wXoffset := 20;
wYoffset := 12;
end;

DeleteMItem (firstWindItemt+theOne) ;
CalcMenuSize (0, 0,WindowsMenulD) ;

{begin AdjWind..}

{start with menu ID of 1lst window}
{.and run through the window list}

{..to get this window's position.}
{If we're closing the LAST window..}

{..reinsert "No Windows Allocated"..}
{.after this item.}

{..in the Windows menu.}

{.disable the Windows menu...}
{..redraw the menu bar..}

{..and reinitialize the position..}
{..of the next-opened window}

{end of IF its the last window}
{Delete item on the Windows menu..}
{..and recalculate size of the menu}

Inc (1); {Now go to the next window on list}
while i < lastWind do {..and for each window in turn..}
begin {move it down one position..}
windowList [1-1] :=windowList[i]; {..in the window list}
Inc (i);
end;

for i := theOne to lastWind do
SetMItemID (firstWindItem+i-1,
firstWindItemt+i) ;

{now renumber items in Windows menu:}
{its new ID number}
{its old ID number}

end; {End of AdjWind}

% Note: AdjWind performs some rather complex manipulations

; of pointer lists and menu IDs. Your program can easily remove
| menu items without going through such acrobatics if menu item
‘ IDs are not going to change and if menu changes do not
require adjustment of other lists in memory.

Making and modifying menus 155

Just what kind of control an NDA
exercises is described under
"Desk Manager” in the Apple lics
Toolbox Reference.

Supporting other desktop features

Two other important desktop-programming features have tool sets
that support them. The Desk Manager controls desk accessories
(called from the Apple menu) and the Scrap Manager handles
cutting, copying, and pasting from the Edit menu.

Desk accessories

Any application you write should support desk accessories. Desk
accessories are short programs such as clock displays, note pads,
and calculators that a user might want to access without having to
leave your program. Desk accessory support is a convenience for
the user, it enhances the multitasking feel of the desktop, and it i
consistent with the aims of the Human Interface Guidelines.
Furthermore, it’s easy to include in your programs.

The Desk Manager is the tool set that enables your application to
support desk accessories. There are two types of desk accessories
in the Apple IIGS environment: classic desk accessories and new

desk accessories.

m Classic desk accessories (CDA’s) are desk accessories designed
to function in a non-desktop, non-event-driven environment.
Unlike new desk accessories, a CDA gets full control of the
computer during what is basically an interrupt state (generated
by a keypress). The desk accessory is responsible for saving and
restoring any of the application’s memory that it uses, as well
as handling all I/O. The Control Panel is a classic desk
accessory.

m New desk accessories (NDA's) are desk accessories designed
to execute in a desktop, event-driven environment. NDA’s run
in a window and get control when that window is the frontmost
window.

“ Macintosh Programmers: New desk accessories are the style of
desk accessories available on the Macintosh.

156 Chapter 5: Using the Toolbox (lil)

See “"Controlling the Apple IIGS
Operating Environment” in this
chapter, and “The Scheduler” in

the Apple IIGS Toolbox Reference
;or more information on the Busy
ag.

If you want to write a classic desk
accessory (CDA), see Chapter 8
of this book.

Supporting classic desk accessories

A user activates a classic desk accessory from the CDA menu. The
CDA menu is displayed by pressing Apple-Control-Escape at any
time during program execution. Two CDA’s are built into the
system:

O Control Panel

O Alternate Display Mode

Any others (up to eleven) are loaded from disk. From the CDA
menu, a user can select any of the CDA’s currently in the system.
The desk accessory selected is activated and retains control until
it shuts down. When it shuts down, the Desk Manager redisplays
the CDA menu. Only when the user selects Quit from the CDA
menu does the original application resume operation.

When can the CDA menu be displayed? The Desk Manager gets
control in two ways. If the Event Manager is active, the Desk
Manager is called in conjunction with GetNextEvent. If the Event
Manager is not active, the Desk Manager gets control whenever
the user presses Apple-Control-Escape, which generates an
interrupt. Before the Desk Manager displays the CDA menu, it
checks the system Busy flag. If something in the system is busy,
the Desk Manager waits until the Busy flag is cleared, then “wakes
up” and displays the CDA menu. This guarantees that CDA’s have
all system resources available to them when they are called.

The only thing your application needs to do to support classic
desk accessories is make sure that interrupts are not disabled for
long periods.

Supporting new desk accessories

New desk accessories are loaded automatically by the operating
system at boot time. An application that wants to make NDA’s
available to the user does not have to do a lot of work, particularly
if the application is using the Window Manager routine TaskMaster.
By convention, however, desk accessories can assume that the
following tool sets are already available for them to use, so the
application must make sure that they are loaded and started up:

O Tool Locator

Memory Manager

QuickDraw II

a
O Miscellaneous Tool Set
O
0 Event Manager

Supporting other desktop features 157

If you want to write a new desk
accessory (NDA), see Chapter 8
of this book.

158 Chapter 5: Using the Toolbox (lIl)

Window Manager
Control Manager
Menu Manager
LineEdit Tool Set
Dialog Manager

O 0o o oo o

Scrap Manager

With TaskMaster: If the Application uses TaskMaster, it only nee
to make three calls to support new desk accessories after it has
loaded and started up the proper tool sets:

O DeskStartup—to initialize the Desk Manager :
O FixAppleMenu—to add to the list of NDA’s in the Apple menu

O DeskShutdown—to shut down the Desk Manager before the
other tool sets are shut down

After the FixAppleMenu call has been made, TaskMaster
automatically handles opening NDA’s in response to menu
selections, calling SystemTask and SystemClick when appropriate.
If the application sets up the menu items correctly, TaskMaster
can even call SystemEdit when the user selects an item from the
Edit menu, or close a desk accessory in response to the user’s
selecting Close from the File menu.

¢ HodgePodge: The three calls listed above are in the routines
StartUpTools, SetUpMenus, and ShutDownTools.

Without TaskMaster: Applications that do not use TaskMaster
must take the following steps to support new desk accessories.

1. Call DeskStartup to start up the Desk Manager. ;
2. Call FixAppleMenu to add to the list of NDA's in the Apple men

3. Call OpenNDA when the user selects an NDA from the Apple
menu.

4. Call SystemTask frequently (at least every time through the
event loop).

5. Call SystemClick when a mouse-down event occurs in a system
window.

6. Call SystemEdit when a desk accessory is active and the user
selects Undo, Cut, Copy, Paste, or Clear from the Edit menu.

7. Close the desk accessory when the user selects Close from the
File menu. You can use CloseNDA or CloseNDAbyWinPtr to do
this. |

8. Call DeskShutdown to shut down the Desk Manager.

Cutting and pasting

An important part of the convenience provided by desktop
applications is the ability they give the user to transfer and copy
fragments of text or graphics within a document, or from one
document to another.

The Scrap Manager is the tool set that lets an application handle
cutting and pasting of the desk scrap. From the user’s point of
view, all data that’s cut or copied resides in the Clipboard. The
Cut command deletes data from a document and places it in the
Clipboard; the Copy command copies data into the Clipboard
without deleting it from the document. The Paste command—
whether applied to the same document or another, in the same
application or another—inserts the current contents of the
Clipboard at a specified place. See Figure 5-3.

An application that supports cutting and pasting may also provide
a Clipboard window for displaying the current contents of the
scrap; it may show the Clipboard window at all times or only when
requested via the toggled command Show (or Hide) Clipboard.

% Note: The Scrap Manager is designed to transfer small amounts
of data; attempts to transfer very large amounts of data may fail
from lack of memory.

Desk scrap

Clipboard window

Documents

Figure 5-3
The Clipboard and the desk scrap

Supporting other desktop features 159

The desk scrap s usually stored in memory, but can be stored o
disk {in the [ile CTLTPEOARD in the SYS5TEM subdirectory ol the
Boot velime) if there’s nol enough room for it in memory, The
Dosk Manager kecps lrack of whether the sera [I8 in miernory o
on the disk, so vou don't have to waorry ahout lesading it firsl,

The natere of the data 1o be transferred varics accord ing 1o tha
application: a word processor handles [ormatled text; & prapiics
application bandles pictures, The Serap Manager allows for a
varicly of dara types, and provides a mechanisim whereby
applications have suome control over how much information is
retained when dara is transferad,

Desk scrap data types

From the user's point of view there can be only one thing in the
Clipboard at a lime, but the application may store moee than ong
version of the information in the serap, each represenling the
same Clipboard contents in a different form. For example, fext o
[rom a word processor document may be slored in the desk SCra[y
Both as text and 45 a QuickDiaw 11 picture.

Why would an application want to do this? Applications like to
keep information in their own internal fermat, but they also wanl
to be able to communicate via the Clipboard with cther
applications. When a user culs or copies something (o the
Cliphoard, the application can put It there two different WRYE!

o The internal way so thatl a sy bsequent paste Cwithin the same
application) can b easily handled. Precisely the information
needed by the application can be transfered.

The public way so that il the user tries 1o paste il into another
application or desk accessory, the other application can at legs
deal with it, even if some information might be lasl,

There are two defined pubslic serap types: texl and plctues,
Applicalions must write at least one of these standard typuess of
dala o the desk sorap, and must be able to read both types,

Using the Scrop Manager

If your application suppeits display of the Clipboard, you shoull
call the Nesk Manager each tme through your main event loop m
seit if the Cliphoard window needs 1o be updated,

When a Cut or Copy command s given, use the appropriate Desk
Manager calls to werile the cut or copied data to the desk scrap.

B Eer Fa | el ey S o P o e o 11T %

When a Paste command is given, use other Desk Manager calls to
access the particular type of data in the desk scrap that you want,
and to get information about the data.

% Edit menu: The user accesses the desk scrap through the Edit
menu. Whether or not your application supports cutting and
pasting, it must include an Edit menu. Desk accessories may
need it.

% HodgePodge: HodgePodge does not support cutting and
pasting. It has an Edit menu, but all items are initially dimmed
(disabled).

Setting up a private scrap

If your application defines its own private type of data, or if very
large amounts of data might be cut and pasted, you may want to
set up a private scrap for this purpose. A private scrap can have
any format, because no other application will use it. Your
application must, however, be able to convert data between the
format of its private scrap and the format of the desk scrap.

If you use a private scrap, be sure that the right data is always
pasted when the user gives a Paste command. The right data is
whatever was most recently cut or copied from any application or
desk accessory. Make sure also that the Clipboard, if visible, always
shows the current data. You should copy the contents of the desk
scrap to your private scrap at application startup and whenever a
desk accessory (NDA) is deactivated. When your application quits
or when a desk accessory is activated, you should copy the
contents of your private scrap to the desk scrap.

% LineEdit: The LineEdit scrap is a private scrap for applications
that use LineEdit. LineEdit provides routines for accessing this
scrap; you'll need to transfer data between the LineEdit scrap
and the desk scrap so that the Clipboard will always be current.

% Scrap too large: If your application has problems copying one
scrap to another, it should alert the user. If the desk scrap is too
large to copy to the private scrap, the user may want to leave
the application or proceed with an empty Clipboard; if the
private scrap is too large to copy to the desk scrap, the user
may want to stay in the application and cut or copy something
smaller.

Supporting other desktop features 161

The HodgePodge routine
Openfilter, listed under “The

ProDOS Flle System” in Chapter 6,

Is an example of how an
application can fiter file types in
its Open File dialog box

Communicating with files and devices
The Apple IIGS Toolbox includes several tool sets that handle
input/output functions. They include

O Standard File Operations Tool Set

O Print Manager

O Apple Desktop Bus Tool Set

O Text Tool Set

Using these tool sets makes your application easier to write and
ensures a uniform user interface. Almost every application needs
the Standard File Operations Tool Set and the Print Manager;
fewer programs need the Apple Desktop Bus Tool Set or the Text
Tool Set. ‘

Accessing files

The Standard File Operations Tool Set provides the standard user |
interface for selecting a file to be opened or saved. The tool set
displays dialog boxes that allow the user to open and save a file
on a disk in any drive, and change disks in a drive. The user is i
completely freed from having to know how the operating system
handles those tasks.

Before you make calls to the Standard File Operations Tool Set, it
must be loaded and started up. If you think it may not be needed
every time the program is run, you can choose to load the tool set
only when you need to present the dialog boxes.]

Opening a file

When the user makes a request to open a file, your application
calls the SFGetFile routine to present the standard Open File v
dialog box (Figure 5-4) and retricve the filename. SFGetFile allows]
you to specify where the standard dialog box will be placed on
the screen, to specify the prompt at the top of the box, and to
select, or filter, the types of files to be displayed in the box. The
routine does not allow you to modify the appearance of the box;

if you wish to construct your own custom dialog box, another
routine is available.

162 Chapter 5: Using the Toolbox (lIl)

AskUser is in the source file
PAINT.

function

var

begin

PAS.

Load which picture
/HODGEPODGE/

HREIE

(Cancel)

Figure 5-4
The Open File dialog box

In HodgePodge, the opening of a file is initiated when the user

chooses Open from the File menu. That menu choice causes the
execution of the routine DoOpenItem, which calls OpenWindow,
described in Chapter 4. When opening a picture file rather than a

looks like this:

AskUser: Boolean;

ourTypeList: TypeListPtr;

SFGetFilae (

AskUser

20, 20,

'Load wich picture:

@OpenFilter,
TypeListRecPtr(0),
myReply) ;

:= FALSE;

if myReply.good then
if LoadOne then

end;

AskUser

:= TRUE;

font window, OpenWindow calls AskUser, the routine that uses
Standard File Operations to select which file to open. AskUser

{begin AskUser..}

{a record that lists file types:
defined by Std. File Operations}

{Call up the dialog box..}
{upper-left corner = 20,20}

{= message to user}

{OpenFilter screens file types}
{NIL ptr--show all file types}
{place the results here}

{initialize this function}

{if SFGetFile not cancelled..}
{..and if the file opens OK..}
{AskUser completes successfully}
{End of AskUser}

Communicating with files and devices

163

The complete sequence of
roufines that execute when a file
is opened is diagrammed in
Appendix D.

DoSaveltem is in the source file
PAINT.PAS.

164 Chapter 5: Using the Toolbox (lil)

AskUser calls LoadOne, which allocates the memory for and 3
actually opens the requested file by making Memory Manager
and ProDOS 16 calls. SFGetFile calls OpenFilter, a routine that
controls which types of files are displayed in the dialog box and
how they are highlighted. LoadOne and OpenFilter are
described in Chapter 6, under “The ProDOS File System.”

Saving afile

When the user makes a request to save a file, use the SFPutFile
routine to present the standard Save File dialog box (Figure 5-5).
SFPutFile allows you to specify where the standard dialog box will
be placed on the screen, to specify the prompt at the top of the
box, and to specify the maximum number of characters the user]
may type. If you wish to construct your own custom dialog box,
you use another routine.

/HODGEPODGE/
Free: 222k out of 800k.

(_Disk_)

L FRaBtR Bats
53 P M [New Folder)
C3IHP.CC W)
1 HP.PAS (——‘
™ prey Glase
Dy pigg
Save which picture: |)
PIC2 (" Cancel)

Figure 5-5
The Save File dialog box

In HodgePodge, DoSaveItem is executed when the user selects
Save As from the File menu. (CheckFrontW makes sure that Save 1
As is enabled only when a picture window is in front, because only
picture windows can be saved.) DoSaveItenm first calls SFPutFile }
to bring up the standard SaveFile dialog box, and then calls
SaveOne, which saves the contents of the specified window to disk.

‘,prmmdure DoSaveltem; {begin DoSaveltem..}

var theWindow : GrafPortPtr; {pointer to a window}
myDataHandle: WindDataH; {handle to our window-data record}
i : Integer;
begin
theWindow := FrontWindow; {Get a pointer to the front window}
myDataHandle := WindDataH ({Get a handle to the window-data..}
GetWRefCon (theWindow)) ; {..record for the window}
SFPutFile ({Bring up the Save File dialog..}
20,20, {..at location (20,20)..}

.with this prompt string..}
.default = current filename..}

'Save which picture:’,
myDataHandle”” .name,

_— -~

15, .allow 15 characters in name..}
myReply) ; .put answers in Reply record--
format specified by Std. File}
if myReply.good then
begin {If user doesn't cancel..}
WaitCursor; {Put up the watch cursor and..}
SaveOne (myDataHandle””.pict); {..save the file to disk.}
with myDataHandle”” do {Update our window-data record:}
begin
name := myReply.fileName; {Update the window name}
menuStr:= Concat ('="', {Make a new menu string..}
myReply.fileName,
I\Nl,
IntToString (menulD),
'\0.");
for i := firstWind to lastWind do {Go through the window-pointer list:}
if WindowList[i] = theWindow then {If this window is the one..}
Leave; {..exit from this loop}
SetMItem (MenuStr,
FirstWindItem+i) ; {Change menu name to new window}
end; {end updating window-data record}
SetWTitle (myDataHandle””.name,theWindow); {Update window name to filename}
CalcMenuSize (0, 0, WindowsMenulD) ; {Resize menu for new window name}
InitCursor; {go back to arrow cursor}
end; {end of IF myReply.good=TRUE}
end; {End of DoSaveltem}

The disk writing is done by the routine SaveOne. SaveOne is
described under “The ProDOS File System” in Chapter 6.

Don't forget to shut down the Standard File Operations Tool Set
after you have finished using it—either right afterward, or with the
other tool sets at application shutdown. If you wish, you can also
unload the tool set from memory and thus save space.

% Note: If you choose to unload the Standard File Operations Tool
Set, be sure to reload it before making its startup call again.

Communicating with files and devices 165

Printing

The Print Manager is an Apple IIGS tool set that allows you to use
standard QuickDraw II routines to print text or graphics. The P
Manager calls a printer driver to do the specific printing tasks, so
your application doesn’t need to know what kind of printer is
connected to the computer. However, the Print Manager also
includes low-level calls to the printer drivers so that you can
implement alternate, low-level printing routines.

An application that supports printing must have three items in its
File menu: Choose Printer, Page Setup, and Print. Choosing these
items brings up dialog boxes that allow the user to specify howa -
document will be printed. |

Choosing a printer

When the user selects the Choose Printer item, the Choose Printe
dialog box is displayed (Figure 5-6). It lets the user select a
destination device from among the printer drivers on the system:
disk. The Choose Printer dialog box also lets the user pick which
port or slot the device is connected to, from among the port
drivers on the system disk.

Choose Printer vl.2

Printer type:

THAGEWRITER |47
LASERWRITER

Printer port:
APPLETALK

Figure 5-6
The Choose Printer dialog box

1AA CRANtAr ol lalmme Ham T ol e 21118

DoChooserltem is in the source
fle PRINT.PAS.

procedure DoChooserltem;

var dummy : Boolean;
begin

dummy := PrChooser;
end;

If the AppleTalk network is installed and the AppleTalk selection is
made in the dialog box, the network is scanned for the names of
all connected printers. If one or more printers of the chosen type
are available on the network, an additional dialog box appears so
that the user can select one.

% Macintosh programmers: On the Apple IIGS, the Choose
Printer function is part of the Print Manager, rather than part
of the Chooser desk accessory as on the Macintosh.

The HodgePodge routine that brings up the Choose Printer
dialog box is called DoChooserItem. It is called from DoMenu,
when the user selects Choose Printer from the File menu.

{begin DoChooserItem..}

{returned value is unimportant here}

{Bring up dialog box--that's it!}
{End of DoChooserItem}

Making page settings

When the user selects the Page Setup item, a Style dialog box is
displayed (Figure 5-7). It allows the user to specify formatting
information, such as the page size and printing orientation. This
information is not changed frequently and is usually saved with
the document. The LaserWriter offers two style options
unavailable for the ImageWriter: smoothing of bitmapped fonts,
and font substitution.

Communicating with files and devices 167

DoSetupltem is in the source file
PRINT.PAS.

IMAGEWRITER/APPLETALK

vl.3

Paper: (@) US Letter
) US Legal
(CIAY Letter
(_) International Fanfold

Vertical Sizing: Printer Effects:
(@ Normal
(_) Condensed

Orientation: Pages

(_Cancel) '

I3
18

[150% Reduction
[INo Gaps Between

LASERWRITER/APPLETALK

vlli

Paper: @ US Letter (O AY Letter
(O US Legal (BS Letter
Orientation:

Vertical Sizing:

. (@ Normal
.ﬂ., (O Intermediate
—— () Condensed

Printer Effects: Reduce or
<) Smoothing? Enlarge:

G Font Substitution?

-

Figure 5-7
Style dialog boxes

Page setup in HodgePodge is handled by the routine
DoSetupItem, called from DoMenu when the user selects Page
Setup from the File menu. DoSetupItem calls the Print Manager
routine PrStlDialog, passing it a handle to a print record. The
print record has been allocated and initialized by the routine

SetUpDefault, called at startup.

168 Chapter §: Using the Toolbox (lIl)

%

procedure DoSetupltem; {begin DoSetUpItem..}

var dummy: Boolean; {function result unimportant here}
begin
dummy := PrStlDialog (printHndl); {Call up the dialog, pass it the
handle to our print record}
end; i {End of DoSetupItem}
Printing

When the user chooses to print a document, usually by making a
selection on the File menu, the Job dialog box is displayed (Figure
5-8). The Job dialog box lets the user select print quality, page
range, number of copies, and other printer-specific information.

IMAGEWRITER/APPLETALK vl.3

Quality: () Better Text
(@ Better Color
() Draft

Page range:

@ All
) From: To: J

Copies:

Paper Feed:(® Automatic () Manual

Ccolor (Cancel)

LASERWRITER/APPLETALK vil
Pages: @Al
() From: To:

Copies:
Paper Source:

(@) Paper Tray
() Manual Feed

(

Figure 5-8
Job dialog boxes

Communicating with files and devices 169

DoPrintitem is In the source file
PRINT.PAS.

procedure DoPrintItem;

var prPort : GrafPortPtr;
theWindow: GrafPortPtr;

The Print Manager automatically gives you a QuickDraw II
GrafPort when you open a document for printing. You then print
text and graphics by drawing into this port with QuickDraw II calls,
just as if you were drawing on the screen. The Print Manager]
installs its own versions of QuickDraw II's low-level drawing
routines in this GrafPort, causing your higher-level QuickDraw II
calls to drive the printer instead of drawing on the screen.

The HodgePodge routine that prints files is DoPrint Item, called
from DoMenu when the user selects Print from the File menu.]
DoPrintItem calls the routine PrJobDialog to bring up the Job
dialog box, and then calls Dra wTopWindow to print the file:

{begin DoPrintItem..}

{pointer to a printing GrafPort}
{window pointer}

begin
theWindow := FrontWindow; {Get a pointer to the front window}
if theWindow <> NIL then {If there IS a window open...}
if PrJobDialog (printHndl) then {.bring up the dialog box; if..}
begin {.the user doesn't cancel...}

WaitCursor; {put up the watch cursor..}
prPort := PrOpenDoc(printHndl,NIL); {open a printing GrafPort...}
PrOpenPage (prPort, NIL) ; {begin a new (& only) page..}
DrawTopWindow(theWindow); {draw the contents of the page..}

PrClosePage (prPort) ;

PrCloseDoc(prPort);

{.close the page}

{..close the GrafPort}

PrPicFile(printHndl,NIL,NIL); {.print the spooled file}

InitCursor;
end;

end;

DrawTopWindow is in the source
file PRINT.PAS.

{..and restore the regular cursor}
{end of printing}

{end of IF a window is open}

{End of DoPrintItem)

See “Using the Print Manager,” later in this section, for
explanations of some of the Print Manager calls that
DoPrintItem makes.

DoPrintItem calls the subroutine DrawTopWindow, which does
the actual drawing in the printer GrafPort. DrawTopWindow acts

no differently than if it were drawing to the screen; it calls either

ShowFont or PaintIt, depending on what type of window is to
be printed:

170 Chapter 5: Using the Toolbox iy

procedure DrawTopWindow (TheWindow:WindowPtr) ;

var myDataHandle: WindDataH;

begin

myDataHandle := WindDataH (

GetWRefCon (TheWindow)) ;

with myDataHandle”” do
if Flag = 0 then
PaintIt (pict)
else

ShowFont (theFont, isMono) ;

end;

The structure of a print record is
shown in the Apple lIGS Toolbox
Reference

Important

{begin DrawTopWindow...}

{handle to window-data record}

{Get a handle to the window's..
{.window-data record}

{If it's a picture window..}
{paint the picture w/this handle}
{But if it's a font window..}
{draw text w/this font & style}
{End of DrawTopWindow}

Using the Print Manager

Print records: Before you can print a document, you need a valid
print record. The print record describes information such as page
dimensions and resolution. You can either use an existing print
record (for instance, one saved with a document) or create one
through Print Manager calls. HodgePodge uses the same print
record for all documents. That record can be modified by the
user through the Style and Job dialog boxes.

% Note: Whenever your application saves a document, it should
save an appropriate print record with the document. This sets
up the printing parameters for the document so that they can
be used the next time the document is printed.

In most instances your application should not directly change the
data in the print record—it should use the standard dialog routines
for changing this information. Attempting to set certain values
directly in the print record can produce unexpected results.

Draft and spool printing: There are two basic methods of
printing documents: draft and spool.

In draft printing, your QuickDraw II calls are converted directly
into command codes the printer understands, which are then
immediately used to drive the printer. The LaserWriter always uses
draft printing, because the QuickDraw II calls are translated
immediately into PostScript commands. The ImageWriter and
other nonintelligent dot matrix printers are written to in draft
mode for text only. High-quality pixel images are produced by
spool printing.

Communicating with files and devices 171

Compare this sequence of calls
with the listing of the HodgePodge
routine DrawTopWindow, earlier
in this section,

172 Chapter 5: Using the Toolbox (lI1)

In spool printing the Print Manager processes your printing
requests in two steps. First it writes out (spools) a representatio
your document’s printed image to a disk file or to memory.
Second, this information is converted into a bit image and
printed. This method is used to print graphics on the
ImageWriter.

The printing loop: To print a2 document, you call the following
routines: E

1. PrOpenDoc, which returns a pointer to the GrafPort to be us
for printing 1

2. PrOpenPage, which starts each new page (reinitializing the
GrafPort)

3. QuickDraw routines, for drawing the page into the port creat¢
by PrOpenDoc ;

4. PrClosePage, which terminates the page

5. PrCloseDoc, at the end of the entire document, to close the |
GrafPort being used for printing

6. PrPicFile, to print the spooled document

Steps 2 through 4 are the printing loop itself; they are repeated
as many pages as are printed. Each page is either printed '
immediately (draft printing) or written to disk or to memory -
(spool printing). Your application may inspect the print record
see whether spooling was done, but it doesn’t have to. The prop:
method is always selected automatically, and PrPicFile is executt
only if needed. :

You should check for errors after each Print Manager call. If an
error occurs and you cancel printing (or if the user aborts 3
printing), be sure to exit properly from the printing loop so tha ._
all files are closed correctly—that is, be sure that every
PrOpenPage is matched by a PrClosePage, PrOpenDoc is
matched by PrCloseDoc, and PrPicFile is still called.

¢ Note: The maximum number of pages in a spool file is 16,382
If, for some strange reason, you need to print more than 16,38
pages at one time, just repeat the printing loop. i

Transfer modes are discussed
under *Drawing fo the Screen.” in
Chapter 3.

The multiple-segment sample
program listed under “Creating
Segmented Code: Three
Examples” in Chapter 7 includes
calls to the Text Tool Set.

The Pascal and BASIC character
device drivers are discussed in
the Apple lIGS Firmware
Reference

QuickDraw Il consequences and limitations: Even though you
print by making QuickDraw calls, remember that printing to paper
is not really the same as drawing to the screen. Clipping regions
and character spacings don’t translate exactly. Erasing, of course,
can’t be done on a printer. Some transfer modes and some
drawing routines don’t work on a LaserWriter. For more
information about optimizing your printing code, see the Apple
IIGS Toolbox Reference and the LaserWriter Reference.

Background procedure: An optional background procedure
runs whenever the Print Manager has directed output to the
printer and is waiting for the printer to finish. It is typically a
dialog box that informs the user that a print job is in progress,
and allows the user the option of canceling it.

If you don’t designate a background procedure, the Print Manager
uses a default procedure for canceling printing: the default
procedure just polls the keyboard and sets a Print Manager error
code if the user presses Apple-Period. If you use this option, you
should display a dialog box during printing to inform the user
that the Apple-Period option is available.

Sending text to Apple Il character devices

If you are writing a native-mode Apple 1IGS application but don'’t
want to use QuickDraw II and the graphic desktop interface, you
may necd the Text Tool Set. It provides an interface between
Apple II character device drivers, which must be executed in
emulation mode, and new applications running in native mode. It
also provides a means of redirecting 1/O through RAM-based
drivers. The Text Tool Set makes it possible to deal with the text
screen without switching 65816 processor modes and moving to
bank zero. Dispatches to RAM-based drivers still occur in full
native mode.

The Text Tool Set has global routines that are used to set or read
the current global parameters used by RAM and the Pascal and
BASIC text drivers. The tool set also has I/O directing routines
that direct 1/0 from the tool set to a specific type of character
device driver, or request information about the directing of a
specific /O driver. Finally, the tool set has text routines that
interface with any BASIC, Pascal 1.1, or RAM-based character
device driver. See “Text Tool Set” in the Apple IIGS Toolbox
Reference for more details.

Communicating with files and devices 173

174

Communicating with Apple Deskiop Bus devices

The Apple Desktop Bus (ADB) is a hardware channel and a
protocol for connecting input devices, such as keyboards and
mouse devices, with personal computers. The personal computer
is considered to be the host during the communication, and A
controls the communication on the bus by issuing ADB
commands to the devices.

The Apple Desktop Bus Tool Set sends commands and data
between the Apple Desktop Bus microcontroller and the rest of
the system. Typically, the tool set is used to control ADB activity,
but other commands, which are used by diagnostic routines and
the Control Panel, are available.

Most applications have no need to use the ADB Tool Set.
However, if your program needs to modify the system’s interface
with the mouse, keyboard, or other ADB device, the ADB Tool Set
is indispensable.

More details about the bus can be found in the Apple IIGS
Firmware Reference and the Apple IIGS Hardware Reference. The
tool set is described under “Apple Desktop Bus Tool Set” in the
Apple 1IGS Toolbox Reference.

Making sounds

The Apple IIGS has a very advanced sound-generation system,
capable of creating and reproducing complex music, sound
effects, and speech. Sound tools at several levels give you access
to the sound hardware and make music generation easy.

;
2

The sound hardware

The Apple IIGS sound hardware supports two sound-generation
methods. In the first method, which replicates the Apple Ile sound
capabilities, an application toggles a soft switch which in turn
generates clicks in a speaker. The application can control the rate
of clicking and the volume of the speaker.

Chapter 5: Using the Toolbox (llI)

The second method uses a digital oscillator chip (DOC) and the
rest of the sound hardware, as diagrammed in Figure 5-9: 64K of
dedicated RAM, the Sound GLU (general logic unit), the analog
section, and the sound connector.

: S q Speaker|
- oun Toggle |
N Y N
—»| Analog >
A
v \ :
K | poc __ sound
S Connector

Figure 5-9
Sound hardware block diagram

The sound GLU acts as the 1/O interface between the Apple IIGS
system hardware and the sound hardware. The dedicated RAM
stores the waveforms used for sound generation. From them the

For further information on the DOC, DOC can create sounds of practically any pitch and duration.
see the Apple llGS Hardware
Reference. The analog section contains all the circuitry needed to amplify

and filter the signal coming from the Sound GLU or the DOC.
From there the signal is sent to the speaker.

The sound connector provides the connection to interface cards
that can take the tones generated by the DOC and modify them
further. Three examples of possible sound cards are
programmable filter cards, stereo interface cards, and sound
sampling cards.

Oscillators and generators

An oscillator is the basic sound-generating unit in the DOC. The
DOC contains 32 oscillators, each of which can function
independently from all the other oscillators.

Making sounds 175

The System Failure Manager is
described under “Miscellaneous
Tool Set” in the Apple lics
Toolbox Reference,

See “Sound Tool Set” in the
Apple lIcS Toolbox Referencefor
details on both high-level (free-
form synthesizer) and low-level
calls.

One of the modes of the DOC is called swap mode. The Sound
Tool Set (described next) uses this mode to generate sounds. In
swap mode, a pair (swap pair) of oscillators forms a functional
unit called a generator. There are 15 generators defined in the
Apple 1IGS sound system. The oscillators in a generator take turns
making sound, each signaling the end of its sound by generating
an interrupt.

Oscillators 30 and 31 are reserved for system use and should not
be be used by applications. If an interrupt is generated by
oscillator 30 or 31 it is a fatal error—a sound interrupt is reported
to the System Failure Manager, which halts execution,

The Sound Tool Set

The Sound Tool Set gives you the ability to access the sound
hardware without having to know specific hardware 1/O addresses.
Sound Tool Set calls can be divided into two groups: high-level
and low-level.

High-level calls constitute the Jreeform synthesizer. Calls to the
free-form synthesizer are made through the normal tool call
mechanism, with parameters being passed to and from the called
routines on the stack. With high-level calls you can

O write multibyte sound data to and read it from DOC RAM
O get or set the volume of individual generators
O start and stop sound on an individual generator

Low-level routines read from and write to the DOC hardware
registers and individual DOC RAM locations. Unlike the other
Sound Tool Set routines, which use the stack to pass parameters in
the normal tool call fashion, these routines use registers to pass
parameters and are entered through a jump table. The low-level
routines can move information faster than the higher-level calls
to the free-form synthesizer, but they do none of the error
checking and housekeeping of the higher-level routines.
Furthermore, if you use the low-level routines, you will have to
install your own interrupt handler to service sound interrupts.

176 Chapter 5: Using the Toolbox iy

The Note Synthesizer

The Note Synthesizer gives your application a convenient way to
play musical notes. You use the Note Synthesizer by making tool
calls to start and stop individual notes. The general sequence of
calls is something like this:

1. Allocate an individual generator.

2. Start a note, with the NoteOn call. The call’s parameters specify
the generator to play the note on, the note’s volume and pitch,
and what instrument to use. An instrument is a data structure
that specifies such parameters as the amplitude envelope
(attack and decay shapes), pitchbend and vibrato
characteristics, and the specific waveforms that characterize the
sound to be played.

3. Stop the note with the NoteOff call. When the note stops
playing, the generator is automatically deallocated.

The Note Synthesizer provides for priority in allocation of
individual generators. If all generators are in use, generators
producing low-priority sound (such as notes trailing off) can be
“stolen” to produce higher-priority sounds (such as notes starting
up). Priority assignment can assure that there will always be a
generator available when a note needs to be played.

% Enable interrupts: Interrupts must be enabled in order for the
Note Synthesizer to function. Anything that disables interrupts
(such as accessing a disk drive) will disrupt the sound being
played.

The Note Sequencer

The Note Sequencer is the tool set that makes it easy for you to
include music in your programs. In particular, it allows music to
be played asynchronously, in the background.

The Note Sequencer builds upon the Note Synthesizer, in that it
strings together individual notes created by the sythesizer.

You can think of the Note Sequencer as a cross between a player
piano and a language interpreter. A sequence is a series of
commands that tell the computer which notes to play and when.
The Note Sequencer plays back that sequence to generate muscial
sound.

Making sounds 177

MIDI stands for Musical Instrument
Digital Interface, an international
standard for electronic transfer of
musical data.

178 Chapter 5: Using the Toolbox (Il

Sequences are built up from simpler components. Individual ba
commands to the Sequencer are called items. Items typically tu
a note on or off, or control some aspect of the note’s sound, su
as vibrato. Items are assigned to one or more tracks, to facilitate
the concept of multi-instrument music and chords. A pattern is
series of items; the pattern groups those items in terms of their
mutual timing relationships. :

A phrase is a set of pointers to patterns or to other phrases.
Phrases make it easy to build repetitive, complex passages out o
simple patterns. A sequence is a top-level phrase, one which
points to patterns or other phrases but is not pointed to by any
other phrases. '

You play music with the Sequencer by making a StartSeq call. It
plays a specified sequence. In interrupt mode, the sequence is
played automatically until it finishes. In Step mode, your
application can play the sequence item-by-item. Step mode is
useful if you need to synchronize the sequence with other events
in your program.

* Enable interrupts: Interrupts must be enabled in order for the
Sequencer to function. Anything that disables interrupts (such
as accessing a disk drive) will disrupt the sound being played.

% MIDI: The Sequencer is not directly compatible with the MIDI
protocol. If you wish to communicate with a MIDI synthesizer
on your Apple IIGS, you will need to install a2 MIDI interface
card or a MIDI serial adapter (manufactured for the Macintosh
Plus). At the time of this writing, there are no software tools to

allow the Note Synthesizer or Sequencer to manipulate MIDI
data.

Computing

If your applications require mathematical computations on either
integers or floating-point numbers, there are Apple IIGS tool sets
that provide you with fast, consistent, and accurate algorithms.

Integer Math

The Integer Math Tool Set supports multiplication and division of
several types of numbers, and also converts numbers from one
type to another. The types of numbers dealt with are these:

integer 16-bit signed or unsigned value
longint 32-bit signed or unsigned value
fixed 32-bit signed value with 16 bits of fraction
frac 32-bit signed value with 30 bits of fraction
extended 80-bit signed value with 64 bits of fraction

% Note: The extended type really serves as a pathway to the
Standard Apple Numeric Environment. See the next section in
this chapter, “High-Precision Floating-Point Math (SANE).”

The Integer Math Tool Set also manipulates Integer Math strings,
which are ASCII-string representations of numbers. An Integer
Math string consists of only digits (hexadecimal or decimal) and
blanks and has no length byte within it.

Within the tool set, there are math routines and Integer Math
string routines. Math routines support multiplication and division
of integer, long integer, fixed, and frac numbers, perform simple
trigonometric calculations, and convert from one type of value to
another. Integer Math string routines convert between a binary
value and an ASCII character string representing that value. The
binary value can be either an integer or a long integer. The
character string can be in either hexadecimal or decimal format.

Your application can make use of the Integer Math routines at any
time; the tool set is always active. Furthermore, the Integer Math
Tool Set does not rely upon the presence of any other tool sets.

High-precision floating-point math (SANE)

For high-precision calculations on floating-point numbers, your
application should use the Standard Apple Numerics
Environment (SANE). SANE is a collection of routines that
perform extended-precision IEEE arithmetic, with elementary
functions. SANE scrupulously conforms to IEEE standard 754 for
binary floating-point arithmetic and to the proposed IEEE
standard 854, which is a radix-independent and word-length-
independent standard for floating-point arithmetic.

Computing 179

Additional information on SANE
routines is found under “SANE
Tool Set” in the Apple lics
Toolbox reference

SANE provides sufficient numeric support for most application:
includes

O IEEE types single (32-bit), double (64-bit), and extended (80-
bit)

a 64-bit type for large-integer computations, as in accounting
fundamental floating-point operations (+ — * / v rem)
comparisions

binary-to-decimal and floating-point-to-integer conversions
scanning and formatting for ASCII numeric strings
logarithmics, trigonometrics, and exponentials

compound and annuity functions for financial computations
a random number generator

functions for management of the floating-point environment

000 O0OO0oooo o

other functions required or recommended by the IEEE
Standard

The Apple I1IGS SANE tool set matches the functions of the
Macintosh SANE packages, and the 6502 assembly-language S
software from which it is derived.

The functions of SANE are completely documented in the App
Numerics Manual, which you will need if you are going to use
routines in your application.

Controlling the operating environment

Many components make up the Apple IIGS operating
environment, the overall hardware and software setting within
which application programs run. Several tool sets’ principal
functions are to control and modify that environment. You mi
call them low-level tool sets, in contrast to the higher-level,
desktop interface tools.

The Event Manager, described earlier, and the Memory Manage
and System Loader, described in the next chapter, are three of
most important tool sets in this group. Two others are the
Miscellaneous Tool Set and the Scheduler, described here.

180 Chapter 5: Using the Toolbox (lil)

Parameter RAM, also known as
Battery RAM, retains clock-
calendar and Control Panel
information when the computer
power is off.

Tick count is (approximately) the
number of 60th-second intervals

elapsed since system startup.

For more information about
interrupt sources and handlers,
see the Apple IIGS Firmware
Referenceand the Applelis
ProDOS 16 Reference.

The Miscellaneous Tool Set

The Miscellaneous Tool Set is a collection of several small tool
sets. Most of them set or return information about various low-
level functions of the Apple IIGS. Several other managers and tool
sets make calls to the Miscellaneous Tool Set.

Many of the routines in this tool set retrieve the address or return
the value of a given parameter so that your program need not rely
on fixed addresses. Please use these calls instead of directly
accessing memory locations; there is no guarantee that an address
being used for something in one version of system software will
be used the same way in subsequent versions.

Groups of routines

O You can use Battery RAM routines to write and read data to
and from parameter RAM. Any data written to parameter
RAM will affect the default system configuration, which will be
used the next time the system is booted.

O The clock routines provide you with a way to read the current
time either in hex or ASCII format, or set the current time using
hex format. The GetTick routine reads the current tick count.

O Vector routines set or return the vector address for a specified
interrupt manager or handler. Interrupt control routines allow
your application to enable or disable certain interrupt sources
and get the current status of those interrupts.

O Address and entry routines return the addresses and native-
mode entry points of some important firmware parameters and
routines.

O The HeartBeat routines allow you to install or delete tasks from
the HeartBeat Interrupt Task queue. Such tasks might include
controlling cursor movement, or posting a disk-insert event, or
checking the stack. They are called at some multiple of every
“heartbeat” (vertical blanking interval), 60 times a second.

O The System Failure Manager routine allows you to customize
the system failure message. Thus, if the user causes your
application to crash, you can have the System Failure Manager
display a message that gives the user an idea of what happened.

Controlling the operating environment 181

0O The User ID Manager routines create and delete the numbers
by which the ownership of all allocated memory blocks is
specified. Every program on the Apple IIGS has a User 1D,
assigned by the User ID Manager; each block that the Memory
Manager allocates for that program is given the program’s
User ID.

0 The mouse routines allow your application to directly set or g
the mouse location. However, the Event Manager calls these
routines automatically, so most applications don’t need to
make the calls. If you’re not using the Event Manager or
TaskMaster, you may need to use the mouse routines.

O The PackByles routine packs data to make a file smaller. This
can be useful for such things as graphic images, which would
ordinarily take up too much space on disk. UnPackBytes
unpacks the data from the PackBytes format.

O The Munger routine allows your application to manipulate
strings easily.

0O The SysBeep routine causes the system speaker to beep.

“The Miscellaneous Tool Set” in the Apple IIGS Toolbox
Reference describes in detail all of the above groups of routines.

The Scheduler

The Scheduler is a tool set that delays the activation of a desk
accessory or other task until the resources that the desk accessory
or task needs become available. Much of the system code is not
reentrant; that is, the code cannot be called again while it is
executing. Because of that, activating a desk accessory within non-
reentrant code almost always causes the system to fail. Thus, the
Apple 1IGS provides a Busy flag that the Scheduler can check to
discover if a needed resource is busy or available.

To write a typical application, you won't need to use the
Scheduler. Even if you are writing a classic desk acccessory you
won’t need to call the Scheduler—the Desk Manager does it for
you. Perhaps the only time you need to use it is when you are
writing interrupt handlers that access ProDOS 16 or the toolbox
routines. For example, an application that performs background
printing might need to access the Scheduler.

182 Chapter 5: Using the Toolbox (lil)

The Scheduler is completely
documented under “The
Scheduler” in the Apple IIGS
Toolbox Reference.

Scheduler maintains a queue of tasks waiting to execute, and
consults the Busy flag before dispatching them. When a non-
reentrant module is entered, your interrupt handler should set the
Busy flag; when exiting from the module, the application should
clear the Busy flag, permitting the Scheduler to execute any tasks
that have been placed in its queue.

Your interrupt handler should therefore check the state of the
Busy flag before it calls any system software. If the word is
nonzero, the necessary system resources are not currently
available, and you should add your task to the Scheduler’s queue.

Controlling the operating environment 183

Chapter 6

Memory, Segments, and Files

185

system, and how to write programs that take advantages of lower-
level system software. In particular, we discuss

O how to work with the Memory Manager to request and release
blocks of memory ’

O what segmented load files are, and how the Memory Manager
and System loader work together to place them in memory

0 how to use the System Loader to launch other programs from .
your program, load other files, and load individua] segments

O how to use the ProDOS 16 QUIT call to pass execution to
another program, and then bring your program back to exe
again

O what direct-page/stack space is and how to set jt up for your
program

O how to access disk files

You do not need detailed knowledge of all of these topics in ord
to write an application. But if you use the toolbox you should knoy
what direct page/stack space is; if you work with disk files you nee

The Memory Manager is in charge!

As a programmer, especially if you are an Apple 1I programmer,
YOu may be used to analyzing a computer’s memory map and

in fact, you are strongly discouraged from doing so, because it

may interfere with the efficient use of memory and the]
functiom'ng of your own or other programs. Instead, you should]
rely on the Memory Manager. {

186 Chapter 6: Memory, Segments, and Files

. For a complete description of

. Memory Manager functions, see
. “Memory Manager” in the Apple
. lles Toolbox Reference.

What the Memory Manager does

The Memory Manager is a ROM-resident Apple IIGS tool set that
controls the allocation, deallocation, and repositioning of
memory blocks in the Apple IIGS. The Memory Manager works
closely with ProDOS 16 and the System Loader to provide the
needed memory spaces for loading programs and data and for
providing I/O buffers. All Apple IIGS software, including the
System Loader and ProDOS 16, must obtain needed memory
space by making calls to the Memory Manager.

The Memory Manager keeps track of how much memory is free
and what parts are allocated to whom. Memory is allocated in
blocks of arbitrary length; each block possesses several attributes
that describe how the Memory Manager may modify it (such as
moving it or deleting it), and how it must be aligned in memory
(for example, on a page boundary). Table 6-1 describes the
memory block attributes and lists the predefined constants with
which each can be specified.

Table 6-1

Memory block aftributes

Attribute Constant* Explanation

Fixed (yes/no) attrFixed Must the block remain at the same location

Fixed address (yes/no)
Fixed bank (yes/no)
Bank-boundary limited (yes/no)

Page-aligned (yes/no)

in memory?
attrAddr Must it be at a specific address?
attrBank Must it be in a particular memory bank?

attrNoCross Is it prohibited from extending across a
bank boundary?

Special memory not usable (yes/no) attrNoSpec Is it prohibited from residing in banks $00,
$01, and parts of banks $E0, $E1?
attrPage Must it be aligned to a page boundary?
attrPurge Can it be purged (made available for other

Purge level (0 to 3)

Locked (yes/no)

* Equivalent to “yes” if present

use)? If so, with what priority?

attrLocked Is the block locked (temporarily fixed and
unpurgeable)?

The Memory Manager is in charge! 187

“* HodgePodge: For an example of the use of predefined
constants (column 2 of Table 6-1) in specifying memory-block
attributes, see any of HodgePodge's NewHandle calls—such as
in the routine StartUpTools (Chapter 2). See also “How Your
Application Obtains Memory,” later in this section.

Th% System Loader is described Memory-block attributes are specified in an attributes word.
under “Loading Programs and 1 f i
Segments,” Iater in fhis chapter. When you request a block of memory, you supply the attributes

word for that block. Later, you can modify the value of the
attributes word to change the block’s characteristics.

In addition to creating and deleting memory blocks, the Memory
Manager moves blocks when necessary to consolidate free
memory and relieve memory fragmentation. When it compacts
memory in this way (Figure 6-1), the Memory Manager can move
only those blocks that needn’t be fixed in location. Therefore as
many memory blocks as possible should be movable (not fixed),
if the Memory Manager is to be efficient in compaction. Data
segments and segments containing position-independent code
can generally be placed in movable blocks.

Before compaction After compaction

B [] [

Fixed blocks Movable blocks Free memory ;

Figure 6-1 i
Memory fragmentation and compaction

188 Chapter 6: Memory, Segments, and Files

Pointers and handles to memory blocks

To access an entry point in a movable block, an application can-
not use a simple pointer, because the Memory Manager may move
the block and change the entry point’s address. Instead, each time
the Memory Manager allocates a memory block, it returns to the
requesting application a handle referencing that block.

A handle is a pointer to a pointer: it is the address of a fixed (non-
movable) location that contains the address of the block. If the
Memory Manager changes the location of the block, it updates the
address in the fixed location; the value of the handle itself is not
changed. Thus the application may continue to access the block by
using the handle, no matter how often the block itself is moved in
memory.

Memory block

Q. Pointer:

Value of pointer =
starting address of memory block

XXX E———e

Memory block

b. Handle: > SXXX

Value of handle = . .

address of master pointer * Master pointer °
s2zz | > 5727 5XXX

Figure 6-2

Pointer and handle

If a block will always be in the same place in memory (that is
cither locked or fixed), it may be referenced by a pointer instead
of by its handle. To obtain a pointer to a particular block or
location, an application can dereference the block’s handle. The
application reads the address stored in the location pointed to by
the handle—that address is the pointer to the block. Of course, if
the block is ever moved that pointer is no longer valid.

The Memory Manager is in charge! 189

Deref

START

sta 0

stx 2

ldy #4
lda [0],y
ora #$8000
sta [0],y
dey

dey

lda [0],y
tax
1da[0]
rts

END

A memory handle that points to a
value of zero is calledNIL.

190

Important

Chapter 6: Memory, Segments, and Files

In most high-level languages, dereferencing is a simple, single-
statement task. For example, in C the statement

z:*y

dereferences the memory handle y. The variable z now contai
a pointer to the memory block whose handle is y. In assembly-
language it takes a few more statements; the HodgePodge routine
Deref (in the file GLOBALS . ASM) looks like this: ;

; store low word of handle at zero-page address 0
; store high word of handle at zero-page address 2
/ Put the value "4" in Y register

; set the..

; ..attributes bit that..

; ..locks the block

; now Y=3

; now Y=2

; put high word of pointer into acumulator

; put high word of pointer in X register

/ put low word of pointer in accumulator

; return to caller

When a memory block is purged, the memory that its handle
pointed to becomes available for other use but the handle itself
remains in memory. A purged memory handle points to the
address $00 0000, but retains its User ID and all its attributes as
listed in Table 6-1, so that the memory block can be quickly and
easily reallocated if necessary.

When all the attributes of a memory handle as well as the
memory it points to are discarded, the handle is said to be
disposed. A disposed memory handle is no longer associated with
a particular program. Your application can get rid of memory it
no longer needs by making a DisposeHandle call. ’

Pointers and handles must be at least 3 bytes long to access the
full range of Apple IIGS memory. However, pointers and handles
passed as parameters are always 4 bytes long, because they are
then easier to manipulate in the 16-bit registers of the 65C816
microprocessor.

Do not use the high-order byte of a 4-byte pointer or handle to
store data. The unused byte Is reserved for system use—your
application should always fill it with zeros,

How your application obtains memory

When an application makes a call to the operating system or
other system software that requires allocation of memory (such as
opening a file or writing from a file to a memory location), the
system software first obtains any needed memory blocks from the
Memory Manager and then performs its tasks. When an
application informs the operating system that it no longer needs
that memory, the information is passed on to the Memory
Manager which in turn frees that application’s allocated memory.
In these cases the memory allocation and deallocation is
completely automatic, as far as the application is concerned.

Requesting memory

Any other memory that an application needs for its own purposes
must be requested directly from the Memory Manager. The
shaded areas in Figure 6-3 represent those parts of the Apple IIGS
memory that can be allocated through requests to the Memory
Manager. Apple 1IGS applications should avoid requesting
absolute (fixed-address) blocks—it defeats the Memory Manager’s
ability to allocate memory as efficiently as possible, and increases
the probability that the program will not be able to load or run.

Bank numbers

S00 $01 $02 S7F SEO SE1

$0800— $2000

Figure 6-3
Memory allocatable through the Memory Manager

The Memory Manager is in charge! 191

toolsZeroPage := NewHandle(TotalDP,

Direcf-pc:ge space is described
in more detail later in this chapter.

The User ID Manager is described
under “Miscellaneous Tool Set”
inthe Apple IIGs Toolbox
Reference

192 Chapter 6: Memory, Segments, and Files

Your application requests memory with the Memory Manager’s
NewHandle call. Here is an example from HodgePodge:

myMemoryID,

attrBank+attrFixed+attrLocked+attrPage,
Ptr(0));

In this example HodgePodge is requesting direct-page space for |
tool set use. ToolsZeroPage is a handle to the requested space. |
Inputs to the call are: size (TotalDP), User ID (myMemoryID),
predefined constants specifying attributes (as described in Table -

6-1), and a pointer to where the block is to begin (bank $00 in
case).

User IDs

Many Memory Manager calls use the block’s User ID, a code
number that shows what program owns the memory block. User
ID’s are assigned by the User ID Manager.

When your application starts up the Memory Manager, the
operating system has already assigned a master User ID for that
execution of the application. The operating system gives the
master User ID number to the Memory Manager, which in turn
passes that ID to your application in the MMStartUp call. You
must save that ID for use when you shut down your application.

Byte 1 Byte 0
Bit:[15 [14[13 112 [11 [10] 9 | 8 7]6ls5[als]2]q
Value: typelD auxiD mainiD

Figure 6-4
User ID format

As Figure 6-4 shows, User IDs are made up of three fields—the
typelD, auxID, and mainID fields—contained in a word-length
parameter. The value in the mainID field is assigned by the User II
Manager. The typelD field contains a number that describes the
general kind of program segment that will occupy the block—such
as application, desk accessory, or tool set. The auxID field is]
entirely definable by the program requesting the memory. Its initis
value is 0; your application can store any 4-bit value there.

Important

Using the auxID field, your application can create up to 15 new
and distinct User IDs from the single master User ID returned by
the Memory Manager at startup. You can use each new User ID to
allocate as many additional, private memory blocks as needed;
when finished with the memory allocated under a particular ID,
discard it all at once by calling DisposeAll with that ID. An
example of this technique is shown in the following assembly-
language code fragment.

pushword #0 ; space for master User ID
_MMStartUp

pla ; retrieve master User ID

sta MasterID ; store master User ID

ora #$0100 ; create User ID with AUX ID =1

sta MyID ; store ID for use w/ private memory

; (your code here)

Ce ; (ready to exit program)
pushword MyID
_DisposeAll ; discard all of my private memory
; (continue with termination

; processing)

Do not specify an auxID of 0. The Memory Manager routines
PurgeAll and DisposeAll tfreat an auxiD field with 0 in it as a wildcard
that matches all values.

The main advantage of this method is that you can dispose of all
allocated blocks quickly and easily, with a DisposeAll call, instead
of making sure to keep track of all allocated blocks and
deallocating them individually.

You don’t have to use this method. You could simply use the
master User ID, unchanged, to obtain new private memory.
However, your application could not then use the DisposeAll call
to discard everything—it would be disposing of itself too. Another
method is to obtain an entirely new User ID for private memory.
This method allows you to discard all private memory at once,
but leaves open the possibility of allocated blocks remaining in
memory after your application quits.

% HodgePodge: HodgePodge makes very few memory-allocation
requests. It uses an unmodified master User ID when it does so,
and it makes sure to dispose of its requested memory blocks
individually.

The Memory Manager is in charge! 193

Locking and unlocking, purging and disposing

If you need to access a movable memory block directly—that s,
you need to dereference its handle—you must first lock it so that
it won't move while you are using it. When you no longer need it
to be locked, make sure to unlock it so the Memory Manager can

move it during compaction. Don’t lock blocks that you are not
currently accessing.

If you are temporarily through using a block, and don’t mind if i
contents must be reconstructed the next time they are needed,
you can set the block’s purge level to make it purgeable. Then th
Memory Manager can purge it if more space is needed. If the
Memory Manager does purge a block, you can quickly restore it
with the same attributes, User ID, and size. :

Important When the Memory Manager purges a block, all data in it is lost, You

application is responsible for saving and restoring the data
appropriately,

When your application is completely finished with its own priva
memory, it should dispose of it—for example, by calling the
DisposeAll routine and specifying the User ID with a modified
auxID field, as described earlier. If your application doesn’t
For more information on memory dispose of all memory that it has acquired, the memory
management, see the Apple lics

Toolbox Referencoand o management system can become clogged.
Apple lIcs ProDOS 16 Reference

important Do not call DisposeAll with the unmodified master User ID for your
own program (the one in which auxiD = 0).

Load segments and memory blocks

In Chapter 1 we introduced the idea of segmented programs. The
executable versions of program files are called load files, and th
consist of one or more load segments. Load segments are .
The System Loader is described placed in memory by the System Loader. The System Loader must
In the next section of this chapter. work closely with the Memory Manager because different types of
segments require memory blocks with different attributes. '

When the System Loader loads 4 program segment, it calls the

Memory Manager to allocate 2 memory block for the segment.

The attributes assigned to that memory block are closely tied to
the attributes of the segment that will inhabit the block.

194 Chapter 6é: Memory, Segments, and Files

If the program segment is static, and therefore must not be
unloaded or moved, its memory block is marked as unpurgeable
and fixed. That means that the Memory Manager cannot change
that segment’s position or contents as long as the program is
running. If the program segment is dynamic, its memory handle is
initially marked as purgeable but locked (temporarily unpurgeable
and fixed; subject to change at the request of the application). If
the dynamic segment is position-independent, its memory handle
is marked as movable; otherwise, it is fixed.

In summary, a typical load segment will be placed in a memory
block that is

O locked
O fixed
O purge level = 0 (that is, unpurgeable) if the segment is static

O purge level = 1 if the segment is dynamic

Depending on other requirements the segment may have, such as
alignment in memory, the load segment-memory block
relationship may be more complex. Consult the Apple IIGS
ProDOS 16 Reference for details.

Loading programs and segments

The System Loader loads all programs and segments of programs.
It is called by ProDOS 16 when an application starts or quits, it is
called automatically to load dynamic segments during program
execution, and it can be called by your application to load and
unload other programs or program segments. This section
describes both the automatic operation of the loader and the
ways in which your program can call it directly.

R

% Note: If you are writing a typical application, you don’t have to
call the System Loader at all. All its operations are automatic
for most programs, even those with dynamic segments. If you
are not interested in System Loader details, skip ahead to
“Quitting and Launching Under ProDOS 16.”

% HodgePodge: HodgePodge makes no loader calls.

Loading programs and segments 195

The System Loader, although a
tool set, is documented in the
Apple lIGS ProDOS 16 Reference.

The Jump Table, Pathname
Table, and other System Loader
tables are discussed in detail in
the Apple lIcs ProDOS 16
Reference

How the System Loader works

The System Loader is the Apple IIGS tool set that manages the
loading of program segments into the Apple IIGS. It works very
closely with the Memory Manager and with the ProDOS 16
operating system.

The System Loader is a program that processes load files—it is
not concerned with source files or object files. Each load file
consists of load segments that the loader treats differently,
depending upon their attributes:

m Static segments are loaded into memory at application startup. -
They stay in memory until the program quits.

B Dynamic segments are placed in memory only as needed
during program execution. They may be removed when no
longer needed.

m Absolute segments are loaded at specified, fixed locations in
memory.

m Relocatable segments are placed wherever the System Loader
can find sufficient memory space. Once they are loaded, their
memory blocks are locked so they can’t move.

m Position-independent segments are placed wherever the System |
Loader can find sufficient memory space. Their memory blocks
are initially locked, but once unlocked they can be moved from
one location to another between executions. |

Some load segments consist of typical program code or data;
others are more specialized. The Jump Table segment, when

loaded into memory, becomes the Jump Table; it provides a]
mechanism by which segments in memory can trigger the loading
of other needed segments. The Pathname segment becomes the
Pathname Table, a cross-reference between pathnames on disk

and load segments in memory. An initialization segment 4
contains any code that has to be executed first, before the rest of
the segments are loaded.

When the System Loader is called to load a program, it loads all
static load segments and constructs the tables necessary to allow
automatic loading of dynamic segments.

196 Chapter 6: Memory, Segments, and Files

- Confrolling programsare
. discussed under “Loading
_ Applications,” later In this section.

To unload a segment, the System Loader calls the Memory
Manager to make the corresponding memory block purgeable. If
the segment is dynamic, the loader also alters the Jump Table to
reflect the fact that the segment may no longer be in memory.

To unload all segments associated with a particular application
(for example, at shutdown), a controlling program such as a shell
calls the System Loader’s User Shutdown function, which in turn
calls the Memory Manager to make purgeable, purge, or

dispose of the application’s memory blocks (depending whether
the application is restartable or not—see “Shutting Down and
Restarting Programs in Memory,” later in this section).

Loading a relocatable segment

When a relocatable segment is loaded into memory, its code is
placed at the location assigned to it by the Memory Manager. The
loader then performs relocation on the code—it patches address
operands that refer to locations both within and external to the
segment.

1. Local references are coded in the load segment as offsets from
the beginning of the segment. The loader adds the starting
address of the segment to each offset, so that the correct
memory address is referenced.

2. External references may be to routines in static or dynamic
segments. If the reference is to a static segment, the loader
finds the memory location of the routine in that static segment
and patches the reference with its address. If the reference is to
a dynamic segment, the loader patches the reference to point
to a Jump Table entry. The Jump Table entry contains the
information necessary to transfer control to the external
segment when it is loaded.

You can see that most Apple IIGS code cannot be moved once it
is in memory: relocation happens only when the segment is
loaded, so if the segment is ever moved its address operands will
no longer be correct. Only position-independent code, which
needs no relocation, can be moved around in memory. And
position-independent code is difficult to write—therefore, most
Apple IIGS code is relocatable, but not position-independent.

Loading programs and segments 197

Object module formatis the file
format produced by Apple IS
development systems such as
the Apple liss Programmer’s
Workshop. See Chapter 7.

Loading applications

The functioning of the System Loader is completely transpare
to most applications. Any program that is in proper object
module format (with any combination of static and dynamic -
segments) will be automatically loaded, relocated, and execu
whenever it is called. Unless you want your program to load
dynamic segments manually, or load and execute other progas
you need not know how to use the System Loader. ‘

However, you can indirectly affect the functioning of the Systes
Loader by the method in which you segment your programs. If
your program is divided into static and dynamic segments, yo
may experiment with several configurations of a single prograt
after it has been assembled to see how loading of dynamic
segments affects performance. See Chapter 7 for further progra
design considerations involving static and dynamic segments.

Application control of segment loading

Most applications do not need to make loader calls directly, bt
for programs with specialized requirements the System Loader
offers this capability. ~

One advantage of manually loading a dynamic segment is that
segment can be referenced in a more direct manner than an
automatically loaded dynamic segment. Automatically loaded
dynamic segments can be referenced only through a JSL to the.
Jump Table; however, if the segment consists of data such asa
table of values, you would want to simply access those values
rather than passing execution to the segment. By manually
loading the segment into a locked memory block, and
dereferencing its memory handle (obtaining a pointer to the s
of the segment), you can then reference any location in the tabl
directly. Of course, because the loader does not resolve any
symbolic references in the manually loaded segment, the
application must know the segment’s exact structure.

Your program is responsible for managing the segments it Ioa,
That is, it must unload them with System Loader calls when the
are no longer needed.

198 Chapter é: Memory, Segments, and Files

:

1

- The ProDOS 16 QUIT call is

~ explained under "Quitting and

~ Launching Under ProDOS 16, later
.~ Inthis chapter.

More detailed requirements for
controlling programs and their
subprograms (called shell
applications) are listed in
Chapter 8.

Loading by controlling programs (shells)

A program may cause the loading of another program in one of
two ways:

O The program can make a ProDOS 16 QUIT call. ProDOS 16
and the System Loader remove the quitting program from
memory, then load and execute the specified new program.

O The program can call the System Loader directly. The loader
loads the specified new program without unloading the original
program, then hands control back to the original program.

Most applications use the first method. Even if you want your
application to launch another specific program, and even if you
want control to return to your application after the succeeding
program quits, the ProDOS 16 QUIT call is all that is needed. For
example, a finder or program launcher, which always regains
control between execution of applications, uses the QUIT call to
launch the applications.

Programs that use the second method are called controlling
programs. Certain types of finders, switchers, and shells may be
controlling programs. ProDOS 16 is a controlling program; the
Apple IIGS Programmer’s Workshop Shell is a controlling
program. An application needs to be a controlling program only
if it must remain in memory after it calls another program, usually
because it has functions or sets up an environment needed by the
programs it executes.

The controlling program is completely responsible for the
subprogram’s ultimate disposition. When the subprogram is
finished, the controlling program must remove it from memory
and release all resources associated with its User ID. The best way
to do this is to call the System Loader’s User Shutdown function.

Shutting down and restarting programs in memory

By using System Loader calls, a controlling program can rapidly
switch execution among several applications. For switching to be
efficient, the loader must be able to shut a program down without
removing it from memory, and the program must be able to re-
execute itself without having to be reloaded from disk.

Loading programs and segments 199

Restartable software reinitializes
its variables every time it gains
control; it also makes no
assumptions about the state of
the machine it will find when it
starts up.

200 Chapter é: Memory, Segments, and Files

The User Shutdown function can put an application into such a
dormant state. It does this by purging an application’s dynamic
segments, and making all its static segments purgeable. This
process frees space but keeps the dormant application’s essenti
segments in memory. As long as all the static segments are still
memory, the Restart function brings the application back rapidt
because disk access is not necessary. However, if for any reason,
the Memory Manager purges one of those static segments, the
application can no longer be restarted—the next time it is
needed, it must be loaded from its disk file.

Only software that is restartable can be executed in this way. In
general, if your program has a code routine that defines and
initializes all variables, and if that routine is called every time
program runs, and if the code in that routine is not modified
during execution, the program is probably restartable.

When an application quits with a ProDOS 16 QUIT call (describx
nex), it tells its controlling program whether it (the application;
is restartable or not. (The controlling program simply takes the |
application’s word for this, by the way.) If the application says it
wants to be restarted and claims to be restartable, the controllin
program makes it dormant. If the application says it is not '
restartable, the controlling program removes all of its segments
from memory. i

< Note: 1t is difficult to make some programs in some languages
restartable; they require initialization information to be loadel
from disk every time they execute. To help in such cases, the
System Loader supports RELOAD segments. If all initialization
information is put into a RELOAD segment, a program that *
could not otherwise be restarted can make itself restartable.
When a program is restarted from a dormant state, only its
RELOAD segments (plus any initialization segments) are read
from disk.

Quitting and launching under ProDOS 16

ProDOS 16 and the System Loader provide a sophisticated
method for passing control among different applications. 3
Through the ProDOS 16 QUIT call, an application can do one of!
three things: ’

O Quit permanently.

:

The system file level is described
later in this chapter, under “The

- ProDOS File System.”

O Quit permanently, but tell ProDOS 16 to launch another
specified application.

0 Quit to a specified application temporarily, telling ProDOS 16
it wants to be re-executed after the specified application quits.

When it launches another application or quits temporarily
through the QUIT call, an application is not functioning as a
controlling program. It is not maintained in memory (except,
possibly, in a dormant state) while the other program executes. A
finder or program launcher, for example, is an application that
quits temporarily each time an application is launched, returning
after the application quits. It is not a shell.

K2

< Note: If you are writing a typical application in a high-level lan-
guage, you may not need any of the information here—your
compiler determines the manner in which your program quits.
If you are writing a typical application in asssembly language, be
sure to read the “HodgePodge” note at the end of this section.

Quitting, launching, and returning

Calling QUIT terminates the present application. It also closes all
open files, sets the current system file level to zero, and
deallocates any installed interrupt handlers. ProDOS 16 can then

O launch a file specified by the quitting program

O automatically launch a program specified in the quit return
stack

The quit return stack is a table of User ID’s maintained in memory
by ProDOS 16. It provides a convenient means for a program to
function like a shell—the program can pass execution to
subsidiary programs (even other shell-like applications), while
ensuring that control eventually returns to it.

For example, a program selector may push its User ID onto the
quit return stack whenever it launches an application (by making a
QUIT call). That program may or may not specify yet another
program when it quits, and it may or may not push its own User
ID onto the quit return stack. Eventually, however, when no more
programs have been specified and no others are waiting for
control to return to them, the program selector’s User ID will be
pulled from the stack and it will be executed once again.

When your application makes a QUIT call, it specifies these two
parameters:

Quitting and launching under ProDOS 16 201

The exact format of the flag word,

and the rest of the ProDOS 16 QUIT
call, is given in the Apple IS
ProDOS 16 Reference.

Using the ProDOS 8 QUIT call on the
Apple lIGS is discussed in the
Apple lIcS ProDOS 16 Reference.

202 Chapter é: Memory, Segments, and Files

1. Pathname pointer—if specified, it indicates the program |
loaded and executed. If no pathname is specified, ProDO!
pulls a User ID from the quit return stack and executes the
program with that User ID.

2. Flag word—it contains two boolean values: a return flaga
restart-from-memory flag. The return flag tells ProDOS 16
whether the program making the QUIT call wants to returi
so, its User ID is pushed onto the quit return stack. The re
from-memory flag tells ProDOS 16 whether the quitting -
program is restartable. If it is not, the program must be
reloaded from disk the next time it is run. The informatios
from this flag is saved on the quit return stack along with t
User ID. '

¢ ProDOS 8: This automatic return mechanism is specific to
ProDOS 16 QUIT call, and therefore is not available to P
8 programs on the Apple IIGS. When a ProDOS 8 applicat
quits, it can pass control to another program but it cannof
its own ID on the quit return stack. ’
How a particular application quits is language-specific. For
example, C programs terminate with a left-facing bracket, an
Pascal programs end with an END. statement. In either case |
is no way to make an explicit QUIT statement. The actual g
statement is inserted when the program is compiled. Assemb
language programs, however, make explicit QUIT calls.

< HodgePodge: The assembly-language version of HodgePo
has the followingProDOS 16 (macro) QUIT statement:

_Quit QuitParams

where the _Quit macro translates directly into a ProDOS'
QUIT call, and the QuitParams parameter list consists of
null bytes (corresponding to a null pathname pointer),
followed by a word-length flag value of $4000 (meaning
HodgePodge is restartable from memory).

Setting up direct-page/stack space

For assembly-language programmers, the 65C816 processor
provides the convenience of a direct page. Accessing and
indexing from direct-page addresses are efficient because add
operands are a single byte, rather than the three bytes require
for a full address on the 65C816. :

RIS

Standard-Apple Il stack and zero
page are discussed in the Apple
lle Technical Reference Manual

and the Apple lle Technical

Reference Manual

For all programmers, direct page is of interest because several
Apple 1IGS tool sets require that the application provide direct-
page space for them.

The size and location of the stack may also be of particular
interest to you if you are writing heavily recursive routines that
require large stack space.

How direct page and stack are organized

In the Apple IIGS, the 65C816 microprocessor’s stack pointer
register is 16 bits wide; that means that the hardware stack may be
located anywhere in bank $00 of memory. Also, the stack may be
as much as 64K deep. In theory, then, the stack may occupy any
unused space of any size in bank $00.

The direct page is the Apple IIGS equivalent to the zero page on
a standard Apple II computer. The difference is that it need not
be page zero in memory. Like the stack, the direct page may be
placed in any unused area of bank $00. The microprocessor’s
direct register (D register) is 16 bits wide, and all zero-page
(direct-page) addresses are added as offsets to the contents of
that register. Because the direct page can be located anywhere in
bank $00, you can allocate more than 256 bytes (that is, more
than one page) as direct-page space for your program. Then, by
changing the value of the D register while the program is running,
you can use direct addressing to access any portion of the direct
page space.

In principle, the entire 64K of bank $00 could be used for the
combined direct-page/stack space. In practice, however, less space
is available. First, only the lower 48K of bank $00 can be allocated;
the rest is reserved for I/O and system software. Also, because
more than one program can be in memory at a time, there may
be more than one stack and more than one direct page in bank
$00. Furthermore, many applications may have parts of their code
as well as their stacks and direct pages in bank $00.

Your program should therefore be as efficient as possible in its
use of direct-page/stack space. The total size of both should
probably not exceed about 4K in most cases. Still, with a space
that size you can write programs that require stacks and direct-
page space much larger than the 512 bytes available on standard
Apple II computers.

Setting up direct-page/stack space 203

204

% Note: By convention, the direct page and stack occupy a si
memory block in bank $00. Direct-page addresses are pos
offsets from the base of the allocated space, and the stack |
downward from the top of the space.]

Creating a direct-page/stack segment

Only you can determine how much stack and direct-page spa
your program will need when it is running. The best time to i
that determination is during program development, when you
create your source files. There are three ways to allocate the
direct-page/stack space you need: |

O Define it as a program segment.
O Use the ProDOS 16 default.

O Create it at run time.

Define it as a program segment

You can specify the size and contents of your program'’s stack
direct-page space by creating a direct-page/stack segment whe
you assemble (or compile) and link your program. The size of
segment is the total amount of stack and direct-page space
allocated to your program, and the contents of the segment at
whatever initial contents you want the direct-page/stack space
to have. ‘

Each time a program is started, the System Loader looks fora
direct-page/stack segment. If it finds one, it loads the segment
passes its base address and size to ProDOS 16, along with the -
program’s User ID and starting address. ProDOS 16 sets the A
(accumulator), D (direct), and S (stack) registers as shown beloy
then passes control to the program.

Chapter 6: Memory, Segments, and Files

Register Contents
A User ID assigned to the program
D address of the first (lowest) byte in the direct-

page/stack space

S address of the last (highest) byte in the direct-
page/stack space

kEd Is described in the Apple
lles Programmer ‘s Workshop
Reference An example of a
kEd file is shown In “Creating

KIND is a segment-description
fleld, See “Object Module

mat” inthe Apple lIGS
ogrammer’s Workshop
ference or "“System Loader
chnical Data” in the Apple lIGS
- ProDOS 16 Reference.

To specify the direct-page/stack space for your program, use the
following procedure (in APW assembly language, using LinkEd).

See also Figure 6-5.

1. Create a dala segment in your source file with the size and
contents you want for your initial direct page and stack.

2. Assemble the program.

3. Use a LinkEd file to link the program. Make the direct-
page/stack segment a load segment by itself, with KIND=$0812
(meaning it is a static, absolute-bank, direct-page/stack

segment).

1. 2. 3. 4,
Create an Place it in asingle The System ProDOS 16 sets the
object segment direct-page/stack Loader stack register to
of proper size. load segment. quds it 'rhga highest address
Object file: Load file: into in the segment.
Bank
00.
Segment 1 J Segment 1 s
Segment 2
l
t - Linker | » Se t - - Loader - ¥ Penct poge
Segment m gment n and stack
ProDOS 16 sets the
direct register
to the lowest
address in
the segment.
Figure 6-5

Loading a direct-page/stack segment

Setting up direct-page/stack space 205

See theApple IIGS Toolbox
Referencefor a general
description of memory block
aftributes assigned by the
Memory Manager.

HodgePodge's direct-page
allocation for tool sets is
demonstrated under “Start the
Program® in Chapter 2.

Use the ProDOS 16 default

If the loader finds no direct-page/stack segment in a file at load
time, ProDOS 16 itself calls the Memory Manager to allocate a
default direct-page/stack segment, in a2 memory block with these
attributes:

Size 1,024 bytes i

Owner program with the User ID ;
returned by the loader i

Fixed/movable fixed 1

Locked/unlocked locked |

Purge level 1

May cross bank boundary? no 5

May use special memory? yes

Alignment page-aligned

Absolute starting address? no

Fixed bank? yes—bank $00

Once allocated, the default direct-page/stack space is treated just
as it would be if it had been specified by the program: ProDOS 16
sets the A, D, and S registers before handing control to the |
program, and at shutdown the System Loader makes the segment
purgeable.

For many assembly-language applications, the 1K default stack
and direct page space allocated by ProDOS 16 are sufficient.
Individual high-level language systems may have the same or
different default sizes; check your language reference manual.

% HodgePodge: HodgePodge accepts the default direct-
page/stack space set up for it by ProDOS 16. In addition, it
manually creates a direct-page space for tool sets, by a method
similar to that described next, under “Create It at Run Time.”

Create it af run time

If the ProDOS 16 default space is the wrong size for your applica-
tion, and if for some reason you do not want to specify the size of
your direct-page/stack space at link time, you can include ProDOS
16 and Memory Manager calls in your program that allocate a
direct-page/stack space during program execution. In that case,
when ProDOS 16 transfers control to your program, save the User
ID value left in the accumulator (or use the User ID returned by
the Memory Manager startup call) before doing the following:

206 Chapter 6: Memory, Segments, and Files

3 term ProDOS (as in ProDOS file
m) refers to features

on to both ProDOS 8 and

S 16. The term ProDOS 16 (as
ProDOS 16 prefixes) is used to
scribe features that ProDOS 8
es not have.

Important

1. Using the starting or ending address left in the D or S register
by ProDOS 16, make a FindHandle call to the Memory
Manager to get the memory handle of the automatically
provided direct-page/stack space. Then, using that handle, get
rid of the space with a DisposeHandle call.

2. You can now allocate your own direct-page/stack space through
the Memory Manager NewHandle call. Make sure that the
allocated block is purgeable, unmovable, and locked.

3. Place the appropriate values (beginning and ending addresses
of the segment) in the D and S registers.

Cautions

When your program terminates with a QUIT call, the System
Loader makes the direct-page/stack segment purgeable, along with
the program’s other static segments. Bank $00 is heavily used, and
if the direct-page/stack segment is purged, your entire program
will have to be reloaded from disk when it reexecutes.

If your direct-page/stack load segment contains initialization data,
you need to make it a RELOAD segment if you want your program
to be restartable.

There is no provision for extending or moving the direct-
page/stack space after its initial allocation. Because bank $00 is so
heavily used, the space you request may be unavailable—the
memory adjoining your stack is likely to be occupied by a locked
memory block. Make sure that the amount of space you specify at
link time fills all your program’s needs.

The Apple lics provides no mechanism for detecting stack
underflow or overflow (collision of the stack with the direct page).
Your program must be carefully designed and tested to make sure
this cannot occur,

The ProDOS file system

You use the Apple IIGS disk operating system, ProDOS 16, to
open, close, create, delete, and otherwise manipulate files on disk.
This section describes the filename and prefix conventions used
by ProDOS 16 and introduces some of the ProDOS 16 functions
that your program may call.

The ProDOS file system 207

208

Filenames and pathnames

A ProDOS filename or volume name s up to 15 characters Io
It may contain uppercase letters (A-Z), digits (0-9), and period

converted to uppercase. A filename must be unique within its
directory.

A ProDOS pathname js 2 series of filenames, each preceded b
slash (/). The first filename in a pathname is the name of 3
volume directory; it, too, is preceded by a slash. Successive
filenames indicate the path, from the volume directory to the f
that ProDOS must follow to find a particular file. The maximun
length for a pathname is 64 characters, including slashes.

Pathname prefixes —

more names of subdirectorjes. ProDOS 16 allows you to define
more than one prefix, and refer to each prefix by its Drefix
number. When you specify no particular prefix number with a
partial pathname, ProDOS 16 adds the default prefix.

Seéparate it from the partial pathname. When ProDOS 16
processes the pathname, it replaces the prefix number with the
actual prefix it represents.

One of the prefix numbers (*/) has 2 fixed value, and the others
have default valyeg assigned by ProDOS 16, The predefined
prefixes are as follows:

Chapter ¢; Memory, Segments, and Files

' See the ProDOS 8 Technical
Reference Manualfor more

' Information on ProDOS 8 prefix
- conventions.

' Table 6-2
4 Examples of prefix use

*/ Boot prefix: the name of the volume from which the
presently running ProDOS 16 was booted.

0/ Default prefix: (automatically attached to any partial
pathname that has no prefix number)—it has a value
dependent on how the current program was launched. In
most cases the default prefix is equal to the boot prefix.

1/ Application prefix: the pathname of the subdirectory
that contains the currently running application.

2/ System library prefix: the pathname of the subdirectory
(on the boot volume) that contains the library files used
by applications.

3/—7/ Null strings: (unless previously defined by an application).

Your application may change the values of all prefixes except
prefix */.

Prefix 0/, the default prefix, is similar to the ProDOS 8 system
prefix in that ProDOS 16 automatically attaches prefix 0/ to any
partial pathname for which you specify no prefix. However, its
initial value is not always equivalent to the ProDOS 8 system
prefix’s initial value.

The maximum length for a prefix is 64 characters. The minimum
length for a prefix is zero characters; a prefix of zero length is
known as a null prefix. You set and read prefixes using the calls
SET_PREFIX and GET_PREFIX. The 64-character limits for the
prefix and partial pathname combine to create a maximum
effective pathname length of 128 characters.

Table 6-2 shows some examples of prefix use. The pathname
provided by the caller is compared with the full pathname
constructed by ProDOS 16. The examples assume that prefix 0/ is
/VOLUMEl/and;xeﬁxS/is/VOLUMEl/TEXT.FILES/

 Case illustrated

- Full pathname

Implicit use of prefix 0/
Explicit use of prefix 0/

-f Use of prefix 5/

~ /VOLUME1/TEXT.FILES/.

Pathname provided Pathname as expanded
/VOLUME1/TEXT. FILES/CHAP.3 /VOLUME1/TEXT. FILES/CHAP.3
TEXT.FILES/CHAP.3 /VOLUME1/TEXT. FILES/CHAP.3
0/TEXT.FILES/CHAP. 3 /VOLUME1/TEXT. FILES/CHAP.3
5/CHAP.3 /VOLUME1/TEXT .FILES/CHAP.3

~ Note: These examples assume that prefix 0/ is set to /VOLUME1/ and that prefix 5/ is set to

The ProDOS file system 209

Important When your application is launched, all nine prefix numbersare
assigned to specific pathnames (some are meaningful pathnam
and others may be null strings). However, prefixes 0/ and 2/ may.
nothave the expected ProDOS 16 default values—they may
reflect changes made by the previous application. Beware of
assuming any particular Initial value for any particular prefix,

Creating and destroying files ,
A file is placed on a disk by the ProDOS 16 CREATE call. When

All of these file attributes are fully you create a file, you assign it several properties, including
explained in Appendix A of the
Apple IIGS ProDOS 16 Reference. O pathname

O access attributes (deletable, renamable, writeable, readable,
backup-required)

O file type
O auxiliary type
O creation date and creation time

Once a file has been created, it remains on the disk until it is
deleted (by using the DESTROY call).

Opening, closing, and flushing files

Before you can read information from or write information to a
file, you must use the ProDOS 16 OPEN call to open the file for
access. The OPEN call returns a reference number for the file. All
subsequent references to the open file must use its reference
number. The file remains open until you use the CLOSE call on it,

When you finish reading from or writing to a file, you must use th
CLOSE call to close the file. CLOSE writes any unwritten data fro
the file’s 1/0 buffer to the file, and it updates the file’s size in the
directory if necessary. To access the file again, you have to
reopen it.

FLUSH, like CLOSE, writes any unwritten data from the file’s I/O]
buffer to the file, and updates the file’s size in the directory.
However, FLUSH keeps the file open.

210 Chapter 6: Memory, Segments, and Files

File levels

When a file is opened, it is assigned a file level according to the
system file level. You can determine the current system file level
with a GET_LEVEL call, and can change the level with a
SET_LEVEL call. When you specify 0 as the reference number in
the CLOSE and FLUSH calls, all files having a file level greater
than or equal to the current system file level are closed or flushed.

This feature allows controlling programs to quickly close all files
associated with their subprograms. For example, when a shell
program takes control of the Apple IIGS, it can execute a
GET_LEVEL call to determine the current system file level, then
execute a SET_LEVEL call to set the system file level to a higher
level. Each file opened by the shell and by the programs that run
under the shell is then assigned the new file level by ProDOS 16.

When the shell is ready to quit, it can execute a CLOSE call with a
reference number of 0, and all files opened under the shell (that
is, those with a file level equal to or greater than the current
system file level) are closed. The shell can then execute a
SET_LEVEL call to return the system file level to its previous value,
and finally execute a QUIT call.

Reading and writing files

READ and WRITE calls to ProDOS 16 transfer data between
memory and a file. For both calls, the application must specify
the location in memory of a buffer that contains, or is to contain,
the transferred data. When the request has been carried out,
ProDOS 16 passes back to the application the number of bytes
that it actually transferred.

A read or write request starts at a specific position in the file, and
continues until the requested number of bytes has been
transferred (or, on a read, until the end-of-file has been reached).
Read requests can also terminate when a specified character (the
newline character set by the NEWLINE call) is read.

The ProDOS file system 211

LoadOne is in the source file
PAINT.PAS.

function

var openBlk :
readBlk :

begin
LoadOne := FALSE

WaitCursor;
pictHndl

if isToolError then
Exit;

HLock (pictHndl) ;

openBlk.openPathname

OpenRec;
FileIORec;

The HodgePodge routine that reads files is LoadOne, called fro
the routine AskUser, which itself is called from DoTheOpen wh
the user wants to open a picture window. LoadOne makes the
ProDOS 16 calls OPEN, READ, and CLOSE:

LoadOne: Boolean;

:= NewHandle ($8000,

myMemoryID,
OI
Ptr(0));

@myReply.fullPathname;

openBlk.ioBuffer := NIL;

OPEN (openBlk}) ;

1f CheckDiskError (27) then
Exit;

readBlk.databuffer

readBlk.requestCount :

readBlk.fileRefNum

READ (readBlk) ;

1f CheckDiskError (28)
Exit;

CLOSE (readBlk) ;
HUnLock (pictHndl) ;
LoadOne := TRUE;

end;

[l

pictHndl”;
$8000;

:= openBlk.openRefNum;

then

212 Chapter 6: Memory, Segments, and Files

{begin LoadOne...}

{ProDOS 16 parameter blocks..}
{..defined in ProDOS 16 interface}

]
{Initialize value of function} ;
{put up watch cursor} =
{request memory to hold the picture.}
{HodgePodge's User ID} ?
{not purgeable, no restrictions}
{anywhere}
{If the memory is unavailable..}
{..leave this subroutine}

{Lock handle so picture won't move}
{Now fill in parameter block:..}

{pathname from Std. File results..}
{zero this parameter}

{make a ProDOS 16 OPEN call}

{If it fails for some reason..}
{.display error and exit}

{Fill in parameter block for READ:..}
{pointer to where to put data}
{requested no. of bytes to read}
{file's reference number}

{make a ProDOS 16 READ call}

{If it fails for some reason..}
{.display error and exit}

{Open file no longer necessary:..}
{Make a ProDOS 16 CLOSE call}
{Unlock the handle until we..}
{..need the picture again}
{function successfully completed}

{end of LoadOne}

INT.PAS. saves the contents of a picture file to disk), described under

and CLOSE:

;'emue SaveOne (pict: Handle);

destroyBlk : PathnameRec;
createBlk : FileRec;
openBlk : OpenRec;
writeBlk : FileIORec;

egin
- destroyBlk.pathname :=
b @myReply.fullPathname;

- DESTROY (destroyBlk) ;
;‘createBlk.pathname 1=

1 @myReply.fullPathname;
. createBlk.fAccess := $C3;

. createBlk.fileType = $Cl1;
~ createBlk.auxType = 0;
. createBlk.storageType:= 1;
~ createlk.createDate = 0;
~ createBlk.createTime := 0;

i CREATE (createBlKk) ;
~ if CheckDiskError (25) then
Exit;

openBlk.openPathname :=
@myReply.fullPathname;
openBlk.ioBuffer := NIL;

OPEN (openBlk) ;

writeBlk.dataBuffer = pict”®;
writeBlk.requestCount := $8000;
writeBlk.fileRefNum := openBlk.fileRefNum;

WRITE (writeBlk) ;

if CheckDiskError (26) then
Exit;

CLOSE (writeBlk) ;

end;

{begn SaveOne..}

{a ProDOS 16 parameter block}
{a ProDOS 16 parameter block}
{a ProDOS 16 parameter block}
{a ProDOS 16 parameter block}

{Put pathname from DoSaveltem..}
{..reply record into param. block}

{Delete any existing file with
that pathname}

{Put the pathname in the block..}
{..glive it this access value..}
{..assign a file type (unpacked)..}
{.aux. type = 0..}

{.make it a seedling file..}

{..let ProDOS 16 assign..}
{..creation date and time.}

{Create the new file}
{If the file can't be created..}
{.display error and exit}

{Put the pathname into the block}
{ (this field must be zero)}

{Open the file we've just created}
{Make a pointer to the buffer..}
{..from the handle to the picture}
{Transfer the entire 32K-byte file}
{supply file's ref num}

{Write the data to the file}

{If the file can't be written to..}
{.display error and exit}

{Close the file}

{End of SaveOne}

The ProDOS file system

/ The HodgePodge routine that creates files and saves them to disk
veOne is in the source file is SaveOne. It is called from the routine DoSaveItem (which

“Communicating With Files and Devices” in Chapter 5. SaveOne
makes the ProDOS 16 calls CREATE, DESTROY, OPEN, WRITE,

213

Brief explanations of certain
ProDOS 16 parameters, such as
access and file type, are found
elsewhere in this section.

For more information on all file
aftributes, see Appendix A of the
Apple lIcs ProDOS 16 Reference.

214 Chapter 6: Memory, Segments, and Files

The parameter lists for the ProDOS 16 calls used in Loado {
SaveOne are all combined into the single record P1 6Blk,
defined in the Pascal interface library to ProDOS 16. Compl
documentation of required parameters for all ProDOS 16
in the Apple IIGS ProDOS 16 Reference.

The EOF and Mark

To aid reading from and writing to files, each open file has ¢
number indicating the end of the file (the EOF), and anothel
defining the current position in the file (the Mark). ProDOS ;
moves (increments or decrements) both the EOF and the
automatically when necessary, but an application program ¢
also manipulate them independently of ProDOS 16. 1

The EOF is the number of readable bytes in the file. The Mz r
cannot exceed the EOF. If during a write operation the Mark |
the EOF, both the Mark and the EOF are moved forward on 3
position for every additional byte written to the file.

To move the EOF and Mark, use the SET_EOF and SET_MATF
calls. To determine the current values of the EOF and the Ma
use the GET_EOF and GET_MARK calls. :

% HodgePodge: HodgePodge doesn’t pay much attention to
and Mark in its file access, because it reads and writes onl;
entire files at a time.

File attributes

The directory entry for each file contains information that
be useful to your program. This section describes the follov
fields in directory entries and headers:

O creation and last-modification dates

O access attributes

o file type

O auxiliary type

If you want to know the properties of a given file, use the 1
GET_FILE_INFO call. If you want to change the file’s name, ust

CHANGE_PATH call. To alter the other properties, use the
SET_FILE_INFO call.

' is the operating system for
‘Apple Il computer.

Creation and last-modification date and time

The date and time of creation of a file are stored in the file’s
directory entry. When your program creates a new file, ProDOS 16
automatically gives the file the current system date and time.
When your program modifies a preexisting file, ProDOS 16
automatically sets the last-modification date and time to the
current date and time. In general, your program should not have
to change these attributes.

Access

The access attribute field, or access byte, determines whether the
file can be read from, written to, deleted, or renamed. It also
contains a bit that can be used to indicate whether a backup copy
of the file has been made since the file’s last modification.

ProDOS 16 sets the backup bit whenever the file is changed (that
is, after a CREATE, RENAME, CLOSE after WRITE, or
SET_FILE_INFO operation). This bit should be reset by a backup
utility (using CLEAR_BACKUP_BIT) whenever it makes a backup
copy of the file. No other program should ever reset the backup
bit.

% HodgePodge: When HodgePodge creates its picture files, it
assigns them the access value of $C3, meaning that they may
be destroyed, renamed, read from, and written to.

File type

The file type field in a directory entry identifies the type of
file described by that entry. This field should be used by
applications to guarantee file compatibility from one application
to the next. The currently defined hexadecimal values of this byte
are listed in Table 6-3.

Table 6-3 also lists the 3-character mnemonic file-type codes that
might appear in catalog listings. For any file type without a
specified mnemonic code, most catalog programs substitute the
hexadecimal file type number.

% SOS: SOS file types are included in Table 6-3 because SOS and
ProDOS have identical file structures. Each may read the
other’s files.

% HodgePodge: When HodgePodge creates its picture files, it
assigns them the file type $C1 (picture file, unpacked format).

The ProDOS file system 215

Table 6-3
ProDOS file types

File type Code Description

$00 Uncategorized file (SOS and ProDOS)
$01 BAD Bad block file

$02 * PCD Pascal code file

$03 * PTX Pascal text file

$04 TXT ASCII text file (SOS and ProDOS)

$0s5 * PDA Pascal data file 1
$06 BIN General binary file (SOS and ProDOS §)
$07 * FNT Font file v
$08 FOT Graphics screen file

$09 * BA3 Business BASIC program file

$0A * DA3 Business BASIC data file

$0B * WPF Word processor file

$oC * SOS SOS system file

$O0D-$0E * SOS reserved

$0F DIR Directory file (SOS and ProDOS)

$10 * RPD RPS data file

$11 * RPI RPS index file

$12 * AppleFile discard file

$13 * AppleFile model file

$14 * AppleFile report format file

$15 * Screen library file

$16-$18 * SOS reserved

$19 ADB AppleWorks® Data Base file

$1A AWP AppleWorks Word Proc. file

$1B ASP AppleWorks Spreadsheet file

$1C-$AF Reserved

$B0O SRC APW source file

$B1 OBJ APW object file

$B2 LIB APW library file

$B3 S16 ProDOS 16 application program file
$B4 RTL APW run-time library file

$B5 EXE ProDOS 16 shell application file

$B6 PIF ProDOS 16 permanent initialization file
$B7 TIF ProDOS 16 temporary initialization file
$B8 NDA New desk accessory

$B9 CDA Classic desk accessory

$BA TOL Tool set file

216 Chapter 6: Memory, Segments, and Files

Table 6-3 (continued)
ProDOS file types

File type Code Description

$BB Driver file

$BC General ProDOS 16 load file

$BD-$BF Reserved for ProDOS 16

$CO Apple 1IGS picture file (packed formats)
$C1 Apple 1IGS picture file (unpacked format)
$C2-$EE Reserved

$EF PAS Pascal area on a partitioned disk

$F0 CMD ProDOS 8 CI added command file
$F1-$F8 ProDOS 8 user-defined files 1-8

$F9 ProDOS 8 reserved

$FA INT Integer BASIC program file

$FB IVR Integer BASIC variable file

$FC BAS Applesoft program file

$FD VAR Applesoft variables file

$FE REL Relocatable code file (EDASM)

$FF SYS ProDOS 8 system program file

*apply to Apple III (SOS) only

Auxiliary type

Some applications use another field in a file’s directory entry, the
auxiliary type field (aux_type), to store additional information
not specified by the file type. Some catalog listings may display
the contents of this field under the heading “Subtype.”

For example, APW source files (file type $B0) include a language-
type designation in the aux_type field. The starting address for
ProDOS 8 executable binary files (file type $06) may be in the
aux_type field. The record size for random-access text files (file
type $04) may be specified in the auxiliary type field.

The ProDOS file system 217

For most file types, ProDOS 16 and ProDOS 8 impose no
restrictions (other than size) on the contents or format of the
auxiliary type field. Individual applications may use those two
bytes to store any useful information,

2

% HodgePodge: When HodgePodge creates its picture files, it
assigns them an auxiliary type value of 0. It stores no ‘
information in the auxiliary type field.

Controlling user access to files ‘
The picture files read and stored by HodgePodge are ProDOS f

On the other hand, it might be useful to let the user see, if not
select, other files in a directory.

SFGetFile sends to OpenfFilter only The HodgePodge routine OpenFilter is called by the Stand‘
e file fypes specified in its File Operations Tool Set to find out how to display files of varig
typelist parameter—see in th ialog b h fil :
"Communicating With Files and types in the Open dialog box. For eac ile entry it encounters,v
Devices” in Chapter 5. SFGetFile calls this routine. If the routine returns 0, the ﬁlenam
not displayed; if the routine returns 1, the filename appears
(dimmed) but the file is not selectable; if the routine returns 2, ¢
OpenfFilter Is in the source file filename is not dimmed and the file is selectable, OpenFilter
PAINT.PAS. dims all file types but $C1. 1

The variable FileTypePt r below is a pointer to the file-type 1
field in the directory entry for the file under consideration. The
file-type field is at an offset of 10 bytes into the file entry.]

function OpenFilter(dirEntry:longint): Integer; {begin OpenFilter..}
type BytePtr = “byte;

var fileTypePtr : BytePtr;

begin {First, get a pointer to the file's..})
fileTypePtr := Pointer (dirEntry + $10); {file type from its directory entry.}
if (BitAND(fileTypePtrA,$OOFF) = $Cl) then {If it's unpacked Picture File type..}
OpenFilter := 2 {.make it black and selectable} 3
else {If it's any other file type..}
OpenFilter := 1; {..it's dimmed and nonselectable}
end; {End of OpenFilter}

218 Chapter 6: Memory, Segments, and Files

Chapter 7

Creating a
Segmented Application

219

In this chapter we cansider the mechanics of developing
applications on the Apple ligs camputer. In particular, we s
you how o create 5 segmented applicaton,

Scpmentation may-be imporant you only i you ame writin;
large program. The execulable furm of HodgePodge, for examg

program design and develupment in this chaprer thal may le
usetul no maller what size your progeam s,

The chapter begins with a brief description of the Apple [iGs8
Proprammer's Workshap, the Prugramiriing CHviromment used |
all the sample: Programs in this book, Mext, we discuss the Iy
files used during program development —source files, ubject |
and load files—and relue these file types to the steps involva |
drvemin'ng 4 program. Then we discyuss the segmentation :.1["'5_1
files «nd of load files, explaining why you mIght want fo segny
Your program, and describing how to g0 aboul it We alse dlises
library files, which are special kinds of segmented filas.

Near the end of the clipter, we present theee sample progra
that illustrate the yse of segmentalion. Finally, we give soime hinls
thar will help you debug yvour segmented programs,

Apple lics Programmer's Workshop
The Apple nias Programmaer's Workshop CAPWY is 3 complate

developmeng environment for the Apple 11GS compuler thay
includes the fullowing COmMpOnenis:

C shell
C editor
linker

L3

= utility programs

These components of APW can be used by any of severa]
programming langusges, and are described in the Apple IGs
Programmery Workshop Reference Other current and future
components of the development environnment, described in
Separate manuals, inclyde '
65810 assembler

O C Compiler

5]

Q other compilers
debuggers

1

220 Chapter 7 Crealing o Segmentad Ao oo,

Program descriptions

The programs included in the Apple IIGS Programmer’s
Workshop relate to each other as illustrated in Figure 7-1. The
APW Shell’s command interpreter serves as the interface between
you and the rest of the Apple IIGS system. The shell allows you to
call the other programs that constitute the Apple 1IGS
Programmer’s Workshop, and serves as the link between APW and
the Apple 1IGS Toolbox and operating system. The toolbox and
operating system (including ProDOS 16, the System Loader, and
the Memory Manager) are the interface between APW and Apple
11GS hardware and firmware.

Apple IGS hardware & firmware

ProDOS16

APW Shell

Edifor [] Unker |
T |

(I [[
([
Lo o
Ll o

E

A
Utilities ’

Command interpreter

I I

Debugger Compilers

Figure 7-1
APW programs in the Apple lics system

Shell

The shell program is the interface that allows you to execute APW
commands and programs. With it you can perform a variety of
housekeeping functions, such as copying and deleting files or
listing a directory. The shell supports input and output redirection
and pipelining of APW programs.

Apple lles Programmer’s Workshop 221

ProDOS 16 calls are described in
the Apple IIGs ProDOS 16
Reference

Macros are commands, each
one of which replaces several
assembly-language instructions
or assembler directives. When a
program is assembled, the
assembler replaces macros with
their equivalent instructions and
directives.

222 Chapter 7: Creating a Segmented Application

The shell also acts as an interface and extension to ProDOS 16,
providing several functions, called shell calls, that can be called
by programs running under the shell. Shell calls can be used by
utility programs, compilers, linkers, or assemblers to perform su
functions as passing parameters and operations flags between th
shell and APW programs. The format for making these calls is
exactly like that used for making a ProDOS 16 call.

Editor

This full-screen text editor is designed for use with APW
assemblers and compilers. It allows you to enter, copy, delete, a
move text, and provides automatic search and search-and-repl
functions. '

Assembler

This full-featured assembler allows users to write 65816 assembly
language programs for the Apple IIGS computer, with complete
support for the standard Apple 1IGS file format and library files,
The Apple 1IGS Programmer'sWorkshop Assembler includes
macros to facilitate assembly-language programming, and allow
users to write their own macros and library files.

The APW Assembler is specifically designed for writing relocata
code, because the APW Linker, System Loader, and Memory Mas
are all designed to work most efficiently with relocatable code, -

C Compiler

The Apple IIGS Programmer’s Workshop C Compiler is a ;
complete implementation of the C programming language. It
consists of a C compiler, the Standard C Library, the Apple IIGS
Interface Libraries, and the C SANE Library. The object files

output by the C compiler are fully compatible with those output
by the APW Assembler and consist of relocatable code. i

Linker

The APW Linker takes the files (called object files) created by the
APW Assembler or any of the APW compilers, and generates fi €
that the System Loader can load into memory (load files). The |
resolves external references and creates relocation dictionaries,
which allow the System Loader to relocate code at load time,

Although the APW Linker is a single program, conceptually there
are two APW linkers:

0O Normally, the linker is called directly by a shell command
(such as the ASML command, which assembles and links a
program). These commands provide a limited number of
linker options; most linker options either are not available or
are set to default values. In this manual, this aspect of the linker
is referred to as the standard linker.

0O Alternatively, all functions of the APW Linker can be controlled
by compiling a file of linker commands. The linker command
language, called LinkEd, allows you to do such things as place
specific object-file segments in specific load-file segments,
create dynamic load segments, set load addresses for
nonrelocatable code, search libraries, and control the output
printed by the linker. You can compile and execute LinkEd
commands separately from your source code by using the
ASSEMBLE, COMPILE, or ALINK commands of the APW Shell.
In this manual, the aspect of the linker controlled by LinkEd
files is referred to as the advanced linker.

The advanced linker is provided for programmers who require
maximum flexibility from the system; for most purposes, the
standard linker is completely adequate. When a statement in this
book applies equally to the standard and advanced aspects of the
APW Linker, the terms APW Linker or linker are used.

Because all Apple I1IGS Programmer’s Workshop assemblers and
compilers create object code that conforms to the same format,
the APW Linker can link together object files written in any
combination of the development-environment languages.

Utility programs

The Apple IIGS Programmer’s Workshop includes several
programs, called APW Utilities, that perform functions not built
into the shell. Utilities include the following.

m Compact, which makes load files more compact so they load
faster and take up less space on disk.

m Crunch, which combines multiple object files created by partial
assemblies or compiles into a single object file.

= DumpOB]J, which lists an object-module-format file to standard
output (usually the screen).

Apple lies Programmer’s Workshop 223

Prals 8 binary fies ara
exccitanle standara-Appie |l
Programs,

Ine Apple ss Debugager s
documentad in the Aceds oy
Debugper Referanca

8 Equal, which compares two files or dircctories for equality of
their conlents, dates, and file types,

m Files, which lisls the contents of a directory, including
subdirectaries. Files can also search for 1 file whose name
COMAins a siring vou specily,

Init, which initializes (formars) a disk,
¥ MacGen, which pencrates a custom macro file: for a program,

® MakeBin, which creates 1 ProDOS 8 binary file from a Probog
16 load file.

® MakeLib, which erealos a library file from object files or
modifies an existing library file.

B Search, which searches g texl of source file For 4 slring thal you
specily,

Apple lles Debugger

To facilitate the deby geing of programs, Apple provides 3
detmigger that works with 63816 machine code. The Apple TGS
Debugger allows you 1o race ar stepy through a program one
instruclion at a time or to execute (he program at full speed; in
either case, you can inserr breakpoints at which the debugger halg
execution so that you can inspect the contents of the registers,
memaory, direct page, and stacle

The debugger can display a variety of types of information on the
screen, including a disassembly of the code being traced, the
contents of memory, the normal display of the program being
tested, the conlents of the program’s dircet page, the contents of
Apple 11GS registers, and the contents of the program’s stack,

Because the debugper can provide only an assembly-language
listing of machine code, it is st useful for debugging programs
wrilten in assembly la nguage. However, if you have 3 goud
understanding of haw your hjgh-lm-'el—iangu::ge program is
compiled into machine code, you can use the the debugger ta
help find the subroutine conlaining the problem,

W Note: The Apple [IGs Debugger is not part of APW 1t isa
sepdarate praduct, available through APDA. Sec Chapter 9.

224 Chaopter 7! Crea ling &1 Segrmented Application

See Chapter 9 for more
information on the Apple

Language considerations

The APW package includes a powerful 65816 assembler. At the
time of this printing, the other languages available for APW
include C and Pascal. The APW environment is designed to
support any number of programming languages; check with your
Apple dealer and the Apple Programmer’s and Developer’s
Association to find out what other languages are available. Before
you purchase any language, make sure that it creates APW-
compatible files and provides full and convenient toolbox
support.

One of the advantages of working with APW is that the object files
created by any APW assembler or compiler are compatible with
those created by any other assembler or compiler. This means
that you can link together routines written in any combination of
APW languages to create a program.

For example, you can write an application in a high-level language
such as C or Pascal, in order to make it portable to other
computers and to speed up development time. Most

programmers find it faster to write programs in high-level
languages than in assembly language. Once the program is
complete, you can determine which routines run most slowly and
then write assembly-language versions of only those routines to
enhance the performance of the program.

% Parameter-passing: The exact method by which parameters are
passed is usually of no concern to your application as long as
you work in a single language—your language’s interface
libraries and compiler take care of all parameter passing to
anq from the toolbox and among routines. However, if you are
writing a segmented program where parameters are passed
between routines written in different languages, you need to
understand the parameter-passing details of your system. See
your language reference for futher information.

Apple lies Programmer’s Workshop 225

Object module formatis defined
inthe Apple lics Programmer’s
Workshop Reference.

226

Chapter 7: Creating a Segmented Application

Source files, object files, and load files

source files, object files, and load files.

‘W Source files are ASCI] files consisting of code and data, 2
follow the conventions of 2 particular programming lang

® Object files are binary files created by assemblers and :
compilers; they represent an intermediate step in the pro
development process. Object files cannot be read and
modified like source files; neither can they be loaded by th
System Loader. Object files (and their close relatives, libra
files) are used only as input to the linker.

¥ Load files are binary files created by the linker. Load files

; if you want 1o link a new routine to a program
must go back to the object files to do so.

There is a single binary file format used by APW and the Apt
IIGS operating system: the Apple IIGS object module format 1
(OMP). Although OMF defines the structure and record types
both object files and load files, do not get the impression a
object and load files are two versions of the same thing. They
share some similarities of structure, but object files and load |
serve different purposes and are read by different programs,

Symbolic references and relocatable code

A source file consists of programming-language instructions, -
directives, functions, and so forth, together with data needed |
the program. In the source code, a specific instruction, subro
or block of data is often labeled with a name. You can refer t
name, for example, when yOu want to execute a subroutine, Sy

label is called a symbolic reference (that is, a symbol that
referenced or referred to).

references is called absolute.

Absolute code, relocatable
code, and the process of
 telocation by the System Loader
- are discussed in more detail in
Chapter 6.

The code created by an APW compiler normally contains no
absolute references, and so need not be loaded into a specific
location in memory. It is referred to as relocatable. Note that this
term is somewhat misleading: a relocatable program can be
loaded into any location in memory, but it cannot necessarily be
moved once it has been loaded.

The term relocation in this context means the process of
inserting into the program in memory (or patching) the actual
memory addresses to which jumps must be made. Relocation on
the Apple 1IGS is done during program load by the System
Loader.

When source code is assembled or compiled, it is converted into
object code containing machine-language instructions, data, and
symbolic references. Before the program is actually run, the
symbolic references must be resolved—they must be replaced
with code that the loader can use to patch in the proper addresses
at load time. The program that resolves the symbolic references is
the APW Linker. (The linker gets its name from the fact that it can
combine, or link together, several object files to create a single
load file.)

Do not write absolute code

The advantages of using relocatable code for the Apple IIGS are
considerable. Relocatable code can be placed in memory at
whatever location the Memory Manager chooses. Because desk
accessories, shell programs, RAM-based tool sets, and so on are
placed in memory by the System Loader and Memory Manager,
absolute code is likely to conflict with other code already in
memory. It is very unlikely that your program will have sole
control of the computer when it executes.

Object module format exists primarily as a specification for
relocatable, segmented code. The Apple IIGS System Loader and
the Memory Manager are designed to support relocatable code.
The APW Assembler and compilers are all designed to generate
relocatable code. It is easy to write relocatable code. Do not write
absolute code.

Source files, object files, and load files 227

Four steps to creating a program

The conversion of a source file into an executable program
loaded in memory is done in four main steps, as follows (and
shown in Figure 7-2):

L. You create one or more source files with a text editor. In this
you design the program, create its data structures, and write it
routines. The source file(s) may be in one or more APW langy

2. You assemble or compile each source file. Depending on
programming language used in the source file, the APW :
Assembler, C Compiler, or some other assembler or compile
processes the source file to create one or more object files. T
object files contain 65816 machine-language instructions, da
and symbolic references to program routines.

Object files, then, consist of machine-language instructions p
unresolved symbolic references. ‘

3. You link the object files, using the APW Linker. The linker com
bines all of the object files into a single load file and resolves
symbolic references. The linker verifies that every routine refe
enced is included in the load file; if there are any routines ths
linker has not found when it has finished processing all of the
object files, then it searches through any available library files
the missing routines. The linker replaces symbolic references !
entries in special tables it creates, called relocation dictionari

The load file, then, consists of blocks of machine-language co
that can be loaded directly into memory (called memory
images), plus relocation dictionaries that contain the 7
information necessary to patch address references when the
program is loaded into memory.]

4. You execute the load file. It is loaded into memory by the
System Loader. The loader calls the Apple IIGS Memory :
Manager to request blocks of memory for the load file, loads
the memory images, and uses the relocation dictionaries to
patch the actual memory addresses into the machine-language
code in memory.

2

% Segments: The entire load file is not necessarily loaded into
memory at one time; all OMF files are divided into segments,

is a fundamental Apple 1IGS concept—what segments are is
discussed in Chapters 1 and 6; how to create them is
considered next.

228 Chapter 7: Creating a Segmented Application

Text editor

Source
file

A | N
- E—"

T)
Assembler Assembler Assembler
or compiler or compiler or compiler

J

\ \ y

AN

Object Object Object
file file file

y

)

Load
file

y

r Loader \’

Executable

code in
memory

Figure 7-2
Creating an executable Apple liss program

Source files, object files, and load files 229

Segments

When you write a program, it is generally considered good
programming practice to divide the source code up into smal
units called subroutines. Subroutines make the program easier |
write, read, and modify.

Similarly, it is easier to link a program if the object files are
divided up into smaller units. In this case, we call the units 0bj
segments.

Load files, too, can be easier to load into memory if divided it
smaller units. The subunits of load files are called load segmen

Important Although it is sometimes convenient to use the same or related
divisions for subroutines, object segments, and load segments, it
important to keep in mind that they need not correspond. An objs
segment can contain one to many subroutines, and a load
segment can contain one to many object segments.

The proper use of subroutines (source-code segments) is a su -'_
for another book. How to create object segments and load
segments by using APW is discussed in the following sections.

Defining object segments

Each APW language provides some means for specifying in yot
source file the subroutines that will go into each object segmen
and the name of the object segment. In some languages, such a
APW Assembly Language, you can specify the start and end for.
each object segment and can include any number of subrouting
within the segment. In some languages, such as APW C, each

subroutine becomes an object segment and the object segment
name is the same as the subroutine name. :

Figure 7-3 illustrates the conversion of source-file divisions into
object segments. 1

230 Chapter 7: Creating a Segmented Application

Source file Object file

Segment name: MAIN
d object segment MAIN

Segment name: DAVE)
object segment DAVE

object segment BILL

object segment PAUL

Segment name: END

object segment END

|

Figure 7-3
Assigning object segments in your source code

About load segments

The APW Linker creates load files from object files and library
files. The linker cannot extract from an object file a portion of
code smaller than an object segment. So, to the linker, the object
segment is the fundamental unit of an object or library file. The
load file consists of one or more load segments, each of which is
loaded into memory separately. So, to the System Loader, the
load segment is the fundamental unit of a load file.

Keep in mind that object segments and load segments are
different entities. When you link a program, you tell the linker into
which load segment you want each object segment to go. You can
assign any number of object segments to the same load segment.
You can assign each object segment to its own load segment,
place the entire program into a single load segment, or anything
in between.

Segments 231

How many load segments?

It is not generally necessary or desirable to divide a load file 1
into too many pieces, as the loader must handle each load |
segment independently. For small programs, in fact, you may
to have a single load segment. 3

- On the other hand, it is often desirable to have more than o (
load segment. Because two consecutive load segments do not
have to be loaded into contiguous memory locations, a '
segmented program may load into memory when a
nonsegmented program won't fit. In fact, it is necessary to)
segment some programs, because the 65816 processor does “
allow single blocks of program code larger than 64K to be loa
(there is no such restriction on blocks of data). Programs that
consist of segmented load files can often be started up more
quickly than unsegmented programs because not all the load
segments have to be processed during the initial load. Some
segments can be left on disk until they are needed (if ever),

What is the optimum number of load segments for a program
Only you can answer this question for your own program. If it
small program, all of which must be in memory for the progs
to run, a single load segment might be fine. If the program is A_
enough that machines with smaller amounts of memory might
have trouble loading it, several smaller segments might be bet
Fortunately, you can segment your load file during the link stag
of program development; if you are not sure how many load
segments will be best, you do not have to make the decision wi
you are writing the source code.

Which segments should be dynamic?

When you specify load segments, you can designate some as «‘
dynamic. A dynamic segment is loaded automatically by the °
loader and Memory Manager when it is needed during progral
execution. A segment that is not dynamic is referred to as -
static segment is loaded at program boot time and is never
unloaded or moved during execution.

232 Chapter 7: Creating a Segmented Application

- Overlays are program segments
that are alternately loaded at
exactly the same memory
address. No two overlay
segments can be in memory at
the same time, and no other
program can use that memory
range.

When the System Loader first loads a program, it loads all the
program’s static segments and then passes control to the
program. When any part of the program references a routine in a
dynamic segments, the loader finds the dynamic segment on disk
and loads it. The dynamic segment then remains in memory for
as long as the program is running, unless the program unloads the
segment with a System Loader call. Unloading a segment makes its
memory block purgeable, so the Memory Manager can remove
the segment from memory if it needs space to load some other
segment.

One segment of every program—the program’s main
routine—must be static. Any other segments may also be static,
but (especially for large programs) the system will run more
efficiently if infrequently used segments are dynamic. There are
several advantages to designating a segment as dynamic. Because
dynamic segments are not loaded until they are needed, for
example, the initial load of a program is faster if some of the
segments are dynamic. Also, if there is a possibility that the
computer will run out of memory while your program is running,
you can use dynamic segments to allow several parts of the
program to share the same portion of memory.

When dynamic segments share the same general area of memory,
they are similar to overlays. However, dynamic segments are
much more versatile than overlays, because dynamic segments
(assuming they are also relocatable) can be loaded at any
location in memory when needed. Furthermore, one segment
need not be removed from memory to load the next. A dynamic
segment that is not being used is removed (purged by the
Memory Manager) only if the application permits it (with an
unload call), and only if the memory is needed for something
else. Otherwise, the segment remains in memory and need not be
reloaded the next time it is called.

For large programs, you will probably want to see what difference
it makes to designate a particular segment as dynamic. Sometimes,
for example, it may be more desirable to accept a delay in the
initial load of a program than to have the program pause while it
loads a dynamic segment during execution.

Segments 233

To try out a segment as both static and dynamic, you can eithe
change the source file and recompile/reassemble, or use the v
advanced linker when you link the file. Most APW languages let
you specify in the source file that a particular load segment is f
be made dynamic. On the other hand, if you use the advanced
linker, you need not recompile the program to change the type
a single segment. Either way, you do this when you specify load
‘segments, as described next. 1

Assigning load segments in your source code |

You can assign object segments to load segments with source-

LinkEd, the standard linker, and code directives or with LinkEd commands. Even if you make
fhe advanced linker are source-code load-segment assignments, you can always overrid
discussed under Apple llcs R X
Programmer’s Workshop, - earlier those assignments at link time by using a LinkEd file rather than
in this chapter. the standard linker. '

object segment is indicated with a directive (such as START or
DATA). The label of the directive is the object segment name. (
can use these directives to specify the name of the load segmer
to which each object segment should be assigned, by putting th
load segment name in the operand field of the directive.

In APW C, on the other hand, each function is an object segmer

Figure 7-4 illustrates the assembly-language method, using the 1
same object file as that in Figure 7-3. Note also from Figure 7-4
that you don’t have to specify a load segment name for every
object segment—al] object segments without load-segment nam
are put into a single unnamed load segment.]

234 Chapter 7: Creating a Segmented Application

Assembly-language source file

| MAIN START SETUP

END

| DAVE START

END

Object file Load file

Object segment MAIN e N Segment SETUP
Load segment name: SETUP 9

\ 4

Object segment DAVE
Load segment name:

A

/

ﬁ BILL START SETUP

END

PAUL DATA SECOND
END

END START
END

Segment
Object segment BILL / Standard A
Load segment name: SETUP linker
Object segment PAUL /

Load segment name: SECOND I~

Segment SECOND

/

Object segment END

Load segment name: \)

Figure 7-4
Assigning load segments in your source code

If you use the standard linker (that is, if you do not use a LinkEd
file), the source-code load-segment assignments are used when
you link the file. Object segments assigned to the same load
segment need not be contiguous in the source file; in fact, they do
not even have to be in the same source file. The linker places all
of the object segments that have the same load segment name
into the same load segment.

% Order of segments: The order in which the linker finds the load
segment names in the source file is the order in which it places
the load segments in the load file. If the order of the load
segments in your load file is important, then you must either
order your source code accordingly, or use a LinkEd file to link
the program.

The advantage of the standard linker over the advanced linker is
that the standard linker is quite automatic. You do not have to list
either the object segments or the load segments in the link
command. Library files in the APW library prefix are searched
automatically, and you can specify any other library files you wish.

Segments 235

Initialization segments and direct-
page stack segments are
discussed in Chapter 6.

236 Chapter 7: Creating a Segmented Application

But there are some disadvantages to the standard linker:

0 You must alter the source code to alter load-segment
assignments.

O Some APW languages may not allow you to assign special
segment types (such as initialization segments or direct- -
- page/stack segments) in the source code.

0 All of the object segments in the source code are linked,
whether you want to include them in the load file or not, |

If any of these restrictions cause a problem for you, you cant
the advanced linker to link the file, as described next.

Assigning load segments with a LinkEd file

The APW Linker can recognize both the names of the object
segments in an object file and the names of the load segmen
any) to which those object segments are assigned. You can K
LinkEd file to take advantage of this fact. E

For example, suppose you have written, compiled, and linked
program (using the standard linker), and you find that one Io
segment is larger than 64K. Because no single block of code
than 64K can be loaded into memory, you must break this loz
segment into smaller pieces. Rather than changing the load ;
segment assignments in the source code and recompiling the
program, you can link the program with the advanced linker,
LinkEd commands to specify the names of load segments anc
object segments that go into each load segment.

Figure 7-5 illustrates this process. Note that the object file is -
identical to the object file in Figures 7-3 and 7-4. Let's assume
the unnamed load segment is too large. By using a LinkEd file,
place object segments DAVE and END into separate load segm
named NANCY and LAST, respectively. The code in object
segment END has been put at the end of the program. Thereft
we have accomplished two things by using the advanced linke;
have split one large load segment into two smaller load segme
and we have changed the order in which the code appears in|
load file.]

or more details on the standard
ind advanced linkers, see the
Apple lIcs Programmer’s
Norkshop Reference.

Object file Load file

Object segment MAIN / ™ Segment SETUP
Load segment name: SETUP

!

Object segment DAVE

Load segment name: — Segment NANCY
—

Object segment BILL Advanced

Load segment name: SETUP linker

Segment SHERYL

= g

Object segment PAUL

Load segment name: SECOND "

Segment LAST

Object segment END H

Load segment name: — /

Figure 7-5
Assigning load segments with the advanced linker

The advanced linker gives you the freedom to ignore source-file
load-segment assignments and to specify into which load segment
each object segment should go. It also lets you specify special
segment types for load segments, and the filename and file type
of the output file. On the other hand, you must specify each object
file to be included and each object segment to go into each load
segment.

For small programs with only a few object segments or for larger
programs with a simple load-file structure, the standard linker is
easier to use. If you are developing a large program with many
dynamic segments or with special segments such as a direct-
page/stack segment or initialization segments, the advanced linker
gives you much more flexibility. By changing the LinkEd file, you
can change the number and sequence of load segments, the
object files and object segments linked, and the segment types of
load segments. For such a program, it is well worth the time and
effort to learn how to use the LinkEd commands and to write a
LinkEd file.

Segments 237

Aglobal symbol is a label in one
segment that can be referenced
in another segment, as opposed
to alocal symbol, which can be
used only within the segment in
which it is defined.

238 Chapter 7: Creating a Segmented Application

% Note: In using dynamic segments, it is important that the 1
volumes containing all needed segments and libraries be on
line at run time. If the System Loader cannot find a dynamic
segment it needs to load, execution halts and the user is
requested to mount the proper volume.

Library files

Library files are object files whose segments contain routines
useful to many different programs. In APW, all library files are if
object module format, regardless of the language of the source
file. An Apple 1IGS library file (ProDOS filetype $B2) can]
therefore be used by a program written in any source language.
Some languages, such as APW C, come with a set of library files
used by that language. 1

A library file includes a special segment at the beginning of the
file, called the library dictionary segment. The library '
dictionary segment is the first segment of a library file; it contain
the names and locations of all the global symbols in the file,
The linker uses the library dictionary segment to find the
segments it needs.

When the linker processes one or more object files and cannot
resolve a symbolic reference, it assumes that it is a reference to 2
segment in a library file. If you use the standard linker, it i
automatically searches all of the files in the APW library prefix
(prefix number /2—usually volume/APW/LIBRARIES/, where
volume is the volume name of your boot disk) as well as any
library files you specify on the command line. If you use the
advanced linker (that is, if you use a LinkEd command file), the
linker searches only the library files that you specify. Unless you
are using the advanced linker, you do not even need to know the
names of the library files in order to use them; the standard li ke
automatically finds the files and extracts the segments it needs.

Creating library files

You can create your own library files from one or more object _,‘
files by using the APW utility program MakelLib. Figure 7-6

illustrates the library-file creation process. You specify one or
more object files to be included in the library file. MakeLib ,
concatenates the files and creates the library dictionary segment.

The library dictionary segment makes it possible for the linker to
search a library file for global symbols (the names of the
subroutines it contains) much more rapidly than it can search an
object file. Consequently, the linker will search a library
dictionary segment several times if necessary to find segments
referenced by other segments in the library file, and the
sequential order of the segments in a library file is not important.
But if you use several library files, the order in which the files
occur is important because each is processed only once. It is for
that reason that MakeLib allows you to include several object files
in a single library file.

ObjectFile 1 LibraryFile
/ \ Library
: : Dictionary
. . Segment

segn o0

ObjectFile 2
segl

segn

Makelib
segl

segn

segn
segl

Y
L [/

segl

__/

I

segn

Figure 7-6
Creating a library file

MakeLlib is described in detail in In addition to creating library files, the MakeLib utility allows you
ihe Apple lIcs Programmer’s to modify existing library files, and even to recreate an object file
Workshop Reference. . .

that was a component of a library file.

Creating segmented code: three
examples

This section presents examples of segmented programs. Three
small program examples are provided: a program consisting of a

single, static load segment; a program containing several static
load segments; and a program using dynamic segments.

Creating segmented code: three examples 239

KEEP

MCOPY
MAIN START

PHK

PLB

WRITELN

LDA

RTL

END

240 Chapter 7: Creating a Segmented Application

1. Boot APW and set the system language to the language tyg
the source code you intend to write. We are going to write;
simple assembly-language file for this example, so enter th
following command:]

ASM65816]

2. Set the default prefix to the subdirectory you want to use fv
your files. If your work disk is called / MYPROGS, for exampl
enter the following command: !

PREFIX /MYPROGS

3. Open a file for editing. We will call our source file HW. En e
following command:

EDIT HW ‘

4. Write the source code for your program. For our example, |
in the following program:

HELLO Output filename
2/AINCLUDE/M16,UTIL Macro file
Beginning of segment
Set data bank equal
to code bank
#'Hello world!! Macro that writes string
#0

o

% Note: These examples are simple, text-based sample progi

meant only to illustrate segmentation concepts. Your prof
whether segmented or not, should be event-driven, desktoj
style applications. ’

A single, static load segment

The following is a typical sequence for writing, compiling, an
linking a simple one-segment program. It has only one STAR
directive, so only one segment is created. The segment is nof
explicitly made dynamic, so it is static. ’

Set error code to 0
Return to shell
End of segment

See Chapter 8 for requirements for
shell applications.

5. Press Apple-Q to quit the Editor. When the Quit menu appears,
press S to save the file to disk, then E to return to the APW
Shell command line.

6. To assemble, link, and execute the file HW, enter the following
command:

RUN HW

The words Hello world! should appear on the screen,
following the diagnostic output of the assembler and linker. If
they do not, check your source file for errors and try again.

7. You now have a file on your work disk called HELLO. To
execute this program, enter HELLO from the APW Shell
command line.

03

» Note: This program cannot be executed from a finder or
program launcher. It must run under APW.

Several static load segments

It is often desirable to write a program that consists of more than
one load segment. For example, when there is no single
contiguous block of memory large enough to load an entire
program, the program may still be loadable if it is divided into
several load segments. The program that follows is divided into
three object segments, and each object segment is assigned to a
different load segment.

This program also illustrates a few of the basic functions that
should be performed by any shell application before it begins to
run: reading the User ID assigned to the program, reading the ID
of the shell program that launched it, and checking the command
line for parameters. This sample program merely prints this
information to the screen; an actual application could do much
more:

O It could use the User ID in calls to the Memory Manager and
System Loader.

O It could use the Shell ID to determine whether it was launched
by the shell program under which it was designed to run. For
example, a compiler designed to run under APW might not be
able to run under ProDOS or under another shell.

0 It could use the parameters on the command line for whatever
purpose the shell application was created to fulfill.

Creating segmented code: three examples 241

MAIN

CLINE

USER_ID

USERID

WRITE

242

KEEP SAMPLE
MCOPY SAMPLE.MACROS
START MAIN
SET UP ENVIRONMENT
GEQU 0
PEK
PLB
STA USER_ID
STY CLINE
STX CLINE+2
PUSHWORD USER_ID
PUSHLONG #USERID+1
PUSHWORD #4
_INT2HEX
JSL WRITE
RTL
ENTRY
DS 2
ENTRY
STR ' '
END
START OUTPUT
WRITE USER ID TO SCREEN
USING MSG
PUSHLONG #USRMSG
_WRITECSTRING
PUSHLONG #USERID
_WRITELINE
LDA CLINE
ORA CLINE+2

Chapter 7: Creating a Segmented Application

The program listed below has three segments: two that begin v
a START directive, and one that begins with a DATA directive.
program assembles into the object segments MAIN, WRITE,
MSG, which are linked into the load segments MAIN, OUTPUT,
LABELS, respectively. To create the program, first use the
following commands to set the current language to 65816
assembly language and to enter the editor:

ASM65816
EDIT SAMPLE.SRC

Then type in the following program:

Start segment

Define CLINE as direct page
Set data bank register equal to
program bank register
Accumulator holds User ID
X and Y registers contain
pointers to command line
Convert User ID to
hex number
ASCII
string
Jump to next segment

Reserve space for User ID

Reserve space for User ID ASCII string

Start second segment

Use data in data segment
Pointer to output string
Writes 'User ID = '
Pointer to User ID ASCII string
Writes User ID, Carriage Ret
If pointer to

command line = 0,

BNE LB1 no command line

PUSHLONG #NOLMSG Pointer to output string
_WRITECSTRING Writes 'No command line’
JSR LB5 If no command line, go to end
WRITE SHELL ID TO SCREEN
PUSHLONG #IDMSG Pointer to output string
_WRITECSTRING Writes 'Shell ID = '
LDY #0 Use Y for offset into Shell ID
LDX #8 Shell ID is 8 chars, use X for counter
PHX Save X on stack
PHY Save Y on stack
PUSHWORD [CLINE],Y Push next letter of shell ID on stack
_WRITECHAR Write one char of shell ID
PLY Pull Y from stack
PLX Pull X from stack
INY Increment Y
DEX Decrement X
PHX Save X on stack
PHY Save Y on stack
CPX #0 Compare X to 0
BNE LB2 Return to LB2 if X not O
PLY Pull Y from stack
PLX Pull X from stack
PUSHWORD #$0D Write
_WRITECHAR Carriage Return
WRITE COMMAND TO SCREEN
PUSHLONG #COMMSG Pointer to output string
_WRITECSTRING Writes 'Command is '
LDY #8 Use Y for offset into command line
PHY Save Y on stack
LDA [CLINE], Y Load next character into accumulator
AND #5007F Just look a t low 7 bits
CMP #r Test for Space character
BEQ - LB4 Stop after first space
PHA Push next letter of command on stack
_WRITECHAR Write one char of command string
PLY Pull Y from stack
INY Increment Y
PHY Save Y on stack
BRA LB3 Return to LB3
PUSHWORD #$0D Carriage Return
_WRITECHAR
WRITE PARAMETERS TO SCREEN
PUSHLONG #PARMSG Pointer to output string
_WRITECSTRING Writes 'Parameters are'

Creating segmented code: three examples 243

LB6

LB7

LBS

MSG
IDMSG
USRMSG
COMMSG
PARMSG
NOLMSG

MACGEN SAMPLE.SRC SAMPLE.MACROS 2/AINCLUDE/M16.TEXTTOOL 2/AINCLUDE/M16.UTIL
2/AINCLUDE/M16.INTMATH

244

PLY Pull Y from stack

INY Increment Y

LDA [CLINE],Y Load next character into accumulator
AND #S00FF Test for Null

BEQ LB7 Stop after Null

PHY Save Y on stack)
PHA . Push next letter of parameters on stac
_WRITECHAR Write one char of parameters

PLY Pull Y from stack

INY Increment Y

BRA LB6 Return to LB6

PUSHWORD #$0D Carriage Return

_WRITECHAR

LDA #0 Set return code to 0 j
RTL Return to segment Main to end routine
END End of segment

DATA LABELS Begin data segment

DC C'Shell ID is: ',H'00°

DC C'User ID is: ',H'00"

DC H'OA',C'Command is: ',H'00"

DC H'OA',C'Parameters are: ',H'00!

DC C'No Command Line.',H'00!

END End data segment

Press Apple-Q to quit the Editor. When the Quit menu appy
press S to save the file to disk, then E to return to the APW
command line.

The program uses macros in several places, including ma
calls to the Integer Math Tool Set and the Text Tool Set. E X
the following command to create a macro file for the pro

To assemble and link the program, use this command:

ASML SAMPLE
To run the program, enter this command:

SAMPLE ONE TWO BUCKLE MY SHOE

Chapter 7: Creating a Segmented Application

The output should look like this (the actual User ID will vary, as a
new one is assigned each time the program is run):

User ID is: 1129

Shell ID is: BYTEWRKS

Command is: SAMPLE

Parameters are: ONE TWO BUCKLE MY SHOE

Dynamic segments

As an example of a program with dynamic segments, we can take
the same multisegment example we just created and make one
segment dynamic. What’s more, we won’t have to rewrite a single
line of the program’s code or re-assemble it to do so.

To make the second segment of the program dynamic, you can
link the program with a LinkEd file. First, if you have not done so
already, assemble the program (without linking it) with the
following command:

ASSEMBLE SAMPLE

Use the following commands to set the current language to the
LinkEd language and to enter the editor:

LINKED
EDIT SAMPLE.LINK

Type in the following LinkEd program:

KEEP SAMPLE

SEGMENT MAIN

SELECT/SCAN SAMPLE.STD (MAIN)
SEGMENT/DYNAMIC OUTPUT
SELECT/SCAN SAMPLE.STD (WRITE)
SEGMENT LABELS

SELECT/SCAN SAMPLE.STD (MSG)

Press Apple-Q to quit the Editor. When the Quit menu appears,
press S to save the file to disk, then E to return to the APW Shell
command line.

Execute the following command to link the program:

ALINK SAMPLE.LINK

Creating segmented code: three examples 245

Classic desk accessories are
described under “Supporting
Other Desktop Features” in
Chapter 5.

246 Chapter 7: Creating a Segmented Application

The APW Linker executes this LinkEd file. Each SEGMENT
command starts a new load segment. Each SELECT/SCAN
command scans through the files with the root filename
SAMPLE. STD for the object segment named in parentheses.
load segment OUTPUT is dynamic. The load file, SAMPLE, i
contains four segments; the fourth load segment is the Segme
Jump Table, created by the linker.

When you launch this version of SAMPLE, the first and third
segments are loaded immediately, but the second segment is nt
loaded as part of the initial load. When the JSL to WRITE is 4
executed, the loader loads the second segment. i

% Unloading: Note that, once loaded, the dynamic segment
remains in memory throughout execution of the program, T
make this segment available for automatic unloading by the
Memory Manager, you must include an Unload Segment ca
the end of the segment. ‘

Debugging

A variety of software instruments exist to help you locate and
correct errors in your Apple IIGS programs. Some are A
sophisticated and some are simple. Although nothing can make
debugging easy, the more experience you gain with these aids, t
more efficiently you can find and solve problems.

Debugging with desk accessories

The fact that Apple 1IGS code is typically relocatable can bea
problem during debugging. You can’t control where the loade
puts your program, and once it is in memory, you have no

obvious way to locate it. How can you debug something you can
even find?]

Loader Dumper and Memory Mangler are two classic desk

accessories (CDA’s) provided with the Apple 1IGS Debugger
(described later in this section). They can give you very basic,
and thus very important, information on exactly where in]
memory all the parts of your program are. Furthermore, becaust
they are desk accessories, they are instantly available from wi
your program or debugger. :

Loader Dumper

Loader Dumper is a classic desk accessory that permits you to
dump (print out) the System Loader’s data structures: the Memory
Segment Table, Pathname Table, Jump Table, Loader global
variables, load-segment information, and other information used
by the System Loader.

A principal use of the Loader Dumper is to get your program’s
User ID from the Pathname Table. Then, using Memory Mangler
(described next), you can find out where in memory all your
program’s segments are.

Memory Mangler

Memory Mangler is a classic desk accessory that can give you a
listing of all allocated memory blocks with their associated User
1D’s, sizes, addresses, attributes, and other information.

Most commonly, you would use Memory Mangler to inspect all
your programs’ segments and buffers in memory. They are
identified by User ID, which you might have obtained from
running Loader Dumper. Once you have found a segment you
want to look at more closely, you can go directly from Memory
Mangler into the Apple IIGS Debugger or into the Monitor
program (described next), to do detailed inspection and
debugging.

)

< Note: Memory Mangler also allows you to execute Memory
Manager calls, so you can use it as an exerciser program, to
practice calls before writing them into your code. Even though
this is not a direct debugging function, it is very useful because
you need to understand the Memory Manager well. Memory-
management errors are among the most common and most
elusive bugs on the Apple IIGS.

Debugging with the Monitor program

The Apple 11GS Monitor program is a set of ROM-based routines
that give the user direct access to program code in memory.
Using the Monitor, you can perform these tasks:

O Inspect and modify the contents of any location in memory, in
either hexadecimal or ASCII format.

0O Move, compare, or fill ranges of memory.

Debugging 247

The Monitor program and how to
callit are described in the Apple
liGs Firmware Reference.

The debugger is described in

detail in the Apple lics Debugger
Reference

O Search for specified patterns in memory.

O View and change the contents of various microprocessor an
software registers and flags.

0 Execute programs from within the Monitor.
0 Disassemble code in memory.

O Use the mini-assembler to assemble small programs.

set to zero and with the direct page equal to the zero page. In ¢
words, the machine must look exactly like a standard Apple II. .

A second method is to make 2 Miscellaneous Tool Set call to 1
invoke the Monitor. In this case, the machine must be in full
native mode and the Memory Manager must have been starte

up. The call can be made from anywhere in memory.

Debugging with the Apple ligs Debugger

The Apple 1IGs Debugger allows you to load your program in,
memory and to run through it under the debugger’s control. A
the program exccutes, you can examine the contents of the =
65816’s registers, of your program’s direct page and stack, and.
any locations in memory in which you are interested. You ca

The Apple 1IGs Debugger can display an assembly-language 1
disassembly of your program’s machine code. It cannot execut
your source code or recreate your source code from machine
code. Therefore, the debugger is easiest to use with- assembly-
language programs. However, even if your program was written
a higher-level language and you have no knowledge of assemb]
language, you can use the debugger to determine in which loag
segment the problem lies. You can also gain a better _
understanding of the operation of your program by examining
the contents of the stack, direct page, memory, and registers, ‘

We do not have the space here to examine in detail al] of the
abilities of the Apple 1IGS Debugger, but we will 8ive you some
hints that should help get you started debugging your program,

248 Chapter 7: Creating a Segmented Application

Debugging segmented programs

In order to use the Apple IIGS Debugger to debug a segmented
program, you must know where in memory each segment has
been loaded. In the case of a dynamic segment, you must know
whether it has been loaded and, if so, where. This information is
available through the Loader Dumper desk accessory, described
earlier in this section.

To load your program by using the debugger and to determine
where in memory each segment is loaded, use the following
procedure:

1. Start up the debugger.
Use it to load your program into memory.
Call the Loader Dumper from the desk accessories menu.

Use the Loader Dumper to get the User ID of your program.

I AT A T

With that User ID, use the Loader Dumper to get a listing of all
your program’s load segments and their memory addresses.

You now have several possible courses of action open to you. If
you do not have any idea in which load segment your program is
crashing, you can start by running the program until it crashes
and then examining the debugger display to determine the
location of the problem instruction. If you know in which segment
the problem lies, you can go immediately to that segment, or you
can set a breakpoint at the beginning of that segment and run the
program until it stops automatically at that breakpoint.

Watching a running disassembly

If your program does not require any input from the keyboard,
you can watch a disassembly on the debugger screen as the
program executes to find the exact location at which it goes
astray. This technique will probably be useful only for short
programs or programs that crash almost immediately upon
execution, because the program will execute very slowly while the
debugger display is on the screen.

To run your program under control of the Apple IIGS Debugger,
with a running disassembly appearing on the screen, use the
following procedure:

1. Load your program with the debugger.

Debugging 249

2. Put the debugger in single-step mode, starting at the first
instruction of your program. Watch the contents of the regist
and the stack (and any specific memory locations you have
specified) as you execute individual commands. !

3. You can leave single-step mode and execute commands
automatically in quick succession by entering trace mode. Yo

- program will begin executing under debugger control, one
instruction at a time in rapid succession. Once in trace mode
you can stop execution at any time and then return to single-
step mode

In trace mode, when your program executes a BRK instruction
execution stops. The last instruction executed (the BRK i
instruction) is displayed on the screen, along with the previous
several instructions executed. A BRK instruction is actually a nul
(a zero byte); because such an instruction is not a normal part 0
a program, the fact that your program executed one probably
means that some previous instruction sent the program off to th
wrong place in memory. With luck, the instruction that sent your
program off into Never Never land will still be on the screen.

Using breakpoints

If you have to interact with your program in order for it to run, i
you have some idea of which segment contains the bug, or if you
just want to execute the program more quickly, you can set one ¢
more breakpoints before running the program. A breakpoint is 2
location at which the debugger suspends execution of the]
program, giving you the opportunity to examine the disassembl
and the state of the machine at that location. |

To set breakpoints and run the program under debugger control,
try the following procedure: ‘

L. Load your program with the debugger.

2. As described above, use the Loader Dumper routine to '
determine the starting locations of the load segments of your,
program. ;

3. Back in the debugger, set breakpoints at the beginning of each
load segment (if you do not know in which segment the bug

lies) or at the beginning of any segment that you want to
examine more closely.

250 Chapter 7: Creating a Segmented Application

4. Run your program under debugger control, with the debugger
display turned off. When the debugger comes to a breakpoint,
the program halts and the debugger’s display appears on the
screen, showing the location of the instruction at which the
program stopped and other pertinent information. You can
also view a disassembly of the program, starting at the
breakpoint location.

5. While at a breakpoint you can switch to single step mode. Step
through the segment one instruction at a time while watching
the contents of the stack, the machine’s registers, and up to 19
memory locations you specify. From single-step mode, you can
return to executing the program automatically.

If at any time during execution of the program a dynamic segment
is loaded, you can pause execution of your program and go back to
Loader Dumper to find out where in memory it has been placed.

Breakpoints can be used for purposes other than finding a
particular segment. Suppose, for example, that your program
seems to run all right for awhile, then crashes after having lulled
you into a false expectation of success. In this case, it is possible
that some routine is failing, not the first time it is run, but only
after going through several iterations. To handle such a situation
without stopping the program every time the routine is executed,
you can include a trigger value for a breakpoint. The debugger
counts the number of times it encounters the breakpoint, and
suspends execution only when the trigger value is reached.

If you must execute a routine at full speed in order for it to work
correctly, you can insert real breakpoints into the code. When you
do so, the debugger actually inserts BRK instructions into memory
at the breakpoint locations. Trigger values work for real
breakpoints that you have set; the debugger will still suspend
execution any time it encounters a BRK instruction that you did
not set as a breakpoint.

Debugging 251

252

Important

Chapter 7: Creating a Segmented Application

Using memory protection ranges

It may be that certain portions of your code must be execu

the full speed of the 65816 microprocessor. To cause this to
happen automatically every time you trace through the prog
you can set any areas of memory you choose as code trace ‘
ranges. When the program executes a jump to a location v it
code trace range, the debugger relinquishes control to your!
program and the code is executed at full speed. The portion
memory used to run tool calls is automatically set as a cod e
range when you load the debugger.

i

You can also set one or more portions of memory (the li

your code as revealed by Loader Dumper, perhaps) as code
window ranges. If the program attempts to execute code ou
the code-window ranges you have set, execution stops. You n
want to set a code-window range, for example, if your progra
executing a jump to some incorrect memory location and
trashing memory before it stops, forcing you to reboot the !
machine every time you try to run the program with the debt

If your program loads a dynamic segment during execution 1‘
you want to pause as soon as control is transferred to the dy,
segment, you can set code window ranges to include all the

segments at the start of the program. Then when the dynamig
segment is loaded and control is transferred to it, the progra

will be outside any code window range and execution will sto

Once you have set any code-window range, no code will be
executed that is not in a code-window range. Therefore, if you
code-window range equal to the memory location of one of
program segments, you must set code-window ranges for all ¢
segments that it calls. 1

Debugging multiple-language programs

One of the advantages of using the APW development v
environment is that it allows you to link together routines wr

in different programming languages. This facility can lead to
unique problems, however, especially when information is pa
between routines written in different languages. *

Parameter passing may fail in your program for any of several
reasons: you might have used a wrong variable type, for example,
or a called routine might expect to receive parameters in a
different order from the way they were passed by a calling routine.

To use the Apple 1IGS Debugger to debug parameter-passing
problems, use the following procedure:

1. Set breakpoints at the beginning of the calling segment and at
the beginning of the called segment.

2. Run the program in trace or real-time mode until the first
breakpoint is reached. Search this segment to find the JSL that
calls the other segment.

3. Set a breakpoint just before the JSL that calls the second segment.
You can remove the other two breakpoints now if you wish.

4. Run the program until the JSL breakpoint is reached.
Parameters are normally passed either on the stack or in the A,
X, and Y registers. The actual information passed may be a
pointer to the data rather than the data itself. By examining the
contents of the registers, the stack, and memory, determine the
location of the parameter being passed, and see if it has the
value you expect.

5. Execute the JSL. The return address should have been added to
the stack.

6. Step through the segment in single-step mode. Is the called
routine reading the parameters passed to it, in the proper form
and order? By a careful study of the action of the called
routine, you should be able to determine the source of the
problem.

7. If all parameters are being passed correctly, perhaps the
problem occurs when the results are passed back to the calling
routine. Find the RTL, and study the stack and registers as
before to determine whether the results are being passed
correctly back to the calling routine.

The ProDOS 16 Exerciser

The ProDOS 16 Exerciser is on the The ProDOS 16 Exerciser is a program that allows you to practice

disk that accompanies the Apple ; : : ;

165 ProDOS 16 Reforence. making opgraung sy§tem calls in a coptrolled environment,
before coding them into your applications.

Debugging 253

254

The ProDOS 16 Exerciser is not really a debugging tool, but

can use it in several ways during the debugging process. For
example:

0 By practicing the ProDOS 16 calls you intend to use in yo
program, you can “debug” them in the sense that you can
exactly how they function, before writing them into your ¢

O Because the Exerciser gives you direct access to file attribul
you can use it, for example, to change file types (such as fn
$B5 to $B3) without having to enter APW.

O The Exerciser allows you to inspect and modify the conten
any portion of memory, and any block on a disk—but see
warning below.

0 The Exerciser allows you to enter the Monitor program
directly. Once in the Monitor, you can use its debugging
facilities, as described earlier.

Warning The ProDOS 16 Exerciser allows you unconstrained use of all Pr
16 calls, Including those that modify disk directories and blocks.
also permits you to modify any portion of memory, including th
occupled by system software or by the Exerciser itself. You can -
easily destroy the contents of a disk or cause a system crash.
careful what you modify!

Chapter 7: Creating a Segmented Application

Chapter 8

What Type of Program
to Write?

255

Under ProDOS 16 on the Apple IIGs computer, programs are

A‘ list of all defined file types s classified by file type. Some rules for writing the following types
given under “The ProDOS File ; ; i i
System” in Chapter & of programs, most of which have unique file types, are given in

this chapter:
U general applications (file type $B3)

'O controlling programs, such as shells, switchers, and operating
systems ‘

O shell applications (file type $BS); that is, programs designed'
run under a shel]

O desk accessories (file types $B8 and $B9)
O initialization files (file types $B6 and $B7)
O interrupt handlers

O user tool sets (file type $BA)

256 Chapter 8: What Type of Program to Write?

Prolos & syslerm Qrogiams ars
described I tha Prol2osd
Technical Rofarance Monood

For o micre detailed desariotion af
seslem slorlup, see the Appla I6s
Prolos 16 Nelarence.

To be a (stand-alone) application, an Apple [1GS program needs
fo meel certaln requirements. [st

= consist of executable machine-language code

m be in Apple IIGE object module format

M tave a file type of 383

Mouse Prol>08 10 as ils operating svstem

I oobserve the ProD0S 10 QUIT convenliony

0oget all necded memory from the Memory Manager

All other aspects of the progrm are up to you. But of course we
strongly recommend that you desipn your progams (o use the

Apple deskiop inteiface and follow the Apple Human Interface
Guidelings,

& Frofdo8 & The above list refers specifically 10 Apple 1IGS
applications that run under ProDOS 15, Bequirements for
progams that run under ProDOS § are quite differens; see the
Frof W08 & Technical Reforence Manual

Make it self-booting?

There are two ways 1o make your Lype SB3 application saff-
booting, so that it is automatically loaded and launched at system
sld r111]'.|:

M Give it the filename exension . 5Y516. By using this method,
vour program becomes a ProDOS 10 equivalent (o a ProldOSs 8
spsfem program on 4 stacdard Apple 1T computer.

0 Give it the filename START aned place itin the SYSTEM/
subdirectory. By using this method, your program substilues
for the finder or program launcher that normally execules fiest
on the Apple 1IGS

In gilher case, your progam must be the first (or only) program
with the proper filename or filename extension thar the boot
loader program encounters on the bool disk. Figure 8-1 diagrams
the program seleclion sequence ar S¥S1em Stanup.

Seneral gpplications 257

(Boot sequence:
the file named
PRODOS is executing!)

Is there a file named

/V/SYSTEM/START?
yes | no
Is there a .SYSTEM
or .SYS16 file?
yes | no
Which found first? Fatal ere

.SYS16 file found first .SYSTEM file found first
Execute a Execute an
ProDOS 16 enhanced
QUIT call, ProDOS 8
using the QUIT call,
filename using the
of the filename
SYS16 of the
program SYSTEM
program

v v
(.SYS16 program executes) (.SYSTEM program executes)
load and
xecute
execy > /V/SYSTEM/START
START is typically
a program
selector/finder

Figure 8-1
Startup program selection

% Note: Apple recommends that you do not name your ;
application START—Ieave that name for a program launcher
or finder. If you give your program a clearly identifiable na
the user can more easily launch it from any boot disk.

258 Chapter 8: What Type of Program to Write?

- The concepts of dormant and
' restartable programs are

- discussed under “Loading

. Programs and Segments” in

_ Chapter 6.

.~ For more information on the APW
- Clanguage., see the Apple lics

. Programmer’s Workshop C

. Reference

f Programs that run under shells are
. cdledshell applications and are
- flle type $8B5.

Make it restartable?

If you want your program to be able to be quickly relaunched
from a dormant state in memory, it needs to be restartable. A
restartable program reinitializes all its variables each time it gains
control, without having to read in files or segments from disk. It
also makes no assumptions about the state of the computer, such
as register contents or flag settings, when it gains control. If all
initialization information is in code statements in your program’s
initialization segments and static code segment(s), the program
should be restartable.

It is difficult for programs in some languages to be restartable. In

C, for example, all global variables are in segments named
~GLOBALS and ~ARRAYS, which must be initialized each time the
program starts up. To get around this difficulty, the System Loader
supports the concept of RELOAD segments. A RELOAD segment is
a static data segment that is loaded from disk whenever an
(otherwise) restartable program is launched from a dormant state.
It contains whatever initialized data is needed by the program; the
rest of the program’s static segments (other than initialization
segments) are not loaded at that time.

When your application quits, it passes a parameter to ProDOS 16
(and thence to the System Loader) stating whether the application
is restartable or not. You must determine when you write the
program what type it really is; neither ProDOS 16 nor the System
Loader will check.

Controlling programs

A controlling program is a program that loads and executes other
programs while itself remaining active in memory. An application
needs to be a controlling program only if it must remain in
memory after it calls another program. The APW Shell is a
controlling program; ProDOS 16 is a controlling program.

Writing a controlling program is far more involved than writing
an application. This book does not show you how to write a
controlling program; but if you do write one, please follow the
guidelines below. They specify how your controlling program
communicates with shell applications. See also the next section,
“Shell Applications,” for more information on how controlling
programs and their subprograms interact.

Controlling programs 259

ProDOS 16 register and direct-
page/stack conventions are
discussed under “Setting Up
Direct-Page/Stack Space” in
Chapter 6, and fully described in
the Apple lics ProDOS 16
Reference

See "Quitting and Launching
Under ProDOS 16,” in Chapter 6.

260 Chapter 8: What Type of Program to Write?

Your controlling program should use the System Loader’s

Initial Load function to load the subprogram. Initial Load
returns the subprogram’s starting address and User ID to yol
controlling program. When your controlling program passe
execution to the subprogram, it should pass the subprogran
User 1D in the accumulator. :

Your controlling program may also pass parameters and a
identifier string to the subprogram, as described under “She
Applications.”

Your controlling program is responsible for establishing the
appropriate input and output vectors for its subprograms. Fg
example, when ProDOS 16 launches a program, it initializes
Text Tool Set to use the Pascal I/O drivers for the keyboard'
and 80-column screen.

Unless all its subprograms include direct-page/stack segme
your controlling program must provide a default direct-
page/stack space for any subprogram that it launches. The
controlling program should observe the ProDOS 16
conventions for register initialization and direct-page/stack ,
allocation.

Shell applications can terminate with either an RTL instructi
or a ProDOS 16 QUIT call. If any of its subprograms might
QUIT, your controlling program must intercept all ProDOS
calls so that when the subprogram quits, the controlling
program, rather than ProDOS 16, regains control.

Your controlling program is totally responsible for disposin
of the subprogram. When the subprogram is finished, the
controlling program must remove it from memory and relea
all memory resources associated with its User ID. The best v ¢
to do this is to call the System Loader’s User Shutdown

function. If the program ends in a QUIT call, your controllin
program is responsible for performing any other system task
normally done by ProDOS 16 in response to a QUIT.

- See "Loading Programs and
Segments” in Chapter 6 for a
discussion of controlling
programs and the System
loader's Initial Load function.

See an example of reading an
Identifier string in the second
sample program under “Creating
Segmented Code: Three
Examples” in Chapter 7.

Shell applications

Shell applications (ProDOS 16 file type $B5) are executable load
files that are run under a controlling program such as the APW
Shell. The controlling program launches the shell application by
calling the System Loader’s Initial Load function, and transfers
control to the shell application by means of a JSL instruction,
rather than launching the program through the ProDOS 16 QUIT
function. Therefore the shell does not shut down, and the
program can use shell facilities during execution.

A shell application typically returns control to its shell with an
RTL instruction. With a shell (such as the APW Shell) that
intercepts ProDOS 16 calls, the shell application can end with a
ProDOS 16 QUIT call.

Shell applications should use standard Text Tool Set calls for all
nongraphics I/O; the controlling program is responsible for
initializing the Text Tool Set routines.

< Stand-alone: A shell application can run alone under ProDOS
16 if it requires no support other than standard input from the
keyboard and output to the screen. ProDOS 16 initializes the
Text Tool Set to use the Pascal 1/O drivers (discussed in the
Apple 1IGS Toolbox Reference) for the keyboard and 80-
column screen. To be launched this way, a program must first
be changed to file type $B3, and it must end with a ProDOS 16
QUIT call.

As soon as a shell application is launched, it should save the value
of its User ID, passed in the accumulator from the controlling
program. It should also check the X and Y registers for a pointer
to the shell-identifier string and input line. The X register holds
the high-order word and the Y register holds the low-order word
of this pointer. The controlling program is responsible for
loading this pointer into the index registers and for placing the
following information in the area pointed to:

O An 8-byte ASCII string containing an identifier for the shell.
The identifier for the APW Shell, for example, is BYTEWRKS.
The shell application should check this identifier to make sure
that it has been launched by the correct shell, so that the
environment it needs is in place. If the shell identifier is not
correct, the shell application should write an error message to
standard error output (normally the screen), and exit with a
ProDOS 16 QUIT call (if the controlling program supports it)
or an RTL.

Shell applications 261

For more information on direct
pPage and stack allocation, see
“Sefting up Direct-Page/Stack
Space” in Chapter 6. See also the
Apple lics ProDOS 16 Reference

262 Chapter 8: What Type of Program to Write?

0 A null-terminated ASCII string containing the input line for i
shell application. The shell can strip any I/O redirection or
pipeline commands from the input line, because those
commands are intended for the shell itself, but must pass on
input parameters intended for the shell application.

% ProDOS 16: ProDOS 16 does not su pport the identifier string
or input line convention. When an application is launched b
ProDOS 16, the X and Y registers contain zeros.

If the shell application does not have a direct-page/stack segme
it can expect the controlling program to provide a 1024-byte
memory block in bank $00 for the shell application to use for i
direct page and stack. Whether the shell application specifies a
direct-page/stack segment or accepts the default, the address of
the start of the direct-page/stack segment should be in the dire
register (D), and the stack pointer (S register) should point to
last (highest-address) byte of the block containing the direct- 1
page/stack segment. :

Some shell applications may launch other programs; for examp
a shell nested within another shell would be a controlling
program as well as a shell application. Such an application mus|
follow the conventions for both types of programs. i

A shell application should use the following procedure to quit: .

L If the shell application has requested any memory buffers, it
must release (dispose of) them.

2. The shell application should place an error code in the
accumulator. If no error occurred, the code should be $0000,
The code $FFFF can be used as a general (nonspecific) error

code. Other error codes are up to the controlling program "
define and handle.

3. The shell application should execute an RTL or, if the shell
supports it, a ProDOS 16 QUIT call.

Desk accessories

A desk accessory is a small program that a user can run without
closing down an already-running application. The Apple IIGS
supports two different kinds of desk accessories: ’

® Classic desk accessories (CDA'’S) are designed to execute in
non-desktop environment. The CDA interrupts the applicatio
and gets full control of the computer. ’

For full details on the Desk
Manager and its desk accessory
suppport, see “Desk Manager” in
the Apple liGS Toolbox
Reference

m New desk accessories (NDA’S), on the other hand, are designed
to execute in a desktop environment. As such, they operate in a
window and are subject to the same rules as an event-driven
application. They are not stand-alone applications, however,
because they rely upon another application to start up the
Apple IIGS tools.

Neither type of desk accessory has a lot of extra programming
overhead apart from the actual task the accessory performs. Both
types depend heavily for support upon the Apple IIGS tool set
called the Desk Manager.

Writing classic desk accessories

A classic desk accessory must start with a header consisting of a
name string, a pointer to the start of the code, and a pointer to
the shutdown routine.

StartofCDA str'Name of DA’ ; DA name (this is an APW macro)
dc i4'StartOfDACode’ ; Pointer to start of code
dc i4'ShutDownRoutine’ ; Pointer to shutdown routine

When a CDA gets control from the Desk Manager, the processor
is in full native mode. Because the Desk Manager has already
saved the necessary parts of the old environment, the CDA can
concern itself solely with its own work.

A CDA follows this basic procedure:

1. It initializes for the machine environment it needs. The Desk
Manager has already saved the old state when the CDA gets
control.

2. It does the actual work of the CDA. Like all Apple IIGS
applications, a CDA should ask the Memory Manager for any
space that it needs. In addition, the CDA must leave the stack as
it was when the CDA got control.

3. It returns to the Desk Manager with an RTL. The Desk Manager
then automatically restores the old state and returns to the desk
accessory menu.

Every CDA must have a shutdown routine. The shutdown routine
is called every time the Desk Manager shuts down.

Classic desk accessories have the ProDOS file type $B9. On disk,
they must be in the DESK.ACCS/ subdirectory of the SYSTEM/
directory.

Desk accessories 263

264

Chapter 8: What Type of Program to Write?

Writing new desk accessories

All new desk accessories are loaded from the disk at boot ti ‘
When an NDA gets control from the Desk Manager, the prox
is in full native mode. By convention, the NDA can assume t
the tool sets shown in Table 8-1 have already been loaded :
started up. If the NDA needs any other tool sets, it must load
start them up itself. “

Table 8-1
Tool sets loaded and available to new desk accessories

Tool set

Tool Locator
Memory Manager
Miscellaneous Tool Set
QuickDraw II
Event Manager
Window Manager
Control Manager
Menu Manager
LineEdit Tool Set
Dialog Manager
Scrap Manager

Note: The NDA may also assume that the Print Manager is available,
although not necessarily loaded and started up 1

A new desk accessory has a structure fundamentally differe
that of a desktop application. For one thing, it has no event .
loop—it relies on the application’s event loop and the Desk:
Manager to open it, prod it into action, and close it. For ano
it has only four nonprivate routines: init, open, action, and ¢

O The Desk Manager calls the inif routine to initialize the
when the Desk Manager starts up, and again when it shuts

StartofNDA

0 The Desk Manager calls the open routine when the NDA is
selected by the user from the Apple menu. The open routine
opens the desk accessory window and returns a pointer to it.

O The Desk Manager calls the action routine in response to an
event within the NDA window, or when a specified time period
has passed, or if a selection has been made from an NDA
menu or the Edit menu, and in other special cases. The action
routine performs whatever tasks the NDA was designed for. An
action code passed in the accumulator tells the NDA why it was
called.

0 The Desk Manager calls the close routine to close the desk
accessory window.

The processor is in full native mode on entry into all four
routines. All four routines should end with an RTL instruction.

An NDA action routine follows this basic procedure:

1. It saves important global values, such as the application’s
current GrafPort.

2. Based upon the action code received, it takes appropriate
action.

3. It restores the global values and returns to the Desk Manager
with an RTL.

You must start the NDA with an identification section that
specifies the pointers to the four routines, the NDA’s period (how
often it runs), its event mask (what events it wants), and its menu
line (text defining its title on the Apple menu). For example, the
identification section could look like this:

i4'PtrToOpen’ ; Pointer to open routine
i4'PtrToClose’ ; Pointer to close routine
i4'PtrToAction’ ; Pointer to action routine
i4'PtrTolnit’ ; Pointer to init routine
i2'Period’ ; How often to run
i2'EventMask' ; What events to retrieve

c' MenuLine\H**' ; Text for menu item

il1'o° ; Terminator for the menu line

New desk accessories have the ProDOS file type $B8. On disk, they
must be in the DESK.ACCS/ subdirectory of the SYSTEM/
directory.

Desk accessories 265

Initialization files

Initialization files are files of types $B6 and $B7, in the
SYSTEM.SETUP subdirectory. They are special-purpose progs
that perform initialization at system startup, before any '
applications have been launched.

There are two types of initialization files—temporary and
permanent:

® Temporary initialization files (type $B7) are loaded and
executed just iike applications ($B3), except that they must
terminate with an RTL rather than a QUIT. They are removes
from memory when finished.

® Permanent initialization files (type $B6) are loaded and
executed just like applications ($B3), except for these
conditions:

O They must not be in special memory.

O They cannot permanently allocate any direct-page/stack
space. '

0 They must terminate with an RTL rather than a QUIT.

Permanent initialization files are not removed from memor
when finished.

With initialization files, you can customize the operating
environment before any applications are loaded. The]
TOOL. SETUP file is an example of an initialization file; it load
RAM patches to tool sets. TOOL.SETUP is a permanent ‘
initialization file because other system software needs it during
program execution. If your initialization files need to execute of
once, make them temporary.

< Note: Don’t confuse these initialization files (programs ‘
executed at system startup) with initialization segments (piecs
of an application executed when the application starts up).
“Loading Programs and Segments” in Chapter 6.

266 Chapter 8: What Type of Program to Write?

An interruptis a signal to a

computer that stops the

xecution of an ongoing

program while a higher-priority
program is executed. I is usually
an external, hardware-generated
signal, but software interrupts are
possible as well.

Interrupt handlers

On the Apple 1IGS, interrupts may be handled at either the
firmware or the software level. The built-in interrupt handers are
in firmware (discussed in the Apple IIGS Firmware Reference);
user-installed interrupt handlers are software and may be called
directly by the firmware or through ProDOS 16.

When the Interrupt Request (IRQ) line on the Apple IIGS
microprocessor is activated, or when a software interrupt occurs,
the microprocessor stops executing the current application and
transfers control to the firmware interrupt-processing routines.
The built-in interrupt handler processes the interrupt if the
application has not provided its own interrupt handler.

The built-in interrupt handler

The Apple 1IGS built-in interrupt handler is a firmware program that
performs a sequence of steps to handle system interrupts. When a
program is interrupted, the handler saves the current state of the
system. The handler then processes the interrupt itself or passes
execution to another handler, either internal or external. On com-
pletion of interrupt processing, the interrupted program regains
control and can continue as though nothing had happened.

Figure 8-2 and the following explanation give a simplified picture
of the steps taken by the built-in interrupt handler; they emphasize
the course of execution when the interrupt is to be serviced by a
user-installed handler.

1. When an interrupt signal occurs, execution jumps indirectly
through the interrupt vector EIRQ if running in emulation
mode when the interrupt occurred, or NIRQ if in native mode.

2. The system then tests to see whether the interrupt was the result
of a software Break instruction. If it was, the system vectors to a
break handler through a break handler vector in bank $E1. If
no break handler is installed, execution passes through the user
break vector at $3F0 in bank zero, which normally points to the
Monitor program.

Interrupt handlers 267

3. If the interrupt source was not a Break instruction, the intet
handler saves the absolute minimum amount of informatic
about the machine state—just that necessary to read an
incoming serial character—and then tests for AppleTalk at
serial port interrupts. This hasty action is necessary so that
incoming characters in high-speed transmission will not b
lost. If the interrupt is a serial interrupt, the firmware execu
JSL instruction to the serial port handler.

4. If the interrupt is not a serial interrupt, the interrupt handle
saves the rest of the machine state and establishes a specif
interrupt memory configuration, as described next under
vironment Handling for Interrupt Processing.” It begins a
loop, testing each of the possible interrupt sources in turn.

5. If no internal interrupt handler claims the interrupt, then
only then) the firmware jumps through the user interrupt
vector, to a user-installed routine that handles the interrupt.
The address of the user interrupt routine is found in bank §
addresses $3FE (low byte) and $3FF (high byte). :

65C816
interrupt | EIRQ
vectors | NIRQ
(Bank $FF) | etc.

\ 4
Break handler
(if installed)
yes JSL AppleTa
—™ JSL Seriallnt:
no
JSL
Y 5L
(83F0) JSL
Bank $00

(Usually the monitor)

Figure 8-2
Built-in interrupt handler (simplified)

268 Chapter 8: What Type of Program to Write?

Environment handling for interrupt processing

For each type of interrupt, the processor can be in either
emulation or native mode. The built-in interrupt handler must
save the current environment in each case, set the interrupt
environment, process the interrupt through the appropriate
interrupt handler, and then restore the original environment
before returning control to the interrupted program.

The interrupt environment is the machine state that your inter-
rupt handler finds when it gains control. If your handler is called
from the user interrupt vector, the environment includes these
conditions:

O emulation mode

o slow speed (1IMHz)

O text page 1 switched in (main screen holes available)

O main memory switched in (for reading and writing)

0 $D000-$FFFF ROM mapped into bank $00

0 main stack and zero page switched in

O main stack pointer active (auxiliary stack pointer saved)

If your handler is called through a JSL from the built-in handler
before jumping to the user interrupt vector, the same state applies
except that the machine is in 8-bit native mode and running at
fast speed.

& ProDOS 16: If your interrupt handler is installed through
PRoDOS 16, the machine state it finds is somewhat different.
See “Interrupt Handling Under ProDOS 16,” later in this
section.

After the interrupt has been processed, the system interrupt
handler restores the environment and registers to their
preinterrupt state and executes an RTI (return from interrupt),
returning to the executing program.

Interrupt handlers 269

Descriptions and locations of qll
interrupt vectors are listed in
Appendix D of Apple llcs
Firmware Reference.

Interrupt soft switches are

documented under “Soft

Switches” In the Apple lics
Firmware Reference.

270

Chapter 8: What Type of Program to Write?

Writing and installing your own interrupt handler

as the user interrupt vector at $00 O3FE. However, you must be
careful to obey all of the conventions specified in Chapter 8 of
the Apple 1IGS Firmware Reference regarding interrupt ‘
processing, and make sure to restore the interrupt environme)
state that you found on eéntry to your handler. This allows the
system in turn to restore the environment to its original state,

If you write a handler to be called from the $3FE interrupt vectt
it must do the following tasks:

1. Verify that the interrupt came from the expected source,

2. Handle the interrupt appropriately.
3. Clear the appropriate interrupt soft switch.
4.

Restore everything to the state it was in when the interrupt
routine was entered, if your routine has made any changes e
the state of the machine,

5. Return to the buijlt-

in interrupt handler by executing an RTI '
instruction. :

Here are some other factors to remember when you are dealing
with programs that run in an interrupt environment:

O There is no guaranteed maximum res
because the system may
lasts for several seconds

ponse time for interrup
be performing a disk operation that
when the interrupt occurs.

O Emulation-mode interrupts are supported in bank $00 only,
whereas native-mode interrupts are supported everywhere in

memory. Therefore, code running anywhere except in bank §
must be native-mode code. :

O Interrupt overhead will be greater if your interrupt handler is

installed through an operating system’s interrupt dispatcher,
such as the ProDOS 16 interrupt handler described next. On

the other hand, if your handler is installed through ProDOS |
it needn’t run in emulation mode.

Interrupt handling under ProDOS 16

You can write an interrupt handler and install it under ProDOS
16, if you wish. ProDOS 16 installs its own vector at location $00
03FE (page 3 in bank zero), so when an interrupt occurs, execution
passes through that location. At that point the microprocessor is
running in emulation mode, using the standard clock speed and 8-
bit registers. The vector at $00 03FE points to another bank zero
location, that in turn passes control to the ProDOS 16 interrupt
dispatcher. The interrupt dispatcher switches the processor to full
native mode (including higher clock speed) and then polls the
user-installed interrupt handlers. When the interrupt has been
serviced, ProDOS 16 returns to emulation mode and passes
control back to the built-in interrupt handler.

Figure 8-3 is a simplified picture of what happens when a device
generates an interrupt that is handled through a ProDOS 16
interrupt handler.

From built-in
interrupt handler

l

User interrupt vector
($3FE) in Bank $00

JMP RTL back to ProDOS 16

Interrupt Dispatcher

(then RTlI back to
P'ODgprﬁéﬂ:r"“pf built-in interrupt handler)

Switch to
full native
mode

y

Poll each handler h— User-installed
in sequence: handler
will one accept
the interrupt?

l If none claims it

Unclaimed interrupt
(fatal error)

Figure 8-3
Interrupt handling through ProDOS 16

Interrupt handlers 271

ProDOS 16 supports up to 16 user-installed interrupt handles
When an interrupt occurs that is not handled by firmware,
ProDOS 16 transfers control to each handler successively un
one of them claims it. There is no grouping of interrupts inf
classes; their priority rankings are reflected only by the orde
which they are polled.]

If you write an interrupt handler to run under ProDOS 16, n
these conventions:

O Your handler will gain control with the machine in full
mode (e, m, and x = 0), with a fast clock speed.

0 Interrupts will be disabled. Do not re-enable interrupts fro
within your interrupt handler.

O The handler must exit with an RTL instruction. The machir
should again be in full native mode, at fast speed. The car
flag must be cleared (= 0) if the interrupt was serviced, an
(= 1) if it was not—that is how ProDOS 16 knows whethe
not your handler has claimed the interrupt. §

To make your interrupt handler active, install it with the Prol
16 ALLOC_INTERRUPT call. To remove it, use the DEALLOC.
INTERRUPT call. Be sure to enable the hardware generating t
interrupt only agfter the routine to handle it is allocated; likew
disable the hardware before the routine is deallocated.

User tool sets

The Apple 1IGS Toolbox is quite extensive and provides a g
deal of programming convenience; there are over 800 separa
routines that you can call from your applications. Furthermo
because of the flexibility of the Tool Locator system, your
application is not restricted to even this large number of too
calls. In addition to the system tools (provided by Apple), yo

can write and install your own tool sets, called user tools.

Writing and installing user tool sets is fully documented und
“Writing Your Own Tool Set” in the Apple IIGS Toolbox
Reference. We won't repeat that information here, beyond lis
these few main points: '

272 Chapter 8: What Type of Program to Write?

0 The open-ended, flexible nature of the Tool Locator is what

makes it possible to add your own tool sets. The Tool Locator
requires no fixed ROM location and few fixed RAM locations,
so it may easily modify its data structures to incorporate new

tool sets.

O Each tool set is assigned a permanent £00l number. System

tools are assigned numbers by Apple; you can assign your own
numbers to user tool sets that you create. Assignment starts at 1

and continues as successive integers (2, 3, 4, and so forth).
Table 8-2 lists the presently defined system tool numbers.

Table 8-2

Tool set numbers

Hexadecimal Decimal

Name

$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$OE
$OF
$10
$11
$12
$13
$14
$15
$16
$17
$19
$1A
$1B
$1C

O 00 N SNV R W N

NN N NN RN N & o e e s e e e
m\IO\U\WNv—*O\')w\lO\U\ANHO

Tool Locator

Memory Manager
Miscellaneous Tool Set
QuickDraw II

Desk Manager

Event Manager
Scheduler

Sound Tool Set

Apple Desktop Bus Tool Set
SANE

Integer Math Tool Set
Text Tool Set

Window Manager
Menu Manager
Control Manager
System Loader
QuickDraw II Auxiliary
Print Manager
LineEdit Tool Set
Dialog Manager

Scrap Manager
Standard File Operations
Note Synthesizer

Note Sequencer

Font Manager

List Manager

User tool sets

273

274

O Each routine within a tool set is assigned a permanent ;
Junction number. Function numbers start at 1 in each
and continue as successive integers. Certain standard
be present in every tool set, and so certain function nu
are reserved. Table 8-3 lists them. See the toolbox mani
explanations of what each function must do. ‘

O There are some general rules and design consideratio: ,
tool sets must follow. For example, tool sets receive cof
full native mode; they must obtain any needed work spg
the Memory Manager; they must provide some sort of ,
environment; and they must restore the caller’s operatif
environment before returning control to the caller. See
Apple IIGS Toolbox Reference for details on these and ¢
design requirements. ' :

Table 8-3
Standard tool set routine numbers

FuncNum Description

Boot initialization
Application startup
Application shutdown
Version information
Reset

Status

Reserved for future use
Reserved for future use

O NN N =

Chapter 8: What Type of Program to Write?

Chapter 9

Where to Go From Here

275

This is as far as we can take you in this book. For your next s
spread out your development-environment manuals, Apple I
technical manuals, and the Apple IIGS ToolBox Reference,
play with HodgePodge on the Apple IIGS or start your own
applicaton. In parting, we'll give you a few hints—mostly
summaries of the ideas presented throughout the book—and
mention two organizations that can help you become a succ
Apple IIGS developer.

Modify HodgePodge

The easiest way to get started on your own desktop applicatio
may be to take HodgePodge and modify it incrementally,

Recompile it and run it after each small change to see how yot
changes look (or even if they work).

You might begin by modifying text within dialog boxes, or
changing the names of menu titles or items. As you become a
little braver, try adding (or removing) menus or menu items,
adding (or removing) the subroutines called from those meni
items. Remember that adding an item to a menu will require
changing the routine DoMenu as well as changing the menu
definitions themselves—not to mention writing a subroutine
does something when the menu item is selected.

Soon you'll become more ambitious, and you can branch in
almost any direction. Add a routine that plays a song when

Define a new window type, perhaps even one that permits the
to draw or type into it. Define a file type for that window type,
allow the user to save results to disk. Give HodgePodge the a
to cut and paste to and from the Clipboard, and display the
Clipboard window. Play with menu- and window-frame colors.

Your imagination is your only real constraint. Have fun and
challenge your limits; the Apple IIGS is a willing partner in thi
adventure.

276 Chapter 9: Where to Go From Here

Design your program carefully

We've discussed design considerations for Apple IIGS desktop
applications throughout the book, but some in particular are
worth repeating. As you work on your own programs, either by
modifying HodgePodge or starting from scratch, keep these
points in mind:

Follow the Human Interface Guidelines: Follow the underlying
concepts, as well as the surface implementation, of the
guidelines. They describe a tested and proven interface,
familiar and friendly to millions of users. If you go beyond the
guidelines, make it a natural extension.

Design data structures before writing code: Your menus,
windows, controls, dialog boxes, and alerts influence program
structure so strongly that they should be carefully planned and
defined at the beginning. You'll save yourself wasteful rewriting
and awkward patching if your code organization flows naturally
from the design of your data structures.

Test for errors: Make it a habit to put error-testing code after
toolbox calls. It can help inform the user and can keep your pro-
gram from doing harmful things to the user’s system or data.

Save and restore: When a subroutine accesses the desktop, it
may not always know the exact state of things. Note that many
HodgePodge routines start with a GetPort call to save the
current state of the desktop, and end by restoring the desktop
(with a SetPort call). It's another good habit to get into.

Lock handles while in use: If your program has allocated a
piece of memory accessed by a handle, be sure to lock it just
before using it. A lot of memory errors are caused by trying to
access data that has been moved.

Unlock handles when not in use: Don'’t prevent the Memory
Manager from doing its job.

Dispose handles when finished: Don'’t prevent the Memory
Manager from doing its job.

Make it easy to translate: If you want to appeal to international
markets, remember to place in one or more individual data
areas all text that is to be displayed, so that it may be found
and modified easily.

Design for “Undo”: Consider including a facility that allows the
user to reverse his actions to undo a mistake. Your customers
will be eternally grateful.

Design your program carefully 277

278

Chapter 9: Where to Go From Here

Join APDA

If you are already a member of the Apple Programmer’s and
Developer’s Association (APDA), you know that it is the fastes
way to get the most recent software, documentation, and o el
information of interest to developers. If you are not a me be
it's easy to join. i

APDA is a membership organization for both professional an
advanced amateur programmers and developers. It was found
by Apple Computer and the A.P.P.LE. Co-op near Seattle,
Washington; its purpose is to publicize and distribute

programming tools and technical documentation for Apple
computers.

APDA serves as a “one-stop shopping center.” It offers both
finished products from Apple and other vendors, and prerele
versions of many Apple development tools and documents, §
small-volume products, not suitable for the retail market, are
available only through APDA. Other products, scheduled for
retail market, are offered through APDA in prerelease versions
an “as-is” (no support) basis.]

If you join APDA, you will receive quarterly catalogs (and mor
frequent updates) of the available material for both Apple II 2
Macintosh development. Membership is open to all interestec
parties. Yearly dues are $20.00.

Write to

Apple Programmer’s and Developer’s Association
290 SW 43rd Street

Renton, WA 98055
(206) 251-6548

Become an Apple Developer

If you are a developer with a product soon to reach the
commercial market, you may want to become an Apple Certif

mailings including a newsletter, Apple II and Macintosh Techr
Notes, pertinent Developer Program information, and all the
latest news relating to Apple products. You will have access to
Developer Hotline for general developer information. '

Once you are certified, Apple’s Developer Technical Support staff
can provide technical assistance during your product’s evolution.
Our Technical Support engineers will answer your development
questions within 24 hours by electonic mail.

The Certified Developer program is for professional hardware
and software developers who plan to have a finished commercial
product within 18 months. If you fit this description and are
interested, please write for an application. You will need to submit
information on previous products and your present business plan
along with your completed application.

Werite to

Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, M.S. 27W
Cupertino, California 95014

(408) 973-4897

Licensing Apple software

If the software you write uses all or part of some Apple software
(such as ProDOS 16 or the Apple IIGS Toolbox), you will need to
license the use of that software from Apple Computer. You
needn't license any parts of HodgePodge you use, but you will
need to license any system software that accompanies or is
incorporated into your application.

A modest yearly fee authorizes you to use Apple software in your
product. There are no royalties. Please contact

Software Licensing

Apple Computer, Inc.

20525 Mariani Avenue, M.S. 28B
Cupertino, CA 95014

Attn: Software Licensing Program

(408) 973-4667

Become an Apple Developer 279

Appendixes

281

282

Appendix A

Converting Macintosh
Programs to the Apple llcs

If you have written a desktop application for the Macintosh, yo
may be able to convert it to run on the Apple 1IGS without |
completely rewriting it. On a conceptual level, the task should|
rather simple—after all, program organization and toolbox
capabilities are similar for both computers. But when it comes
implementation, there are many differences that require carefy
attention to details of coding. This appendix notes some of !
details to keep in mind when converting Macintosh programs |
the Apple IIGS.)

High-level languages

Programming in a high-level language can insulate you from
many of the differences among machines. However, the ‘
individual toolbox calls are different enough between the
Macintosh and the Apple 1IGS that in most cases it will not
possible just to recompile Macintosh code and expect it to rus
the Apple IIGS.

The best approach is probably to regard the conversion process
algorithmically, rather than literally. In other words, don’t expect
that you will be able to drop a whole program or even any one
routine, unchanged, into an Apple IIGS program. Use your
Macintosh program’s organization as a framework into which to
place individually converted routines. Even though most of the
organization and much of the original code can be translated
exactly, you'll have to locate those statements, calls, and structures
that are incompatible with the Apple IIGS environment.

This doesn’t necessarily mean pouring over the source code line-
by-line. In general, you might be able to port well-behaved high-
level code, just by carefully locating and modifying tool calls and
any code that accesses toolbox data structures.

Of course, if you have a routine that makes no tool calls, accesses
no tool structures, and otherwise makes no Macintosh-specific
assumptions, you may indeed be able to convert it simply by
recompiling it.

Assembly language

Approaching the conversion process algorithmically rather than
literally is even more critical when converting programs written in
assembly language. Besides toolbox differences, you are faced
with fundamentally different microprocessor architectures and
instruction sets, very different memory maps, and a host of other
low-level differences between the two types of computer. The only
possible aproach is to think of your Macintosh program as an
organizational shell in which every routine will need extensive
revision to convert correctly.

Here are just a few of the differences to keep in mind.

m Registers: The 65816 does not have nearly the number of
registers that the 68000 has, so you will have to store more of
your variables in memory—usually local memory (direct page).

m Direct page: Direct page is an Apple IIGS concept that can be
very useful, especially if you are constructing tables in memory
and accessing them by offsets. If your Macintosh program
allocates such data structures on the heap, you can gain
efficiency by putting them onto the Apple IIGS direct page.

Assembly-language 283

284

Appendix A: Converting Macintosh Programs to the Apple lics

m Stack: Your stack on the Apple 1IGS is likely to be smallet
what you are used to on the Macintosh. More of your va
and data structures will be allocated in other parts of me

® Memory space and segmentation: Your program may _
run in less space on an Apple IIGS than it may be used to
Macintosh. Therefore, segmentation can be very importal
Break the program into segments, and use as many dynat
segments as possible.

m Video display: The Apple IIGS offers you two different Sug
Hi-Res graphics modes—320 and 640 pixels across. Both 1
color, but neither has square pixels. :

Toolbox differences

If you compare the Macintosh and Apple IIGS toolboxes, you
see that many routines have identical names and function ?,
same way. Many others do not, however, so watch out for
differences when using the tools. In particular, the required 4
parameters and the order of the parameters may differ betwt
the Macintosh and Apple IIGS versions of a particular call. B
sure to look up each routine in the Apple IIGS Toolbox Refer
before using it. "’

Some groups of tool calls are more alike than others. For
example, many QuickDraw calls are identical or very similar
both environments. Thus, graphic routines might be relativel
simple to translate. On the other hand, calls that directly ace
or manipulate memory, such as Memory Manager calls and °
handle manipulations, can operate very differently in the tv
environments—even when they look the same. Be careful.

Also keep in mind that the records that describe toolbox]
structures such as GrafPorts and controls are different. Fields
exist in one environment may not be in the other. So be
particularly careful if you access data structures directly.

Some specific recommendations on how to handle toolbox
differences follow.

Resources

To a Macintosh programmer, the term resource means something
much more specific than a useful item. Resources are certain
types of data structures, easily accessible by the programmer, that
help to separate code from static data and make program
modification simpler.

The Apple 1IGS has no predefined structures like resources, and no
Resource Manager or resource editors for manipulating them. So,
in conversion, you will have to move your resources from the
resource fork of your file into your program code, either as
separate data segments or files, or merged into the execution
Pascal HodgePodge s listed in stream. The Pascal version of the sample program HodgePodge

Appendix G. Furthermore, .
ndividual routines are listed and shows several ways to do this:

described throughout the book. m Icons: You can define your icons by directly creating a pattern
e Table 2-1. in memory, as HodgePodge does with the Apple icon in
InitGlobals (file HP .PAS).

m Text strings: Instead of a string or string list resource, you can
define your strings in initialization routines (as HodgePodge
does with its menu strings), or in the individual routines in
which they are needed (as HodgePodge does with prompt
strings in the Standard File dialog boxes).

Remember, keeping all your strings easily accessible will make
the program more convenient to translate or otherwise modify.

m Window and dialog box templates: The templates (DLOG,
WIND, ALRT, and DITL resources on the Macintosh) used to
define your windows and dialog boxes, and the controls and
items within them, must be defined within the body of your
Apple IIGS code.

Each time it opens a window, HodgePodge defines and
initializes a parameter list that controls the window’s
appearance (part of the routine DoTheOpen in WINDOW.PAS).
When it creates an alert box, it calls a routine
(MakeATemplate in DIALOG.PAS) that defines the
characteristics of an alert box and two items within it.

Other resources in your Macintosh program will need to be
converted similarly.

Toolbox differences 285

TaskMaster or GetNextEvent?

The Apple IIGS offers at least one very useful event-handling |
capability not yet available on the Macintosh: TaskMaster |
TaskMaster automatically handles many standard events for
standard types of windows—resizing, dragging, scrolling, upda
and activating, and so on. "

On the other hand, the Apple 1IGS also supports “normal” eve
handling with GetNextEvent, just as on the Macintosh. So it m
seem more efficient to keep that same GetNextEvent organiza
when converting an existing Macintosh program. ’

Usually it is not. Unless your program constructs unconventic
windows or handles them in an unusual manner, it is probabl
best to change from GetNextEvent to TaskMaster when maki
conversion. Using TaskMaster may allow you to eliminate e 0
routines from your progam, routines that would otherwise nee
individual attention to convert correctly. .

HodgePodge, for example, has no update routine, no activa e
routine, no scrolling procedure, no window-dragging or -resizi
routines, and yet it supports windows that do all those things.
may greatly simplify your conversion to switch to TaskMaster.

QuickDraw I

QuickDraw II on the Apple IIGS is quite similar to QuickDraw ¢
the Macintosh, apart from extensions to support Apple IIGS c¢
display. However, keep the following in mind:

O The conceptual drawing space for QuickDraw II has bounda
coordinates -16K, -16K, 16K, 16K, compared to -32K,-32K ar
32K,32K on the Macintosh. ;

O QuickDraw II's pixel images are similar to Macintosh ;
QuickDraw’s bit images, but pixels are described by more
one bit each. Bit images such as icons will have to be
converted to pixel images, with either two or four bits per p

Icons are not as restricted on the Apple IIGS as they are on
Macintosh. Besides having color, they may be of arbitrary
height and width, rather than 32 pixels (bits) on a side.

286 Appendix A: Converting Macintosh Programs to the Abnle llec

O You won't need to change most drawing commands—your
black-and-white Macintosh drawings will convert directly to
white-and-black drawings on the Apple IIGS screen.

There will be some change in aspect ratio of images and drawn
objects in transferring to the Apple IIGS screen, and significant
changes in overall size—Super Hi-Res pixels are not square and
are significantly larger than Macintosh screen pixels.

0 Text drawing and text measurement on the Apple IIGS are
similar to their treatment on the Macintosh. The Apple IIGS
font definition is similar to that of the Macintosh, and a simple
conversion algorithm allows the IIGS to use any font developed
for the Macintosh. Most Macintosh QuickDraw text calls are
duplicated precisely in QuickDraw II.

Some calls have been added to handle the CString data type
(a sequence of characters terminated by a 0 byte).

QuickDraw II does not scale text—the Font Manager does. In
general, the interaction between the Apple IIGS Font Manager
and QuickDraw II is different from the close relationship
between the Font Manager and QuickDraw on the Macintosh.
Font selection on the Apple IIGS requires a little more care
than on the Macintosh.

File system differences

ProDOS 16 is the Apple IIGS operating system for desktop
applications. There are ProDOS 16 calls equivalent to most
Macintosh File Manager calls, but some parameters are different
or are used differently. If your Macintosh application makes File
Manager calls, they will have to be translated to ProDOS 16 calls.

On the other hand, if your program is written in a high-level
language and uses only that language’s file access facilities, you
might not have to do any translating at all. On recompiling under
a IIGS development environment, your file calls will be translated.

As noted under “Resources” earlier in this appendix, files do not
have separate resource and data forks. Data stored as resources in
your Macintosh files will have to be redefined and stored as
standard ProDOS 16 files.

Toolbox differences 287

If your program handles all its file access through Standard File
Operations, it will not have to manipulate pathnames explicitly.
Just as on the Macintosh, the Standard File Operations Tool Set
on the Apple IIGS takes care of all that. But if you do access files
by name, please note these differences from the Macintosh file
system: :

O Filenames under ProDOS 16 are more restricted than on the ;
Macintosh. Only the characters A-Z, 1-9, and the period () ar
permitted, and the maximum length is 15 characters.

O ProDOS 16 permits you to define up to 9 prefixes, for
convenient simultaneous access to files in several different
subdirectories.

O ProDOS 16 uses a hierarchical file system, in which files are
grouped into subdirectories and accessed by pathname. The
present Macintosh file system is also hierarchical, but if you
have an early Macintosh program written for the flat file
System, you may have to modify it to account for pathnames
instead of just filenames.

Other toolbox differences

As you get involved in the conversion process, you will of course
discover many other differences, some subtle and some obvious,
between the Macintosh and Apple IIGS toolboxes. There are far
too many to list in this appendix, but here is a sample: ‘

B Memory Manager: The Apple IIGS Memory Manager is
conceptually very similar to the Macintosh Memory Manager. |
However, because of the 65C816 microprocessor and the "
architecture of the Apple IIGS, the Apple 1IGS Memory
Manager’s calls are very different, and its internal data
structures totally different, from those of the Macintosh. Pay ;
extra-close attention to converting Memory Manager calls and
manipulating its data structures such as pointers and handles.

® Window Manager/Control Manager: Windows and controls can
be handled differently in several ways, largely because of the
Window Manager routine TaskMaster. The Apple 1IGS has
window types that include scroll bars (frame scroll bars)
manipulated automatically by TaskMaster. The use of frame
scroll bars greatly simplifies window handling.

288 Appendix A: Converting Macintosh Programs to the Apple lles

m Frame scroll bars: If you use TaskMaster and have it manipulate
frame scroll bars, remember that the scroll bars are part of the
window frame, not the content region. That is, unlike standard
scroll bars on a Macintosh window, they are outside the
window’s port rectangle. That may affect your clipping and
drawing commands.

m Desk Accessories: If you are converting a Macintosh desk
accessory, it will become a new desk accessory on the Apple
IIGS.

m Standard File Operations: The Disk button on the Apple IIGS
works differently from the Drive button on the Macintosh.
When a user clicks the Disk button, Standard File first looks at
the disk in the same drive the current disk is in. If the current
disk is no longer in that drive, the disk in that drive becomes
the current disk. If the current disk is still there, the Disk button
moves to the next disk in the ProDOS chain. The Disk button
works this way because a user can change disks without the
system’s knowledge.

m Printing: On the Apple IIGS, the Choose Printer function is
part of the Print Manager, rather than part of the Chooser desk
accessory as on the Macintosh. To support printing, you will
need to add a Choose Printer menu item to the File menu, and
create a short routine to handle it.

Toolbox differences 289

290

Appendix B

Enhancing Standard
Apple Il Programs

If you have written a ProDOS 8-based program for a standar
Apple II computer (64K Apple II Plus, Apple Ile, or Apple Ii¢
should be able to run it without modification on the Apple I
The only noticeable difference will be its faster execution be;
of the greater clock speed of the Apple IIGS—and even that
difference can be eliminated if you wish. However, the progt
will not be able to take advantage of any advanced Apple 1IG
features such as its large memory, the toolbox, the mouse-ba
interface, and the new graphics and sound abilities. ‘

This appendix discusses some of the basic alterations you ca
make to upgrade a ProDOS 8 application for various executi
modes on the Apple 1IGS. Depending on the program’s size |
structure and the new features you wish to install, those cha

may range from minor to drastic. '

* High-level languages: This discussion is primarily about
assembly-language programs. If you have a standard App.
program written in a compiled BASIC or other high-level»;
language, converting it to run in native mode on the Appl
may require nothing more than recompiling it on an |
equivalent Apple IIGS development system. Accessing the.
toolbox may then be as easy as adding the calls to your
original source code. !

65816 assembly language is
described In the Apple IIGS
Programmer’s Workshop
Assembler Reference.

Relocatable code and the
Memory Manager are discussed
in Chapter 6.

Conceptual differences

For the purpose of program conversion, there are perhaps three
main areas of difference between traditional Apple II computers
and the Apple IIGS:

m Hardware execution modes: The 65C816 microprocessor
executes in both native mode and 6502 emulation mode. In
fact, there are at least three modes to consider:

0 Emulation mode (e flag, m flag, and x flag set). The
processor functions like a 6502.

O Native mode with the m flag and x flag set. The processor
has all 65C816 features, but the accumulator and index
registers remain 8 bits wide.

O Full native mode (e flag, m flag, and x flag cleared). All
65C816 features are available, and the accumulator and
index registers are 16 bits wide.

The 65816 microprocessor adds several new addressing modes
and instructions to those of the 6502. All 6502 and 65C02
instructions are still available, but the new larger registers and
relocatable stack and direct page add flexibility and power to
the system.

m Tool sets: The toolbox is the essence of what makes the Apple
1IGS more powerful and convenient than other Apple II
computers. To write the kinds of programs described in this
book, you need access to the toolbox. Tool calls can be made
while in full native mode only.

The Apple 1IGS also provides a sophisticated loader and a
software memory manager. To take full advantage of the
system, you should write relocatable code, and request any
memory you need through Memory Manager calls. Otherwise
your program will be incompatible with other programs in
memory, such as desk accessories and memory-resident
utilities.

m Operating systems: The Apple IIGS comes equipped with two
operating systems: ProDOS 8 and ProDOS 16. Unaltered
standard-Apple II applications can run on the Apple IIGS only
under ProDOS 8. They cannot access tool sets or ProDOS 16.
They can make ProDOS 8 calls only while in emulation mode.
The ProDOS 8 global page is supported, but-again only in
emulation mode.

Conceptual differences 291

ProDOS 16 calls can be made from either emulation or at

ProDOS 8 is discussed in the under ProDOS 8§, ProDOS 16 is loaded into memory only v
ProDOS 8 Technical Reference a native-mode, ProDOS 16-based appl;
Manual. ’

‘What does all this mean? It means th
program must be modifi

o use Apple IIGS featur
take:

at at least parts of your
ed for native-mode operation if you y
es. There are several approaches you ¢

O You can convert your program to a hybrid application; it t

in emulation mode, under ProDOS 8, but switches to native
mode to make tool calls.

O You can insert parts of your original code, unchanged or
largely unchanged, into a new program that runs in native 3
mode under ProDOS 16, '

O You can convert y

our entire program to run in native mode
under ProDOS 16. i

O You can start from scratch, writing a brand new Apple 1IGs.
application that replaces your original program. :

The rest of this a

ppendix briefly discusses each of the above -
possibilities,]

Write a hybrid application

It is possible to run your standard Apple I1 program under
ProDOS 8 in emulation mode on the Apple IIGs, but modify it
that, at specific points, it switches to native-mode operation, A
program that does this js called a hybriq application.

292 Appendix B: Enhoncing Standard Apple Il Proarame

See "Setting Up Direct-
Page/Stack Space”, in
Chapter 6.

Writing a hybrid application is not easy, and the results for
toolbox access are not always entirely satisfactory. You'll need to
address at least these issues:

m Loading RAM patches: If your program is self-booting (starts up
directly under ProDOS 8) on the Apple IIGS, ProDOS 16 and
the System Loader will not have been activated. Therefore RAM
tool sets and RAM patches to the ROM tool sets will not be in
place. There are several possible responses to this problem:

0 Do without the patches or RAM-based tools.

0O Write your own RAM-based tool set, convert it to ProDOS 8
binary format, and load and install it yourself. See “Writing
Your Own Tool Set,” in the Apple IIGS Toolbox Reference.

0 Allow your program to be launched only from a ProDOS 16-
based finder or launcher, after the normal ProDOS 16 boot
sequence has loaded all the RAM patches and RAM tool sets.

m Switching stacks and zero pages: You have a standard stack
and zero-page available in emulation mode, but you also need
a direct-page/stack space for use by tool sets in native mode.
Set it up as needed. When switching from emulation mode to
native mode and back, you must save the current value of the
stack pointer, and set the stack pointer to the proper value for
the mode you are about to enter. Likewise, the direct register is
set to zero upon entering emulation mode; you must save its
value before switching to emulation and restore it upon
returning.

For detailed instructions on saving and restoring the proper
environment while switching execution modes, see “Notes for
Programmers” in the Apple 1IGS Firmware Reference.

m Staying in bank $00 or disabling interrupts: Any code that your
program calls while in emulation mode must be in bank $00, or
else interrupts must be disabled. The Program Bank register is
not saved or restored when an interrupt occurs in emulation
mode.

Write a hybrid application 293

The FWENtry call is part of the
Miscellaneous Tool Set. See the

Apple lIGs Toolbox Reference,

294 Appendix B: Enhancing Standard Apple Il Proarams

Insert parts of your 6502 code

Because the 65C816 processor recognizes the 6502 instructie
it may be possible to use significant sections of your code, |
unchanged or only slightly modified, in a native-mode, Prol
16-based application. That is, instead of making a hybrid
application, you might write a new Apple IIGS application, b
save time by incorporating as much of your older, 6502-bast
code as possible. In most cases this option is far better tha
writing a hybrid application; it puts ProDOS 16 and the tool
much more directly at your program’s disposal.

How successful you can be depends greatly on the specific -
content of your existing code. Routines that draw to the SCre
otherwise duplicate the tasks performed by tool sets may no
worth converting to native-mode execution. Code that uses
absolute address references or that must itself occupy specif
addresses will be incompatible with native-mode memory
management. Instructions that can’t reach everywhere in the
16-megabyte Apple 1IGS memory space (such as JSR rather
JSL) can cause a lot of problems, depending on where your
and data are and what system features you need to access.

In spite of these and other problems, it may be possible to 4
large portions of certain types of 6502-based code, relatively

unchanged, in native-mode Apple 1IGS applications. Here ar
a few considerations.

® Register width: In most cases your 6502 code will require
(8-bit) accumulator and index registers when running in g
mode. That is, the m- and x-bits need to be set (=1) whe
e-bit is cleared (=0). However, see the next note.

® Stack manipulation: The stack pointer value is commonly
and restored with the instruction pair TSX. . .TXS. If perfo
in 8-bit mode, this sequence destroys the high-order byte

stack pointer. To be safe, do all stack manipulation with
registers.

® Firmware entry points: Replace all calls to specific firmws
entry points with FWEntry tool calls. FWEntry allows you,
in native mode, to make calls to (6502) code that execute

emulation mode; it saves and restores the Data Bank and
Direct registers.

m Data and buffer allocation: Remove absolute addresses that
define your data buffers or other entry points. For example, if
your program reserves a 4K buffer space with an equate such as
BUFFER EQU $8000, replace that with something such as
BUFFER DS $1000, which reserves a $1000-byte buffer but
doesn’t require it to start at address $8000.

m Input/output: I/O in a standard Apple II computer takes place
by accessing locations in the $Cxxx address space (I/O
memory). In the Apple IIGS, I/O memory exists only in banks
$00, $01, $EO, and $E1. Therefore, if your code is running
anywhere in expansion RAM, it cannot perform I/O unless data
accesses to $Cxxx are made in Jong addressing mode, to access
the proper bank.

However, the timing of much I/O is critical and, because a
long-addressing load instruction takes an extra cycle to execute,
you may not be able to change the addressing mode.

One way around this is to set the data bank register to $00
before executing the 1/O instructions. Then, however, any other
data in the same bank as your code becomes inaccessible—but
that may not be a problem in your particular case.

There are many other alternatives, including creative use of the
direct page and isolating timing-critical code, that can be useful
in various individual situations. Every situation is unique—feel
free to be creative.

Rewrite it to run under ProDOS 16

Modifying your entire program for full 16-bit native mode
operation on the Apple IIGS is a more ambitious task, but it may
well be worth it for the greater number of features you can access.
In order to run entirely in native mode, under ProDOS 16 and
with the tool sets always available, your program needs to
consider at least the following points.

B Managing memory: Because the Apple IIGS supports
segmented load files, one of the first decisions to make is
whether and how to segment the program (both the original
program and any added parts). First, make your code
relocatable so the Memory Manager can control where it is
loaded. You'll need to specify memory-block attributes in
addition to modifying your code as described in the previous
section, “Insert Parts of Your 6502 Code.”

Rewrite it to run under ProDOS 16 295

Refer to the detailed descriptions
in Chapters 9 through 13 of the
Apple lIGS ProDOS 16 Referenceto
see which ProDOS 16 calls are
different from their ProDOS 8
counterparts.

See "Sefting Up Direct-
Page/Stack Space,” in
Chapter 6.

Object module format is
documented in the Apple IS
Programmer’s Workshop
Reference

APW is discussed in Chapter 7.

296 Appendix B: Enhancing Standard Apple Il Programs

Memory management under native-mode operation on
Apple IIGS is completely different from standard-Apple II
methods. If your program allocates its own memory space
marks it off in the ProDOS 8 global page bit map, the
enhanced version must be altered so that it requests all nél
space from the Memory Manager.

Converting operating-system calls: For most ProDOS 8 ¢z
there is an equivalent ProDOS 16 call with the same na el
each call block must be modified for ProDOS 16, and each
parameter block must be reconstructed in the ProDOS 16 |
format. ‘

For other ProDOS 8 calls, a ProDOS 16 near-equivalent
performs a slightly different task, and the original code wi
have to be changed to account for that.

Yet other ProDOS 8 calls have no equivalent in ProDOS 1§
your program uses any of these calls, they will have to be
replaced as appropriate. '

Removing global page references: Any access your origi I
program makes to the ProDOS 8 global page must be repl :
by appropriate ProDOS 16 or toolbox calls. ‘

Converting stack and zero page: Under ProDOS 16 in
native mode, you are not constrained to the fixed stack a
zero-page locations provided by ProDOS 8 in emulation m
You may either let ProDOS 16 assign you a default 1X diref
page/stack space, or you may define a direct-page/stack
segment in your object code. In either case, the loader may
place the segment anywhere in bank $00—you cannot expé
any specific address to be within the space.

Assembling: Once your source code has been modified an
augmented as desired, you need to reassemble it. You must
an assembler (or compiler, for high-level languages) that
produces object files in Apple IIGS object module format 4
(OMF); otherwise the program cannot be properly linked a
loaded for execution. Using a different assembler may mea
that, in addition to modifying your program code, you'll ha
to change some directives to follow the syntax of the new |
assembler.

If you have been using the EDASM assembler, you will not
able to use it to write Apple 1IGS programs. Instead, you can
the Apple 1IGS Programmer’s Workshop (APW). APW is a §
development programs that allow you to produce and edit |
source files, assemble/compile object files, and link them ig
proper OMF load files.

After your revised program is linked, assign it the proper Apple
1IGS application file type (normally $B3) with the APW
FileType command.

Start from scratch

In the long run, this is the best alternative in most cases. Combing
through your code line-by-line to make all the conversions
described in the previous sections—even if it works—will
probably yield a product that’s only half successful. Why not start
fresh, maintaining your original design and concepts but writing
new code that truly takes advantage of the power and convenience
of the Apple 1IGS?

The purpose of this book has been to show you that it is both easy
and rewarding to write desktop applications for the Apple IIGS. It
has also shown you that such applications have a structure, an
approach to the hardware, and a user interface that are
fundamentally different from those of traditional Apple II
software. Don't confine yourself unnecessarily; a clean slate is the
best way to start. Take advantage of the freedom the Apple 1IGS
gives you!

Start from scratch 297

298

Appendix C

Files on an Apple lics
System Disk

A system disk is a 3.5-inch disk, 5.25-inch disk, or hard disk that i
has the files necessary for an Apple IIGS to start up when turned
on or rebooted. It also has any files needed to support the ;
specific application programs on the disk. This appendix shows
you what files a system disk must have. '

Because not all applications have the same needs, not all syste ’
disks are alike. In particular, there are complete system disks anc
application system disks. :

Complete system disk

Every Apple 1IGS user (and programmer) needs at least one
complete system disk. It is a pool of system software resources,
and may contain files missing from some application system
disks. Table C-1 lists the contents of a complete system disk.

% Note: The word complete doesn’t mean that the system disk
all the files that may be on your system disk—only that it has 1
all the available system resources. For example, most system
disks include files containing disk utility programs or finder-
style program launchers. Those programs aren’t considered
here. :

Jable C-1
ontents of a complete system disk

rectory/File Description
PRODOS A routine that loads the proper operating system and selects an
application, both at boot time and whenever an application quits.
SYSTEM/ A subdirectory containing the following files:
P8 The ProDOS 8 operating system.
P16 The ProDOS 16 operating system and Apple IIGS System Loader.
START The first program executed: typically a program launcher or finder.
LIBS/ A subdirectory containing the standard system libraries.
TOOLS/ A subdirectory containing all RAM-based tool sets.
FONTS/ A subdirectory containing all fonts.
DESK.ACCS/ A subdirectory containing all desk accessories.
DRIVERS/ A subdirectory containing printer and port drivers.
SYSTEM.SETUP/ A subdirectory containing system initialization programs.
TOOL.SETUP A permanent initialization file containing patches to ROM and a

program to install them. This is the only required file in the
SYSTEM. SETUP/ subdirectory; it is executed before any others that
may be in the subdirectory.

ATINIT A permanent initialization file that initializes the AppleTalk network.
ATLOAD.O Another file for AppleTalk intialization.

BASIC.SYSTEM The Applesoft BASIC system interface program.

APPLETALK/ A subdirectory containing files supporting the built-in Appletalk

network interface.

The complete system disk is an 800K byte, double-sided 3.5-inch
disk; the required files will not fit on a 140K, single-sided 5.25-inch
disk. However, see “Application System Disks” (next).

When you boot a complete system disk, it executes the file
SYSTEM/START.

Complete system disk 299

300

Appendix C: Files on an Apple llcs System Disk

The SYSTEM.SETUP/ subdirectory

The SYSTEM. SETUP/ subdirectory may contain several diff

types of files, all of which are loaded at boot time. They inc
the following. i

® TOOL.SETUP: This file must always be present; it is execul
before any others in SYSTEM. SETUP/. TOOL. SETUP i ~
and initializes any RAM patches to ROM-based tool sets. {
TOOL. SETUP is finished, ProDOS 16 loads and executes {
remaining files in the SYSTEM. SETUP/ subdirectory, w i
may belong to any of the categories listed below.

¥ Permanent initialization files (filetype $B6): These files g
loaded and executed just like standard applications (type!
but they are not shut down when finished. They also must;
certain characteristics: "

0O They must be loaded in nonspecial memory.

0O They cannot permanently allocate any stack/direct-pa
space.]

O They must terminate with an RTL (Return from subrou
Long) rather than a QUIT.

8 Temporary initialization files (type $B7): These files are
and executed just like standard applications (type $B3), at
they are shut down when finished. They must terminate
RTL rather than a QUIT.

Although they are loaded and installed in the system at the §
time as the files in SYSTEM. SETUP/ , desk accessories actuall
reside in the subdirectory DESK . ACCS/. There are two types;

® New desk accessories (type $B8): These files are loaded »
executed. They are put in nonspecial memory.

m Classic desk accessories (type $B9): These files are loade
not executed. They are put in nonspecial memory. (

Application system disks

Each application program or group of related programs com
on its own application system disk. The disk has all of the sy
files needed to run that application, but it may not have all
files present on a complete system disk. Different application
may have different system files on their application system dis

Table C-2 shows which files must be present on all application
system disks, and which files are needed only for particular
applications. In some very restricted instances, it may be possible
to fit an application and its required system files onto a single-
sided (140K) 5.25-inch disk; most applications, however, require at
least one double-sided (800K) 3.5-inch disk.

Table C-2

Required contents of an application system disk

Directory/File Required?

PRODOS Yes

SYSTEM/ Yes
P8 (Required if the application runs under ProDOS 8)
P16 Yes
START (Required if a START file, such as a finder, is to be used)
LIBS/ (Required if system library routines are needed)
TOOLS/ (Required if the application needs RAM-based tools)
FONTS/ (Required if the application needs fonts)
DRIVERS (Required if the application does any printing or serial

communication)

DESK.ACCS/ (Required if desk accessories are to be provided)

SYSTEM.SETUP/
TOOL.SETUP
BASIC.SYSTEM
APPLETALK

Important

Yes
Yes
(Required if the application is written in Applesoft BASIC)

(Required if the application supports printing to a LaserWriter or
otherwise uses AppleTalk)

The files PRODOS, P8, and P16 all have version numbers. Whenever
it loads an operating system (at startup or when launching an
application), PRODOS checks the P8 or P16 version number against
its own. If the numbers do not match, it Is a fatal error. Be careful not
to construct an application system disk using incompatible versions
of PRODOS, P8, and P16.

Application system disks 301

302

Appendix D

HodgePodge Organization

This appendix presents three topics related to the organization
the sample program HodgePodge.

O It lists all HodgePodge routines and their source files for all‘:
three languages. '

a window.

0 It discusses and lists HodgePodge’s error-handling proced

HodgePodge subroutines

Table D-1 lists all HodgePodge routines. Column 1 lists, in
alphabetical order, each routine in the Pascal version. Column
shows what source file each Pascal routine is in. Columns 3 and
name the source files containing the equivalent C and 65816
assembly-language routines. Column 5 gives the number of the |
chapter in which the Pascal version of each routine is discussed
and listed. Column 6 briefly notes what each routine does. '

' Table D-1

. HodgePodge routines (complete)

Routine Pascal file Cfie Assembly file Listed in ... Function
AddToMenu MENU.PAS MENU.CC MENU.ASM Chap. 5 adds an item
] AdjWind WINDOW.PAS WINDOW.CC WINDOW.ASM Chap.5 deletes an item
' AskUser PAINT.PAS WINDOW.CC WINDOW.ASM Chap. 5 which file to open
CheckDiskError DIALOG.PAS DIALOG.CC DIALOG.ASM App.D error alert box
CheckFrontW EVENT.PAS EVENT.CC EVENT.ASM App. G adjusts menu items
CheckToolError DIALOG.PAS DIALOG.CC* DIALOG.ASM App.D system failure
DisableAll EVENT.PAS EVENT.CC EVENT.ASM* App. G adjusts menu items
DisableItems EVENT.PAS EVENT.CC EVENT.ASM* App. G adjusts menu items
DispFontWindow FONT.PAS FONT.CC FONT.ASM Chap. 2 calls text-draw
DoAbout Item DIALOG.PAS DIALOG.CC DIALOG.ASM Chap. 4 “About” box
DoChooseFont FONT.PAS FONT.CC FONT.ASM Chap. 3 user selects font
DoChooserItem PRINT.PAS PRINT.CC PRINT.ASM Chap. 5 selects printer
DoCloseItem WINDOW.PAS WINDOW.CC* WINDOW.ASM Chap. 2 closes a window
DoMenu MENU.PAS MENU.CC MENU.ASM Chap. 2 dispatches menus
DoOpenItem MENU.PAS WINDOW.CC WINDOW.ASM Chap. 4 to open a window
DoPrintItem PRINT.PAS PRINT.CC PRINT.ASM Chap. 5 calls printing
DoQuitItem MENU.PAS EVENT.CC EVENT.ASM App. G sets quit variable
DoSaveItem PAINT.PAS WINDOW.CC WINDOW.ASM Chap. 5 to save a file
DoSetMono FONT.PAS FONT.CC FONT.ASM App. G toggles menu item
DoSetUpItem PRINT.PAS PRINT.CC PRINT.ASM Chap. 5 user page-setup
DoTheOpen WINDOW.PAS WINDOW.CC WINDOW.ASM Chap. 4 opens a window
DoWindow MENU.PAS WINDOW.CC WINDOW.ASM App.D brings window to front
DrawTopWindow PRINT.PAS PRINT.CC PRINT.ASM Chap. 5 printing routine
EnableItems EVENT.PAS EVENT.CC* EVENT.AsSM* App. G adjusts menu items
FindMaxWidth i WINDOW.CC WINDOW.ASM App. E, F sizes font window
HideAllWindows WINDOW.PAS WINDOW.CC WINDOW.ASM App. G closes windows
HidePleaseWait DIALOG.PAS DIALOG.CC DIALOG.ASM Chap. 4 hides “wait” dialog
HodgePodge HP.PAS HP.CC* HP .ASM Chap. 2 main program
InitGlobals GLOBALS.PAS HP.H* GLOBALS.ASM* Chap. 2 initializes variables
LoadOne PAINT.PAS EVENT.CC I10.ASM Chap. 6 reads a picture file
MainEvent EVENT.PAS EVENT.CC* EVENT.ASM Chap. 2 main event loop

HodgePodge subroutines 303

Table D-1 (continued)

HodgePodge routines (complete)

Routine Pascal file Cfile Assembly file Listedin ... Func
MakeATemplate DIALOG.PAS DIALOG.cCC* DIALOG.ASM* Chap. 4 creates alert iter
ManyWindDialog DIALOG.PAS DIALOG.CC DIALOG.ASM App. G caution 2
MountBootDisk DIALOG.PAS DIALOG.CC DIALOG.ASM App.D asks user for
OpenFilter PAINT.PAS WINDOW.CC WINDOW.ASM Chap. 6 alters file displ
OpenWindow WINDOW.PAS WINDOW.CC WINDOW.ASM* Chap. 4 to open a windo
Paint PAINT.PAS WINDOW.CC WINDOW.ASM Chap. 2 calls pictured '
PaintIt PAINT.PAS WINDOW.CC WINDOW.ASM Chap. 3 draws pi
SaveOne PAINT.PAS EVENT.CC 10.ASM Chap. 6 saves a picture
SetUpDefault PRINT.PAS PRINT.CC PRINT.ASM Chap. 2 makes print recol
SetUpForAppW EVENT.PAS EVENT.CC EVENT.ASM App. G adjusts menu iten
SetUpForDAW EVENT.PAS EVENT.CC EVENT .ASM App. G adjusts menu item
SetUpMenus MENU.PAS MENU.CC MENU.ASM Chap. 2 makes menu b
SetUpWindows WINDOW.PAS WINDOW.cCC* GLOBALS.ASM* Chap. 2 sets size & lot
ShowFont FONT.PAS FONT.CC FONT.ASM Chap. 3 draws te
ShowPleaseWait DIALOG.PAS DIALOG.CC DIALOG.ASM Chap.4 does “wait” dialg
ShutDownTools HP.PAS HP.CC INIT.ASM Chap. 2 shuts dow
StartUpTools HP.PAS HP.CC INIT.ASM Chap. 2

* Name or content of routine is slightly different from the Pascal version.

** Does not exist in the Pascal version.

304 Appendix D: HodgePodge Organization

starts all too

Execution sequence: opening a window

When a window is opened in HodgePodge, several routines are
called in sequence, starting with DoOpenItem The execution
sequence starts out in the same way whether the window to be
opened is a font window or a picture window.

The routines involved with opening a window are described in
several different chapters in this book. To help you follow the j
sequence, we diagram the sequence of subroutine calls here, for

both font windows and picture windows.

Opening a font window

A font window is opened when the user chooses Display Font
from the Fonts menu. That causes execution to pass to the routine
DoOpenItem, which calls OpenWindow. OpenWindow first calls
DoChooseFont, then DoTheOpen to actually open the window.

After OpenWindow is finished, DoOpenItem calls AddToMenu,
and then execution passes back to the main event loop. See
Figure D-1.

% Note: The dimmed boxes in Figure D-1 represent routines
called to open a picture window (Figure D-2).

DoOpenitem

DoChooseFont
DoTheOpen
OpenWindow [
AddToMenu
Figure D-1

Execution sequence: opening a font window

Opening a picture window

A picture window is opened when the user selects Open from the
File menu. Just as when a font window is opened, execution passes
to the routine DoOpenItem, and to OpenWindow.

In this case OpenWindow calls AskUser. AskUser first calls
SFGetFile—part of the Apple IIGS Toolbox, not HodgePodge.
SFGetFile calls the HodgePodge routine OpenFilter while itis
displaying filenames. Once a filename is chosen, AskUser calls
LoadOne to open the file. OpenWindow then calls DoTheOpen to
actually open the window.

Execution sequence: opening a window 305

306

After OpenWindow is finished, DoOpenItem calls AddToMenu
and then execution passes back to the main event loop. See Fj
D-2.]

% Note: The dimmed boxes in Figure D-2 represent routines
called to open a font window (Figure D-1). ’

SFGetFile

Figure D-2
Execution sequence: opening a picture window

Error handling

HodgePodge has three routines that handle error conditions:
CheckToolError, MountBootDisk, and CheckDiskError,
This section lists them and discusses what they do.

CheckToolError

CheckToolError is called only when the program is starting u
It is a very simple error handler, because any error it detects is
made fatal, and because it puts up no message box for the user.
general, CheckToolError cannot put up a dialog box because
the Dialog Manager may not have been started when ‘
CheckToolError is called.

Appendix D: HodgePodge Organization

CheckToolError is in the source file
DIALOG PAS.

if toolErrorSave <> 0 then
begin

3 end;
- end;

- MountBootDisk is in the source file
DIALOG.PAS.

procedure CheckToolError (Where:

' At $XXXX; Could not handle error $';

Int2Hex (Where,StringPtr(Longint
(@deathMsqg) +6) ,4) ;
SysFailMgr (toolErrorSave,deathMsq);

CheckToolError is called after each tool startup call. It checks
the value of the global variable toolErrorNum; if the number is
nonzero an error has occurred. In that case CheckToolError
calls the System Failure Manager, which puts up the “sliding
apple” error screen and halts execution.

< Inputl: CheckToolError has a single input parameter: an
integer location number that specifies what part of the
program made the call. Each call to CheckToolError passes
a different integer. The integers have no significance or
purpose other than helping the programmer locate the part of
the source code that generated the error.

Integer); {begin CheckToolError..}

?ar toolErrorSave: Integer;
deathMsg : String; {string to display}
begin
- toolErrorSave := ToolErrorNum; {save the error number}
~ deathMsg = {This is the message with..}

{..a dummy location number}
{If there HAS been an error..}

{..convert loc. no. to a string..}
{..and insert it in message}
{Then go to system failure}

{end of IF error nonzero}

{End of CheckToolError}

MountBootDisk

MountBootDisk is called during the loading of RAM-based tool
sets, if the disk containing the tool sets is not already on line.
MountBootDisk makes use of the Tool Locator routine
TLMountVolume, which displays a dialog box prompting the user
to remount the boot volume. See Figure D-3.

Error handling 307

function MountBootDisk integer;
var promptStr String;
okStr ¢ String;
cancelStr String;
volstr String;
gbvParams PathnameRec;
begin

PromptStr := 'Please insert the disk';
okStr := 'OK';

cancelStr := 'Shutdown' ;
gbvParams.pathName := @volstr;

GEI_BOOT_VOL (gvaarams);

MountBootDisk := TLMountVolume (174,30,

promptStr,volStr,

okStr,cancelStr);
end,;

{begin MountBootDisk...}

{string to appear in box}
{title of OK button (=1)}
{title of Cancel button (=2)}
{define pointer to volume name}

{find the boot volume name}

{Call Tool Locator's mount-volume..}
{..routine; it returns the number of.
{..the button user selects (1 or 2)}
{End of MountBootDisk}

/SYSTEM.DISK/

Please insert the disk

(_Shutdown) (— g)

Figure D-3

TLMountVolume screen display

< Note: The T LMountVolume dialog box shown in Figure D3
not a real dialog box—the Too] Locator doesn’t use the Di
Manager because it can't assume that the Dialog Manager s

available,

CheckDiskError

CheckDiskError js HodgePodge’s primary example of an e
handling routine. It jg called after every ProDOS 16 disk-acce

308 Appendix D: HodgePodge Organization

CheckDiskError notes whether the previous operation caused
an error and, if so, puts up a stop alert and returns TRUE as the
function result. Otherwise it just returns with a value of FALSE.

& Input: CheckDiskError has a single input parameter: an
integer location number that specifies what part of the
. CheckDiskError is in the source file program made the call. Each call to CheckDiskError passes
DIALOG PAS. a different integer. The integers have no significance or
purpose other than helping the programmer locate the part of
the source code that generated the error.

function CheckDiskError (Where:Integer)
:Boolean;

var itemClicked : Integer;
ourAlert : AlertTemplate;
ourErrStr : Str255;
ourWhereStr : Str255;
ourString : Str255;
diskErrNum : Integer;

begin
diskErrNum := ToolErrorNum;
CheckDiskError := (diskErrNum <> 0);
ourErrStr = "XXXX';
ourWhereStr : = 'XX';
if diskErrNum <> O then
begin

Int2Hex (diskErrNum,StringPtr(
LongInt (GourErrsStr)+1),4);
Int2Hex (Where,StringPtr(
LongInt (QourWhereStr)+1),2);
ourString := concat ('Disk Error $',
ourErrStr,
' occurred at $°',
ourWhereStr,
')
MakeATemplate (@ourAlert,@ourString);
InitCursor;
itemClicked :=StopAlert (@ourAlert,NIL);

end;
end;

{Begin CheckDiskError..}

{which button user clicks}
{defined in DIALOG.PAS}
{error number to displayl
{our internal error code}
{error message}

{error number}

{Save the global error number}
{Assign function result:

= TRUE if error nonzero}

{dummy chars. to set length byte}
{dummy chars. to set length byte}

{Get ASCII string of error no.}

{Get ASCII string of our code no.}
{Build our error message..}

{Build a template for the alert}
{restore arrow cursor}

{Bring up the alert and take
the user's input}

{end of IF error nonzero}

{End of CheckDiskError}

Emor handling 309

The alert box put up by CheckDiskError is shown in Figure 4-’;

Note that CheckDiskError calls MakeATemplate to defi g
features (text message and an OK button) the alert box will
MakeATemplate is described under “Constructing Dialog Bc
and Alerts” in Chapter 4.

310 Appendix D: HodgePodge Organization

Appendix E

HodgePodge Source
Assembly Language

HP.ASM 312
INIT.ASM 315
MENU.ASM 324
EVENT.ASM 330
WINDOW.ASM 337
DIALOG.ASM 353
FONT.ASM 361
PRINT.ASM 367
10.ASM 371

GLOBALS.ASM 373

Code:

311

HP.ASM (main program)

*****t**tk********tk************k***t**k*kk*******t*t*****rr*tﬁt*t************
HodgePodge: An example Apple IIGS Desktop application
Written in 65816 Assembler by the Apple IIGS Development Team

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

This program and its derivatives are licensed only for
use on Apple computers.

Works based on this program must contain and
conspicuously display this notice.

This software is provided for your evaluation and to
assist you in developing software for the Apple IIGS
computer.

This is not a distribution license. Distribution of
this and other Apple software requires a separate
license. Contact the Software Licensing Department of
Apple Computer, Inc. for details.

DISCLAIMER OF WARRANTY

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO ITS MERCHANTABILITY OR ITS FITNESS
FOR ANY PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH
YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU (AND
NOT APPLE OR AN APPLE AUTHORIZED REPRESENTATIVE)
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

F Ok % ok ok ok ok ok F ok % % % 3k ok 3 F F ok Sk O F ok ok % % ok * % % * * * * * *

Apple does not warrant that the functions

contained in the Software will meet your requirements
or that the operation of the Software will be
uninterrupted or error free or that defects in the
Software will be corrected.

SOME STATES DO NOT ALLOW THE EXCLUSION

OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO STATE.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
THE SOFTWARE IS PROVIDED "AS IS" WITHOUT *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ASM65816 Code file "HP.ASM" -- Main routine and COPY's for other files *
*

*

o ok ko ok ok ok % o % * % % % o *

t*t**t***t*****tt********t****t*t*it***ttt******tt**t*t*k**tt**tk**t****

312 Appendix E: HodgePodge Source Code: Assembly Language

ABSADDR ON
KEEP HP
MCOPY HP .MACROS

Version 1.0 -- August 1987

KR K AR KRR A KKK I KA KKK AR A AR KK AR K AR AR K R KK AR K AR KKK AR KK AR KKK R KK AR R KRR AR R ARk kA Kk Ak &

*
*
*

ARKKKK IR KKK KA KRR KA AR KA AR KK AR K AR AR AR AR AR AR KK AR R AR R A AR R KK A AR K AR R KA AR AR ARk hk ok

KA A R IR AR KRR KRR KRR AR A KRR AR A A KRR AR A KAAKR KRR KRR KRR R AR R AkA A ARk Ak ko kk k&

*

* The main program
%

KA KR KR AR KKK R AR R KA AR KA IR KA R KA A AR KRR K KRR A KR AR A AR KA AR KR KRR KKK AA Kk

. HodgePodge START
using GlobalData

1
H
; Global equates used throughout the program.
i

True gequ $8000

False gequ $0000

addressing.

~e ~e me ~e s

phk
plb

Set the data bank to code bank so I can use absolute

Save address of D for use later

~e me e =

tdc
sta MyZP

Load Init everything.

~e ~e me m.

pha

PushWord #$0080 ; mode
jsl StartupTools

pla

~ =

pla
bne AllDone

jsr SetupMenus

to use for QD

;Necessary because StartUpTools
;uses Pascal calling convention
;leaving input params on stack

Initialize system flags.

stz LastWType
stz QuitFlag
stz Windex

HP.ASM (main program)

313

; Zero the print record handle.

stz PrintRecord
stz PrintRecord+2

; Take events until user quits.

jsr MainEvent

;
;
; All is done, let's shut down.
AllDone anop

js1 ShutDownTools

PushLong PrintRecord
_DisposeHandle

get rid of print record handle
if PrintRecord has zero in it
dispose handle will fail but
we don't care.

S Se e s,

_Quit QuitParams

END

COPY 7/E16.WINDOW
COPY 7/E16.DIALOG

COPY INIT.ASM
COPY EVENT.ASM
COPY MENU.ASM
COPY WINDOW.ASM
COPY DIALOG.ASM
COPY FONT.ASM
COPY PRINT.ASM
COPY IO.ASM
COPY GLOBALS.ASM

314 Appendix E: HodgePodge Source Code: Assembly Language

&

x
*

% Ak ok E b ok kR ok Ok Ok F ok R A ok ok %k * ok A * % * F % A * % o * * * % o *

NIT.ASM (Initialization)

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

E*

*

21

40 ASM65816 Code file "INIT.ASM" -- Toolbox startup/shutdown routines
*

RRR AR A KKK KKK KKK A KA kKRR K AR AR KKK KA KA KK AR KKK KKK AR KKK AR KRR KK KKK KR KK R KKK AR A KK

L R L
- *
~ * INIT.ASM

*

" * Contains the following global data
*

MyID Variable holding userid of this program

ThisMode Variable holding mode used to start
QuickDraw

OrigPort Variable holding pointer to original

port that QuickDraw has when started up.

Contains the following private data

ZPHandle Holds handle to memory that is used
as direct page for the tools.
ZPPtr Pointer to above memory.

Contains the following public procedures.

function StartupTools (ModeToUse : SCB type) : integer;

mode) and initializes the global variables above.

procedure ShutdownTools;
Shuts things down, undoing what was done above.

Uses the MountBootDisk dialog routine to have the user put the
system disk on line.

Uses the CheckToolError dialog routine to cause a system death
(bouncing apple) if the A register is nonzero. The X register is
assumed to contain a "Where" value.

Change History

June 1987 Steven E. Glass
August 1987 Ben Koning

Modified to use the C calling convention so that can be used by
both C and TMLPascal. (Input parameters are not removed from
the stack.)

LR R

Starts up the tools (initializing quickdraw with the specified

RARR AR KKK A KKK AR KKK KRR R AR R Rk KR KRR KRR AR KRR R AR KR AR KRR KR KRR KKK KRR KRR A KR KRR R AR K AR K

*
*
*
*
*
*
*
*
*
*
*
*
*

INIT.ASM (Initialization)

315

InitDummy START
COPY 7/E16.MEMORY

END

****x*******k**t***t****t**tk***********t***********t*******t***
*

* StartupTools
Input: ModeToUse -- $0080 for 640 mode
Output : ErrorCode =-- Error if nonzero
(NOTE: DIFFERENT FROM C AND PASCAL VERSIONS)

Calling Sequence:

pha ; space for output
PushWord #Mode ; Mode to use for QD

jsl StartupTools

plx ; remove input parameter
pla ; get func result

bne MustQuit

This is a subroutine to load and startup all the tools

an application generally needs. This routine also gets the
space in bank zero that the tools use for direct page. The
only time an error code other than zero is returned is when
the boot disk is not on line and the user asks to cancel
rather than to put it on line.

Order of work:
1) start

Tool Locator, Memory Manager, Misc Tools
QuickDraw, Event Manager

2) When these are running, the "One moment please" string is
displayed and LoadTools is called.

QuickDraw and the Event Manager are started up first
because if the LoadTools call returns a VolNotFound error
we need to have the volume mounted. This is done with
the TIMountVolume call which requires both QuickDraw and
the Event Manager to be active.

3) Next I start up

Window Manager, Control Manager,
Menu Manager, LineEdit, Dialog Manager

4) After these are initialized, I setup and draw the
menu bar and display a message to the user before I
initialize the rest (Standard File, Font Manager,
QuickDraw Auxiliary and print manager).

S A S R R T T N S S S S UV VT O A R B

*******ﬁ****************************k******t**t***********tt****
StartupTools START
using InitData

ModeToUse equ $5
ResultCode equ $7

316 Appendix E: HodgePodge Source Code: Assembly Language

1
DPForQuickDraw equ $000

Direct Page use. The following equates

describe how

the direct pages are assigned

to the tools below.

DPForEventMgr
DPForCt 1Mgr
DPForLineEdit
DPForMenuMgr
DPForstdrile
DPForFontMgr
DPForPrintMgr

TotalDP

; needs
equ $300 ; needs
equ $400 ; needs
equ $500 ; needs
equ $600 ; needs
equ $700 ; needs
equ $800 ; needs
equ $900 ; needs
equ $BOO

N e

Just in case
data bank is
right here.

this routine is called when the
set somewhere else we set it

phb
phk
plb

Copy the input parameter into the global
data area and initialize the result code

assuming all

is well.

lda ModeToUse, s
sta ThisMode

lda #0
sta ResultCode,s

Start with TLStartup

_TLstartup ; Tool

Locator

Initialize the memory manager.

PushWord #0
_MMstartup

ldx #1

jsr CheckToolError

pla
sta MyID

Initialize misc tools.

_MTstartup
1dx #2
jsr CheckToolError

INIT.ASM (Initialization)

317

First get some memory for the zero page we need!

pha ; space for handle

pha

PushLong #TotalDP

PushWord MyID

PushWord #attrBank+attrPage+attrFixed+attrLocked
PushLong #0

_NewHandle

ldx #3
jsr CheckToolError

P

Take the resulting handle (still on the stack)
and dereference it, putting the pointer into
ZPPtr.

phd ; save current D

tsc ; turn stack into direct page
tecd

lda [3] ; deref the pointer

sta ZPPtr ; we know that high word is 0
pld ; restore direct page

pla ; put handle into storage

sta ZPHandle

pla

sta ZPHandle+2

Se Se oNe Ne S

okmode

318

Note that width on startup is 320 to allow doubling the
screen width when doing best printing.

lda ZPPtr

clec

adc #DPForQuickDraw

pha

PushWord ThisMode

PushWord #320 ; max size of scan line in bytes
PushWord MyID

_QDstartup

ldx #4
Jjsr CheckToolError

PushLong #0
_GetPort
PullLong OrigPort

ldy #640

lda ThisMode
cmp #$80

beq okmode
ldy #320
anop

sty MaxX

lda ZPPtr

clc

adc #DPForEventMgr
pha

Appendix E: HodgePodge Source Code: Assembly Language

PushWord #20
PushWord #0
PushWord MaxX
PushWord #0
PushWord #200
PushWord MyID
_EMstartup

1dx #5
jsr CheckToolError

Ne Ne Se Se e

queue size

X clamp low
X clamp high
y clamp low
y clamp high

; happening.

PushWord #20
PushWord #20
_MoveTo

PushWord #0
_SetBackColor

PushWord #S$F
_SetForeColor

PushLong #MomentStr
_Drawstring

_ShowCursor

Put up a string telling user that something is

LoadAgain

OkToLoad

Make the LoadTools call

_GET_FILE_INFO ParamBlock
bece OkToLoad

jsr MountBootDisk

cmp #1
beq LoadAgain

sta ResultCode, s
brl GetOut

PushLong #ToolTable
_LoadTools
bee ToolsLoaded

1dx #6
jsr CheckToolError

;Try to find the directory
; */SYSTEM/TOOLS/ .

;Else, display psuedo-dialog

;Did they select "OK"?
;Yes, so try it again.

Ok? Go load.

;Else, they selected "Cancel".

;So return result code
;and leave this routine.

;Push address of tool table

;Attempt to load them (should

;work). If ok, go on.

;If error happened anyway,
;we'll just die here.

3 ~e ~e me ~e

oolsLoaded

~

The tools are loaded so start them up.

anop
_QDAuxStartup

_WaitCursor
PushWord MyID
_Windstartup

ldx #7

QuickDraw Auxiliary

With QDAux started we can show the

watch cursor

Window Manager

INIT.ASM

(Initialization)

319

jsr CheckToolError

PushLong #$0000 ; display desktop
_RefreshDeskTop

PushWord MyID ; Control Manager
lda ZPPtr

clc

adc #DPForCtlMgr

pha

_Ctlstartup

ldx #8
jsr CheckToolError

PushWord MyID ; LineEdit
lda zPPtr

clc

adc #DPForLineEdit

pha

_LEStartup

1dx #9
jsr CheckToolError

PushWord MyID ; Dialog Manager
_DialogStartup

ldx #10
jsr CheckToolError

PushWord MyID ; Menu Manager
lda ZPPtr

clc

adc #DPForMenuMgr

pha

_Menustartup

ldx #11
jsr CheckToolError

_DeskStartup ; Desk Manager
Jjsr ShowPleaseWait ; Message for user

1ldx #12
Jjsr CheckToolError

PushWord MyID ; Standard File
lda ZPPtr

cle

adc #DPForStdFile

pha

_SFStartup

ldx #13
Jsr CheckToolError

PushWord #$8000 ; display file names in all caps
_SFAllCaps

PushWord MyID ; Font Manager
lda ZPPtr

clc

adc #DPForFontMgr

pha

_FMstartup

320 Appendix E: HodgePodge Source Code: Assembly Language

1dx #14
jsr CheckToolError

PushWord MyID ; Print Manager
lda ZPPtr

clec

adc #DPForPrintMgr

pha

_PMstartup

ldx #15
jsr CheckToolError

jsr HidePleaseWait

_InitCursor ; reset cursor to arrow cursor

All is done.

etOut

} Moment Str
| MaxX

ParamBlock

~ PathName

We must clean up the stack and get out

anop
plb ; restore dbr
rtl ; all done.

str 'One moment please...'
ds 2

dc i4'PathName’ ;ProDOS/16 Parameter block

ds 2 ;With pathname as input; rest of the
ds 2 ;fields will be set as output.

ds 4

ds
ds
ds
ds
ds
ds 4

str '*/SYSTEM/TOOLS'

NN NN

END

AAKK KA KKK R AR AR KRR AR AR R A AR R AR KRR KRR AR AN K AR AR KRR AR AR Rk ok hhkkk kkxk

*

* PublicInitData
*

* These are global variables available to the main program.

*

KR AR R A KRR AR R AR AR KA KRR AR KA KA KRR R AR AR AR KA KRR A AR AR AR AR AR A RN AR AR A A Ak Kk

PublicInitDATA DATA ~Global

MyID

ThisMode

OrigPort

Public Variables

ENTRY
ds 2

ENTRY
ds 2

ENTRY

ds 4
END

INIT.ASM (Initialization)

321

InitData PrivDATA

ZPHandle ds 4
ZPPtr ds 4
ToolTable anop
StartTable anop

dc i'(EndTable-startTable)/4'

dc 1'1,%0101"
de 1'2,%0101"
dc 1'3,%$0101°
dc 1'4,$0101"
dc 1'5,%$0100"
dc 1'6,$0100°"
dc 1'14,%0103"
dc 1'15,$0103'
dc 1'16,%0103"
dc 1'18,$0100"
de 1'19,$0100"
dc 1'20,$0100"
dec 1'21,$0100"
dc 1'22,$0102"
dc 1'23,$0100"
dec 1'27,$0100"
de 1'28,$0100"
EndTable anop
END

*tk***i**t*******ttk**********tit***t**

*

* ShutDownTools
*

Inputs: None

*

*

* Outputs: None
*

*

*

A R L T T T TIE TR T Tt

tool locator
memory manager
misc tools
quickdraw

desk manager
event manager
window manager
menu manager
control manager
quickdraw aux
print manager
line edit
dialog manager
scrap manager
standard file
Font manager
List manager

t******************

Shuts down every thing started up in InitTools
*

t****************t*t*********t********t*********t***t*****

ShutDownTools START
using InitData

_Deskshutdown 7 shut this first so that other tools
; 7 are still around (close DA's)

_FMshutDown

_PMShutdown

_SFShutDown

_Dialogshutdown

_LEShutdown

_MenushutDown

_WindShutDown

_CtlShutdown ; this is shut down after window mgr
H ; because window mgr makes contol
; 7 Mmanager calls at shutdown time.

_EMShutDown

_QDAuxShutdown

_QDShutDown
322 Appendix E: HodgePodge Source Code: Assembly Language

_MTshutdown

get rid of handle for direct
page

PushLong ZPHandle
_DisposeHandle

PushWord MyID
_MMShutdown

_TLshutdown
rtl

END

INIT.ASM (Initialization) 323

MENU.ASM (menus)

LR EE R R R R R R RS RS R R E

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

ASM65816 Code file "MENU.ASM" -- Menu initialization and dispatching.

*
*
*
*
*
*
*
*
*
*
*
LR R R R T T

LA R R R R R T e e

* Menu item ID's *
KRR KA KA AR AR A AR R AR AR R AR R AR R AR KR AR A AR KRR AR AR A KRR AR AR AR A AR AR ARRRRR K kK

MenulIDs start

AppleMenulD gequ 1

FileMenulID gequ 2

EditMenulID gequ 3

WindowsMenuID gequ 4

Font sMenulID gequ 5

UndoID gequ 250 ; These next 6 are standard and
CutID gequ 251 ; required for DA support under
CopyID gequ 252 ; TaskMaster.

PasteID gequ 253

ClearID gequ 254

CloseWID gequ 255

AboutID gequ 256 ; These are our own responsibility
QuitID gequ 257

OpenWID gequ 258

SavelD gequ 259

ChooseID gequ 260

SetupID gequ 261

PrintID gequ 262

ShowFont ID gequ 263

MonoID gequ 264

end

LR R R R R R R R R R R R R B B R R R SRy

DoMenu

*
*
* Called when TaskMaster tells me that a menu item has
* been selected.

*

*

LR R R R A SR R R R R R e e R R]

324 Appendix E: HodgePodge Source Code: Assembly Language

DoMenu

. Unhilite

MenuTable

DoWitem

ProcesswW

START
using GlobalDATA

lda TaskDATA

cmp #299

beq Unhilite

bge DoWItem

sec

sbc #UndoID

asl a

tax

jsr (MenuTable,x)

anop

PushWord #False
PushWord TaskDATA+2
_HiliteMenu

rts

anop

dc i'ignore’

dc i'ignore’

dc i'ignore*

dc i'ignore’

dc i'ignore’

dc i'doCloseltem'
dc i'doAboutItem!'
dc i'doQuitItem!'
dc i'doOpenItem'
dc i'doSavelItem'
dc 1'doChooserItem!'
dc i'doSetupItem!'
dc i'doPrintItem'
dc i'doOpenItem'
dc i'doSetMono’

anop

sec
sbc #300
anop

asl a

asl a

tax

lda windowlist,x
sta WhichWindow
lda windowlist+2,x
sta whichwindow+2
jsr dowindow

Jmp unhilite ;

END

~ N S

~

299 is dummy do nothing - ignore
do nothing
300 and up are added windows

draw normal
which menu

Edit items

In A is window number

times 4 to index window list

done with it

MENU.ASM (menus)

325

ﬁt**t****tt******t**k**i******k*****k**i****k*******t*****
*

* SetupMenus
*

* Now build the menu bar by inserting the six menus

* (back to front) .
*

********x****t********t*t**t**t**t*********k*****ﬁ***********t**
SetupMenus START
using MenuDATA

PushLong #0
PushLong #FontsMenuy
_NewMenu

PushWord #0
_InsertMenu

space for return

~e

PushLong 40

PushLong #WindowsMenu
_NewMenu

PushWord #0
_InsertMenu

space for return

PushLong #0
PushLong #EditMenu
_NewMenu

PushWord #0
_InsertMenu

space for return

~

PushLong #0 ; Space for return
PushLong #FileMenuy

_NewMenu

PushWord #0

_InsertMenu

PushLong #0
PushLong #AppleMenu
_NewMenu

PushWord #0
_InsertMenu

space for return

~

Call the desk accessory manager to install the
list of NDAs in the system.

Ne N s s

PushWord #1
_FixAppleMenu

PushWord #0
_FixMenuBar
pla ;Discard menu bar height

PushWord #10 iSet starting position of menu
_SetMTitleStart

_DrawMenuBar iActually draw the menu bar

rts

END

326 Appendix E: HodgePodge Source Code: Assembly Language

AddToMenu

cpyidlp

fAddToMenu:

START
using GlobalDATA

lda #1
sta PrintAvail

pushlong #0
_FrontWindow

pla

sta whichwindow
plx

stx whichwindow+2

PUSHLONG #0
PUSHLONG whichwindow
_GetWrefCon

pla

sta Temphandle
plx

stx TempHandle+2

Jjsr Deref
sta 0
stx 2

PushWord
PushLong
PushWord

Windex
#Iddgt
#2

PushWord #0
_Int2Dec

lda iddgt
ora #'00"
sta iddgt

1dy #oLength
lda [0],y
and #S$FF

clc

adc #6

tay

ldx #0

lda idn,x
sta [0],y
iny

iny

inx

inx

cpx #6

bne cpyidlp

lda 0
clc
adc #4
tax
lda 2
adc #0
pha

AR AR KRR A KA AR KA AR AR KR AR KA KA AR R A KA RR AR AR AR A KRR AR RARR KRR AR AR KAk hkk

Use the fact that the last SFGTEFILE returned in REPLY record
the name of the file and the state of the request. Set PrintAvail.

KAR R KA KA KK AR KKK KKK KRR AR KK AR AR KRR KA KRR RR KRR K KRR KRR ARk IR Rk hk kK Ak k kK

;Set PrintAvail flag to allow printing

;it's the front window we're adding in

;get result for pushing in a sec.
;space for result

;refcon has handle to data

; dereference

;font's size

;ptr to string

;length of string

;unsigned integer

;convert size into an ASCII string

;get names length
;find end of string to slide stuff

; vy index off ids is where we store
; X index off idn is where we load

; do 6 bytes

;now pt. to itemlist loc. for insert

MENU.ASM (menus)

327

phx
PUSHWORD #SFFFF
PUSHWORD #WindowsMenuID

_InsertMItem

lda windex ; if first time, omit dummy 299
bne NotFirstTime

PushWord #299 ; 299 is dummy item to delete
_DeleteMItem ; 1t's gone, now add next one

Pushword #S$Sff7f
PushWord #WindowsMenuID
_SetMenuFlag

Lda #True
Sta NeedToUpdate

NotFirstTime lda #0 ; re-calc size
pha
pha
PushWord #WindowsMenulD
_CalcMenusSize

lda Windex ; save off window Pointer for menu stuff
asl a

asl a

tax ;*4 for WINDOWLIST index

lda whichwindow

sta WindowList,x

tay

lda whichwindow+2

sta WindowList+2,x

inc windex ; bump counter for next add on

lda temphandle
ldx temphandle+2

jsr unlock ; ok, let this loose again
rts
idn dc c'\N3'* ; "\N3nn" will slide in behind it
iddgt dc c'00 ;00->15 slides into nn
ider de i1'13: ;and finally a carriage return
iddmy dec i1'0 ;a dummy so we slide exactly 8
END

328 Appendix E: HodgePodge Source Code: Assembly Language

A R R R
*

* Menu Data

*

B e

MenuData DATA
Return equ 13
AppleMenu dc c¢'>>@\XH',i'AppleMenulID',il1'RETURN"

=About HodgePodge...\H',i'AboutID',i1'RETURN'

dc ¢'==-\N500D\0',i1'RETURN"
dec c'."
EditMenu dc c¢'>> Edit \DH',i'EditMenuID',il'RETURN'

dc c'==Undo*ZzH',1'UndoID',i1'RETURN"
~\N500D\0"', 11 *RETURN"
Cut*XxH',i'CutID', 11 *RETURN'
Copy*CcH', i 'CopyID',11'RETURN"
=Paste*VvH',1'PasteID', 11 'RETURN"
dc c'==Clear\H',i'ClearID',i1'RETURN"

dc c'.'

FileMenu dc ¢'>> File \H',i'FileMenuID',il'RETURN"®
c'==0Open...*OoH',1'OpenWID',il'RETURN"
=Close\DH',1'CloseWID', i1 *RETURN"

Save As...\DH',i'SaveID', il 'RETURN"

dc ¢'==-\N500D\0"',1i1'RETURN"

dc c¢'==Choose Printer...\H',1i'ChooseID',11'RETURN"'
dc c'==Page Setup...\DH',6i'SetupID',il'RETURN'
dc c'==Print...\D*PpH',i'PrintID',i1*RETURN"
dc c'==-\N500D\0',i1*RETURN'

dc c¢'==Quit*QqH',1i'QuitID*',i1'RETURN"

de c'.*

WindowsMenu dc ¢'>> Window \DH',1i'WindowsMenuID',il'RETURN"'

OrigItem ENTRY
dc c'==No Windows allocated\N299',i1'RETURN'
dec c'.*

Font sMenu dc ¢'>> Fonts \H',i'FontsMenuID',il'RETURN"'

dc c'==Display Font...*FfH',i'ShowFontID',il'RETURN'

MonoPropItem ENTRY
dc c'==Display Font as Mono-spaced*MmH',i'MonoID',il'RETURN'
de c'."
MonoStr dc c'==Display Font as Mono-spaced\H',1i'MonoID',il'RETURN'
Propstr dc c'==Display Font as Proportional*MmH',i‘'MonoID',i1'RETURN"'

******NOTE: 300 is starting number for a building list - used in AddToMenu
R * * 299 is the dummy one that is deleted when we get a real one

END

MENU.ASM (menus) 329

EVENT.ASM (main event loop)

t*ﬁ****t*****t*t**t*****tt*******t***t**tt**t*t*t***t******t**tt*t*t*****t
* *
* HodgePodge: An example Apple IIGS Desktop application *
* *
* *
* Copyright (c) 1986-87 by Apple Computer, Inc. *
* All Rights Reserved *
* *
* *
* *
* *
* ASM65816 Code file "EVENT .ASM" -- TaskMaster call; Dispatching to all *
* other routines; Menu dimming. *
* *
t****t************ttt*i**t*t***t**ﬁ*i*****t*******t**ﬁt**t*t*ﬁ*t***t**tt***tt*

*tt*t**t*t*t*******ﬁt*t******t***t**********t***tt***i*t*t*t****
*

* Event
*

* This contains the main event loop.
*

****t**t***t*****t********t*************tt**ﬁ***ﬁ***i***********

MainEvent START
using GlobalData
Again anop
lda QuitFlag ;Has Quit been seleét?
bne AllDone i-«. 1f so, stop the loop.
Jsr CheckFrontw ;Handle the menu dis/enable

PushWord #0
PushWord #$FFFF
PushLong #EventRecord

_TaskMaster
pla
beq Again ;No event? loop.
asl a ;Multiply by two...
tax ;use for index into...
Jsr (TaskTable, x) ;dispatch table to execute events,
bra Again 7 Loop.
AllDone rts
TaskTable anop

Event manager events

Ne N s s

dc i'ignore: ; 0 null

dc i'ignore! ; 1 mouse down
dc i'ignore! / 2 mouse up
dc i'ignore! 7 3 key down

330 Appendix E: HodgePodge Source Code: Assembly Language

dc i'ignore' ; 4 undefined
dc i'ignore! ; 5 auto-key down
dc i'ignore’ ; 6 update event
dc i'ignore’ ; 7 undefined
dc i'DoActivate’ ; 8 activate
dc i‘ignore! ; 9 switch
dc i'ignore! ; 10 desk acc
dc i'ignore’ ; 11 device driver
dc i‘ignore* ; 12 ap
dc i'ignore! ; 13 ap
dc i'ignore! ; 14 ap
dc i'ignore’ ; 15 ap
; Task master events
dc i'ignore’ ; 0 in desk
dc i'DoMenu’ ; 1 in MenuBar
dc i'ignore! ; 2 in system window
dc i'ignore’ ; 3 in content of window
dc i'ignore! ; 4 in drag
dc i‘ignore! ; 5 in grow
dc i'DoCloseltem’ ; 6 in goaway -- same as "Close" item
dc i'ignore! ; 7 in zoom
dc i'ignore! ; 8 in info bar
dc i'DoMenu’ ; 9 in special menu item
dc i'ignore’ ; 10 in OpenNDA
dc i'ignore’ ; 11 in frame
dc i'‘ignore* ; in drop
END

: AR KT AR KA KA KA KRR R AR AR KRR KRR AR KA AR A AR KRR KRR A AR R AR R KRR AR AR A KAk kkk
CheckFrontW
Checks to see if front window has changed and if

so deals with various menu enables and disables.
called by main event loop, and activate events.

* % o A * *

AR AR AR AR AR A KRR R RR KRR R RAR AR I AR AR AR AR R AR R AR KRR RA R AR R AR ARk kkk kK
CheckFrontW Start

using MenuData

using GlobalData

PushLong #0

_FrontWindow

PullLong ThisWindow ;get the current front window.
lda ThisWindow ;Check to see if it is

cmp LastWindow ;still the same window as

bne Changed ;last time

lda ThisWindow+2
cmp LastWindow+2
bne Changed

Exitl rts ;No Change No problem....Else.
Changed anop
lda ThisWindow ;LastWindow := ThisWindow

sta LastWindow

lda ThisWindow+2

sta LastWindow+2

jsr TypeThisW ;set ThisWType=type of the new front win

lda ThisWType ;arriving here, the window has changed.

EVENT.ASM (main event loop) 331

cmp LastWType ;it's type may not have changed.
beq Exitl ;Branch taken if the latter is true.

!ok so start changing menus

cmp #0 ;1s there a front window
bne Therelsl ;take this branch if there is.
jsr SetupForNoW ;1f no front window then disable
bra FinishUp ;various thing I care about and go
! ;Finish up
TherelIsl ANOP
cmp #1 ;1s it a system (Da)
bne NotSysWw ;taken if not.
jsr SetUpForDaW ;else it is a da. do what's needed
bra FinishUp ;and do the exit stuff
Not SysW jsr SetUpForAppW ;A-reg = Wtype. Go deal w/menu stuff

! And drop into exit stuff

FinishUp lda NeedToUpdate ;has the menu bar changed
beq ReallyDone ;taken if not. else
_DrawMenuBar ;Wwe need to re-draw the menu
stz NeedToUpdate ;and say we did it.
ReallyDone lda ThisWType ;LastWType := ThisWType
sta LastWType
rts

* figure out the type of the front window.
* 0= there is no window. 1 = it's a da window. 2 = App Font Win. 3= App Pic Win.

TypeThisW anop
lda ThisWindow ;was there a window at all ?
ora ThisWindow+2
sta ThisWType 71f no front window then ThisWtype=0
beq DoneEarly ;taken if there really was no front win
PushWord #0 ;get and save wuther or not
PushLong ThisWindow sthis is a
_GetsysWFlag ;system window or not.
pla
beq WasApp ;0 means not a sys window
lda #1 ;it's a sys (da) window so
sta ThisWType ;set lastwtype = 1
DoneEarly rts
WasApp Anop- ;it's an app win. find out what kind.
Pushlong #0 ;space for get ref con in a sec
PushLong ThisWindow ;jelse I have the window ptr
_GetWrefCon ;get refcon it has handle to data
pla ;recon handle to
sta Temp stemp and A/X
plx
stx Temp+2
jsr deref ;lock it down for a sec
sta 0
stx 2

332 Appendix E: HodgePodge Source Code: Assemblv Lanauaae

1dy #oFlag ;check if picture

lda [0],y ;get window type
beq PicW
lda #2 ;it's a font window so...
sta ThisWType ;say so and
bra OuttaHere ;split
PicW lda #3 ;it's a pic window. so
sta ThisWType ;say so and split.
OuttaHere lda Temp
1dx Temp+2
Jjsr Unlock ;sunlock the refcon handle.'
rts
Temp ds 4
ThisWindow ds 4
LastWindow ds 4
END

KRR KKK AR R KK A A R KRR AR R AR R KRR AR AR KKK AR AR KRR KRR KRR AR A AR AR AR A A kh ko kX
*

* doQuitItem
*

* Sets quit flag.
*
kR K IR KA KA KRR R AR IR KK AR AR KA AR KRR A KRR R AR KA AAR R AR R AR ARk kAR Ak k Ak k ok Kk
doQuitItem START
using GlobalDATA

lda #True
sta QuitFlag

; rts
7 END

AR AR KRR AR R AR AR KRR AR AR KRR KRR R AR A KRR ARR AR KRR RRR KRR AR R A KRR AR R AR AN

DoActivate

Handles activation of windows and adjusts the edit meun
based on window type.

* ok * * * *

ARk kAR A R KRR K KRR AR AR AR R R R AR AR KR KRR AR R KRR R KRR AR R KRR RR KRR IR A A AR AR

DoActivate Start
using GlobalData

lda EventModifiers
and #1
beq end ;don't care about deactivate ?

jsr CheckFrontW

end rts
END

EVENT.ASM (main event loop) 333

****ﬁ**ﬁ****a—**t**t*t****i******************it***t******t***t***ﬁ*
*

* SetUpForAppW

*

* Sets the edit menu items up for the application window:

* that is disabling them. And sets the other file menu items

* accordingly.
*

t***t************t*******ﬁ*tﬁ****t*t****t*t**********t***ti***t***
SetUpForAppW Start

Using GlobalData

Using MenuData

PushlLong #0 ;/get ready to call changeMitems
PushWord #SavelID ;We gonna do save item. but we need
lda ThisWType ;to figure out whether it should be
cmp #3 ;enabled or not. is it a font window ?
bne NoSaveEnable ;1f so dont enable the save item.
PushWord #True ;else push true for enable

bra Cont

NoSaveEnable PushWord #False

Cont PushWord #CloseWID
PushWord #True

lda PrintAvail
beq SkipPrint

PushWord #PrintID
PushWord #True
PushWord #SetUpID
PushWord #True

SkipPrint Jjsr ChangeMItems
lda LastWType
cmp #1 ;swas it a da last ?
bne Exit ;1f not we don't need to do whats next
PushWord #$0080 ;disable edit menu
PushWord #EditMenuID
_SetMenuFlag
lda #True iset update flag so I only redraw
sta NeedToUpdate ;the menu bar once
Exit rts
END

*********t******t**********Q************ﬁ************ﬁ****tt**tﬁ**
*

* SetUpForNoW
*
* Sets the edit menu items up for the desk acc window:
* that is enabling edit menu, and close in file menu.
* accordingly.
*
*t*****t***t***t*kt**t****t***t***********tt***t**t*****t**t*t*kt*
SetUpForNow START
Using GlobalData
Using MenuData

PushLong #0 ;send of list mark first...
PushWord #SavelID ;disble save
PushWord #False ;1 desire disable.

334 Appendix E: HodgePodge Source Code: Assembly Language

PushWord #PrintID
PushWord #False
PushWord #SetUpID
PushWord #False
PushWord #CloseWID
PushWord #False
jsr ChangeMItems

;enable

lda LastWType

cmp #1
bne Exit

;what was it last
;was it a da last ?
;1f not we don't need to do whats next

PushWord #$0080
PushWord #EditMenulID
_SetMenuFlag

lda #True

sta NeedToUpdate

;disable edit menu

:set update flag so I only redraw
;the menu bar once

i Exit rts
End

Qiﬁtt*****!****'k****t**i**ﬁ***ﬁ****t**i*ﬁ*******t***t****t'ﬁiit***t

SetUpForDaW

Sets the edit menu items up for the desk acc window:
that is enabling edit menu, and close in file menu.
accordingly.

* o % A * *

SetUpForDaW

START
Using GlobalData
Using MenuData

PushLong #0
PushWord #SavelD
PushWord #False
PushWord #PrintID
PushWord #False
PushWord #SetUpID
PushWord #False

PushWord #CloseWID
PushWord #True
jsr ChangeMItems

lda LastWType

cmp #1
beq Exit

PushWord #$ff7f
PushWord #EditMenulD

kt********ti*****ﬁ**********t*tt**********t***********ik****i*****

;end of list mark first...
;disble save
;1 desire disable.

;enable

;what was it last
;was it a da window last ?
;1f so we don't need to do whats next

;enable edit menu

_SetMenuFlag
lda #True ;set update flag so I only redraw
sta NeedToUpdate ;the menu bar once
Exit rts
END

EVENT.ASM (main event loop)

335

*k*********t****t*****ﬁt***********t*************t*********t******
*

* ChangeMItems
*

* Enables/Disables the various menu items according to the

* flags pushed on stack.

*

* Entry Stack Looks like:

*

* 0 ;long indicator of end of items
* ItemID ;word item id

* Enable/Disable Flag ; (word) true = enable
*

* ItemID ;word item id

* Enable/Disable Flag ; (word) true = enable
*

* Return ;word

* Sp =>

********************tt**********k*t***t***tt***t******tttk********
ChangeMItems Start

Lp lda 3,s ;check for end of list mark
beq Done ;1f so split
pla
bne DoEnable ;taken if we should enable items
_DisableMItem ;else disable them
bra Lp sand start over
DoEnable _EnableMItem ;enable item
bra Lp ;one more time
Done Pulllong ;pull end of list mark
PushWord RtaTemp ;push return address
rts
RtaTemp ds 2
EnableFlag ds 2
END
336 Appendix E: HodgePodge Source Code: Assembly Language

PullWord RtaTemp

;save return

WINDOW.ASM (windows)

Rk R Ak kkhk kK Kk kAR AR KKK AR KRR AR KKK ARAK KK KRR KK KRR KK KKK KRR KKK KRR KKK AR AR KA XXX K

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

ASM65816 Code file "WINDOW.ASM" -- Open/Close windows

P

*
*
*
*
*
*
*
*
*
*
*
*
*

Ak kR Ak R AR kAR A A AR KRR KRR AR ARK AR AR AR KRR KRR KRR AR R AR R ARk Kk ko hkkk Kk hkh K

*t********t*t****ti****ﬁt****tt*********t*****t**t******tk***ﬁ**
*

* HideAllWindows

*
ttttf***ti*****************t****tk****k**t*kt****t***it*****

HideAllWindows START
using GlobalDATA

stz VIndex ;index for list of what was vis.

HideLoop PushLong #0 ;hide 'em all, looks neater
_FrontWindow
1dx VIndex
pla
sta VTable, x
pla
sta VTable+2,x
cmp #0
bne dohid
lda Vtable,x
bne dohid
rts ;all vis. windows hidden now

doHid pha
lda Vtable,x
pha
_HideWindow
Lda Vindex
clc
adc #4
sta Vindex
bra HideLoop

END

WINDOW.ASM (windows) 337

tt***tt************************k*t****************t*******
*

* DoOpenItem :
*
* 1) Make sure not too many windows open already -- may show dialog
*

* 2) Call AddToMenu to add its name into the "windows" menu list

.

**************t**t****tt****t****ﬁ**t***t**t*****t*ﬁ**tu*t***t*t

DoOpenItem START

using GlobalDATA
using FontDATA

lda Windex iCheck if too many windows open already
cmp #LastWind ;... Otherwise "window" menu overflows!
bece OkToOpen 7No, so go ahead and try to open one
Jsr ManyWindDialog iYes, so confront user with dialog box
sec ;Set carry because it didn't happen
Done rts
OkToOpen jsr OpenWindow
becs Done ;1f we didn't open, don't add it
Jjmp AddToMenu ;Add it to the menu list and exit
END

t**************tt***t****t*******ttt*t*****tﬁt**ﬁ*t**tt*ﬁ*t***t*
*

* DoSaveitem :

*

*
t***t****it*********ktﬁ********k********ﬁ**t****t*tt*****t**t***

DosavelItem START
using GlobalDATA
using IOData

pushlong #0 ;it's the front window we're saving
_FrontWindow

pla

sta whichwindow

plx

stx whichwindow+2 ;get result for pushing in a sec.

PUSHLONG #0 ;space for result
PUSHLONG whichwindow
_GetWrefCon ;refcon has handle to data

pla
plx

Jjsr deref

sta 0

sta Refptr
stx 2

stx Refptr+2

ldy #oFlag icheck if picture

lda [0],y

beq oktosav ;save only type 0 windows
rts

338 Appendix E: HodgePodge Source Code: Assembly Language

osav PUSHLONG #0 ;space for result
PUSHLONG whichwindow
_GetWTitle

pla

sta NamePtr
plx

stx NamePtr+2

PushWord #20
PushWord #20
PushLong #Prompt2
PushLong NamePtr
Pushword #15
PushLong #reply
_SFPutFile

x loc

y loc

prompt string pointer
File name

Max file name length
reply list result

Se Se o Ne e oSe e

lda r_good ; <> 0 means OK to load it
bne Saveitoff

rts

Saveitoff anop
_WaitCursor

lda Refptr
sta 0

lda Refptr+2
sta 2

ldy #oHandle
lda [0],y

sta PicHandle
iny

iny

lda [0],y

sta PicHandle+2 this de-refd, is the data to write oute pichandle (we'll de-allocate)

~

lda PicHandle
ldx PicHandle+2
jsr DeRef

; sta PicDestOUT

; stx PicDestOUT+2

now pointing to what we write

~

| lda #R_fullPN

: sta NamePtr

: lda #"R_FullPN
sta NamePtr+2

put pointer to name in i/o0 param block

~

nopack Jsr SaveOne
Bcs OuttaHere

fixnm lda refptr ; now fix up name
cle
adc #olength
sta 0
sta refptr
lda refptr+2
adc #0
sta 2
sta refptr+2

where the name will go
save in 0,2 also for later indirect

~ o~

lda r_Fname
and #$00FF
tay

WINDOW.ASM (windows) 339

sep #%00100000

longa off
cpynm lda r_Fname,y

sta [0],y

dey

bpl cpynm

rep #%00100000

longa on

pushlong refptr ; (it points to string now, remember?)
pushlong whichwindow
_SetWTitle

lda #0 ; re-calc size
pha

pha

PushWord #WindowsMenulId

_CalcMenusize

OuttaHere lda PicHandle
1dx PicHandle+2
jsr Unlock

_InitCursor
rts

refptr ds 4
END

KA AR R AR R KRR KA AR KK KRR AR AR AR AR AR R AR AR R KRR R RR R AR R KA A AR AR R AN kh ok kk ko kk
OpenWindow:

1) Call SFGETFILE to get name of file to display in window
(or the dialog to select font if Display Font call)

2) Gets memory for, and loads the picture/font data into memory

3) Allocates a new window
a) puts handle to MyWindowInfo in WrefCon
b) note that routine to draw picture contents is set to "PAINT"
c) note for font draw contents is "DISPFONTWINDOW"

The definition of MyWindowInfo is contained in global data

If the menu manager is being used to add itemlist items with the file
name, it will squeeze the \N etc. together (see AddToMenu). In any
case, the file name string for the window title can still be found
starting at this area+5

returns: carry set - didn't open it (user cancelled SFGETFILE)
carry clear - window opened

F % % ok % o %k ok o % % ok 3 ok o 3 * ok 3 % * *

*

KA A AR KK A A AR AR AR AR AR AR R AR AR AR KR ARARN AR R RAKRA AR AR AR AR AR AR RAAA R AR KN Ak ok k ok
OpenWindow START

using GlobalDATA

using IOData

using FontDATA

using WindowData

lda TaskData
cmp #ShowFontID ; 1s it open for font window?
bne AskUser
jsr DoChooseFont
becs stp
jmp DoTheOpen
stp rts ;cancelled choose font

340 Appendix E: HodgePodge Source Code: Assembly Language

LALEE S 2

*

* call SFGETFILE to request the file name
*

- Rkkkkdkokok

- AskUser lda #20
pha H
lda #20
pha
PushLong #Prompt
Pushlong #OpenFilter
PushLong #0
PushLong #reply
_SFGetFile
lda r_good ;
bne loaditup
sec
HandleError rts

~e

N e Ne e

~

Kk ok ko k&
*

* Get space for the picture file
*

kkkdkkkk ok

LoadItUp anop

PushLong #0
PushLong #$8000
PushWord MyID
PushWord #$0000
PushLong #0
_NewHandle

~e Ne Ne S Se

pla

sta PicHandle
plx

stx PicHandle+2

bes HandleError

~

jsr Deref

e

sta PicDestIN
stx PicDestIN+2

~

DoTheOpen anop

PushLong #0

PushLong #MyWinfoSize
PushWord MyID
PushWord #$C000
PushLong #0
_NewHandle

~e e e e e

pla

sta refcon
plx

stx refcon+2

bcs HandleError

jsr deref ;d
sta refptr

sta 0

stx refptr+2
stx 2

x loc.

y loc.

prompt string pointer

Do dimmed display of unloadables

list of types to include -- 0 for all
reply list result

<>0 means OK to load it

carry set return: didn't open

space
size

id

no restrictions
loc not important

if error occured from no handle
derefence handle (in a,x)

put pointer in 1/o param block

space

size

id

fixed and locked
loc not important

e ref. for storing stuff into

WINDOW.ASM

(windows)

341

Kok kok ok ok ok ok

*

* Start by assuming this will be a picture window (not a font window).
* We set the address of the drawing routine to PAINT and set the flag
* in MyWindowInfo record to 0 indicating picture.

*

kAkKkKKhkhk Kk

lda #Paint ; first the address of the Paint
sta DrawRtn ; routine

lda #”Paint

sta DrawRtn+2

ldy #oFlag ; Now set the flag field

lda #0

sta [0],y

Now we see if that silly assumption above was correct.

Se Se Ne N

lda TaskData ; look at the menu item that
cmp #ShowFontID ; brought us here.
bne setIO ; not the font one so go on

lda #1 fix the flag field
ora MonoFlag set bit 1 if monospaced font
sta [0],y (y still set)

lda DesiredFont
sta PicHandle

lda DesiredFont+2
sta PicHandle+2

put the chosen fontid where
we will later put it in
the MyWindowInfo record

Ne e e Se Ne e

lda #DispFontWindow
sta DrawRtn

lda #~DispFontWindow
sta DrawRtn+2

jmp DoMovNam

finally, fix the pointer to the
drawing routine

SetIO lda #R_fullPN ; put pointer to name in i/o param block
sta NamePtr
lda #”R_FullPN
sta NamePtr+2

*hkhkhkkkk ok ok
*

* load picture in "NamePtr" into "PicDest"
*

dkdkkkkkkk

jsr LoadOne ; load it
bce DoMovNam

IOError anop ; There was an error loading the file
PushLong RefCon ; so dispose of the memory that we
_DisposeHandle ; allocated while trying to create
PushLong PicHandle ; this window
_DisposeHandle
sec
rts

342 Appendix E: HodgePodge Source Code: Assembly Language

khkkkkkkokk
*

o ox
. kkkkkkkkokk

~ DoMovNam

5 NameLenOK

cpynm

lda
sta
lda
sta

lda
1ldy
sta
iny
iny
lda
sta

ldy
lda
sta

lda
clc
adc
sta
sta
lda
adc
sta
sta

lda
and
cmp
bmi
lda
sep
sta
rep
tay
sep

refptr
0
refptr+2
2

pichandle
#oHandle
[0,y

pichandle+2
[0l,y

#oBlank
#l .
[0],y

refptr

#oLength
windaddr

0

refptr+2
#0
windaddr+2
2

r_Fname
#$00FF

#MaxNameSize

NameLenOK

#MaxNameSize

#%00100000
r_Fname
#%00100000

#%00100000

longa off

lda
sta
dey
bpl
rep

r_Fname,y
[0l,y

cpynm
#%$00100000

longa on

ldy
ldx
stx
stx
sty

#350

#640
DataWidth
mcw
IsizPos+6

* Move the files name into the param block

;use zero page for indirect stores

;into the recfon area (refptr)

Put blank in record at blank field
(note this 16 bit store will over-
write the length field but we don't
care since we fix it below.

Se Se e oSe

where the name will go

~

save in 0,2 also for later indirect

e

;adjust max siz
;adjust pixel count

Se Se ve os.

lda
sta
lda
sta
lda
sta

#188
DataHeight
RefPtr

0

RefPtr+2

2

Set up the DataHeight based on the type of window it is.

assume picture and make 200 the max
height
now see what it really is

~e Ne Ne

WINDOW.ASM (windows)

343

lda TaskData

cmp #OpenWID
bne NotisPicture
jmp IsPicture

PushLong OrigPort Use the original port obtained during

7
_SetPort ; startup to make sure a port is set
; ; for the following text size calcs
NotIsPicture PushLong #0 ; save this on the stack
_GetFontID

ldy #oFontID+2 now install the font that will

~e e

lda [0],y be used in the current port
pha

dey

dey

lda [0],y

pha

PushWord #0

_InstallFont

PushLong #FIRecord
_GetFontInfo

get the font info so can get
ascent and descent.

~e e

PushLong #0

lda ascent

clc

adc Descent

pha

PushWord #NumLines+2
_Multiply

pla

sta DataHeight

pla

space for result
now multiply sum of ascent &
descent by num lines to draw

Se Se s

put result in DataHeight

~

strip off high word of nothing

~

jsr FindMaxwidth

PushWord #0-
_InstallFont

using saved fontid on stack
re-install the orig font

~e e

IsPicture anop
% gk ko ok ok ok ok

*

* offset upperleft corner for opening of window
*

KAkKk kK kkkh
1dx #0
MovOff lda ISizPos,x
cle

adc Wyoffset
sta SizPos,x
lda ISizPos+2,x
cle

adc Wxoffset
sta SizPos+2,x
inx

inx

inx

inx

Cpx #8

bne MovOff

lda WxOffSet sadjust offsets
clc

adc #20

sta WxOffset

lda WyOffset

344 Appendix E: HodgePodge Source Code: Assembly Language

clc
adc #12
cmp #120 ;1f we get too low, start at top
bne DoYset
lda #12
doYset sta WyOffset

Kxkkkkkkkk

*

* Now, Finally, create the new window
*

Thkkkkkkkk

Finally PushLong #0 ; space for result
pushlong #WindowParamBlock
_NewWindow

pla

sta whichwindow
pla

sta whichwindow+2

Pushlong OrigPort Use the original port obtained during

~e e

_SetPort startup to make sure a port is set
lda PicHandle ; unlock handle

1ldx PicHandle+2

jsr Unlock

Kkkkkkkk kK

\ *

* Force origin boundaries (see Manual definition of Window Mgr's SetOriginMask)
*

Kkkdkkk ok kok

PushWord #S$FFFE
PushLong whichwindow
_SetOriginMask

clc ; carry clear return: we opened it
rts
end

AR R KKK I KKK KA AR R KRR KRR AR RR R AR A RR R KKK AR KRR AAR KRR AR R KRR AR AR ARk A kK
*
* WindowData
*
kA KRR R K AR AR KRR AAR AR A AR R AR KRR ARA KRR KRN AR KA AR R AR AR R AR AR AR A kA Kk
WindowData data
WindowParamBlock anop
dc 12'WindowEnd-WindowParamBlock'
dc i2'FTitle+FClose+FRScroll+FBScroll+FGrow+FZoom+FMove+FVis'

windaddr dc i4'0' Ptr to title
refcon dc 14'0' RefCon
dc i12'0,0,0,0°' Full Size (0= default)
dc 14+0' Color Table Pointer
dc i2'0* Vertical origin
dc i2'0' Horizontal origin
DataHeight dc 12'200" Data Area Height
Datawidth dc 12'640" Data Area Width
dc i2+200* Max Cornt Height
McW dc 12'640" Max Cont Width
dc 12'4" Number of pixels to scroll vertically.
dc i2'1le6"' Number of pixels to scroll horizontally.
dc 12'40" Number of pixels to page vertically.

WINDOW.ASM (windows) 345

dc 12'160°* Number of pixels to page horizontally.

dc 140" Infomation bar text string.
dec 120 Info bar height
dc i4'0 DefProc.
dc 140+ Routine to draw info. bar.
DrawRtn dc i4'Paint: Routine to draw content,
SizPos de 12'0,0,0,0' Size/pos of content
dc 14'SFFFFFFFF: Plane to put window up in.
dc 140 Address for window record (0 to allocate)
WindowEnd anop
Refptr ds 4 ;refcon pointer to 20 bytes
ISsizPos dc 1'20,10,80,350' ;Size/pos of content
FiRecord anop
Ascent ds 2
Descent ds 2
Leading ds 2
WidMax ds 2
END

*

* OpenFilter

*

* This routine ig bassed to SFGetFile to filter out the filetypes
* that are loadable by us.

*

* On entry, the stack looks like this:

*

* | Previous contents

* fm e e |

* | Sspace for result | word

* o e |

* | pointer to directory entry | long

v e 0T entry ,

* | return address | 3 bytes

* I e |

* | | <~ sp

*
*t**tt*t*tt*t***itt****t**i'**t*****tt***t********t********ttt***

OpenFilter start
using GlobalData

phb 7 save DBR (and even out RTL addr)
phk 7 set DBR back to this bank

plb

pla i save the return address

sta RtnAddr

pla

sta RtnAddr+2

tdc 7 save the ROM's Zp

sta DPSave

lda Myzp 7 and swap in ours

ted

pla ;7 NOW get the pointer to the
sta 0 H directory entry

pla

sta 2

ldx #1 7 assume visible and dimmed

ldy #s10 7 look at the filetype byte

346 Appendix E: HodgePodge Source Code: Assembly Language

lda [0],y

and #$SO00FF ; don't look at the entire word

cmp #$C1

bne NotPicFile ; pass on all others

1dx #2 ; show it as a selectable entry
NotPicFile txa
4 sta 1,s ; pass it back on the stack

lda DPSave ; point back to the old DP

ted

lda RtnAddr+2
pha

lda RtnAddr
pha

plb

and put the return address back

~

restore old DBR

~

rtl

DPSave ds 2
. RtnAddr ds 4

end

L R
*
* FindMaxWidth - this routine finds out how wide the window

G should be for the currently installed font.
*

R L R T T R

FindMaxwidth start
using WindowData
using FontData
using GlobalData

PushWord #0
_GetFontFlags

save prev set mono/pro flag

~

ldy #oFlag
lda [0],y

lsr a

and #$0001
pha

keep the result on the stack while
we set it to what we want (as
defined by its window type set up
when we open this window)

~e S NeoSe

_SetFontFlags

stz MaxSoFar
lda #1
sta LineCounter
LineLoop anop
*

PushWord #0

phk

phk

pla

and #$00FF

pha

lda LineCounter
asl a

tax

lda LineTable, x
pha

space for width result.

Get a pointer to the current line.
The upper word is the same as the
program bank.

P T

The lower word is stored in a table.

~

_StringWidth

WINDOW.ASM (windows) 347

pla How does this line compare with the

cmp MaxSoFar ; previous longest line?

bce LessThan

sta MaxSoFar ; > or =, so save it as record holder.
LessThan anop

inc LineCounter ; bump current line

lda LineCounter
cmp #NumLines
bce LineLoop

lda MaxSoFar
clec

adc #10

sta DataWidth

Get the width of longest line.
Add in room for left and right margins

_SetFontFlags ; restore old settings
rts

LineCounter ds 2

MaxSoFar ds 2
end

*****k*****tt******t****%*t**t****t****************t**********t*

DoCloseItem

and remove it from window list. If no windows, then dim "Window"

*

*

* Close a window, and dispose of extra data (in WrefCon)
*

* menu and disallow printing.

*t’(**t********t*r******tit******-A-**‘k*****r*t*t***t***t***t******
DoCloselItem START
using GlobalDATA

pushlong #0 ;it's the front window we're deleting
_FrontWindow i...S0 get its GrafPortPtr

pla

sta whichwindow

pla

sta whichwindow+2
ora WhichWindow
bne TherelIsOne

get result for pushing in a sec.
was there one?

GotIt rts ; quit now
ThereIsOne PushLong WhichWindow ; 1f it is a system window, this will
_CloseNDAByWinPtr ; close it
bece GotIt ; no error so done
; Must be one of mine.
dothecls PUSHLONG #0 ;space for result
PUSHLONG whichwindow
_GetWrefCon ;refcon has handle to data
pla
sta temp2Handle
plx
stx Temp2Handle+2 ;the refcon to de-allocate
jsr deref
sta 0
stx 2

ldy #oHandle

lda [0],y
sta PicHandle
iny

iny

348 Appendix E: HodgePodge Source Code: Assembly Language

lda [0],y

sta PicHandle+2 the pichandle (we'll de-allocate)

~

ldy #oFlag

lda [0],y

beq itsapic

stz PicHandle
stz PicHandle+2

check if picture or font

e

flag so we don't dispose

~

jsr AdjWind ; goes and pulls window from WindowList

cle
adc #300
sta IDdelete

position returned in a-reg.
start at 300
the MenuID to de-allocate

~e Se S

lda windex
cmp #1
bne MoreThanOne

if only one, we must be special

~

pushlong #origitem
pushword #0

pushword #WindowsMenuID
_InsertMItem ; add old "no windows" menu item.

We're now deleting the only window
left.

~e N

Pushword #$0080 ;Disable windows menu
PushWord #WindowsMenuID
_SetMenuFlag

Lda #True
Sta NeedToUpdate

stz PrintAvail ; Disallow printing

lda #20 ; reset start loc for window sizing
sta WxOffset

lda #12

sta WyOffSet

MoreThanOne lda IDdelete

y pha ;now delete this item from menus
{ _DeleteMItem

dec windex

lda windex ;now, renumber list
beq nomore ; none left, skip

sta IdCounter counts how many

’
lda #300 ; always the starting no.
sta IDstart ; will be first
sta IDNew ; and the new one
back lda IdStart
cmp IdDelete ; is it the one we deleted?
bne DoIt ; nope, go re-set ID
inc Idstart ; yes, skip over it
bra back
DoIt pushword IdNew
pushword IdStart
_SetMItemId ; reset
inc Idstart
inc IdNew
dec IdCounter
bne back
NoMore lda #0 ; re-calc size
pha

WINDOW.ASM (windows) 349

pha
PushWord #WindowsMenuID

_CalcMenuSize

Pushlong Temp2Handle ;get rid of refcon area
_DisposeHandle

lda PicHandle ;is it font

bne dodisp

lda PicHandle+2
beq skipdisp

DoDisp Pushlong PicHandle ;get rid of picture area
_DisposeHandle

SkipDisp PushLong WhichWindow ;get rid of window
_CloseWindow

skip rts

HAK KKK KA KKK KRKR AR K AR A A hkk &k ok
*

AdjWind finds and deletes a window list item which matches
"WhichWindow" and returns in a-reg. where it's position was

(1f you'd prefer the other end, you'd need some different logic,
but here, generally, you'll open, look at it, and close it, so

*
*
*
* Note: it's optimized to find things near end of list
*
*
* this method seems best)

*
KAK KKK AR KKK KKK KKK R Kk KKk k& ok ok

AdjWind lda Windex
tay ;suse this to count thru
dec a
asl a ; pt. before last for end (a=-2) *4
asl a
sta IDCounter
adjloop dey
bmi AdjDone
tya
asl a
asl a
tax
lda WindowList, x ;get the pointer (uniqueness exists)
cmp WhichWindow
bne adjloop
lda WindowList+2, x
cmp WhichWindow+2
beq shoveChk
bra Adjloop

Shovelt lda WindowList+4,x 7Now shove things up
sta WindowList,x
lda WindowList+6, x
sta WindowList+2,x

inx

inx

inx

inx
ShoveChk cpx IdCounter

bne shoveit
AdijDone tya

rts
IdNew ds 2
Idstart ds 2
IdCounter ds 2
IDdelete ds 2

END

350 Appendix E: HodgePodge Source Code: Assembly Language

KRR KKK A KKK AR A AR AR A AR AR AR AR R AR A AR KA AR AR R AR A KRR R AR R KA AR R ARk kA A Ak kK
*

* Paint
*

- * This draws picture in the window when task master calls.
*
R R R R S s

Paint START

i using GlobalData
KRk KKkKk Xk kk

*
* get my own zero page
*
KRR Kk kK k koK
phb
phk
plb
phd
lda MyZP
tcd

kkkkkkkkkk

*

* get the correct window port (got here from within taskmaster)
*

kkkkkkkkkx

pushlong #0

_GetPort

plx

ply ;get result for pushing in a sec.

PUSHLONG #0 ;space for result

phy

phx ; saved the port here
_GetWrefCon ;refcon has handle to data

pla

sta Temphandle
plx

stx TempHandle+2

jsr Deref ; dereference
sta 0
stx 2

1dy #oHandle ; get handle to pic data
lda [0],y

sta picptr

pha

iny

iny

lda [0],y

sta picptr+2

tax

pla

sl PaintIt

lda TempHandle
1ldx TempHandle+2
jsr Unlock

pld
plb

rtl
END

WINDOW.ASM (windows)

351

LR R R R R L R R B R R S ua e
PaintIt

*
*
* The routine which actually does the painting when passed the

* the handle to the picture in the a & x registers.

*
*******x*t*****t*****i******t************t**t*t*i**************ﬁ

PaintIt START
using GlobalData

phx ; save this on stack
pha

jsr deref ;deref. picture handle
sta picptr

stx picptr+2

PushLong #SrcLocInfo

PushLong #SrcRect
Pshmor PushWord #0

PushWord #0

PushWord #0

_PPToPort

e Se e
<

copy

pla
plx
jsr Unlock

rtl

END

ﬁ**********tt***tﬁt*ﬁ**t****t***ﬁ*t*****t*ﬁ*t***iﬁ*tt***iﬁtt*ﬁ**
*

* DoGoAway -- not necessary because we handle it the same as

* DoCloseItem.
*

****t**t*t******i****i*ti*****t*t***tiﬁ*t*t**ﬁ*i*t**ﬁ*ttﬁ*ﬂ**t*ﬁ

t**i***k*********t*ﬁ**t*t**Q**tit***i*t*ﬁ*tt**t*i*t***t*ﬁ*

* DoWindow
*

* Selects and shows window in response to menu selection.
*

*t******t****t**t****t*tt*k*t*t******tt*tt**t**itiﬁ*tt*ti*i*t**t
DoWindow START
using GlobalDATA

PUSHLONG WHICHWINDOW ; select first so it only redraws
_SelectWindow ; once

PUSHLONG WHICHWINDOW
_ShowWindow

rts

352 Appendix E: HodgePodge Source Code: Assembly Language

DIALOG.ASM (dialog boxes)

KA KRR KK KRR AR AR R KRR R AR R AR AR R AR AR AR R AR R AR K KA AR R AR AR KA AR KRR AR AR A AR KA AR AR R Ak hk &

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

T

KA R KRR AR AR KRR AR R R KK KA A AR KA R A KKK AR AR AR AR KRR A AR KRR AR AR A AR KRR AR KA AR R KA R AR KA Ak kK

ASM65816 Code file "DIALOG.ASM" -- Various dialogs taking modal control

*
*
*
*
*
*
*
*
*
*
*
*

kAR AR R AR KRR AR R AR R AR AR R KRR R R AR AR R KRR KRR AR R KRR RRRAARNRRA AR R AR R AR

*

* ManyWindDialog -- Warning that too many windows are open.

*

LR R e

ManyWindDialog START
using GlobalData

pha

pushlong #OurAlert
pushlong #$0000
_CautionAlert

pla

rts

OurAlert dc 1'30,120,80,520"

dc 1'2374"

dc h'80'

dc h'80"'

dc h'80°*

dc h'80"

dc i4‘'iteml’

dc i4'item2'

dc 14'0000"

iteml dc i2'1'
dc 12'25,320,00,00"
dc i2'ButtonItem'
dc 14'Butl’
dc 12'00°
dc 12'0°
dc i4'0*

item2 dc 12'1348"
dc 12'11,72,200,640"
dc 12'StatText+$8000'
dc i4'Msg’
dc 12'00°
dc i2'0*
dc i4'0*

Butl str 'OK'
Msg str 'No more windows,

end

~ ~e

~e e S

No Se Se S

Ne Ne o Se e Se N S

get the item hit

bounds rect
id

id

bounds rect for button
type

item descreptor

item value

item flag

item color

id

bounds rect for message
type + disabled

item descreptor

item value

item flag

item color

please."

DIALOG.ASM (dialog boxes)

353

k***t**t**********t*

*

* DoAboutItem
*
* Brings up about box and waits until button press until

* it puts it away.
*

Shows how to build a dialog window by hand.

*t***t*t*****t**t*ﬁt***tttt**t*******#****t*t**t*t****i***t**i**

DoAboutItem START

using globalData

PushLong #0
Pushlong #34*16+8
PushWord MyId
PushWord #0
PushLong #0
_NewHandle

pla

plx

bece ok

lda #$81

ldx #1

Jmp CheckDiskError

e .

~

out of memory

~

~
~e N

ok anop
sta ApplelconH
stx ApplelIconH+2

Jsr deref

sta 0
stx 2

ldy #0

lda AppleIcon640,y
sta [0],y

iny
iny
cpy
bne

Copy640

#34*16+8
Copy640
FixDBox ldx
lda

#320-180
#320+180
JoinRect DRect+2
DRect+6

stx
sta

PushLong #0 ;
PushLong #DRect
PushWord #True ;
PushLong #0 7
_NewModalDialog

output

visible
refcon

pla

sta MbialogPtr
pla

sta MDialogPtr+2

PushLong MDialogPtr

PushWord #1

PushLong #ButtonRect
PushWord #ButtonItem
PushLong #ButtonText

354 Appendix E: HodgePodge Source Code:

get space for Icon
#lines * bytes/line + rect

don't care where it goes

Go and tell user error message,
and use its RTS to exit from here.

;move Icon to new space

Assembly Language

DoModal

DRect

AppleIconH
AppleIconRect

AppleIcon640

PushWord #0
PushWord #0
PushLong #0
_NewDItem

PushLong MDialogPtr
PushWord #2

PushLong #ApplelconRect

PushWord #IconItem+ItemDisable

PushLong ApplelIconH
PushWord #0
PushWord #0
PushLong #0
_NewDItem

PushLong MDialogPtr
PushWord #4
PushLong #TextRect

PushWord #LongStatText2+ItemDisable

PushLong #StartOfText

PushWord #EndOfText-StartOfText

PushWord #0
PushLong #0
_NewDItem

PushWord #0
PushLong #0
_ModalDialog
pla

PushLong MDialogPtr
_CloseDlialog

PushLong AppleIconH
_DisposeHandle

rts
dc 1'20,10,192,320-10"

ds 4
de 1'135,20,0,0"

anop
dec 1'0,0,34,64"

~e .

’

result
no filterproc

chuck the item hit

DIALOG.ASM (dialog boxes)

355

TextRect

StartOfText
dec
dc

EndOfText

356

h‘00000000000000000000000000000000'
h'OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO'
h'OFOOOOOOOOOOOOOOOOOOOOOOOOOOOOFO'
h'OFOFFFFFFFFFFFFFFFFFFFFFFFFFFOFO'
h'OFOFFFFFFFFFFFFFFFFFFBBFFFFFFOFO'
h'OFOFFFFFFFFFFFFFFFFBBBBFFFFFFOFO'
h'OFOFFFFFFFFFFFFFFFGBSGBFFFFFFOFO'
h'OFOFFFFFFFFFFFFFFSBBBBFFFFFFFOFO'
h‘OFOFFFFFFFFFFFFFBSSBGBFFFFFFFOFO'
h‘OFOFFFFFFFFFFFFFB8888FFFFFFFFOFO'
h'OFOFFFFFFFFFFFFFSBBBFFFFFFFFFOFO'
h‘OFOFFFFFFBSBBFFFB8FF8888FFFFFOF0'
h'OFOFFFFS8888888FFF88888888FFFOF0'
h'OFOFFFBB8888888888888888888FFOF0'

h'OFOFFee

FFFFOFO"'

h'OFOFFe

h'OFOFFe

FFFFFOFQ*
FFFFFOFQ "

h'OFOFFG66666666666666666FFFFFFOF0'

0FOFFF5555555555555555555SSFFOFO'
h‘OFOFFFSS5555555555555555555FFOF0'
h'OFOFFFFS555555555555555555FFFOF0'
h‘0FOFFFF1111111111111111111FFFOF0'
h'OFOFFFFFI1111111111111111FFFFOF0'
h'OFOFFFFFFlllll1FFF111111FFFFFOF0'
h'OFOFFFFFFFl111FFFFF1111FFFFFFOF0‘

12'4,10,135,340'

anop

Ccenter

h'01',crgr, 107 ;
7 Outline

h'Ol',c's',i'SOOOB'
c'HodgePodge',h'OD'
h‘Ol',c'S',i'SOOOO' ; plain

C'A potpourri of routines that
c'demonstrate many features of
C'the Apple 11gs Tools. '

h'op:

h*oD*

C'By the Apple IIGS developement team
h*'op*

h*op

Cc'E. Berns, A, Cabral, c. Ewy,

c's, Glass, *
h'op*

c'D, Hitchens,
c'P., McDonald,'
h*'oD*

¢'B. Marks, D, Oliver, G. Ortiz,
c'and K. Rollin.!

h*'op*

h'op*
¢'Copyright
c'1986-87,'
h'op!

C'All Rights Reserved', h'op:
c'v4.0 '

c'&SysDate

including:'

B. Koning, s, Lee, ¢

Apple Computer, Inc.,

anop

Appendix E: HodgePodge Source Code: Assembly Lcngucge

ButtonRect dc 1'153,205,0,0"

ButtonText str 'OK!'
MDialogPtr ds 4
END

L R R B R B B PR S upupuprppngnny
*

* ShowPleaseWait / HidePleaseWait

*

* Brings up a window and immediately puts message in it

* (without waiting for update event).

*

L R e R R R R R Ry

ShowPleaseWait START
using globalData

PushLong #0 ; save the current port
_GetPort

pla

sta SavePort
pla

sta SavePort+2

PushLong #0
PushLong #DialogTemplate
_GetNewModalDialog

pla

sta MsgWinPtr
pla

sta MsgWinPtr+2

PushLong MsgWinPtr ; begin the updating process
_BeginUpdate

PushLong MsgWinPtr
_DrawDialog

PushLong MsgWinPtr
_EndUpdate

rts
HidePleaseWait ENTRY

PushLong MsgWinPtr
_CloseDialog

hide the window

~

PushLong SavePort
_SetPort

restore the port

~

rts
MsgWinPtr ds 4

DialogTemplate anop

dc 1'30,120,80,520°' bounding box

;
dc i'True’ ; visible
dc 14'0' ; refcon
dc i4'iteml’ ’
dc 14'0000"

DIALOG.ASM (dialog boxes)

357

iteml anop

dc 12'1348"
dc 12'19,70, 200, 640"

id

;
i
dc i2'statText' ; type
dc 14'Msg! ; item descreptor
dec 12'00* ; item value
dc i2'0 ; item flag
dc 14'0" ; item color
Msg str 'Please wait while we set things up.'

END

bounds rect for text

KA AR KKK AR IR KK A KRR AR KK KA AR R A A R AR AR KRR AR AR AR KRR R KRR AR RN AR A AR Ak Ak Ak

MountBootDisk

This is a routine that is called whenever the application

needs to get something off the boot volume and the

This can occur when loading fonts, tools or drivers.

*
*
*
*
* boot volume is not on line.
*
*
*
*

KKK KA IR R KA AR KA KRR AR AR KRR AR KK KA AR KR KRR AR KRR AR AR AR A A AR kA Ak k Kk kk

MountBootDisk START

_Set_Prefix SetPrefixParams
_Get_Prefix GetPrefixParams

PushWord #0 ;Space for result
PushWord #174 ;X pos

PushWord #30 /Y pos

PushLong #PromptStr ;Prompt string
PushLong #VolStr ;Vol string

PushLong #OKStr
PushLong #CancelStr

_TLMountVolume

pla

rts
PromptStr str 'Please insert the disk'
OKStr str 'OK'
CancelStr str 'Shutdown'
GetPrefixParams dc 1i'7'

dc 14'Volstr!

SetPrefixParams dc

i

dc i14'BootStr'

Volstr ds 16
BootStr str '*/
END
358 Appendix E: HodgePodge Source Code:

Assembly Language

R g g R P

* CheckToolError
*

* Cause system death if A register is nonzero and carry set;

* otherwise, it just returns.
*

* Error code to make part of string is in A register.
* "Where" number to make part of string is in X register.
*

L T e e e e T LT s

CheckToolError START

becs RealDeath ;If a tool error didn't happen
rts ;then just return
RealDeath pha ;Save error code for now
pea 0 ;Convert the "Where" debug trace
pea 0 ;number to a four-digit ASCII hex
phx ;string.
_Hexit
pla
sta codes
pla
sta codes+2
pla ;Restore error code
pha ;Exit to system failure handler
PushLong #DeathMsg ; (bouncing apple)
_SysFailMgr
- DeathMsg anop
; dc 11'EndMsg-StartMsg'
StartMsg dc c' At $'
Codes ds 4
; dc c¢'; Could not handle error $'
~ EndMsg anop
END

L L L R R L L B P U B U S guuppupuugrapnry

* CheckDiskError -- Display stop alert dialog if ProDOS error happened.

@ We sniff the A register to see if an error occurred,
o and assume the X register to be loaded with a
*
*

"where" value, used to locate bugs.

L R g B R S e T T I L T

CheckDiskError START
using GlobalData

phx ; Save the Where value
pha ; Save the error number
_InitCursor ; Set pointer--looks better than watch
pla ; Restore the error number
pha ; Convert the error message
7

PushlLong #OurErrStr
PushWord #4
_Int2Hex

to an ASCII string 4 chars long

DIALOG.ASM (dialog boxes)

359

OurAlert

OKButton

Message

ErrMsgPtr

OKName
Msg
StartMsg
OurErrstr

OurWhereStr

EndMsg

360

pla

pha

PushLong #OurWhereStr
PushWord #2

_Int2Hex

pha

pushlong #OurAlert
pushlong #$0000
_StopAlert

pla

sec
rts

dc 1'30,120,80,520°"
dc 1'6666'

dc h'80'

dc h'80'

dc h'80'

dc h'80"'

dc 14'OKButton'

dc 14‘'Message’

dc 14'0000°'

dc 12'1*

dc 12'25,320,00,00"
dc i12'ButtonItem'
dc 14'OKName'

dc 12'00°

dc i2'0*

dc 14'0'

dc 12°'1348°

dc 12'11, 72,200,640
dc i2'StatText+$8000"'
dc 14'Msg’

dc 12'00°"

dc 12'0"

dc 14'0*

str 'OK'

dc 1i1'EndMsg-StartMsg*
dc c'Disk error $!'

ds 4

dc ¢!
ds 2

dec c'.'

dc h'OD"*
anop

occurred at $'

END

P

P N

~e e

e .

Ne N5 Se S S e e

Ne Ne Se Ne Se Ne e

Do this just for clarity (note that
Where value is already on stack!)
Convert the Where value

to an ASCII string 2 chars long

Space for result

Pointer to template

Standard Filter procedure

Draw box and wait for mouse OK press
Get the item hit (the OK button)

Set the error flag
Return to caller

bounds rect
id

id

bounds rect for button
type

item descreptor

item value

item flag

item color

id

bounds rect for static text
type + disable flag

item descreptor

item value

item flag

item color

Appendix E: HodgePodge Source Code: Assembly Language

FONT.ASM (fonts)

L L R R R B R

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

L

* ASM65816 Code file "FONT.ASM" -- Choose font; display font window contents

*
*
*
*
*
*
*
*
*
*
*
* *
*

R R R B B R S S R i Sy

LR B B R S
*

* FontData

*

R R R R R R S R L o T

FontDATA DATA

FontWinPtr ds 4

DesiredFont dc 14'$0800FFFE" ; System Font size 8
MonoFlag dc 1240 ; start out showing proportional
CurFontInfo anop

CFAscent ds 2

CFDescent ds 2

CFMaxWid ds 2

CFLeading ds 2

CurHeight ds 2

LineCounter ds 2

CurPos ds 4

NumLines equ 13

LineTable dc 1'Line0,Linel,Line2,Line3, Line4"'

dc i'Line5,Line6,Line7,Line8, Line9"
dc i'Linel0,Linell,Linel2,Linel2,Linel2"*

Line0 ds 30 ; max name len is 25 + 1 for length
7 ; and 4 for size info
Linel str **
Line2 str 'The quick brown fox jumped over the lazy dog."'
Line3 str 'She sells sea shells down by the sea shore.'
Line4 str ¢

Line5 dc h'20"
dc h'00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF'
dc h'10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F'

FONT.ASM (fonts)

361

Line6 dc h'20"

dc h'20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F'

dc h'30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F!
Line7 dc h'20‘

dc h'40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F!

dc h'50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D SE SF!
Line8 dc h'20¢

dc h'60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F'

dec h'70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F°
Line9 dc h'20"

dc h'80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F'

dc h'90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F!*
Linel0 dc h'20"

dc h'A0 Al A2 A3 A4 AS A6 A7 A8 A9 AA AB AC AD AE AF!

dc h'BO Bl B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF'
Linell dc h'20"

dc h'CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF'

dc h'DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF'
Linel2 dc h'20"

dc h'EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF'

dc h'FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF'

END

t****ttt*************i*t***********tt******tt*t****i*‘k**********
*
* DoChooseFont
*
r*t*********t******t****i******k*tt******t****k*********‘k*tt****
DoChooseFont START

using GlobalDATA

using FontDATA

PushLong #0
_GetPort

PushlLong #TempPort
_OpenPort

PushLong #0 ; space for result
PushLong DesiredFont

PushWord #0

_ChooseFont

lda 1,s
ora 3,s
bne ItChanged

pla
pla

; ChooseFont returned a 0000, so the
; font hasn't changed

Pushlong #TempPort

_ClosePort

_SetPort

sec ; bad return
rts

ItChanged anop
pla
sta DesiredFont
pla
sta DesiredFont+2

pushword #0 ;space for result
PushWord DesiredFont

362 Appendix E: HodgePodge Source Code: Assembly Language

PushLong #R_Fname
_GetFamInfo
pla ;ignore result

lda DesiredFont+3 ; get font size in a reg
and #$00FF
pha

lda #~R_FName
pha

lda R_FName
and #$00FF
inc a

adc #R_FName
pha

PushWord #4
PushWord #0
_Int2Dec

high word of pointer to name

~

low word of pointer
output length
not signed

~e e o~

lda R FName

inc a

inc a

inc a
a
R

bump the length

~

inc

sta FName

PushLong #TempPort

_ClosePort
_SetPort
clc ;good return
rts
TempPort ds S$AA ; size of graph port

END

it********ﬁ****tﬁ*t***ﬁ***t*ﬁt******t**t****t*******i***i*t*****
*

* DispFontWindow
*

i**t*******************ttt*******ik***tt*ttt*it*t**t*ik***tt****
DispFontWindow START

using FontDATA

using GlobalData

kRkkk ok k ok kK
*

* get my own zero page
*

* Rk ok Kk ok ok ok
phb
phk
plb

phd
lda MyzP
ted

KhKKk Kk kkok
*

* get the correct window port (got here from within taskmaster)
*

Kk kok ok k ok ok ok

FONT.ASM (fonts)

363

pushlong #0

_GetPort

plx

ply 7get result for pushing in a sec.

PUSHLONG #0 ;space for result
phy

phx ; saved the port here
_GetWRefCon

pla

sta Temphandle
plx

stx TempHandle+2

jsr Deref ; de reference
sta 0
stx 2

ldy #oFontID+2 ; get the font ID
lda [0],y

tax

dey

dey

lda [0],y

Jsl ShowFont

lda TempHandle
ldx TempHandle+2
jsr Unlock

pld
plb

rtl

END

tt*tt****tﬁtt*t***ti******t****t*t*tt*tti***ﬁt**t***ﬁt**i***tt**
*

* ShowFont

*

* Common routine to actually draw the contents of the window.
* This routine is called with the font to install in the
*

in the A & X registers,
*

*t**ﬁ*t**tt***t******i*****t********t*****************ti*t*t****
ShowFont START

using GlobalData

using FontData

phx
pha

save copy on stack

~

phx
pha
PushWord #0
_InstallFont

install the font

~

PushLong #CurFontInfo Get its size info

~

_GetFontInfo
stz LineCounter 7 zero the line counter
cle ; calculate the line separation

lda CFAscent

364 Appendix E: HodgePodge Source Code: Assembly Language

LineLoop

adc CFDescent
adc CFLeading
sta CurHeight

PushWord #0
PushWord #0
_MoveTo

plx

pushword #0

phx

PushLong #Line0
_GetFamInfo

pla

pla

xba

and #$00FF
pha

lda #~Line0
pha

lda Line0
and #$00FF
inc a

adc #Line0
pha
PushWord #4
PushWord #0
_Int2Dec

lda Line0
inc a
inc a
inc a
inc a
sta Line0

PushWord #0
_GetFontFlags

ldy #oFlag
lda [0],y
lsr a

and #$0001
pha
_SetFontFlags

anop

Pushlong #CurPos
_GetPen

PushWord #5
lda CurPos
cle

adc CurHeight
pha

_MoveTo

lda LineCounter
asl a

tax

phk

phk

lda 1,s

and #$00FF

sta 1,s

~

~

~e

~e Se Se

~

~o N S e

start the pen position at 0,0

get fontid off stack
space for result
family number was in x
ignore result

high word of font id

size in high byte

; high word of pointer to name

low word of pointer
output length
not signed

bump the length

save prev set mono/pro flag

keep the result on the stack while
we set it to what we want (as
defined by its window type set up
when we opened this window)

get the current position

; reset x position

and y position

draw current line

FONT.ASM

(fonts)

365

lda LineTable, x
pha
_DrawString

inc LineCounter ; bump current line
lda LineCounter

cmp #NumLines

bce LineLoop

_SetFontFlags ; restore from saved position

rtl
END

*’r*****’:*t**t**t*t*****r*t**t****t***i*t**tt*******t*****t*‘k****
*

* doSetMono

*

**********tﬁ*****t*i***k***********t***t*******t****t**t********

doSetMono START
using FontData
using MenuData

lda MonoFlag
eor #3502
sta MonoFlag

beq ChangeToMono ;Change message to show effect in
PushLong #PropStr ;NEXT selection of this menu item
bra PushID

ChangeToMono PushLong #MonoStr

PushID PushWord #MonolID
_SetMItem
rts

END

366 Appendix E: HodgePodge Source Code: Assembly Language

PRINT.ASM (printing)

AER IRk IR AR R A AR KA KRR AR A K AR KR AR R AR KRR R AR R KRR R A RKRRARR KRR RN R AR R AR AR Ak hkhhh Ak k

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

ASM65816 Code file "PRINT.ASM" -- Print dialogs; Print Manager calls

L .
* 0 % ok 3k o+ o 3 3k * 3 *

KA KRR AR KRR KRR KRR A AR KA KA AR AR AR KA R AR KRR A KRR AR KA AR KRR KRR AR R AR AR AR A kh Ak kA hk ok

AR AR KA KRR R AR AR A AR AR AR AR AR KRR AR AR RRRR KR ARNRRR A AR AR R AR AR AR A Ak k Ak
*

* DoChooserItem

*

* This is the routine that handles the Choose Printer

* menu item.
*

ARk R KR AR R AR KRR AR AR R A AR KRR AR R AR R AR A KRR AR AR A AR R KRR AR AR AR AR A AR kA K
DoChooserItem START
using GlobalData

PushWord #0
_PrChooser
pla

rts

END

KA K IR KRR KRR KR AR AR A KRR KA KRR AR A KRR AR KRR KRR AR AR R KRR KA KA KRR ARk kA Ak hkk
*

* DoSetupItem
*

* This is the routine that handles the page setup item.
*

SRR R R R R R R T
DoSetupItem START
using GlobalData

lda PrintRecord
ora PrintRecord+2
bne AlreadyThere

jsr SetupDefault

AlreadyThere anop
pha
PushLong PrintRecord
_Prvalidate
pla
Pushword #0
Pushlong PrintRecord

PRINT.ASM (printing) 367

_prstlDialog
pla

rts

END

ﬁ*********ﬁt********t***t***tt*************ﬁ*t*ﬁ*t****t******t*t

*
* SetupDefault
*

* This routine creates the default PrintRecord.

* in PrintRecord.
*

Puts handle

w**ﬁ*****************t************t*t**‘k*******t**tit*******

SetupDefault START

using GlobalDATA

PushLong #0
PushLong #140
Pushword MyID
PushWord #$8010
PushLong #0
_nhewHandle

pla

sta PrintRecord
pla

sta PrintRecord+2

AlreadyThere anop

PushLong PrintRecord

_prdefault

rts

END

ﬁtt*t**ttﬂt*tt***t****t*t*****t****n*t**

*

* DoPrintItem
*

KAKKR KKK KA KRR ARk ok khhhk

* This is the routine that handles the print item in the

* file menu.
*

i**'kt***t*******t*t**t**t**********t*****

DoPrintItem START

using GlobalData

pha
pha
_GetPort

pha

pha

_FrontWindow

pla

sta WindowToPrint
pla

sta WindowToPrint+2

ora WindowToPrint
bne SomethingToPrint
brl SkipIt

SomethingToPrint anop
lda PrintRecord

368

~

e Se se e

Appendix E: HodgePodge Source Code:

**********ﬁ****t**t***t

get the current port

first see if there is a window
to print,

and save pointer to it now
before any dialogs are displayed!

Assembly Language

AlreadySet

continue

SkipIt

ora PrintRecord+2
bne AlreadySet

jsr SetupDefault

anop

pha

PushLong PrintRecord
_Prvalidate

pla

PushWord #0

PushLong PrintRecord
_PrJobDialog

pla

bne continue
brl skipit

anop
_WaitCursor

PushLong #0

PushLong PrintRecord
PushLong #0
_PrOpenDoc

pla

sta PrintPort

pla

sta PrintPort+2

PushLong PrintPort
PushLong #0
_PrOpenPage
jsr DrawTopWindow

PushLong PrintPort
_PrClosePage

PushLong PrintPort
_PrCloseDoc

PushLong PrintRecord
PushLong #0

PushLong #0
_PrPicFile
_InitCursor

anop

_SetPort

rts

END

’

space for result

ignore result since all is well now

restore original port

PRINT.ASM (printing)

369

IR R R R R R R SR R L R R R R R P B B B B TR B Y

* DrawTopWindow
*
*
*
LR R R e R R R R R R I B T S S (T I SV uprapra e
DrawTopWindow START
using GlobalDATA
pha ; space for result of GetWRefCon call
pha
PushLong WindowToPrint
_GetWRefCon

pla

sta TheRefCon
plx

stx TheRefCon+2
jsr Deref

sta 0

stx 2

ldy #oFlag

lda [0],y

beq UsePaint

1dy #oFontID+2
lda [0],y

tax

dey

dey

lda [0],y

jsl ShowFont

bra AllDone

UsePaint anop
ldy #oHandle+2 ; get handle to pic data
lda [0],y
tax
dey
dey
lda [0],y
jsl PaintIt

AllDone lda TheRefCon
ldx TheRefCon+2
Jjsr Unlock
rts

theRefCon ds 4

WindowToPrint ENTRY
ds 4

END

370 Appendix E: HodgePodge Source Code: Assembly Language

|O.ASM (pictures and files)

R

HodgePodge:

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

An example Apple IIGS Desktop application

O

* ASM65816 Code file "IO.ASM" -- Picture Load and Save stuff calling ProDOS

*

R R e

L R

*

* LoadOne
*

* Loads the picture whose path name is passed in

*

& NamePtr
*

* to address passed in

*

* PicDestIN

*

L R L R P

LoadOne

contl

cont?2

START
using IOData

_OPEN OpenParams
bcec contl
jmp Errorl

anop

lda OpenID
sta ReadID
sta CloseID

_READ ReadParams
bcec cont2
jmp Errorl

anop
_Close CloseParams

clc
rts
end

*
*
*
*
*
*
*
*
*
*
*
*

I0.ASM (pictures and files)

371

t**'k*t**t*t*t**tt*k*t**t********i*‘k**t**i*k*****ik*****k*i**
SaveOne
Saves the picture whose path name is passed in

NamePtr

from address passed in

* % o ok A o * *

PicDestOUT

*

*t**t******t***t*******t***********t**tt********ﬂ***ﬂﬁ*tkt*t****

SaveOne START
using IOData

lda NamePtr
sta NameC

sta NameD

lda NamePtr+2
sta NameC+2
sta NameD+2

_Destroy DestParams

lda #$cl ; SuperHires picture type
sta CType

lda #0 ; standard type = 0

sta CAux

_Create CreateParms
bece cont0
Jmp Erroril

Cont0 _OPEN OpenParams
becec contl
jmp Errorl

contl anop
lda OpenID
sta WriteID
sta CloselD

_WRITE WriteParams
bece cont2
jmp Errorl

cont2 anop
_Close CloseParams

clc
rts
end

ttk*t***t****tt*****************kt*tk**i****kﬁﬁ*ttttt**t**tt*t**
*

* Errorl -- handle disk error during read or write
*
i**ﬁix**k********ttt*i****‘k‘k***********k*******t*******t****k***
Errorl START

using IOData

pha

_Close CloseParams

pla

Jsr CheckDiskError

rts

END

372 Appendix E: HodgePodge Source Code: Assembly Language

GLOBALS.ASM (global data)

L R R R R L T R T

* *
* HodgePodge: An example Apple IIGS Desktop application *
* *
* *
* Copyright (c) 1986-87 by Apple Computer, Inc. *
* All Rights Reserved *
* *
* *
* *
* *
* ASM65816 Code file "GLOBALS.ASM" -- Global variables and misc. routines *
* *
LR T S e T P P S PR R R 3
L L e T T T
*
* GlobalDATA
*
L L L R R R B P P e S
GlobalData DATA
Prompt dc 11'19',c'Load which Picture:*
Prompt 2 dc 11'19',c'Save which Picture:'
Wxoffset dc 1'20' ; offset for upperleft window corner
Wyoffset dc 1'12° ; offset for upperleft window corner
nullRect de 1'0,0,0,0"
reply anop ;SF GET/PUT FILE record
r_good dc i2'0*
r_type dc 12'0"
r_auxtyp dc 12'0'

~ r_fname ds 16

~ r_fullpn ds 128
QuitParams dc 14'0*

dc 1'$4000" ; am restartable in memory

ToolTable dc 1'11°'
dc 1'4,$0101"
dc 1'5,$0100"
dc 1'6,$0100"
dc 1'14,$0103"

i

H quickdraw
i

i

i

H dc 1'15,$0103"
i

7

i

;

i

;

desk manager

event manager

window manager from disk!
menu manager from Disk!
control manager form disk!
line edit

dialog manager from disk!
standard files from disk!
Font manager

List manager

de 1'16,$0103"
dc 1'20,$0100°
de 1'21,$0100"
dc 1'23,$0100°
dec 1'27,$0100"
dc 1'28,$0000"

Ne Ne Se e Se Ne Se Se Se Se

~

; ThisMode de 1'$0080° ;init mode: 640
SrclLocInfo dc 1'$80" ;PPtoPort 640 parms
Plcptr ds 4

GLOBALS.ASM (global data) 373

dc 1'160°
dec 1'0,0,200, 640"

SrcRect dec 1'0,0,200,640"

EventRecord anop

EventWhat ds 2

EventMessage ds 4

EventWhen ds 4

EventWhere ds 4

EventModifiers ds 2

TaskDATA ds 4

TaskMask dc 14'SOFFF'*

QuitFlag ds 2

DialogPtr ds 4

Windex ds 2 ;Index to next avail.window ID
LastWind gequ 15 ;Maximum number of windows open

MyZP ds 2

; ZpHandle ds 4

; MyID ds 2

Vindex ds 2 ;index used to list of what WAS visible
Vtable ds 16*4 71list of what WAS vis. when Hiding all
WindowList ds 16*4 ;all windows handle go into this list
WhichWindow ds 4 ;will contain window pointer, cur. window
TempHandle ds 4 ;some temp handles

Temp2Handle ds 4

PicHandle ds 4 ; handle to picture data

SavePort ds 4 ;Save current port env for ShowPlWait
SaveType ds 2

ActivateFlag ds 2 ;flag for check front window.
NeedToUpdate ds 2 ;used to prevent multi menu redraws
ThisWType ds 2

LastWtype ds 2

PrintAvail dc i'0¢ ;Make sure this starts as 0

PrintRecord ds 4 handle to print record

e

PrintPort ds 4 pointer to printing GrafPort.
VolNotFound gequ $45 ; prodos error
MyWindowInfo

This is the data structure used for the windows we
allocate.

T Ne e ve Ne e e e

axNameSize equ 29

-

largest name we allow

oHandle equ 0

oBlank equ oHandle+4

oLength equ oBlank+1

oName equ oLength+l

oMMStuff equ oName+MaxNameSize

oFlag equ oMMStuff+6

oExtra equ oFlag+l

’

oFontID equ oHandle if the type is for font,

the first field is a FontID
rather than the handle to picture
data.

e e e e

e e e

MyWinfoSize equ oExtra+4

END

374 Appendix E: HodgePodge Source Code: Assembly Language

AR IR R KK AR R AR KRR AR K KA AR KRR IR AR KRR AR AR KRR KRR R AR R kA Ak ke kkkdkkkkk ko k

*

. * IOData
*

AR AR R AR AR KRR IR AR KRR R AR R KRR A AR R KRR AR KRR AR R KRR KRR RARR KA R AR AR AR A ARk kK

. IOData

CreateParms
NameC de
dc

~ CType dc
CAux dc

1 dc
dc
dc

DestParams
NameD

OpenParams

OpenID
NamePtr

ReadParams
ReadID
PicDestIN

PReadParams
PReadID
PReadLoc
PReadSize

MarkParams
MarkID
CurrentMark
Mark

WriteParams
WriteID
PicDestOUT

CloseParams
CloseID

DATA

anop
1440
i2's00C3!
12+$0006"
14+$00000000"
12'$0001"
12'$0000"
12+$0000"

anop
dc i4+0

anop
ds 2

ds 4
ds 4

dc 14'$8000"
4

anop
ds 2

END

Se S Se e Se e

~e .

~

~e e

DRNWR

BIN

Aux.

type

create date
create time

this many bytes
how many xfered

for reading a packed file

this many bytes
how many xfered

this many bytes
how many xfered

GLOBALS.ASM (global data)

375

LR R R R e R R R AR R R R RS TITTY
*

* Ignore
*

* Does not do a whole lot.
*

*******t*tt*t***t***t*kt*****t***t*******t*tt****t*tt*******t***
Ignore START

rts

END

*tt*****ﬁ*t***k*tt*t****tt*t*tt**********t****t*t**********tt*tk
Deref

Derefs and locks the handle passed in a,x. Result passed back
in a,x. Trashes 0 on zp.

* o+ * * ¥

*
i*****it**t**t*******t****t***t*t*t*t********t*****t***tt**t
Deref START
sta 0
stx 2
ldy #4
lda [0],y
ora #$8000
sta [0],y
dey
dey
lda [0],y
tax
lda [0]
rts

END

e R L S G u ey e,
*

* Unlock
*

* Unlocks the handle passed in x and a. 0 is trashed on zZp.
*
t*tiitt***t*tt**t*ti********t*t*t****t*t***t**t*ttt*i*t****t

Unlock START

sta 0

stx 2

1dy #4

lda [0],y
and #$7FFF
sta [0],y
rts

sessesseseasasEND END

376 Appendix E: HodgePodge Source Code: Assembly Language

Appendix F

HodgePodge
Code: C
HP.CC 378

MENU.CC 382

EVENT.CC 385
WINDOW.CC 390
DIALOG.CC 400
FONT.CC 405
PRINT.CC 409

HP.H 411

Source

377

HP.CC (main program)

/**t*k******t***********t********ﬁ**'******i**ﬁ**********tﬁt*k****t***

HodgePodge: An example Apple IIGS Desktop application
Written by the Apple IIGS Development Team
C Versionn 4.0

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

This program and its derivatives are licensed only for
use on Apple computers.

Works based on this program must contain and
conspicuously display this notice.

This software is provided for your evaluation and to
assist you in developing software for the Apple IIGS
computer.,

This is not a distribution license. Distribution of
this and other Apple software requires a separate
license. Contact the Software Licensing Department of
Apple Computer, Inc. for details.

THE SOFTWARE IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO ITS MERCHANTABILITY OR ITS FITNESS
FOR ANY PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH
YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU (AND
NOT APPLE OR AN APPLE AUTHORIZED REPRESENTATIVE)
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

Apple does not warrant that the functions

contained in the Software will meet your requirements
or that the operation of the Software will be
uninterrupted or error free or that defects in the
Software will be corrected.

SOME STATES DO NOT ALLOW THE EXCLUSION

OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO STATE.

Source file HP.CC -~ Startup and Shutdown routines

F ok R ok ok b b 3k b bk ok % ok Rk b 3k 3k % % F ok ok ok ok 3k kR o ok ok %k o ok F F ok ok F F F F F F F * * * o *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* DISCLAIMER OF WARRANTY
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

********ﬁ***t**r**t*tt***k*k*t********k***ttt*****t*t*kﬁ*t**tttt***t/

#include <types.h>
#include <prodos.h>
#include <misctool.h>
#include <quickdraw.h>

378 Appendix F: HodgePodge Source Code: C

#include <gdaux.h>
#include <window.h>
tinclude <memory.h>
#include <dialog.h>
#include <menu.h>
#include <control.h>
#include <desk.h>
#include <event.h>
tinclude <lineedit.h>
tinclude <misctool.h>
#include <locator.h>
#include <stdfile.h>
#include <print.h>
#include <font.h>
#include <intmath.h>
#include <list.h>
$include <scrap.h>
#include "hp.h"

extern int _toolErr;
boolean ToolsFound
All0k

PManagerFound

int MyID;
int ThisMode = 0x80;

int ToolTable [] = {14,
41

char **y,*z;

GrafPortPtr OrigPort;

= FALSE,
FALSE,
= TRUE;

0x100,
0x100,
0x000};

/*
/*
/*
/t
/*
/t
/t
/ﬁ
/*
/*
/*
/*
/*
/*
/t

/* Do we have tools ? */

/* assume the PM is there */

/* init mode = 640 */

Number of items */
QuickDraw II */
Desk Manager */
Event Manager */
Window Manager */
Menu Manager */
Control Manager */
QuickDraw Auxiliary */
Print Manager */
Line Edit */
Dialog Manager */
Scrap Manager */
Standard File */
Font Manager */
List Manager */

/* This is the routine that will do the initialization of tools, will allocate

memory and all related tasks

4

boolean StartUpTools ()

{

static char

TLStartUp ();

SysToolsDirStr []
static FileRec ParamBlock

"\p*/SYSTEM/TOOLS";

{ SysToolsDirStr , NULL };

/* for calling tools */

HP.CC (main program)

379

CheckToolError (1);

MyID = MMStartUp(); /* ID for all transactions */
CheckToolError (2);
MTStartUp(); /* Misc. Tools */
CheckToolError (3); /* Make sure all is OK */
y = NewHandle (0xBOOL, /* Eleven pages */
MyID, ‘ /* put it to my name */
attrBank +
attrPage +
attrFixed +
attrLocked,
OL) ; /* don't care */

CheckToolError (4);
z = *y; /* deref handle */

QDStartUp ((int) z,ThisMode,MAXSCAN,MyID);
CheckToolError (5);
OrigPort = GetPort ();

EMStartUp((int) z + 0x300,20,0,640,0,200,MyID); /* Event Manager */
CheckToolError (6);

MoveTo (20,20);
SetBackColor (0);
SetForeColor (15);

DrawString ("\pOne Moment Please... ");
ShowCursor 0
TryAgain:

GET_FILE_INFO (&ParamBlock);
if (_toolErr)
if (MountBootDisk () == 1)
goto TryAgain;
else
return (false); /* Exit function unsuccessfully */

LoadTools (ToolTable); /* Now it's ok to do this */
CheckToolError (7);

QDAuxStartUp ();
CheckToolError (8);

WaitCursor (); /* Show wristwatch cursor */

WindStartUp (MyID);
CheckToolError (9);

RefreshDesktop (NULL);

CtlstartUp (MyID, (int) z + 0x400);
CheckToolError (10);

LEStartUp (MyID, (int) z + 0x500);
CheckToolError (11);

DialogStartUp (MyID);
CheckToolError (12);

MenuStartUp (MyID, (int) z + 0x600);
CheckToolError (13);

DeskStartUp(); /* All we need is init'ed now */
CheckToolError (14);

380 Appendix F: HodgePodge Source Code: C

ShowPleaseWait ();

SFStartUp (MyID, (int) z + 0x700);
CheckToolError (15);
SFAllCaps (true);

FMStartUp (MyID, (int) z + 0x800); /* the watch cursor is up */
CheckToolError (16); /* while we count the fonts */
ListStartup (); /* >!< Note, not ListStartUp with upper case "U"! */

CheckToolError (17);

ScrapStartUp ();
CheckToolError (18);

PMStartUp (MyID, (int) z + 0x900);
CheckToolError (19);

HidePleaseWait (); /* Remove dialog box */
InitCursor (); /* Show arrow cursor */
return (true); /* Exit function successfully */

ShutDownTools ()

{
DeskShutDown ();

if (WindStatus () != 0)
HideAllWindows ();

ListShutDown (
FMShutDown (
ScrapShutDown (
PMShutDown (
SFShutDown (
MenuShutDown (
DialogShutDown (
LEShutDown (
CtlShutDown (
WindShutDown (
QDAuxShutDown (
EMShutDown (
QDShutDown (
MTShutDown (

if (MMstatus () != 0)
{
DisposeHandle (y);
MMShutDown (MyID);
}
TLShutDown () ;

/* MAIN program routine */

main ()
{ if (StartUpTools ()) /* Try to initialize tools */
: SetUpMenus ();
MainEvent ();
)ShutDownTools 07 /* Shutdown tools even if didn't run */

HP.CC (main program) 381

MENU.CC (menus)

/*********ﬁk*t**t**t*tt**i************k**t****ﬁt***ﬁ*********t****i*k*

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.

Source file MENU.CC -- Menu bar inserting/deleting / vectoring

*
*

*

*

*

*

*

* All Rights Reserved
*

*

*

*

*

*

ok A ok kR H F * ¥ * ¥

**************t*******t****t*tt*******ttt***i*******t**ﬁ*t***tt*****/

#include <types.h>
#include <menu.h>
#include <desk.h>
#include <window.h>
#include <memory.h>
#include <intmath.h>
#include <misctool.h>
#include <texttool.h>
#include "hp.h"

/* Bunch of routines defined somewhere else */
extern DoCloseItem();
extern DoAboutItem();
extern DoQuitItem();
extern DoOpenItem();
extern DoSaveltem();
extern DoChooserItem() ;
extern DoSetUpItem();
extern DoPrintItem();
extern DoChangeRes () ;
extern DoOpenltem();
extern DoSetMono () ;
extern DoShowVers () ;

extern WmTaskRec TheEvent;

extern GrafPortPtr WhichWindow;
extern GrafPortPtr WindowList [16];
extern int Windex;

char IDStr([8] = "\\N300\r";
extern char str[];

/* Here we have all defines for all the menus */

char *Menus[] = {

/* Fonts menu */

">> Fonts \\N6\r\

==Display Font -« . *F£N264\r\

==Display Font as Mono—spaced*MmNZSS\r.“, /* compiler adds '0' at

/* Windows menu */
">> Window \\DN5\r\
==No WIndows Allocated\\N299\r.",

382 Appendix F: HodgePodge Source Code: C

the end */

- /* Edit Menu */

">> Edit \\DN3\r\
==Undo*2zN250\r\
==-\\N298D\r\

==Cut *XxN251\r\

==Copy\\ *CcN252\r\
==Paste*VvN253\r\
==Clear\\N254\r.",

/* File Menu */

">> File \\N2\r\
==0Open ...*OoN258\r\
==Close\\DN255\r\

==Save As ...\\DN259\r\

- ===\\N298D\r\

==Choose Printer...\\N260\r\
==Page Setup ...\\DN261\r\
==Print ...\\D*PpN262\r\
==-\\N298D\r\
==0uit*QgN257\r.",

/* Rpple Menu */

"S3E\\XN1\r\

==About HodgePodge...\\N256\r\
==-\\N298D."};

AddToMenu ()

{

DataRecPtr dereftemp;
DataRecHandle TempHandle;
int index, i;

}

WhichWindow = FrontWindow ();
TempHandle = (DataRecHandle) GetWRefCon (WhichWindow);

dereftemp = *TempHandle;
HLock (TempHandle) ;

Int2Dec (Windex, IDStr + 3,2,0);
IDStr([3] |= 0x30;
IDStr[4] |= 0x30;

index = (dereftemp -> Str([0]) + 1;

for (1=0;1 <=6;1++)
dereftemp -> Str([i + index] = IDStr[i];

InsertMItem (& (dereftemp -> Blank),O0xffff,WindowsMenulID);

1f (! (Windex)) /* this is the first window */
{
DeleteMItem(299); /* Token item */
SetMenuFlag (0xff7f, WindowsMenulD) ; /* highlight the menu */

DrawMenuBar () ;
}
CalcMenuSize (0L, WindowsMenulD) ;
WindowList [Windex] = WhichWindow;
Windex++;
HUnlock (TempHandle) ;

DoWItem ()

{

WhichWindow=WindowList [(TheEvent .wmTaskData&Oxffff) - 300];
DoWindow () ;
HiliteMenu (FALSE, TheEvent.wmTaskData/Oxffff);

MENU.CC (menus)

383

DoMenu ()
{

switch (TheEvent .wmTaskData & OXffff)
{

case UndoID break; /* we do nothing with */

case CutID : break;

case CopyID : break;

case PastelD : break;

case ClearID : break; /* these ! */

case CloseWID : DoCloseItem();
break;

case AboutID : DoAboutItem();
break;

case QuitID ¢ DoQuitItem();
break;

case OpenWID ¢ DoOpenItem();
break;

case SavelD : DoSavelItem();
break;

case ChooseID ¢ DoChooserItem();
break;

case SetUpID : DoSetUpItem();
break;

case PrintID ¢ DoPrintItem();
break;

case ShowFontID ¢ DoOpenlItem();
break;

case MonolID ¢ DoSetMono () ;
break;

case 299 : break;

default : DoWItem();

}

HiliteMenu(FALSE, TheEvent.measkData/Oxffff);

SetUpMenus ()
{

int MenuLooper;
SetMTitleStart (10} ; /* Set starting pos of menus */

for (MenuLooper = 0; MenuLooper < NUM_MENUS; MenuLooper++)
InsertMenu (NewMenu (Menus [MenuLooper]),O);

FixAppleMenu (AppleMenulD) ; /* Add NDA's, if any */
FixMenuBar (); /* Set sizes of menus */
DrawMenuBar (); /* Draw the menu bar on the screen */

384 Appendix F: HodgePodge Source Code: C

' EVENT.CC (main event loop)

JrERKK KKK KRR K KA KRR R AR AR R KA KKK A KR AR AR AR AR R AR AR KR AR A KKK AR A A A KRR K AR ARk Kk

All Rights Reserved

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer,

* ok ok Ak k kA % A A A+

Source file EVENT.CC -- Main event loop and window activation

* % o ok % %k %k % O * A * * *

AR KKK KR KKK KRR KRR KRR AR KRR KRR AR KRR R AR AR KRR KK AR KRR KA KK AR KRR KA KK AR KRR KK /

#include <types.h>
#include <memory.h>
tinclude <window.h>
#include <prodos.h>
#include <misctool.h>
#include <texttool.h>
#include <menu.h>
#include "hp.h"

extern int _toolErr;
extern PManagerFound;

int QuitFlag = 0;
GrafPortPtr LastWindow = NIL,
ThisWindow = NIL;

int ActivateFlag;

struct HandleRec {
char *ptrpart;
int flags;
)z

/* for Open

typedef struct OpenRec {
Word openRe fNum;
Ptr openPathname;

Handle ioBuffer;
} OpenRec, *OpenRecPtr, **OpenRecHndl;
*/

OpenRec MyOpenParams = {0,0,0L};
/* for Read, Write, Close, Flush

typedef struct FileIORec {
Word fileRefNum;
Ptr dataBuffer;
Longint requestCount;
Longint transferCount;
} FileIORec, *FileIORecPtr, **FileIORecHndl;

*/

EVENT.CC (main event loop)

385

FileIORec ReadParams = {

o, /* fileRefNum */
oL, /* dataBuffer */
0x8000L, /* requestCount */
OL}; /* transferCount */
FileIORec WriteParams = {
0, /* fileRefNum */
oL, /* dataBuffer */
0x8000L, /* requestCount */
OL}; /* transferCount */
FileIORec CloseParams; /* most remains unused */

/* for Create, SetFileInfo, GetFileInfo

typedef struct FileRec {

Ptr pathname;

Word fAccess;

Word fileType;

Longint auxType;

Word storageType;

Word createDate;

Word createTime;

Word modDate;

Word modTime;

Longint blocksUsed;

} FileRec, *FileRecPtr, **FileRecHndl; */

FileRec CreateParams = {

0L,
0x00c3,
0x0006,
0L,
1,
0,0,
0,0,
OL};

/* for Destroy, ChangePath, ClearBackupBit, GetPathname, GetBootVol

typedef struct PathNameRec {

Ptr pathname;
Ptr newPathname;
} PathNameRec, *PathNameRecPtr, **PathNameRecHndl; */

PathNameRec DestParams = {0OL,OL};
WmTaskRec TheEvent;

MainEvent ()

int MyEvent;

TheEvent .wmTaskMask

0x00000f£ff; /* initialize mask */
do

do
{
ActivateFlag = 0;
CheckFrontW ();
MyEvent = TaskMaster (OXFFFF, &TheEvent);
}
while (!MyEvent) ;
switch (MyEvent)
{

386 Appendix F: HodgePodge Source Code: C

:

case activateEvt : DoActivate ();
break;

case 17: /* in menu */

DoMenu () ;
break;

case 22: /* in goaway */

DoCloseItem();
break;

case 25: /* in special menu item */
DoMenu() ;
break;

}

}
while (! (QuitFlaq));
}

: DoQuitItem ()

{
QuitFlag = 0x8000; /* simple uh? */

/* Check if the front window has changed and react accordingly */

CheckFrontW ()
{

DataRecHandle TempDataHand;
DataRecPtr TempDataPtr;

ThisWindow = FrontWindow();
if (! (ThisWindow == LastWindow))
{
if (LastWindow = ThisWindow) /* at least one window */
{
if (! (GetSysWFlag(ThisWindow)))
{
SetUpForAppW () ;
if (ActivateFlag)
TempDataHand = (DataRecHandle) GetWRefCon (TheEvent .wmTaskData) ;
else
TempDataHand = (DataRecHandle)GetWRefCon (ThisWindow);
TempDataPtr = *TempDataHand;
HLock (TempDataHand) ;
if (TempDataPtr -> Flag)
DisableMItem (SavelD);
else
EnableMItem (SavelID);
HUnlock (TempDataHand) ;
}
else
SetUpForDaW() ;
}
else
DisableAll ();

}
DoActivate ()
if (TheEvent.wmModifiers & 1)

{
ActivateFlag = 1;

EVENT.CC (main event loop)

387

CheckFrontW ();
}

/* Disable items not applicable */

DisableAll ()

{
SetMenuFlag (0x0080,EditMenulID); /* disable */
DrawMenuBar ();
DisableItems ();

}

SetUpForAppW ()

{
SetMenuFlag (0x0080,EditMenulD);
DrawMenuBar ();
EnableItems ();

}

SetUpForDaW ()

{
DisableItems();
EnableMItem (CloseWID);

SetMenuFlag (0xff7f,EditMenulD);
DrawMenuBar () ;
}

EnableItems ()
{
EnableMItem (SavelID);
EnableMItem (CloseWID);
if (PManagerFound)
{

EnableMItem(PrintID); /* don't enable if printing */
EnableMItem (SetUpID); /* is out of the question! */
}
}
DisableItems ()

{
DisableMItem (SavelD);
DisableMItem (CloseWID) ;
DisableMItem (PrintID); /* who cares!? */
DisableMItem (SetUpID);
}

/* Now some I/O stuff, this file is just Ok for it */

boolean LoadOne ()
{
OPEN (&MyOpenParams) ;
if (_toolErr)
{
CheckDiskError (1);
return (FALSE) ; /* couldn't open */
}
else
{
ReadParams.fileRefNum = MyOpenParams.openRefNum;
CloseParams.fileRefNum = MyOpenParams.openRefNum;
READ (&ReadParams) ;
if (_toolErr)
{

CLOSE (&CloseParams) ;
CheckDiskError (2);

388 Appendix F: HodgePodge Source Code: C

return (FALSE) ;

CLOSE (&CloseParams) ;
return (TRUE) ;

}

SaveOne ()

{
CreateParams.pathname = MyOpenParams.openPathname;
DestParams.pathname = MyOpenParams.openPathname;
CloseParams. fileRefNum = MyOpenParams.openRefNum;
CreateParams.fileType = Oxcl;
CreateParams.auxType = 0;

% DESTROY (&DestParams) ;

CREATE (&¢CreateParams) ;
if (_toolErr)
{
CLOSE (&¢CloseParams) ;
CheckDiskError (3);

else
{
OPEN (sMyOpenParams) ;
if (_toolErr)
{
CLOSE (&CloseParams) ;
CheckDiskError (4) ;

else

{

WriteParams.fileRefNum = MyOpenParams.openRefNum;

WRITE (&WriteParams);
if (_toolErr)
{
CLOSE (&CloseParams) ;
CheckDiskError (5);
}
else
CLOSE (¢CloseParams) ;

EVENT.CC (main event loop)

389

WINDOW.CC (windows)

/*******************************i'************ﬁt*t********t*ﬁ*t**ﬁ*t*i*

HodgePodge: An example Apple IIGS Desktop application

All Rights Reserved

*

*

*

*

*

*

*

* Copyright (c) 1986-87 by Apple Computer, Inc.

*

*

*

*

* Source file WINDOW.CC -- Window opening / closing
*
*

Ok ok ok %k F * % % 3 * A * *

HRI KKK KRR KKK KKK KKK KK KKK KKK KRR KKK AR KKK AR KKK KRR KR KRR RR K KKK AR R KK /

#include <types.h>
#include <quickdraw.h>
#include <window.h>
#include <stdfile.h>
#include <prodos.h>
#include <memory.h>
#include <qdaux.h>
#include <font.h>
#include <menu.h>
#include <desk.h>
#include <misctool.h>
#include <texttool.h>
#include <intmath.h>
#include "hp.h"

extern GrafPortPtr OrigPort;

extern char str(];
/* stuff to define the window data structure, defined in HP.H
typedef struct DataRec {

handle PicHand;

char Blank;

char Str[30];

char MMStuff(6];

Byte Flag;

char Extra;

} DataRec, *DataRecPtr, **DataRecHandle;
*/

DataRecHandle MyDataHandle;
DataRecPtr RefPtr;

/* This structure is defined in window.h
typedef struct WmTaskRec {

Word wmWhat ;
DblWord wmMessage;
DblWord wmWhen;
Point wmWhere;
Word wmModifiers;
DblWord wmTaskData;
DblWord wmTaskMask;

} WmTaskRec, *WmTaskRecPtr, **WmTaskRecHndl; */

extern WmTaskRec TheEvent;
extern char *LineTable[];

390 Appendix F: HodgePodge Source Code: C

- extern int _toolErr;
extern int MyID;
extern int ThisMode;

~ extern GetPutTemplate SFP640Temp; /* templates for StdFile */

char origitem([] = "==No Windows Allocated\\N299\r"; /* first item in windows */

/* see Font.c */
/ * " " n * /

extern int MonoFlag;
extern FontID DesiredFont;

extern int Paint ();
extern int DispFontWindow () ;
pascal int OpenFilter();

/* window content proc */
/* Window def Proc for fonts */

/* typedef struct ParamList {

Integer paramLength;
Word wFrameBits;
Ptr wTitle;

long wRefCon;

Rect wZoom;

Ptr wColor;
Integer wYOrigin;
Integer wXOrigin;
Integer wDataH;
Integer wDataW;
Integer wMaxH;
Integer wMaxW;
Integer wScrollVer;
Integer wScrollHor;
Integer wPageVer;
Integer wPageHor;
DblWord wInfoRefCon;
Integer wInfoHeight;
Ptr wFrameDefProc;
Ptr wInfoDefProc;
Ptr wContDefProc;
Rect wPosition;
WPortPtr wPlane;
WindRecPtr wStorage;

} ParamList, *ParamListPtr, **ParamListHndl; */

ParamList MyWindow = {

sizeof (MyWindow), /* Record size */

0xdda0, /* Frame dda0 */

0L, /* Ptr to title */

0L, /* RefCon */
0,0,0,0, /* Full size (0 --> default)*/
oL, /* Color Table Ptr */

0, /* Vertical Origin */

0, /* Horizontal Origin */
200, /* Data area hight */

640, /* Data area width */

200, /* Max cont height */

640, /* max cont width */

4, /* pixels to scroll vert */
16, /* pixels to scroll horz */
40, /* pixels to page vert */
160, /* pixels to page horz */
0oL, /* info bar string */

0, /* info bar height */

01, /* def proc ptr */

0L, /* info bar def proc */

Paint, /* Content def proc */
0,0,0,0, /* size/pos of content */
-1L, /* plane of window */

0}; /* Wind Rec add */

WINDOW.CC (windows)

391

extern FileIORec ReadParams;
extern FileIORec WriteParams;

Rect ISizPos = {20,10,80,350};

/*
typedef struct FontInfoRecord {

integer ascent;

integer descent;

integer widMax;

integer leading;

} FontInfoRecord, *FontInfoRecPtr, **FontInfoRecHndl;
*/

FontInfoRecord FIRecord;

SFReplyRec MyReply = {0,0,0," ", " n};

extern OpenRec MyOpenParams; /* OpenRec {

int openRefNum;
ptr openPathname;
long iOBuffer;

}o*/
char Promptl [] = "\pload which picture:";
char Prompt2 [] = "\pSave which picture:";
int Wxoffset = 20;
int Wyoffset = 12;
handle PicHandle; /* handle to picture data */
extern boolean OpenWindow () ; /* to add window to menu */
extern boolean AskUser ();
extern boolean LoadItUp();
extern boolean DoTheOpen();
GrafPortPtr WhichWindow; /* current window handle */
GrafPortPtr WindowList [16]; /* list of window handles */
int vIndex; /* index to: | */
/* \/ */

GrafPortPtr vTable[16]; /* list of what was visible */
int Windex = 0; /* index to next avail wind id*/
LocInfo SrcInfo640 = {

0x80,

/* used to be byte here */

oL,

160,

{0,0,200,640}

bi

Rect SrcRect640 = {0,0,200,640};
/t NN N 0 e 0 0 s i P Pt i P o I P o o Pt P o0 0 i P . o 0 P 0 P ot ot o 0 P Pt ~a t/
/* Now the real stuff */

/* Procedure to Close windows, we close them from the back.
Things move faster this way.

*/

392

Appendix F: HodgePodge Source Code: C

HideAllWindows ()
{

vindex = 0; /* init index */
if (vTable([vIndex] = FrontWindow()) /*at least one window */
{
for (vIndex;vTable[vIndex + 1] = GetNextWindow (vTable[vIndex]);vIndex++);

for (vIndex;vIndex >= 0;vIndex--)
HideWindow (vTable [vIndex]);

/* DoOpenItem:
1) Make sure that there aren't too many windows open already;
2) Call OpenWindow to let the user see it; if successful,
3) Call AddToMenu to add the name to the windows menu list,.
t/ N

DoOpenItem ()
{

if (Windex == NUM_WINDOWS)
ManyWindDialog ();
else
if (OpenWindow ())
AddToMenu () ;

/* OpenWindow:
1) Calls SFGetFile to get name of file to display in window
(or the dialog to select font if needed)
2) Gets memory for, and loads the picture/font data into memory
3) Allocates a new window
a)puts handle to MyWindowInfo in WrefCon
b) note that wContDefProc is set to "Paint"
c) for fonts wContDefProc is set to "DispFontWindow"

The definition of MyWindowInfo is global data.
g/

boolean OpenwWindow ()
{
if ((TheEvent.wmTaskData & OXFFFF) == ShowFontID)
{
if (DoChooseFont ())
if (DoTheOpen ())
return (TRUE);
else
return (FALSE);
else
return (FALSE);
}
else

if (AskUser())
return (TRUE) ;

else
return(FALSE) ;

WINDOW.CC (windows)

393

/t
typedef struct SFReplyRec {

Boolean good;

Word fileType;

Word auxFileType;

char filename([16];

char fullPathname[129];

} SFReplyRec, *SFReplyRecPtr ;
*/

boolean AskUser ()
{
SFGetFile(20,20,Prompt1,0penFilter,OL,&MyReply);
if (MyReply.good)
if (LoadItUp())
return(TRUE) ;
else
return(FALSE) ;
else
return(FALSE) ;
}

boolean LoadItUp ()
{
WaitCursor();

PicHandle = NewHandle(OxBOOOL,MyID,0,0L);
if (_toolErr)
return (FALSE) ;
else
{
ReadParams.dataBuffer = *PicHandle;
HLock(PicHandle);
if (DoTheOpen ())
return (TRUE) ;
else
return (FALSE) ;

}

boolean DoTheOpen ()
{

int auxl,aux2;

ptr aux;

boolean IOError = FALSE;
int i; /* there is always a need */

long FIDAux;

MyDataHandle = (DataRecHandle)NewHandle((1ong)(sizeof(DataRec))
MyID,0xc000,0L) ;

’

MyWindow.wRefCon = (long)MyDataHandle;

if (_toolErr)
return(FALSE) ;
else
{
RefPtr = *MyDataHandle;
HLock(MyWindow.wRefCon);

/* The assumption is that the window is for a picture (not a font) */

MyWindow.wContDefProc = (VoidProcPtr) Paint;
RefPtr -> Flag = 0; /* picture flag */

394 Appendix F: HodgePodge Source Code: C

S e e e T e T

if ((TheEvent.wmTaskData & Oxffff) == ShowFontID) /* were we right? */
{
RefPtr -> Flag = 0x1 | MonoFlag; /* No! so change */
PicHandle = (handle) ((DesiredFont.famNum) +
(DesiredFont.fontSize * 0x1000000) +
(DesiredFont. fontStyle * 0x10000));
/* everything to font */
/* display */
MyWindow.wContDefProc = (VoidProcPtr) DispFontWindow;

MyOpenParams.openPathname = MyReply.fullPathname;

if (!(LoadOne()))
IOError = TRUE;
} /* end of picture stuff */
if (IOError)
{
DisposeHandle (MyWindow.wRefCon) ;
DisposeHandle (PicHandle) ;
return (FALSE) ;

RefPtr -> PicHand = PicHandle;
RefPtr -> Blank = 0x20;
MyWindow.wTitle = RefPtr -> Str;

if (! (MyReply.filename[0] <= MaxNameSize))
MyReply.filename[0] = MaxNameSize;

for (i=MyReply.filename[0];1i>=0;i--)
RefPtr -> Str[i] = MyReply.filename(i];
MyWindow.wDataW = 640;
MyWindow.wMaxW = 640;
ISizPos.h2 = 350;

MyWindow.wDataH = 200; /* in case is a picture */
SetPort (OrigPort);
if ((TheEvent.wmTaskData & OXFFFF) == ShowFontID)

(FIDAux = GetFontID();

InstallFont (PicHandle, 0);

GetFontInfo (&§FIRecord);

MyWindow.wDataH =
((FIRecord.ascent + FIRecord.descent) * (NumLines + 1));

FindMaxwidth () ;

InstallFont (FIDAux,0);
}

/* windows have to offset evenly */
MyWindow.wPosition,vl = Wyoffset+ISizPos.vl;
MyWindow.wPosition.hl = Wxoffset+ISizPos.hl;
MyWindow.wPosition.v2 = Wyoffset+ISizPos.v2;
MyWindow.wPosition.h2 = Wxoffset+ISizPos.h2;

Wxoffset += 20;

if ((Wyoffset += 12) > 120)
Wyoffset = 12;

WINDOW.CC (windows)

395

WhichWindow = NewWindow (&MyWindow) ;
SetPort (OrigPort);

HUnlock (PicHandle) ;

SetOriginMask (OXFFFE,WhichWindow) ;
InitCursor();

return(TRUE) ; /* finally! */

}

void DoSaveItem()
{
DataRecHandle AuxHandle;

Pointer AuxPtr;
int 1i;
WhichWindow = FrontWindow () ;
AuxHandle = (DataRecHandle) GetWRefCon (WhichWindow);

RefPtr = *AuxHandle;
HLock (AuxHandle) ;

if (! (RefPtr -> Flag)) /* Save only type 0 windows */
{
MyOpenParams.openPathname = GetWTitle (WhichWindow);
SFPutFile (20,20,Prompt2,MyOpenParams.openPathname, 15, &MyReply);
if (MyReply.good) /* <> 0 -=> OK to save it */
{

WaitCursor();
PicHandle = RefPtr -> PicHand;
WriteParams.dataBuffer = *PicHandle;
HLock (PicHandle);
MyOpenParams.openPathname = MyReply.fullPathname;
SaveOne () ; /* save the picture */
for (i = MyReply.filename([0];i >= 0; i--)

RefPtr -> Str[i] = MyReply.filename([i];
SetWTitle (RefPtr -> Str,WhichWindow);
HUnlock (PicHandle) ;
CalcMenuSize (0L, WindowsMenulD) ;
InitCursor();

}

/* This routine finds out how wide the window should be for the
current font

*/

FindMaxwWidth ()

{

int tempFlags;

int LineCounter;
int aux;

396 Appendix F: HodgePodge Source Code: C

MyWindow.wDataW = 0;
tempFlags = GetFontFlags();
SetFontFlags ((RefPtr -> Flag >> 1) & 1);
for (LineCounter = 1;LineCounter < NumLines;LineCounter++)
if ((aux = StringWidth(LineTable[LineCounter])) > MyWindow.wDataW)
MyWindow.wDataW = aux;
MyWindow.wDataW += 10;
SetFontFlags (tempFlags); /* put flags back */
}

/* Close a window and dispose of extra-data (in WRefCom)
and remove it from window list
Y

DoCloseItem ()

{
~ DataRecHandle tempHand2;

DataRecPtr tempPtr2;

int IDDelete;
int Counter;
int IDStart;
int IDNew;

if (WhichWindow = FrontWindow ())

CloseNDAByWinPtr (WhichWindow) ; /* if it's a sys wind this is enough*/
if (_toolErr) /* error means wasn't a system window */
{
tempHand2 = (DataRecHandle) GetWRefCon (WhichWindow);

tempPtr2 = *tempHand2; /* deref */
HLock (tempHand2) ; /* and lock it */
PicHandle = tempPtr2 -> PicHand; /* handle to get rid of*/
if (tempPtr2 -> Flag) /* ~0 -=> font */
PicHandle = NIL; /* so, don't dispose */
IDDelete = AdjwWind () + 300; /* take it out of list */
if (Windex == 1) /* one wind is special case */

{
InsertMItem(origitem, 0, WindowsMenuID); /* no windows message*/
SetMenuFlag (0x0080,WindowsMenulID) ; /* disable windows */
DrawMenuBar () ;

Wxoffset = 20; /* reset start */
Wyoffset = 12; /* for window sizing */
}
DeleteMItem(IDDelete) ; /* off the menu */
Windex--;

if (Counter = Windex)

{
IDStart = 300;

IDNew = 300; /* starting point */
while (Counter)

if (IDStart != IDDelete)
{
SetMItemID (IDNew, IDStart);
IDNew++;
Counter--;
}
IDStart++;
}

WINDOW.CC (windows)

397

Cachenusize(OL,windowsMenuID);

DisposeHandle(tempHandZ);

if (PicHandle)
DisposeHandle(PicHandle);

CloseWindow(WhichWindow);

}

/* AdjWind () finds and deletes a window list item which matches
"WhichWindow" and returns where it position was.
*/

Adjwind ()
{
int IDCounter, 1,y;

i = Windex =1;
IDCounter = i;

while (! ((WhichWindow == WindowList [1]) I11<0))

’

y =1i;

while (!(y == IDCounter))
{
WindowList[y] = WindowList [y +1)];
y++;
}
return(i);
}

/* This procedure gets called when task master feels is time to
draw the picture.
*/

Paint ()
{
DataRecHandle auxHandle;
GrafPortPtr auxPtr;
DataRecPtr DataPtr;
auxPtr = GetPort () ; /* get current port */
auxHandle = (DataRecHandle) GetWRefCon(authr); /* handle to data */
DataPtr = *auxHandle;
HLock(auxHandle);
PaintIt (DataPtr -> PicHand) ; /* (handle *) x/

HUnlock(auxHandle);
}

/* This is the routine that actually does the painting after it
receives the handle to the picture.
*/

PaintIt(Painthand)
handle Painthand;

{
Ptr auxPtr2;

auxPtr2 = *Painthand; /* deref */

398 Appendix F: HodgePodge Source Code: C

HLock (Painthand) ;

SrcInfo640.ptrToPixImage = auxPtr2;

PPToPort (&SrcInfo640, &SrcRect 640,0,0,0) ;

HUnlock (Painthand) ;
}

DoGoAway ()
{

HideWindow (TheEvent .wmTaskData) ;
| ;

DoWindow ()}

{
SelectWindow (Whichwindow) ;
ShowWindow (WhichWindow) ;

}

pascal int OpenFilter (DirEntry)

ptr DirEntry;

/* Filter function called by the Standard

File Operations' SFGetFile

dialog to determine whether a filename should be dimmed or not. */

if ((*(DirEntry + 0x10) & OxOOFF) == 0xCl)

return (2);
else
return (1);

/* ... so it's undimmed.

/* Else show it dimmed.

/* Type $Cl: picture file */

*/

*/

WINDOW.CC (windows)

399

DIALOG.CC (dialog boxes)

/ﬂ****t***************************t*t********t***i*************k******

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

* Ok % F F F F * O F * * ¥ ¥

Source file DIALOG.CC -- Dialogs and error trapping

* % F F * * F * * F * * * *

*****it****t**********t*t*tﬁ***ﬁ**t*t***kt**kt**k*******t*****ﬁ****ﬁt/

#include <types.h>
#include <quickdraw.h>
#include <gdaux.h>
#include <memory.h>
#include <dialog.h>
#include <prodos.h>
#include <texttool.h>
#include <stdfile.h>
#include <window.h>
#include <locator.h>
#include <intmath.h>
#include <misctool.h>
#include "hp.h"

extern int _toolErr;
extern int MyID;
extern GrafPortPtr OrigPort;
GrafPortPtr MsgWindPtr;

/* Data structure for "About HodgePodge..." dialog box: */

static char OKStr [] = "\pOK";

Rect DRect = {20,190,192,450};

Rect AppleIconRect = {135,20,0,0};

400 Appendix F: HodgePodge Source Code: C

char ApplelIcon640[] = {0x00,0x00,0x00, 0x00,0x22,0x00, 0x40, 0x00,

0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0f,0xff, OXff, Oxff,0xff,0xff, Oxff, Oxff, Ox£ff, OXff, Oxff, Oxff,0xff,O0xff,0xff, 0xf0,
0x0f,0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0xfO,
0x0f,0x0f, OXxff, Oxff,0xff, Oxff, Oxff, Oxff, Oxff, oxff,0xff,0xff,0xff, 0xff,0xf0, 0x£0,
0x0f,0x0f, Oxff, OXff,Oxff, Oxff, OXff, OXff, Oxff, Oxff, 0xf8, Ox8f, oxff,0xff,0x£f0,0xf0,
0x0f,0x0f, Oxff, Oxff,Oxff, Oxff,Oxff, Oxff,Oxff, Oxf8, 0x88,0x8f, Oxff,0xff,0xf0,0x£f0,
0x0f,0x0f, OXff, OXxff,Oxff, Oxff, Oxff, Oxff, Oxff, 0x88,0x88,0x8f, oxff,0xff,0xf0,0xf0,
0%0f,0x0f, OXxff, Oxff,0xff, Oxff, Oxff, Oxff, 0xf8, 0x88, 0x88,0xff,0xff, 0xff,0x£f0, 0xf0,
0%0f,0x0f, Oxff, Oxff,0xff, Oxff, Oxff, Oxff,0x88, 0x88,0x88,0xff, 0xff, 0xff,0xf0, 0xf0,
0x0f,0x0f, OXff, OXff,0xff, Oxff, Oxff, Oxff, 0x88,0x88, 0x8f, Oxff,0xff,O0xff,0xf0, 0xf0,
0x0f,0x0f, Oxff, OXxff, Oxff, Oxff, Oxff, Oxff, 0x88,0x88, Oxff, Oxff,Oxff,0xff,0xf0, 0xf0,
0x0f,0x0f, Oxff, Oxff,0x£8, 0x88,0x8f, 0xff, 0xB8, Oxff, 0x88, 0x88,0xff, 0xff,0xf0, 0xf0,
0x0f,0x0f, Oxff, 0xf8,0x88, 0x88, 0x88, 0x8f, Oxff, 0x88,0x88,0x88, 0x88, 0xff,0xf0, 0xf0,
0x0f,0x0f, Oxff, 0x88, 0x88, 0x88, 0x88, 0x88,0x88, 0x88, 0x88,0x88, 0x88, 0x8f,0xf0, 0xf0,
0x0f,0x0f, Oxfe, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxef, Oxff,0xf0, 0x£0,
0x0f,0x0f, Oxfe, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxff, Oxff, 0xf0, 0x£0,
0x0f,0x0f, Oxfe, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxee, Oxef, Oxff, Oxff,0xf0, 0x£O,
0x0f,0x0f, 0x£6, 0x66,0x66,0x66, 0x66,0x66,0x66, 0x66,0x66,0x6f, 0xff, 0xff,0x£0, 0x£f0,
0x0f,0x0f, 0xf6, 0x66,0x66, 0x66, 0x66, 0x66,0x66, 0x66, 0X66, 0x6f,0xff, 0xff,0xf0, 0xf0,
0x0f,0x0f, 0xf6,0x66,0x66, 0x66,0x66, 0x66,0x66, 0x66,0x66,0x6f,0xff, Oxff,0x£f0, 0xfO,
0x0f,0x0f, 0xf4, 0x44,0x44, 0x44, 0x44,0x44,0x44,0x44,0x44, 0x44,0xff,0xff,0xf0,0xf0,
0x0f,0x0f, 0xf4,0x44,0x44,0x44,0x44,0x44,0x44,0x44,0x44, 0x44,0x4f,0xff,0xf0, 0x£0,
0x0f,0x0f, 0xff, 0x44,0x44, 0x44,0x44,0x44,0x44,0x44,0x44, 0x44,0x44,0x4f,0xf0, 0x£f0,
0x0f,0x0f, Oxf £, 055, 0x55, 0x55, 055, 0X55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x5f,0xf0, 0xf0,
0x0f,0x0f, 0xff, 0x55,0x55, 0x55, 0x55,0x55, 0x55, 0x55, 055, 0x55, 0x55, 0x5f, 0x£0, 0x£0,
0x0f,0x0f, 0xff, 0x£5, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 055, 0x55, 0x55, 0xff,0xf0, 0xf0,
0x0f,0x0f, 0xff, 0xf1,0x11,0x11,0x11,0x11,0x11,0x11, 0x11,0x11, 0x11, 0xff,0xf0, 0xf0,
0x0f,0x0f, Oxff, Oxff,0x11,0x11,0x11,0x11,0x11, 0x11, 0x11,0x11, 0x1f,0xff,0xf0,0x£f0,
0x0f,0x0f, Oxff, Oxff,0xfl,0x11,0x11,0x1f,0xff, 0x11, 0x11,0x11, oxff,0xff,0x£f0,0xf0,
0x0f,0x0f, Oxff, OXff, OxfF, 0x11,0x11, Oxff,Oxff, Oxf1l, 0x11,0x1F, oxff,0xff,0x£f0,0xf0,
0x0f,0x0f, OXff, Oxff, Oxff, Oxff, Oxff, Oxff,Oxff, Oxff, OXff, Oxff,0xff,Oxff,0xf0,0x£0,
0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00,0x00, 0xf0,
0x0f,Oxff,Oxff, OXff,Oxff, Oxff, OXff, Oxff,Oxff, Oxff, OXff, OXEf, oxff,0xff,0xff,0xf0,
0%00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
b

Rect TextlRect = {12,4,200,256};

/* This is LONGSTATTEXT2-formatted type text: */
char Textl [] = "\1J\1\0\

\15\010\0\

HodgePodge in C\

\r\

\r\

\1S\0\0\

A potpourri of routines that demonstrates many \
features of the Apple IIGS tools.\

\r\

\r\

By the Apple IIGS Development Team\

\r\

\r\

Copyright Apple Computer, Inc., 1986-1987,\

\r\

All rights reserved\

\r\

v4.0 October 1987";

Rect ButtonRect = {153,180,0,0};

DIALOG.CC (dialog boxes)

401

/* Dialog Template data structure for "Please wait while ..." dialog: */
char PlsWtMsg [] = "\pPlease wait while we set things up.";

ItemTemplate PlsWtItem = {1348,
19,70, 200, 640,
statText,
PlsWtMsg,

OI
OI
NULL};

DialogTemplate PlsWtTemp = {30,120,80,520,
true,
NULL,
&PlsWtItem,
NULL};

/* Alert Template data structure for too many windows and disk error alerts: */

ItemTemplate OurAlertIteml = {1,
25,320,0,0,
buttonItem,
OKStr,

0!
0,
NULL};

ItemTemplate OurAlertItem2 = {1348,
11,72,200, 640,
statText,
NULL, /* ItemDescr —- will fill it in */
ol
ol
NULL};

AlertTemplate OurAlertTemp = {30,120,80,520,
6666,
0x80, 0x80,0x80,0x80,
&OurAlertIteml,
&OurAlertItem2,
NULL};

CheckToolError (Where)

/* CheckToolError checks to see if the last tool call completed successfully.
If so, then it just returns. If not, we crash using the System Death
Handler (bouncing apple). */
int Where;

statlic char DeathMsg [] = "\p At S$XXXX; Could not handle error $";
int ToolErrorsave;

402 Appendix F: HodgePodge Source Code: C

ToolErrorSave = _toolErr;
if (ToolErrorsSave)
{
Int2Hex (Where,DeathMsg + 6,4);
SysFailMgr (ToolErrorSave,DeathMsg);
}

boolean CheckDiskError (Where)

/* This routine checks if the last ProDOS operation caused an error. If so,
then we change the cursor to the arrow cursor, put up a stop alert dialog
box with the text of the error message, which then waits for the user's
OK click, and then change the cursor back to the wristwatch. If there
was no disk error, then we do nothing. We also return TRUE or FALSE
depending on whether an error actually occurred or not. */

int Where;

{
int DiskErrNum;

DiskErrNum = _toolErr; /* save this first
if (DiskErrNum)
{
OurAlertItem2.itemDescr = "\pDisk Error $XXXX occurred at $XXXX.";
Int2Hex (DiskErrNum, /* Put ASCII
OurAlertItem2.itemDescr + 13,
4);

Int2Hex (Where, /* Put ASCII
OurAlertItem2.itemDescr + 31,
4);

InitCursor (); /* Set arrow cursor

StopAlert (&OurAlertTemp, NULL);
/* Do not restore watch cursor */

/* Draw dialog & wait

}
return (DiskErrNum); /* Assign function result

ManyWindDialog ()
/* Displays caution alert dialog with a message about no more windows

being allowed open. Handles mouse events until OK button is clicked.
Then the dialog box is removed and we return. */

OurAlertItem2.itemDescr = "\pNo more windows, please."; /* Set string */
CautionAlert (&OurAlertTemp, NULL); /* Do draw, wait, undraw. */

DoAboutItem ()

/* Function DoAboutItem shows how to build a dialog box manually. */

{

handle ApplelconH;
GrafPortPtr MdialogPtr;
AppleIconH = NewHandle (552L,MyID,0,0L); /* Allocate memory */
CheckToolError (50); /* Hope it was ok */
HLock (AppleIconH) ; /* Freeze handle */
PtrToHand (AppleIcon640,ApplelIconH, 552L) ; /* Move icon image */

DIALOG.CC (dialog boxes)

*/

*/

*/

*/
*/

*/

403

MdialogPtr = NewModalDialog (&DRect, TRUE, OL) ; /* Draw dialog box */

/* Install and draw items in the dialog box: */

NewDItem (MdialogPtr,1,&ButtonRect,buttonItem,OKStr,0,0,NULL);

NewDItem (MdialogPtr,3,&AppleIconRect,iconItem+itemDisable,
ApplelconH,0,0,0L);

NewDItem (MdialogPtr,4,&Texthect,longStatText2+itemDisable,Textl,
sizeof (Textl) - 1,0,0L);

ModalDialog (NULL) ; /* Track the mouse inside the box */
CloseDialog (MdialogPtr); /* Remove the box from the screen */
DisposeHandle (ApplelIconH) ; /* Deallocate memory */

/* ShowPleaseWait / HidePleaseWait */

/* Brings up a window and puts a message on it
witout waiting for Update Event */

ShowPleaseWait ()
{

OrigPort = GetPort ();
MsgWindPtr = GetNewModalDialog (&P1sWtTemp) ;
BeginUpdate (MsgWindPtr); /* begin Update process */

DrawDialog (MsgWindPtr) ;
EndUpdate (MsgWindPtr) ;

HidePleaseWait ()

{
CloseDialog(MngindPtr);
SetPort (OrigPort);

}

MountBootDisk ()

/* MountBootDisk is called whenever the application requires

something from the boot volume and it is not online */
{
static char PromptsStr [] = "\pPlease insert the disk",
OKStr [1 = "\pOK",
CancelStr [] = "\pShut Down",

VolsStr [256];
static PathNameRec GBVParams

{ Volstr,NULL };

GET_BOOT_VOL (&GBVParams) ;
return (TLMountVolume (174,30,PromptStr,VolStr,OKStr,CancelStr));

404 Appendix F: HodgePodge Source Code: C

FONT.CC (fonts)

/#*ﬁ******t**k*****t***tt***t*i**ti********i****ﬁ***************ﬂﬁt***

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

T . T S

Source file FONT.CC -- Choosing font, font window defproc

* % ok o ok o * F F F * * * *

t*******t*t*ﬁ*****i*t**i*iQ**t***t*it***i*****ti********i***ﬁ*t*t****/

tinclude <types.h>
tinclude <quickdraw.h>
#include <font.h>
#include <intmath.h>
#include <stdfile.h>
#include <window.h>
#include <memory.h>
#include <menu.h>
#include <texttool.h>
#include "hp.h"

extern SFReplyRec MyReply;

/*
typedef struct SFReplyRec {

Boolean good;

Word fileType;

Word auxFileType;

char filename[16];

char fullPathname(129];

} SFReplyRec, *SFReplyRecPtr ;
*/

extern int _toolErr;

ptr FontWinPtr;

/ﬁ
typedef struct FontID {

Word famNum;

Byte fontstyle;

Byte fontsSize;

} FontID, *FontIDPtr, **FontIDHndl;
B/

FontID DesiredFont = { Oxfffe,00,0x08};

int MonoFlag = 0;

/t

typedef struct FontInfoRecord {
integer ascent;
integer descent;
integer widMax;
integer leading;

FONT.CC (fonts)

405

} FontInfoRecord, *FontInfoRecPtr, **FontInfoRecHndl;
*/

FontInfoRecord CurrFont;
int CurrHeight,LineCounter;

/*
typedef struct Point ({

Integer v;

Integer h;

} Point, *PointPtr, **PointHndl;
*/
Point CurrPos;
char Line0[30] = { , /* Namelength + 1 */
}; /* + 4 for size info */
char Linel[] = "\O";
char Line2[] = "\pThe quick brown fox jumps over the lazy dog.";

char Line3[] = "\pShe sells sea shells down by the sea shore.";
char Line4[] = "\O0";

char Line5([] = ({32,
0,1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,25,27,28,28,30,31,0};

char Line6[] = {32,
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,0};

char Line7[] = {32,
64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,
80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,0};

char Line8[] = {32,
96, 97, 98, 99,100,101,102,103,104,405,106,107,108,109,110,111,
112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,
0};

char Line9[] = {32,
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,
0}7

char LinelO[]= {32,
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,
176,177,178,179,180,182,182,183,184,185,186,187,188,189,190,191,
0}z

char Linell[]= {32,
192,193,194,195,196,197,198,199,200,201,202,203, 204, 205,206, 207,
208,209, 210,211,212,213,214,215,216,217,218,219, 220, 221,222,223,
0};

char Linel2[]= {32,
224,225,226,227,228,229,230,231,232,233,234,235,236,237,238, 239,
240,241,242,243,244,245,246, 247,248,249, 250,251, 252, 253,254, 255,
0}z

char *LineTable[] = {Line0,Linel, Line2, Line3, Line4,Line5, Line6,Line7,
Line8,Line9,Linel0,Linell, Linel2};

char ProMsg[32] = "==Display Font as Proportional\r";
char MonoMsg[31]= "==Display Font as Mono-spaced\r";

/* */

406 Appendix F: HodgePodge Source Code: C

DoChooseFont ()
{

int whocares;

GrafPortPtr oldPort;
int tempPort [85]; /* port size in bytes / 2 */

/i
typedef struct FontID {

Word famNum;

Byte fontstyle;

Byte fontSize;

} FontID, *FontIDPtr, **FontIDHndl;
*/

long tempFont;
oldPort = GetPort ();
OpenPort (tempPort) ;

if (tempFont = ChooseFont (DesiredFont, 0)) /* font changed */
{
DesiredFont.famNum = (Word) (tempFont & OxXffff);
DesiredFont.fontStyle = (Byte) ((tempFont >> 16) & Oxff);
DesiredFont.fontSize = (Byte) (tempFont >> 24);
whocares = GetFamInfo (DesiredFont. famNum,
MyReply.filename);/* ignore result */
Int2Dec (DesiredFont. fontSize, /* size of font */
((MyReply.filename)+ (MyReply.filename[0])+1), /* position*/

4, /* length of result */
0): /* not signed */
MyReply.filename[0] +=4; /* new legth */

ClosePort (tempPort) ;
SetPort (oldPort);
return (TRUE) ; /* new stuff */
}
else
{
ClosePort (tempPort);
SetPort (oldPort);

return (FALSE) ; /* No change */
}

}

DispFontWindow ()

{

FontID fontId; /* Dont need it */

FDataRecHandle FontHand;
FDataRecPtr FontPtr;

GrafPortPtr tempPort;

tempPort = GetPort (); /* get curr port */
FontHand = (FDataRecHandle) GetWRefCon (tempPort); /* get handle to data */
FontPtr = *FontHand; /* dereference */

HLock (FontHand) ;
ShowFont (FontPtr -> FID,FontPtr);
HUnlock (FontHand) ;

}

ShowFont (fontId,FontPtr)

FontID fontId;
FDataRecPtr FontPtr;

FONT.CC (fonts)

407

{
word tempFlags;

InstallFont (fontId,0);
GetFontInfo (&CurrFont);
CurrHeight = CurrFont.ascent + CurrFont.descent + CurrFont.leading;

MoveTo (0,0) ; /* start pen position */
GetFamInfo (fontId.famNum,Line0); /* ignore result */
Int2Dec (fontId.fontSize, /* size of font */
(Line0)+Line0[0]+1, /* pointer to end*/
4, /* length of result */
0); /* not signed */
Line0[0] +=4; /* new length */

tempFlags = GetFontFlags();
SetFontFlags ((((FontPtr -> Flag)) >> 1) & 1);

for (LineCounter = 0;LineCounter < NumLines;LineCounter++)
{
GetPen (&CurrPos) ;
MoveTo (5, CurrHeight + CurrPos.v); /* reset x and y */
DrawString (LineTable[LineCounter]);
}

SetFontFlags (tempFlags) ;
}

DoSetMono ()
{
if (MonoFlag ~=0x02)
SetMItem(ProMsg,MonolID) ;

else
SetMItem(MonoMsg, MonoID) ;

408 Appendix F: HodgePodge Source Code: C

' PRINT.CC (printing)

/ﬁ***ﬁ**t*t**i**t'k**********’k*t**t**ﬁtt********‘k**************t***tt**

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

Source file PRINT.CC -- Printing stuff

* % A A E ok kA A kA A * *
LR I N T O

KRR IRk kK kK kKK KKK KR KKK KKK AR KKK KA K AR K AR KA AR AR KA R K AR AR K AR K AR KK A K /

#include <types.h>
#include <memory.h>
#include <quickdraw.h>
#include <window.h>
#include <print.h>
#include <qdaux.h>
#include <font.h>
#include "hp.h"

extern int MyID;

GrafPortPtr WindowToPrint = NIL;
handle PrintRecord = NIL;
GrafPortPtr PrintPort;

/* Coose Printer Item handler */

DoChooserItem ()
{
PrChooser () ;

}

/* Routine to handle page setup item */

DoSetUpItem ()
{ !
if (! (PrintRecord))
SetUpDefault () ;
PrstlDialog (PrintRecord) ;
}

/* routine to create default print record */

SetUpDefault ()

{
PrintRecord = NewHandle (140L,MyID, 0x8010,0L);
PrDefault (PrintRecord) ;

}

/* Now the menu item "Print" item */

PRINT.CC (printing)

409

FnfrintIzemd)

L (Windowiclrint - TroncWindewist
LE (i (FriolRecard))
SetUphafaule i}
it (PeTanhlsleqgiPrintseccord))

WalL€uran>- s

7 oAn Lhere a window te prinne #0

frintbort = FripenDoc (Printkecord, UL);

fropenfage (Printlort, L) 7
Drawlopeisdaw ()7

ProlosePage (EristPorl);
Frllaseboo(Trinchart) -
Proloflle (PrincBecesd, 0T, 0L »
InltCursord] »

DrawTonwindzw)
|

Datalachandle TheRel{oon = NIL:
Natalechtl auxbir;

FhalziecZandle sontZancle;
FlabzRea?lr Fontbter

Sbowe nze slightly dlfforust 4y
Sv oslruobures for pletures '

fhoard far fonta =

Tohebellon = (DatafecHandle) GetWRa Con (WindowTabrls=s) ;

NLzck (ThelefCon) ;
aukFLy = *ThefefCon:
1€ lauxztr == Flay)

tontHatdle: = (FhatabkesHzo Lel GebtWhulonn (WindowTorsins

HLeok {FancHandle)

FonbIle = *Tantllandlea;

ShowFont sbontbir —= FI0, FantPrr) -
sUnlock {FantHandle) @

elza

PainlTE [auxzor -» 2loFang) ;
Irnlack (TheRetdon)

410

% non_zere -—» font W/

A oagain L4
A0 nans L
£* Lhe rigat a7
P ATE B wd

/¢ Pleocure Window #/

Appendix F: HodgePodge Source Code: ©

HP.H (global data)

tinclude <types.h>
tinclude <quickdraw.h>
#include <font.h>

#define SCREENMODE 0x80
#define MAXSCAN 160
#define QDAuxTool 18
#define PManager 19
#define Minver 0
#define VolNotFound 0x45

#define NUM MENUS 5
#define NUM _WINDOWS 15

/* Menus related defines */
#define AppleMenulID 1
#define FileMenulID 2
#define EditMenuID 3
#define ModeMenuID 4
#define WindowsMenulID 5
#define FontsMenuID 6

#define UndoID 250
#define CutID 251
#define CopyID 252
#define PasteID 253
#define ClearID 254
#define CloseWID 255
tdefine AboutID 256
#define QuitID 257
#define OpenWID 258
#define SaveID 259
#define ChooselD 260
#define SetUpID 261
#define PrintID 262
#define ModeID 263
#define ShowFontID 264
#define MonoID 265

/t
/*
/t

/*
/*

640 mode */

Auxiliary Quickdraw */
Print Manager Tool Number */
Minimun Version for them */

Number of menus */
Maximum number of windows */

/* These next 6 are standard and */
/* required for DA support under */
/* TaskMaster. */

/* These are our own responsibility */

/* some font and window handling stuff */

#define MaxNameSize 29

#define NumLines 13

typedef struct DataRec {

char **PicHand;

char Blank;

char Str(30];
char MMStuff[6];

short Flag;
char Extra;

} DataRec, *DataRecPtr,

**DataRecHandle;

HP.H (global data)

411

/* same thing as DataRec but for FONT windows */

typedef struct FontDataRec {
FontID FID; /* This is Pic handle in DataRec */
char Blank;
char Str(30];
char MMStuff[6];
Byte Flag;
char Extra;
} FDataRec, *FDataRecPtr, **FDataRecHandle;

typedef int PackedData[320];

typedef struct DirEntry
{
int PackedBytes;
word Mode;
} DirEntry;

typedef struct MainBlk {
long SizeOfBlock;
char IDstr[5];
word MasterMode;
int PixelsPerScanLine;
int NumPallets;
int PalletArray[lS][lS];
int NumScanLines;
DirEntry ScanLineDir([200];
PackedData PackedScanLines[200];
} MainBlk,*MainBlthr,**MainBlkHandle;

/* all the files for this program include HP.H, but not all do the same with
DIALOG.H that is why:

*/

#ifndef _ dialog

typedef struct ItemTemplate {

Word itemID; /* ItemTemplate - #/
Rect itemRect; /* ItemTemplate - */
Word itemType; /* ItemTemplate - */
Pointer itemDescr; /* ItemTemplate - */
Word itemvalue; /* ItemTemplate - */
Word itemFlag; /* ItemTemplate - */
Pointer itemColor; /* pointer to appropreate ctl color table */
} ItemTemplate, *ItemTempPtr, **ItemTempHndl ;
#endif

/* Here we define the dialog templates used for Standard File Get and Put
calls.
*/

#ifndef GetPutListLength
#define GetPutListLength OxF /* Set to 15 which is the max */
#endif

typedef struct GetPutTemplate {
Rect gpBoundsRect;
Boolean gpVisible;
LongWord gpRefCon;
ItemTempPtr gpItemList[GetPutListLength];
} GetPutTemplate, *GetPutTempPtr ;

412 Appendix F: HodgePodge Source Code: C

Appendix G

HodgePodge Source Code:
Pascal

HP.PAS 414
MENU.PAS 419
EVENT.PAS 422
WINDOW.PAS 425
DIALOG.PAS 429
FONT.PAS 434
PRINT.PAS 437
PAINT.PAS 439
GLOBALS.PAS 443

115
413

HP.PAS (main program)

program HodgePodge;

+

{+

|
|
|
|
|
I
|
|
|
|
I
|
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
I
I
I
|
|
|
I
I
|
|
|
|
I
I

HodgePodge: An example Apple IIGS Desktop application

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

This program and its derivatives are licensed only for
use on Apple computers.

Works based on this program must contain and
consplcuously display this notice.

This software is provided for your evaluation and to
assist you in developing software for the Apple IIGS
computer.

This is not a distribution license. Distribution of
this and other Apple software requires a separate
license. Contact the Software Licensing Department of
Apple Computer, Inc. for details.

DISCLAIMER OF WARRANTY

THE SOFTWARE IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO ITS MERCHANTABILITY OR ITS FITNESS
FOR ANY PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH
YOU. SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU (AND
NOT APPLE OR AN APPLE AUTHORIZED REPRESENTATIVE)
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

Apple does not warrant that the functions

contained in the Software will meet your requirements
or that the operation of the Software will be
uninterrupted or error free or that defects in the
Software will be corrected.

SOME STATES DO NOT ALLOW THE EXCLUSION

OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO STATE.

Pascal

UNIT "HP.PAS" : Main routine and tool init/shutdown routines

o

414

Appendix G: HodgePodge Source Code: Pascal

HPIntfData, {HodgePodge Apple IIGS Toolbox Interface Units}
HPIntfProc,
HPIntfPdos,

Globals, {HodgePodge Code Units}
Dialog,

Font,

Paint,

Window,

Print,

Menu,

Event;

function StartUpTools : boolean;

{Routine to start up the Apple IIGS toolbox. We attempt to start up all

the managers that we need, checking each time if an error occurred during
startup. True/false is returned by this routine depending on its success.
If the RAM-based tools cannot be loaded, the user is prompted to install

a system disk and is given the option of trying again or exitting. The
latter option exits this procedure with a False result. Tool startup
errors result in a call to the system death handler (the bouncing apple),
with a code showing where we died as well as the actual tool error number.}

const DPForQuickDraw = $000; {Needs 3 pages}
DPForEventMgr = $300; {Needs 1}
DPForCt1lMgr = $400; {Needs 1}
DPForLineEdit = $500; {Needs 1}
DPForMenuMgr = $600; {Needs 1}
DPForStdFile = $700; {Needs 1}
DPForFontMgr = $800; {Needs 1}
DPForPrintMgr = $900; {Needs 2}
TotalDP = $B0O; {Total direct page space}
var toolRec : ToolTable;
paramBlock : FileRec;
baseDP : integer;

label 1; {Just for once, let's commit the cardinal sin of using the GOTO!}

begin {of StartUpTools}

StartUpTools := true; {Assume all is well at first}
TLStartUp; {Init Tool Locator }
CheckToolError ($1);

MyMemoryID := MMStartUp; {Init Memory Manager}
MTStartUp; {Init Misc Tools }

CheckToolError ($2);

{Allocate memory space in bank 0 for direct-page use by GS Tools:}
ToolsZeroPage :=

NewHandle (TotalDP, {Allocate memory}
MyMemoryID, {Process (user) ID}
attrBank+attrFixed+attrLocked+attrPage, {Attributes}
Ptr (0)); {Start in bank 0 }

CheckToolError ($3);
baseDP := LoWord (ToolsZeroPage®);

QDStartUp
(baseDP + DPForQuickDraw, {Address of zpag # 3 }
ScreenMode, {640 mode }
MaxScan, {Horizontal line size}
MyMemoryID); {Process (user) ID }

CheckToolError ($4);

HP.PAS (main program) 415

EMStartUp

(paseDP + DPForEventMgr, {Address of zpag # 4 }
20, {Event queue size }
o, {X min clamp }
MaxX, {X max clamp }
0, {Y min clamp }
200, {Y max clamp }
MyMemoryID) ; {Process (user) ID }

CheckToolError ($5);

{Give a message while we load RAM based tools:}

MoveTo (20,20);

SetBackColor (0);

SetForeColor (15);

DrawString ('One Moment Please...');
ShowCursor;

{Now load RAM based tools (and RAM patches to ROM tools!):}
toolRec.NumTools := 14;

toolRec.Tools[1].TSNum := 4; {QuickDraw II }
toolRec.Tools[1].MinVersion := 0;

toolRec.Tools[2].TSNum := 5; {Desk Manager }
toolRec.Tools[2] .MinVersion := 0;

toolRec.Tools[3].TSNum := 6; {Event Manager }
toolRec.Tools[3].MinVersion := 0;

toolRec.Tools[4] .TSNum := 14; {Window Manager }
toolRec.Tools[4] .MinVersion := 0;

toolRec.Tools[5].TSNum := 15; {Menu Manager }
toolRec.Tools[5].MinVersion := 0;

toolRec.Tools[6].TSNum := 16; {Control Manager}
toolRec.Tools [6] .MinVersion := 0;

toolRec.Tools[7].TSNum := 18; {QuickDraw Aux }
toolRec.Tools[7].MinVersion := 0;

toolRec.Tools[8].TSNum := 19; {Print Manager }
toolRec.Tools[8] .MinVersion := 0;

toolRec.Tools[9].TSNum := 20; {Line Edit }
toolRec.Tools[9] .MinVersion := 0;

toolRec.Tools[10].TSNum := 21; {Dialog Manager }
toolRec.Tools[10] .MinVersion := 0;

toolRec.Tools[11].TSNum := 22; {Scrap Manager }
toolRec.Tools[11].MinVersion := 0;

toolRec.Tools[12].TSNum := 23; {Standard File }
toolRec.Tools[12] .MinVersion := 0;

toolRec.Tools[13].TSNum := 27; {Font Manager }
toolRec.Tools[13].MinVersion := 0;

toolRec.Tools[14].TSNum := 28; {List Manager }

toolRec.Tools[14].MinVersion := 0;

paramBlock.pathname := @'*/SYSTEM/TOOLS'; {Make sure tools avail}
GET_FILE_INFO (paramBlock);
if toolErr <> 0 then
if MountBootDisk = 1 then
goto 1
else begin
StartUpTools := false;
Exit;
end;

LoadTools (toolRec); {Load the tools I need}
CheckToolError ($6);

WindstartUp (MyMemoryID) ; {Init Window Manager }
CheckToolError ($7);

416 Appendix G: HodgePodge Source Code: Pascal

end;

RefreshDesktop (nil);

CtlStartUp

(MyMemoryID,

baseDP + DPForCtlMgr);
CheckToolError ($8);

LEStartUp
(baseDP + DPForLineEdit,
MyMemoryID) ;
CheckToolError ($9);

DialogStartUp
(MyMemoryID) ;
CheckToolError ($A);

MenuStartUp

(MyMemoryID,

baseDP + DPForMenuMgr);
CheckToolError ($B);

DeskStartUp;
CheckToolError ($C);

ShowPleaseWait;

SFStartUp

(MyMemoryID,

baseDP + DPForsStdFile);
CheckToolError ($D);
SFAllCaps (true);

QDAuxStartUp;
CheckToolError ($E);
WaitCursor;

FMStartUp

(MyMemoryID,

baseDP + DPForFontMgr);
CheckToolError ($F);

ListStartUp;
CheckToolError ($10);

ScrapStartUp;
CheckToolError ($11);

PMStartUp

(MyMemoryID,

baseDP + DPForPrintMgr);
CheckToolError ($12);

HidePleaseWait;
InitCursor;

{of StartUpTools}

{Draw the desktop }
{Init Control Manager}

{Process (user) ID }
{Address of zpag # 5 }

{Init Line Edit }
{Address of zpag # 6 }
{Process (user) ID }

{Init Dialog Manager }
{Process (user) ID }

{Init Menu Manager }
{Process (user) ID }
{Address of zpag # 7 }

{Init Desk Manager }

{Put up dialog box }
{Init Standard File }
{Process (user) ID }
{Address of zpag # 8 }
{I want filenames in all caps}
{Init QuickDraw Auxil}
{Wristwatch cursor }
{Init Font Manager }

{Process (user) ID }
{Address of zpag # 9 }

{Init List Manager }
{Init Scrap Manager }

{Init Print Manager }
{Process (user) ID }
{Address of zpag # 10}

{Remove dialog box }
{Normal arrow cursor }

HP.PAS (main program)

a7

procedure ShutDownTools;

{Routine to shut down all the tools we used in reverse order of startup.
Only tools which are currently active are shut down; this facilitates
recovery from an error condition from StartUpTools.}

begin {of ShutDownTools}

DeskShutDown;
if WindStatus <> 0 then
HideAllWindows; {Close all windows only if OK! Takes some time.}
ListShutDown;
FMShutDown;
ScrapShutDown;
PMShutDown;
QDAuxShutDown;
SFShutDown;
MenuShutDown;
DialogShutDown;
LEShutDown;
CtlshutDown;
WindShutDown;
EMShutDown;
QDShutDown;
MTShutDown;
if MMStatus <> 0 then begin
DisposeHandle (ToolsZeroPage); {Deallocate tool directpage space}
MMShutDown (MyMemoryID) ; {Do this only if OK!}
end;
TLShutDown;

end; {of ShutDownTools}

BEGIN {of MAIN program HodgePodge}
InitGlobals; { Initialze our globals, menus, etc. }

if StartUpTools then begin Initialize IIGS Tools }

{

SetUpDefault; { Set up print dialog }
SetUpMenus; { Set up menus }
SetUpWindows; { Set up windows }
MainEvent; { Use application }

end;

ShutDownTools; { Shut down IIGS Tools }

END. {of MAIN program HodgePodge}

418 Appendix G: HodgePodge Source Code: Pascal

MENU.PAS (menus)

UNIT Menu;

{

HodgePodge: An example Apple IIGS Desktop application

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

All Rights Reserved

|

|

I

|

I

|

| Copyright (c) 1986-87 by Apple Computer, Inc.

|

|

|

|

| Pascal UNIT "MENU.PAS" : Menu bar setup and menu item handling
|

+

INTERFACE

USES
HPInt fData, {HodgePodge Apple IIGS Toolbox Interface Units}
HPIntfProc,
HPIntfPdos,

Globals, {HodgePodge Code Units}
Dialog,

Font,

Paint,

Window,

Print;

procedure DoMenu; {Execute a menu item}
procedure SetUpMenus; {Install menus and redraw menu bar}

IMPLEMENTATION

procedure AddToMenu;

{Private routine to add a new window item to the "Windows" menu after a
new window has been drawn. Increments the variable WIndex, a count of
the number of windows currently open.}

var theWindow : GrafPortPtr;
myDataHandle : WindDataH;

begin {of AddToMenu}
theWindow
WindowList [WIndex]

:= FrontWindow;
:= theWindow;

myDataHandle := WindDataH (GetWRefCon (theWindow));

InsertMItem (@myDataHandle””.menuStr [1],$FFFF,WindowsMenulID);

MENU.PAS (menus)

419

if WIndex = 0 then begin {This is the first window}

DeleteMItem (NoWindowsItem); {Remove the "filler" item}
SetMenuFlag ($FF7F,WindowsMenuID); {Highlight the menu}
DrawMenuBar;

end;

CalcMenuSize (0,0,WindowsMenulD);
Inc (WIndex);
end; {of AddToMenu}
procedure DoOpenItem;

{Private routine which is called when the "Open..." item from the "File"
menu OR the "Display Font..." item from the "Fonts" menu is selected
(OpenWindow will determine which one it was). If too many windows are
already open, then a dialog is displayed.}

begin {of DoOpenltem}
if WIndex < LastWind then
if OpenWindow then
AddtoMenu
else
else
ManyWindDialog;
end; {of DoOpenlItem}

procedure DoQuitItem;

{Private routine to set Done flag if the "Quit" item was selected}

begin {of DoQuitItem}
Done := true;
end; {of DoQuitItem}

procedure DoWindow (itemNum: integer);

{Private routine which brings a specific window to the front of the
desktop, in response to a selection from the "Windows" menu. }

var theWindow: GrafPortPtr;

begin {of DoWindow}
theWindow := WindowList [itemNum - FirstWindItem];
SelectWindow (theWindow);
ShowWindow (theWindow) ;

end; {of DoWindow}

420 Appendix G: HodgePodge Source Code: Pascal

procedure DoMenu;

{Procedure to handle all menu selections. Examines the Event.TaskData
menu item ID word from TaskMaster (from Event Manager) and calls the
appropriate routine. While the routine is running the menu title is
still highlighted. After the routine returns, we unhilight the

menu title.}

var menuNum : integer;
itemNum : integer;

begin {of DoMenu}

menuNum := HiWord (Event.wmTaskData);
itemNum := LoWord (Event.wmTaskData);

case itemNum of

; AboutItem : DoAboutItem;
Openltem : DoOpenItem;
Closeltem : DoCloseltem;
SaveAsItem : DoSaveltem;
ChoosePItem : DoChooserItem;
PageSetItem : DoSetuplItem;
PrintItem : DoPrintItem;
QuitItem : DoQuitItem;
UndoItem HE
CutItem HE
CopyItem HE
Pasteltem N
ClearItem HE
FontItem : DoOpenlItem;
MonoItem : DoSetMono;

otherwise
DoWindow (itemNum);
end;
HiliteMenu (false,menuNum); {Unhighlight the menu title}
end; {of DoMenu}

procedure SetUpMenus;

{Procedure to install our menu titles and their items in the system menu
bar and to redraw it so we can see them.}

var height : integer;

begin {of SetUpMenus}

SetMTitleStart (10); {Set Starting position of menu}
InsertMenu (NewMenu (@FontMenuStr [11),0); {Fonts Menu }
InsertMenu (NewMenu (@WindowMenuStr ([1]),0); {Window Menu }
InsertMenu (NewMenu (QEditMenuStr [11),0); {Edit Menu }
InsertMenu (NewMenu (@FileMenuStr [11),0); {File Menu }
InsertMenu (NewMenu (QAppleMenuStr [1]),0); {Apple Menu }
FixAppleMenu (AppleMenulD); {Add DAs to apple menu }
height := FixMenuBar; {Set sizes of menus }
DrawMenuBar; {...and draw the menu bar!}
end; {of SetUpMenus}
END.

MENU.PAS (menus)

421

EVENT.PAS (main event loop)

UNIT Event;

{
HodgePodge: An example Apple 1IGS Desktop application

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

|
|
|
|
|
|
Copyright (c) 1986-87 by Apple Computer, Inc. |
All Rights Reserved
|
|
|
|
|

Pascal UNIT "EVENT.PAS" : Event loop and dispatching routine

+———

INTERFACE

USES
HPInt fData, {HodgePodge Apple IIGS Toolbox Interface Units}
HPIntfProc,
HPIntfPdos,

Globals, {HodgePodge Code Units}
Dialog,

Font,

Paint,

Window,

Print,

Menu;

procedure MainEvent; {Main event handling loop which repeats until Quit}

IMPLEMENTATION

procedure MainEvent;

{Main event handling routine which loops until the Done flag is set by
selection of the "Quit"™ item. We call the Window Manager's TaskMaster
routine, which calls the Event Manager's GetNextEvent routine and
handles window resize tracking/resizing, window movement tracking/resizing,
window activiation (bringing to front by clicking on an inactive window),
among other things. TaskMaster returns control to us when the user has
clicked a window's GoAway check box, or when the user has selected a menu
item, either with the mouse or with an equivalent Solid-Apple keystroke
sequence. }

var code : integer;

422 Appendix G: HodgePodge Source Code: Pascal

procedure CheckFrontW;

{Check to whom the front window belongs to (us or a Desk Accessory (DA)),
and if it belongs to us, whether it is appropriate to disable (dim) certain
menu items (such as the Save item) or to enable them. Private routine.}

var theWindow : GrafPortPtr;
myDataHandle : WindDataH;

procedure DisableItems;
{Private routine to disable (dim) certain menu titles}

begin {of DisablelItems}
DisableMItem (SaveAsItem);
DisableMItem (Closeltem);
DisableMItem (PrintItem);
DisableMItem (PageSetItem);
end; {of Disableltems}

procedure Enableltems;
{Private routine to enable (undim) certain menu titles}

begin {of Enableltems}
EnableMItem (SaveAsItem);
EnableMItem (Closeltem);
EnableMItem (PrintItem);
EnableMItem (PageSetItem);
end; {of EnableItems}

procedure DisableAll;
{Private routine to disable all menu titles for Desk Accessory (DA)}

begin {of DisableAll}
SetMenuFlag ($0080,EditMenulD);
DrawMenuBar;
DisableItems;

end; {of DisableAll}

EVENT.PAS (main event loop) 423

procedure SetUpForAppw;

{Called if an application window (ours) is the frontmost window.
Private routine.}

begin {of SetUpForAppw}
SetMenuFlag ($0080,EditMenuID);
DrawMenuBar;
EnableItems;

end; {of SetUpForAppW}

procedure SetUpForDAW;

{Called if a Desk Accessory's window is the frontmost window. Private.}

begin {of SetUpForDAw}
DisablelItems;
EnableMItem (CloseItem);

SetMenuFlag ($FF7F,EditMenuID);
DrawMenuBar;

end; {of SetUpForDAW)

begin {of CheckFrontw}
theWindow := FrontWindow;

if theWindow = lastWindow then
Exit;

if theWindow = nil then
DisableAll
else begin
if GetSysWFlag (theWindow) = true then
SetUpforDAW
else begin
SetUpforAppw;
myDataHandle := WindDataH (GetWRefCon (theWindow)) ;
if myDataHandle‘“.Flag =1 then

DisableMItem (SaveAsItem)
end;
end;

lastWindow := theWindow;
end; {of CheckFrontw}

begin {of MainEvent}
Event .wmTaskMask := SO00001FFF;

: {Allow TaskMaster to do everything}
Done := false;

{Done flag will be set by Quit item)

repeat
CheckFrontw;
code := TaskMaster (SFFFF, Event) ;
case code of
wInGoAway ¢ DoCloseItem;
wInSpecial,
wInMenuBar : DoMenu;
end;
until Done;

end; {of MainEvent}

END.

424 Appendix G: HodgePodge Source Code: Pascal

WINDOW.PAS (windows)

UNIT Window;

[+ N
| I
| HodgePodge: An example Apple IIGS Desktop application
| |
| Written by the Apple IIGS Development Team |
| Translated to TML Pascal by TML Systems, Inc.
| |
| Copyright (c) 1986-87 by Apple Computer, Inc. |
| All Rights Reserved |
| |
| |
| |
| pPascal UNIT "WINDOW.PAS" : Routines to open and close windows
| |
+ +}

INTERFACE

USES

HPInt fData, {HodgePodge Apple IIGS Toolbox Interface Units}
HPIntfProc,

HPIntfPdos,

Globals, {HodgePodge Code Units}

Dialog,

Paint,

Font;

procedure DoCloseltem; {Closes current frontmost window }

procedure HideAllWindows; {Closes all windows on the desktop }

function OpenWindow boolean; (Tries to open a font or picture window }
procedure SetUpWindows; {Initialize variables for stacking windows}

IMPLEMENTATION
var
myWind
wXoffset
wYoffset
isizPos

procedure DoCloseItem;

ParamList;
integer;
integer;
Rect;

{This procedure closes the frontmost window and deallocates all of its
associated storage. NDA windows are supported for when this procedure
is called by HideAllWindows when exitting HodgePodge.}

var theWindow
myDataHandle

GrafPortPtr;
WindDataH;

WINDOW.PAS (windows)

425

procedure AdjWind (theWindow: GrafPortPtr);

{Finds the window designated by theWindow and removes it from the
WindowList and returns the position in the window list where it was
found. Private function.}

var i

integer;
theOne i

nteger;

begin {of AdjWind}

{Find the index of the grafportptr of the window being deleted:}
i := firstWind;
while WindowList [i] <> theWindow do
Inc (i);
theOne := i;

{Remove corresponding item from the WINDOW-menu: }

if WIndex = 1 then begin {Last window--special case}
InsertMItem (@NoWindStr [1],FirstWindItem + theOne, WindowsMenulD) ;
SetMenuFlag ($0080,WindowsMenulD) ;
DrawMenuBar;
wXoffset := 2
wYoffset := 1

end;

DeleteMItem (FirstWindItem + theOne);

CalcMenuSize (0, 0, WindowsMenulID) ;

0
2

~e N

{Physically delete (scroll) the grafportptr of the ill-fated window:}
Inc (1);
while i < LastWind do begin
WindowList [i - 1] := WindowList i1,
Inc (1);
end;

{Renumber the WINDOW-menu items:}
for 1 := theOne to LastWind do
SetMItemID (FirstWindItem+i-1 {new ID} , FirstWindItem+i {old ID});

end; {of AdjwWind}

begin {of DoCloseItem}
theWindow := FrontWindow;
CloseNDAbyWinPtr (theWindow) ;
if isToolError then begin {It wasn't an NDA window}
AdjWind (theWindow) ; {Update WINDOW menu}
myDataHandle := WindDataH (GetWRefCon (theWindow)) ;
DisposeHandle (Handle (myDataHandle)); {Deallocate storage}

CloseWindow (theWindow) ; {Remove the window}
Dec (WIndex) ; {Index into window list}
end;
end; {of DoCloseltem}

procedure HideAllWindows;

{Repeatedly call DoCloseItem to close the frontmost window (which has the
effect of making the next deeper level window the frontmost one) until
there is no frontmost window anymore; ie, there are no more windows.}

begin {of HideAllWindows}
while FrontWindow <> nil do
DoCloselItem;
end; {of HideAllWindows}

426 Appendix G: HodgePodge Source Code: Pascal

function OpenWindow : boolean;

{Tries to open either a font or picture window, depending on the
Event.TaskData returned from TaskMaster (which got it from the
Event Manager). True/false is returned depending on whether a
window was actually opened. Note the way in which the different
functions are called in the if-then-else structure below. Each
function tries to do what its name implies, and the true/false
result that each returns is used to determine if the next logical
function should be called.}

function DoTheOpen: boolean;

{This function tries to open a window and returns true/false depending on
its success.}

var theWindow : GrafPortPtr;
myDataHandle : WindDataH;
theMenuStr : Str255;
ourFontInfo : FontInfoRecord;

begin {of DoTheOpen}
DoTheOpen := false;

i myDataHandle := WindDataH (NewHandle (sizeof (WindDataRec),
] MyMemoryID,
attrLocked + attrFixed,
Ptr (0)));
if isToolError then
Exit;

with myWind do begin
paramLength := sizeof (ParamList);
wFrameBits := $DDAO;

wRefCon := longint (myDataHandle);
SetRect (wZoom, 0, 26, 620,190) ;
wColor := nil;
wYOrigin := 0;
wXOrigin := 0;
wDataH := 188;
wDataw 1= 640;
wMaxH := 200;
wMaxw 1= 640;
wScrollVer = 4;
wScrollHor 1= 16;
wPageVer := 40;
wPageHor 1= 160;
wInfoRefCon := 0;
wInfoHeight := 0;
wFrameDefProc:= nil;
wInfoDefProc := nil;
wPlane = =1
wStorage := nil;
end;
theMenuStr := concat ('==',
myReply.filename,
‘\N',
IntToString (FirstWindItem + WIndex),
‘\N0.');
with myDataHandle”* do begin
Name := myReply.filename;
MenuStr := theMenuStr;
MenuID := FirstWindItem + WIndex;
end;

WINDOW.PAS (windows) 427

if LoWord (Event.wmTaskData) = FontItem then begin
{We're opening a font window:}
myWind.wContDefProc := @DispFontWindow;
with myDataHandle”” do begin

flag =1

theFont := DesiredFont;

isMono := isMonoFont;
end;

InstallFont (DesiredFont,0);
GetFontInfo (ourFontInfo);
MyWind.wDataH := 15 {NumLines+2} *
(OurFontInfo.ascent + ourFontInfo.descent);
{Call to a FindMaxWidth procedure would be placed here to
the MyWind.wDataW field to length of the longest line of
else begin
{We're opening a picture window:}
myWind.wContDefProc := @Paint;
with myDataHandle*” do begin
flag := 0;
pict := PictHndl;
end;
end;

set

text.}
end

with myWind do begin

wTitle := @myDataHandle””~.Name;
SetRect (wPosition,wXoffset + iSizPos.hl,
wYoffset + iSizPos.vl,
wXoffset + iSizPos.h2,
wYoffset + iSizPos.v2);
end;
wXoffset := wXoffset + 20; {Update globals which offset new window pos}
wYoffset := wYoffset + 12;

if wYoffset > 120 then
wYoffset := 12;

{Cause stacking effect}

{Now create the window:}

theWindow := NewWindow (myWind) ;

SetPort (theWindow) ;

SetOriginMask (SFFFE, theWindow) ;
InitCursor; {Go back to the arrow cursor}

DoTheOpen := true;
{of DoTheOpen}

{Indicate successful completion}
end;

begin {of OpenWindow}
OpenWindow := false;
if LoWord (Event.wmTaskData) =
if DoChooseFont then
if DoTheOpen then
OpenWindow := true
end else begin
if AskUser then
if DoTheOpen then
OpenWindow := true

FontItem then begin

end;
end; {of OpenWindow}

procedure SetUpWindows;

begin {of SetUpWindows}
wXoffset := 20; {Initial window position offset used for}
wYoffset := 12; {...stacking the windows.}
SetRect (iSizPos,10,20,350,80);
end; {of SetUpWindows}
END.
428 Appendix G: HodgePodge Source Code: Pascal

DIALOG.PAS (dialog boxes)

NIT Dialog;

HodgePodge: An example Apple IIGS Desktop application

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

All Rights Reserved

Pascal UNIT "DIALOG.PAS" : Dialog and Alert box drawing routines

I
I
|
|
|
|
|
I
I
|
|
|
|

|
|
|
|
|
|
Copyright (c) 1986-87 by Apple Computer, Inc.
|
|
|
|
|
|

'NTERFACE
JSES
HPIntfData,
HPIntfProc,
HPIntfPdos,
Globals; {HodgePodge Code Unit}
rar
currentIteml : ItemTemplate;
currentItem2 : ItemTemplate;
origPort : GrafPortPtr;
msgWindPtr : GrafPortPtr;
orocedure DoAboutItem;
orocedure ShowPleaseWait;
orocedure HidePleaseWait;
function CheckDiskError (Where : integer) : boolean;
orocedure CheckToolError (Where : integer);
‘function MountBootDisk : integer;
orocedure ManyWindDialog;

{HodgePodge Apple IIGS Toolbox Interface Units}

{About item in apple menu}
{Please Wait during init }
{Erase the above }
{Alert if ProDOS error }
{Death if tool error }
{Ask boot disk; 1 if OK }
{Waits until OK clicked }

DIALOG.PAS (dialog boxes)

429

IMPLEMENTATION

procedure MakeATemplate (TheTemplate : AlertTempPtr; TheStr : StringPtr);
{Private routine which creates an alert template.}

begin {of MakeATemplate}
with TheTemplate” do begin
SetRect (atBoundsRect, 120,30, 520, 80) ;
atAlertID := 1500;

atstagel := $80;
atsStage2 := $80;
atstage3 := $80;
atStaged4 := $80;
atIteml := QcurrentlIteml;
atItem2 := @currentItem2;
atItem3 := nil;
end;

with currentIteml do begin
ItemId =1;
SetRect (ItemRect, 320,25,0,0);

ItemType := 10; {Buttton item constant >i<})
ItemDescr := @'OK';
ItemValue := 0;
ItemFlag := 0;
ItemColor := nil;
end;

with currentItem2 do begin
ItemId = 2;
SetRect (ItemRect,72,11,639,199);
ItemType := 15 + $8000; {Disabled Static Text item constant >!<}
ItemDescr := Pointer (TheStr) ;
ItemValue := 0;
ItemFlag :
ItemColor :
end;
end; {of MakeATemplate}

procedure ShowPleaseWait;
{Displays "Please Wait..." dialog box on the screen.}
var r : rect;

begin {of ShowPleaseWait}
origPort := GetPort;
msgWindPtr := GetNewModalDialog (@P1sWtTemp) ;
SetRect (r,70,19,640,200);
NewDItem (msgWindPtr,1502,r,15,@ 'Please wait while we set things up.',
0,0,Pointer(0));
BeginUpdate (msgWindPtr);
DrawDialog (msgWindPtr);
EndUpdate (msgWindPtr) ;
end; {of ShowPleaseWait}

procedure HidePleaseWait;
{Removes "Please Wait..." dialog box from the screen. }
begin {of HidePleaseWait}
CloseDialog (msgWindPtr);

SetPort (origPort);
end; {of HidePleaseWait}

430 Appendix G: HodgePodge Source Code: Pascal

function CheckDiskError (Where : integer) : boolean;

{This routine checks if the last ProDOS operation caused an error. If so,
then we change the cursor to the arrow cursor, put up a stop alert

dialog box with the text of the error message, change the cursor back to
the wristwatch, and return TRUE as the function result. If there was no
disk error, then we simply return with FALSE.}

var itemClicked : integer;
ourAlert : AlertTemplate;
ourErrsStr : str255;
ourWhereStr : str255;
ourString : str255;
diskErrNum : integer;

begin {of CheckDiskError}

diskErrNum := toolErr; {Use the std C-like toolerr var for P/16}
CheckDiskError := (diskErrNum <> 0); {Assign function result}
ourErrStr 1= 'XXXX'; {Set string length byte}
ourWhereStr = 'XX'; {Set string length byte}

if diskErrNum <> 0 then begin
{*** If desired, get disk err string here}
Int2Hex (diskErrNum,
StringPtr (longint (RourErrStr) + 1),
4); {Get ASCII error # str }
Int2Hex (Where,
stringPtr (longint (QourWhereStr) + 1),

2); {Get ASCII where # str }
ourString := concat ('Disk Error $°, {Build our error mesg }
ourErrstr,
' occurred at $°,
ourWhereStr,
AP
MakeATemplate (@ourAlert,@ourString); {Build our alert tmplt }
InitCursor; {Set arrow cursor }

itemClicked := StopAlert (QourAlert,nil); {Draw dialog & wait }
{Do not restore watch cursor }
end;

end; {of CheckDiskError}

procedure ManyWindDialog;

{Displays alert dialog (triangle with "!") with a message about no more
windows being allowed open. Handles mouse events until the OK button
is clicked. Then the dialog box is removed and we return.}

var ourAlert : AlertTemplate;
ourString : str255;
itemClicked : integer;

begin {of ManyWindDialog}
ourString := 'No more windows, please.‘;
MakeATemplate (RourAlert,@ourString);
itemClicked := CautionAlert (RourAlert,nil);
end; {of ManyWindDialog}

DIALOG.PAS (dialog boxes)

431

procedure CheckToolError (Where : integer);

{This routine checks if the last tool called returned an error code.
If not, then we just return. Else, we exit to the system death
handler routine which prints our string showing where we bombed. The
death manager adds the tool error code to the end of the string, and
puts the bouncing apple on the screen.}

var toolErrorSave : integer;
deathMsg H string;

begin {of CheckToolError}
toolErrorSave := ToolErrorNum;
deathMsg := ' At $XXXX; Could not handle error $';

if toolErrorSave <> 0 then begin
{Add the hex-in-ascii number to the string:}
Int2Hex (Where,StringPtr (longint (@deathMsg)+6),4);

{Halt with our death message string and tool error code:}
SysFailMgr (toolErrorSave,deathMsg);
end;
end; {of CheckToolError}

function MountBootDisk : integer;

var
promptStr H string;
okStr H string;
cancelStr : string;
volStr H string;
gbvParams H PathNameRec;

begin {of MountBootDisk}
promptStr := 'Please insert the disk';
okStr := 'OK';
cancelStr := 'Shut Down';
gbvParams.pathname := @volStr;

GET_BOOT_VOL (gbvParams);

MountBootDisk := TIMountVolume (174,30, promptStr,volStr, okStr, cancelStr);
end; {of MountBootDisk}

procedure DoAboutItem;

var aboutDlog : GrafPortPtr;
r : Rect;
itemHit : integer;
appleIconP : Ptr;
appleIconH : Handle;

begin {of DoAboutItem}
{Draw the dialog box on the screen:}
SetRect (r,146,20,495,192);
aboutDlog := NewModalDialog (r,true,0);

{Add an OK button to it:}
SetRect (r,270,153,0,0);
NewDItem (aboutDlog, 1, r,ButtonItem,@'OK',0,0,nil);

{Add the Apple logo to it:}
SetRect (r,20,135,0,0);
appleIconP := QRApplelcon;

applelconH := QapplelconP;

432 Appendix G: HodgePodge Source Code: Pascal

end;

END.

NewDItem (aboutDlog,3,r,Iconltem + ItemDisable, appleIconH,0,0,nil);

{Simply write the text rather than create a bunch of dialog items:}

SetPort
SetForeColor
SetBAckColor
MoveTo
SetTextFace
DrawString
SetTextFace
MoveTo
DrawString
MoveTo
DrawString
MoveTo
DrawString
MoveTo
DrawString
MoveTo
DrawString
MoveTo
DrawString
MoveTo
DrawString
MoveTo
DrawString

(aboutDlog) ;

(0)7

(15);

(40,17);

(8) 7

(* HodgePodge') ;

(0} 7

(40,27);

(' A potpourri of routines that');
(40,37);

(' demonstrate many features of');

(40,47);

(* the Apple IIGS Tools.');
(40,67);

(' By the Apple IIGS Development Team'
(36,77);

(*Translated to TML Pascal by TML Systems'
(40,87);

(Copyright Apple Computer, Inc.');
(40,117);

(* 1986-87, All rights reserved');
(40,127 ;

(* v4.0 23-Sep-87"');

{Let Dialog Manager handle all events until the OK button
itemHit := ModalDialog (nil);

{Remove the dialog box from the screen:}
CloseDialog (aboutDlog);
{of DoAboutItem}

)i
)i

is clicked:}

DIALOG.PAS (dialog boxes)

433

FONT.PAS (fonts)

UNIT Font;

{

All Rights Reserved

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

HodgePodge: An example Apple IIGS Desktop application

Copyright (c) 1986-87 by Apple Computer, Inc.

Pascal UNIT "FONT.PAS" : Font window drawing routines

INTERFACE
USES
HPIntfData, {HodgePodge Apple IIGS Toolbox Interface Units}
HPIntfProc,
HPIntfPdos,
Globals; {HodgePodge Code Unit}
procedure DispFontWindow; {Draw font window contents }
function DoChooseFont: boolean; {Dialog for asking font size, etc.}
procedure DoSetMono; {Sets flag and affects menu item }

procedure ShowFont (theFontID: FontID; isMono: boolean);

IMPLEMENTATION

procedure DispFontWindow;

{Actually draw font}

{This is a Definition Procedure used to draw the contents of a Font

window. }
var tmpPort : GrafPortPtr;
myDataHandle : WindDataH;

begin {of DispFontWindow}
tmpPort := GetPort;
myDataHandle := WindDataH (GetWRefCon (tmpPort)) ;
with myDataHandle** do
ShowFont (theFont, isMono);
end; {of DispFontWindow}

434 Appendix G: HodgePodge Source Code:

Pascal

function DoChooseFont: boolean;

{Display the Font Manager's dialog for the user to select a Font,
font size, and font style.

The function returns true if a font was chosen, else false if the Cancel
button is pressed in the dialog. If a font is chosen, its FontID information
is returned in the global variable DesiredFont. In addition, the

global myReply.filename contains a string which is the font's file name.

Because the call to ChooseFont actually changes the font of the current
port, we must first save the current port and open a dummy one do that
our current port is not affected.}

var theFont : FontID;
dummy H integer;
tmpPort : GrafPortPtr;
tmpPortRec : GrafPort;
famName H Str255;

begin {of DoChooseFont}
tmpPort := GetPort;
OpenPort (QtmpPortRec); {Save current port and open new one}

theFont := ChooseFont (DesiredFont,0); {Do standard dialog box}

if longint (theFont) = 0 then {Cancel was chosen}
DoChooseFont := false

else begin
DesiredFont := theFont; {Update global DesiredFont}

dummy := GetFamInfo (DesiredFont.famNum,famName);
myReply.filename :=

concat (famName,

L]
’

IntToString (DesiredFont.fontSize));
DoChooseFont := true;
end;

ClosePort (@tmpPortRec);
SetPort (tmpPort); {Restore current port}

end; {of DoChooseFont}

procedure DoSetMono;

{This procedure flips the flag indicating whether we are currently
displaying a font in mono-spacing or not, and updates the
font menu item accordingly.}

begin {of DoSetMono}
if isMonoFont then
SetMItem (MonoStr,MonoItem)
else
SetMItem (ProStr,Monoltem);
isMonoFont := not isMonoFont;
end; {of DoSetMono}

FONT.PAS (fonts)

435

procedure ShowFont (theFontID: FontID; isMono: boolean);

var fontInfo : FontInfoRecord;
currHeight : integer;
i, 3 : integer;
theCh : integer;
currPt : Point;
fontStr : Str255;

begin {of ShowFont}
InstallFont (theFontID,0);
GetFontInfo (fontInfo);
currHeight := fontInfo.ascent + fontInfo.descent + fontInfo.leading;

i := GetFamInfo (theFontID.famNum, fontStr);
fontStr := concat (fontStr,' ',IntToString (theFontID.fontSize));

= GetFontFlags;
isMono then
i := BitOr (i,$0001) {Set bottom bit}
else
i := BitAnd (i,$0000); {Clear bottom bit}
SetFontFlags (i) ;

i
if

MoveTo (5, currHeight) ;
DrawString (fontStr);

MoveTo (5, currHeight * 3);
DrawString ('The quick brown fox jumps over the lazy dog.');
MoveTo (5, currHeight * 4);
DrawString ('She sells sea shells down by the sea shore.');

MoveTo (5, currHeight * 5);

for 1 := 0 to 7 do begin
GetPen (currPt);
MoveTo (5,currPt.v + currHeight);
theCh := 1 * 32;
for j := 1 to 32 do begin
fontStr [J] := chr (theCh);
inc (theCh);
end;
fontStr [0] := chr (32);
DrawString (fontStr);
end;
end; {of ShowFont}

END.

436 Appendix G: HodgePodge Source Code: Pascal

PRINT.PAS (printing)

UNIT Print;

{+

HodgePodge: An example Apple IIGS Desktop application

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

All Rights Reserved

Pascal UNIT "PRINT.PAS" : Window content printing routines

—_—————_——— — — — — — 4

|
|
|
|
|
|
| Copyright (c) 1986-87 by Apple Computer, Inc.
|
|
|
|
|
|

INTERFACE
USES

HPIntfData, {HodgePodge Apple IIGS Toolbox Interface Units}

HPIntfProc,

HPIntfPdos,

Globals, {HodgePodge Code Units}

Dialog,

Font,

Paint;
procedure DoChooserlItem; {Show standard chooser dialog to select options}
procedure DoSetupItem; {Show standard page setup dialog to sel options}
procedure DoPrintItem; {Print contents of current window to printer }
procedure SetUpDefault; {Create and initialize THPrint record }
IMPLEMENTATION
var printHndl: PrRecHndl; {Private print record handle for Print Manager}

procedure DoChooserItem;

{Display the Chooser Dialog for the user to select which printer and
printer connection to use.}

var dummy: boolean;

begin {of DoChooserItem}
dummy := PrChooser;
end; {of DoChooserItem}

PRINT.PAS (printing) 437

procedure DoPrintItem;
{Print the contents of the front window to the selected printer.}

var prPort
theWindow

GrafPortPtr;
GrafPortPtr;

procedure DrawTopWindow (theWindow: GrafPortPtr);

{This private procedure determines what type of window theWindow is and
calls the appropriate procedure to draw its contents to the current port
which is now the printer port created in DoPrintItem.}

var myDataHandle: WindDataH;

begin {of DrawTopWindow}
myDataHandle := WindDataH (GetWRefCon (theWindow)) ;
with myDataHandle** do
if Flag = 0 then
PaintIt (pict)
else
ShowFont (theFont, isMono) ;
end; {of DrawTopWindow}

begin {of DoPrintItem}
theWindow := FrontWindow;
if theWindow <> nil then
if PrJobDialog (printHndl) then begin

WaitCursor;
prPort := PrOpenDoc (printHndl, nil);
PrOpenPage (prPort,nil);
DrawTopWindow (theWindow) ;
PrClosePage (prPort) ;
PrCloseDoc (prPort) ;
PrPicFile (printHndl, nil,nil);
InitCursor;
end;
end; {of DoPrintItem}

procedure DoSetupItem;

{Display the Page Setup dialog for the user to choose the print mode,
number of pages, etc. to print.}

var dummy: boolean;

begin {of DoSetupItem}
dummy := PrStlDialog (printHndl);
end; {of DoSetupItem}

procedure SetUpDefault;

{Create and initialize a THPrint record which is required for all
printing operations.}

begin {of SetUpDefault}
printHndl := PrRecHndl (NewHandle (140,
myMemoryID,
attrNoCross + attrLocked,
Ptr (0)));
PrDefault (printHndl);
end; {of SetUpDefault}

END.

438 Appendix G: HodgePodge Source Code: Pascal

PAINT.PAS (pictures and files)

UNIT Paint;

{4
HodgePodge: An example Apple IIGS Desktop application

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

Pascal UNIT "PAINT.PAS" : Bitmapped picture load/save and window drawing

e ——————— ———— — %

+

INTERFACE

USES
HPInt fData, {HodgePodge Apple IIGS Toolbox Interface Units}
HPIntfProc,
HPIntfPdos,

Globals, {HodgePodge Code Units}
Dialog;

function AskUser : boolean; {Load a new picture from disk}
procedure DoSaveltem; {If paint window in front, do Std File dialog & save}
procedure Paint; {Draw picture window contents}
procedure PaintIt (pict: Handle); {Do Paint's dirty work}

IMPLEMENTATION

{$DefProc }
function OpenFilter (DirEntry : longint) : integer;

(Filter function called by the Standard File Operations' SFGetFile
dialog to determine whether a filename should be dimmed or not.}

type
BytePtr = “byte;
var
fileTypePtr : BytePtr;

begin {of OpenFilter}
fileTypePtr := Pointer (DirEntry + $10);
if (BitAND(FileTypePtr”,$00FF) = $Cl) then { Unpacked Picture File type }
OpenFilter := 2
else
OpenFilter := 1;
end; {of OpenFilter}

PAINT.PAS (pictures and files)

439

function AskUser : boolean;

var ourTypeList : TypeListPtr;

function LoadOne : boolean;
{Private procedure which actually loads a picture from disk}

var openBlk : OpenRec;
readBlk : FileIORec;

begin {of LoadOne}
LoadOne := false;

WaitCursor;

PictHndl := NewHandle ($8000,
MyMemoryID,
0,
Ptr (0));

if isToolError then
Exit;

HLock (PictHndl);

openBlk.openPathname := @myReply.fullpathname;
openBlk.ioBuffer = nil;
OPEN (openBlk);
if CheckDiskError (27) then
Exit;

readBlk.dataBuffer := PictHndl*;
readBlk.requestCount := $8000;
readBlk. fileRefNum := openBlk.openRefNum;
READ (readBlk);
if CheckDiskError (28) then

Exit;

CLOSE (readBlk);
HUnLock (PictHndl);

LoadOne := true;
end; {of LoadOne}

begin {of AskUser}

SFGetFile (20,
20,
‘Load which picture:",
@OpenFilter,
NIL,
MyReply) ;

AskUser := false;
if myReply.good then
if LoadOne then
AskUser := true;
end; {of AskUser}

440 Appendix G: HodgePodge Source Code: Pascal

procedure

{This procedure 1

DoSaveltem;

s called to save the contents of a "Paint" window

to a disk file. NOTE: This routine is ONLY called when a "Paint"
window is in front due to enabling/disabling the menu items.}

var theWindow: GrafPortPtr;
myDataHandle: WindDataH;

i:

integer;

procedure SaveOne (pict: Handle);

{Private procedure which actually does the picture save}

var

destroyBlk : PathNameRec;
createBlk : FileRec;
openBlk : OpenRec;
writeBlk : FileIORec;

begin {of SaveOne}

end;

begin

destroyBlk.pathname := @myReply. fullpathname;
DESTROY (destroyBlk);

createBlk.pathname := @myReply.fullpathname;
createBlk.fAccess = $C3; {DRbWR, see ProDOS16
createBlk.fileType := $C1; {Unpacked file}
createBlk.auxType := 07 {-nothing-}
createBlk.storageType := 1; {Seedling file}
createBlk.createDate := 0;

createBlk.createTime := 0;

CREATE (createBlk);
if CheckDiskError (25) then
Exit;

openBlk.openPathname := @myReply.fullpathname;
openBlk.ioBuffer := nil;
OPEN (openBlKk);

writeBlk.dataBuffer := plct”;
writeBlk.requestCount := $8000;
writeBlk.fileRefNum := openBlk.openRefNum;
WRITE (writeBlk);
if CheckDiskError (26) then

Exit;

CLOSE (writeBlk);
{of SaveOne}

{of DoSaveltem}

theWindow := FrontWindow;
myDataHandle := WindDataH (GetWRefCon (theWindow));
SFPutFile (20,

if

20,

'save which picture:‘,
myDataHandle”” .Name,
15,

myReply) ;

myReply.good then begin
WaitCursor;
SaveOne (myDataHandle””.pict);
with myDataHandle*” do begin
{Change name of correct menu item:}
Name := myReply.filename;

docs}

PAINT.PAS (pictures and

files)

441

MenuStr := concat (=",
myReply.filename,
I\Nl’
IntToString (MenuID),
'\O."');

for 1 := FirstWind to LastWind do
if WindowList [i] = theWindow then
Leave; (Exit loop}

SetMItem (MenuStr, FirstWindItem + i);

{New menu name}
end;

{Set window title to fielg in refcon, NOT to myReply.filename!!}
SetWTitle (myDataHandle“A.Name,thewindow);

CalcMenuSize (0,0, WindowsMenuID) ;
InitCursor;
end;

end; {of DoSaveItem)

procedure Paint;

{This is a Definition Procedure used to draw the contents of a Font window}

var tmpPort
myDataHandle

GrafPortPtr;
WindDataH;

begin {of Paint}
tmpPort := GetPort;

myDataHandle := WindDataH (GetWRefCon {tmpPort)) ;
PaintIt (myDataHandle“A.pict);
end; {of Paint}

procedure PaintIt (pict: Handle);
{Procedure to actually draw the picture in memory to the window. }

var srclLoc : LocInfo;
sSrcRect : Rect;

begin {of PaintTIt}
HLock (pict);

with srcloc do begin

portSCB = $0080;

ptrToPixImage = pict~;

lwidth := 160;

SetRect (boundsRect,0,0,640,200);
BoundsRect ,v1 = 0;

end;

SetRect (srcRect,0,0,640,200);
PPToPort (srcloc,

srcRect,

01

ol

srcCopy) ;

HUnLock (pict);
end; {of PaintIt}

END.

442 Appendix G: HodgePodge Source Code: Pascal

GLOBALS.PAS (global data)

UNIT Globals;

{
HodgePodge: An example Apple IIGS Desktop application

Written by the Apple IIGS Development Team
Translated to TML Pascal by TML Systems, Inc.

Copyright (c) 1986-87 by Apple Computer, Inc.
All Rights Reserved

Pascal UNIT "GLOBALS.PAS" : Global data structs and init routine

—
t—————————— — — — 4

+

INTERFACE
USES
HPInt fData, {HodgePodge Apple IIGS Toolbox Interface Units}
HPIntfProc,
HPIntfPdos;
const
ScreenMode = $80; {640 mode}
MaxX = 640; {Max X clamp (should correspond to ScreenMode}
MaxScan = 160; {Max size of scan line}
AppleMenulD = 300;
AboutItem = 301;
FileMenulID = 400;
Openltem = 401;
CloseItem = 255; {For DA's}
SaveAsItem = 403;
ChoosePItem = 405;
PageSetItem = 406;
PrintItem = 407;
QuitItem = 409;
EditMenulD = 500;
UndoItem = 250; {For DA's}
CutItem = 251; {For DA's}
Copyltem = 252; {For DA's}
Pasteltem = 253; {For DA's}
ClearItem = 254; {For DA's}
WindowsMenuID = 600;
NoWindowsItem = 601;
FirstWindItem = 2000; {Allocated dynamically starting at 2000}
Font sMenulD = 700;
FontItem = 701;
MonoItem = 702;
FirstWind = 0; {Lower bound of WindowList}
LastWind = 15; {Upper bound of WindowList}

GLOBALS.PAS (global data) 443

type
WindDataH = "“WindDataP; {RefCon data for our windows}
WindDataPp = “WindDataRec; {...carried along with wind data}
WindDataRec = record
Name: Str255;
MenuStr: str2ss;
MenuID: integer;

Flag: integer; {0 = Paint, 1 = Font}
case integer of
0 : (theFont: FontID;
isMono : boolean) ;
1 : (pict: Handle) ;
end;
var
MyMemoryID : integer; {Application ID assigned by Memory Mgr}
Done : boolean; {True when quitting}
ToolsZeroPage : Handle; {Handle to Zero page memory for Tools}
Event : WmTaskRec; {All events are returned here}
AppleMenuStr : Str255; {For creating menus}
FileMenuStr : Str255;
EditMenusStr : Str255;
WindowMenuStr : Str255;
FontMenuStr I Str25s5;
NoWindstr : String [40); {Menu Item String for "No Windows..."}
MonoStr ¢ String [40];
Prostr ¢ String [40];
LastWindow ¢ GrafPortPtr; {The Front Window last time through event 1
dummy : integer; {*** >!< Possible compiler bug?}
DesiredFont : FontID; {Indicates current selected font}
isMonoFont : boolean; {Flag indicates if mono spacing selected}
myReply : SFReplyRec;
PictHndl : Handle;
WIndex : integer; {Count of number of windows open}
WindowList H {List of up to 15 open windows}
array [firstwind..lastwind] of GrafPortPtr;
P1sWt Temp H DialogTemplate;
PlsWtItem : ItemTemplate;
AppleIcon : record
boundsRect Rect;
data farray (1..34] of
packed array [1..16] of byte;
end;
Procedure InitGlobals; {Setup variables}
PROCEDURE HPStuffHex (thingpPtr : Ptr; s : Str255); {Store hex}

444 Appendix G: HodgePodge Source Code: Pascal

IMPLEMENTATION

PROCEDURE HPStuffHex (thingPtr : Ptr; s : Str255);

{>!< This routine will be implemented in TML Pascal V1.1l. For now,

we define it ourselves. StuffHex stores bytes (expressed as a string
of hexadecimal digits) into any data structure, and is based on the
stuffHex procedure in Macintosh QuickDraw. The resolution of this
routine is on byte boundaries.}

var iterator
stringIndex

: integer;
: integer;
begin {of HPStuffHex}
for iterator := 0 to Length (s) - 1 do begin
stringIndex := (iterator * 2) + 1;
thingPtr” := Hex2Int (StringPtr (longint (@s) + stringIndex),2);
thingPtr := pointer (longint (thingPtr) + 1);
end;
end; {of HPStuffHex}

procedure InitGlobals;

{Initialize global data variables, including the PlsWtTemp used by
ShowPleaseWaitDialog, the menu strings used by the menu bar setup
routines in MENU.PAS, and the apple icon used by the "about..."
item dialog routine in DIALOG.PAS}

begin {of InitGlobals}

with PlsWtTemp do begin
SetRect (dtBoundsRect,120,30,520,80) ;
dtVisible := true;
dtRefCon := 0;
dtItemList (0] := pointer (0); {We will insert ptr to item here}
dtItemList [1] := nil; {Null-terminated}

end;

AppleMenuStr := concat ('>>@\N300X\0',
'==About HodgePodge...\N301\0',
'==-\N302D\0."');
FileMenuStr := concat ('>> File \N400\O',
'==0pen...\N401*0o\0"',
==Close\N255D\0"',
==Save As...\N403D\0',
==-\N404D\0"',
==Choose Printer...\N405\0°',
==Page Setup...\N406D\0',
==Print...\N407*PpD\O"',
==-\N408D\0"',
==Quit\N409*Qq\0."');
>> Edit \NS500D\O°',
==Undo\N250*2z\0"',
==-\N501D\0"',
==Cut\N251*Xx\0",
==Copy\N252*Cc\0",
==Paste\N253*Vv\0',
==Clear\N254\0."');
WindowMenuStr := concat ('>> Window \N600OD\O',
‘== No Windows Allocated\N601D\O.');
FontMenuStr := concat ('>> Fonts \N700\0°',
'==Display Font...\N701*Ff\O',
'==Display Font as Mono-spaced\N702*Mm\O."');

EditMenuStr := concat (

LastWindow :=nil;

GLOBALS.PAS (global

data)

IS

B

end;

END.

446

NoWindStr

MonoStr
Prostr
isMonoFont

:= '=Display Font
‘=Display Font
:= false;

with DesiredFont do begin

famNum := SFFFE;
fontStyle 0;
fontSize := 8;

end;

WIndex := 0;

SetRect

HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex
HPStuffHex

(AppleIcon.boundsRect
(@ApplelIcon.data(l],

(@AppleIcon.datal[2],

(@Applelcon.datal[3],

(@ApplelIcon.datal(4],

(@AppleIcon.data([5],

(@AppleIcon.data(6],

(@AppleIcon.data(7],

(eApplelIcon.data(8],

(@ApplelIcon.data(9],

(@Applelcon.data(10],
(@AppleIcon.data(ll],
(@Applelcon.data(l2],
(@AppleIcon.data(13],
(@Applelcon.data(l4],
(@AppleIcon.data([1l5],
(@AppleIcon.data(l6],
(@Applelcon.data(l7],
(@ApplelIcon.data(18],
(@AppleIcon.data([19],
(@AppleIcon.data[20],
(@AppleIcon.data(21],
(@Applelcon.data(22],
(@ApplelIcon.data([23],
(@ApplelIcon.data(24],
(@ApplelIcon.data[25],
(@ApplelIcon.data[26],
(@ApplelIcon.data(27],
(@AppleIcon.data([28],
(@AppleIcon.data(29],
(@AppleIcon.data(30],
(@AppleIcon.data([31],
(@ApplelIcon.data(32],
(@ApplelIcon.data([33],
(@AppleIcon.data(34],

{of InitGlobals}

'==No Windows Allocated\N601D\O."';

as Mono-spaced';
as Proportional!;

{No windows open yet}

,0,0,64,34);

00000000000000000000000000000000)
‘OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOY) ;7
*0F0000000000000000000000000000F0") ;7
'OFOFFFFFFFFFFFFFFFFFFFFFFFFFFOF0Y) 7
'‘OFOFFFFFFFFFFFFFFFFFF88FFFFFFOFQY) ;
‘OFOFFFFFFFFFFFFFFFF8888FFFFFFOFQ") ;
‘OFOFFFFFFFFFFFFFFF88888FFFFFFOFQ"Y) ;
‘OFOFFFFFFFFFFFFFF88888FFFFFFFOF0") ;
'OFOFFFFFFFFFFFFFB888888FFFFFFFOF0") ;
'OFOFFFFFFFFFFFFF88888FFFFFFFFOF0") ;
'OFOFFFFFFFFFFFFF8888FFFFFFFFFOF0") ;
'OFOFFFFFF8888FFFB88FF8888FFFFFOF0") ;
‘OFOFFFF88888888FFF88888888FFFOF0") ;
‘OFOFFF888888888888888888888FF0F0") ;

'OFQFF FFFFOFO0') ;
'OFOFF! FFFFOFO0') ;
'OFOFF! FFFFFFOF0') ;

'OFOFF666666666666666666FFFFFFOF0") 7
'OFOFF666666666666666666FFFFFFOF0") ;
'OFOFF666666666666666666FFFFFFOF0") ;
'OFO0FF4444444444444444444FFFFFOF0"') ;
‘OFOFF44444444444444444444FFFF0F0") ;
'OFO0FFF444444444444444444444FF0F0") ;
'OFOFFF555555555555555555555FF0F0") 7
'OFOFFF555555555555555555555FF0F0") 7
'OFOFFFF5555555555555555555FFFQOF0") 7
‘OFOFFFF1111111111111111111FFFOF0"*);
'OFOFFFFF11111111111111111FFFFOF0"') ;
‘OFOFFFFFF111111FFF111111FFFFFOF0') ;
'OFOFFFFFFF1111FFFFF1111FFFFFFOF0') ;
‘OFOFFFFFFFFFFFFFFFFFFFFFFFFFFOFO") ;
*OF0000000000000000000000000000F0") 7
'OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOY) 7
*00000000000000000000000000000000") 7

Appendix G: HodgePodge Source Code: Pascal

Glossary

absolute: Characteristic of a load segment or
other program code that must be loaded at a
specific address in memory and never moved.
Compare relocatable, position-independent.

absolute addressing: an addressing mode in
which instruction operands are interpreted as
literal addresses.

access (or access byte): An attribute of a ProDOS
file that controls whether the file may be read
from, written to, renamed, or backed up.

accumulator: The register in a computer’s central
processor or microprocessor where most
computations are performed.

activate: To make active. A control or window
may be activated. Compare enable.

activate event: a2 window event that occurs when a
window is made either active or inactive.

active: Able to respond to the user’s mouse or
keyboard actions. Controls and windows that are
active are displayed differently from inactive
items.

ADB: See Apple Desktop Bus.

address bus: The bus that carries addresses from
the CPU to components under its control.

advanced linker (APW): One aspect of the linker
supplied with APW. The operation of the
advanced linker is programmable. Compare
standard linker.

alert: A warning or report of an error in the form
of an alert box, a sound from the computer’s
speaker, or both.

alert box: A special type of dialog box that
appears on the screen to give a warning or to
report an error message during use of an
application.

alert window: The window in which an alert box
appears. One of the two predefined window
formats. Compare document window.

analog RGB: A type of color video consisting of
separate analog signals from the red, green, and
blue color primaries. The intensity of each
primary can vary continuously, making possible
many shades and tints of colors. Compare TTL
RGB.

Apple Desktop Bus (ADB): An input bus, with its
own protocol and electrical characteristics, that
provides a method of connecting input devices
such as keyboards and mouse devices to personal
computers.

Apple Desktop Bus Tool Set: The Apple IIGS tool
set that facilitates an application’s interaction
with devices connected to the Apple Desktop
Bus.

447

Apple key: A modifier key on the Apple 1IGS
keyboard, marked with both an Apple icon and a
spinner, the icon used on the equivalent key on
some Macintosh keyboards. It performs the same
functions as the Open Apple key on standard
Apple II machines.

AppleTalk network: A local area network
developed by Apple Computer, Inc.

Apple II: A family of computers, including the
original Apple II, the Apple II Plus, the Apple Ile,
the Apple Ilc, and the Apple IGS. Compare
standard Apple IL.

Apple IIc: A transportable personal computer in
the Apple II family, with a disk drive, serial ports,
and 80-column display capability built in.

Apple Ile: A personal computer in the Apple II
family with seven expansion slots and an
auxiliary memory slot that allow the user to
enhance the computer’s capabilities with
peripheral memory and video enhancement
cards.

Apple IIGS: The most advanced computer in the
Apple II family. It features expanded memory,
advanced sound and graphics, and the Apple
IIGS Toolbox of programming routines.

Apple IIGS Debugger: A 65816 machine language
code debugger for the Apple IIGS computer.

Apple IIGS Programmer’s Workshop (APW): A
multilanguage development environment for
writing Apple IIGS desktop applications.

Apple IIGS Toolbox: An extensive set of routines
that facilitate writing desktop applications and
provide easy program access to many Apple 11GS
hardware and firmware features.

Apple II Plus: A personal computer in the Apple
II family with expansion slots that allow the user
to enhance the computer’s capabilities with
peripheral cards.

448 Glossary

application: A stand-alone program that
performs a specific function, such as word-
processing, drawing, or telecommunications.
Compare, for example, desk accessory or device
driver.

application-defined event: Any of four types of
events available for applications to define and
respond to as desired.

application prefix: The ProDOS 16 prefix number
1/. It specifies the directory of the currently
running application.

application window: A window in which an
application’s document appears.

APW: See Apple IIGS Programmer’s Workshop.

APW Assembler: The 65816 assembly-language
assembler provided with the Apple 1IGS
Programmer’s Workshop.

APW C Compiler: The C-language compiler
provided with the Apple 1IGS Programmer’s
Workshop.

APW Editor: The program within the Apple IIGS
Programmer’s Workshop that allows you to enter,
modify, and save source files for all APW
languages.

APW Linker: The linker supplied with the
Apple TIGS Programmer’s Workshop.

APW Shell: The programming environment of
the Apple 1IGS Programmer’s Workshop—it
provides facilities for file manipulation and
program execution, and supports shell
applications.

APW utility program: Any of various Shell
applications supplied with the Apple 1IGS
Programmer’s Workshop that function as APW
Shell commands.

arc: A portion of an oval; one of the fundamental
shapes drawn by QuickDraw II.

A register: See accumulator.

ascent: In a font, the distance between the base
line and the ascent line.

ascent line: A horizontal line that coincides with
the tops of the tallest characters in a font. See
also base line, descent line.

ASCII: Acronym for American Standard Code for
Information Interchange, pronounced “ASK-ee.”
A code in which the numbers from 0 to 127 stand
for text characters. ASCII code is used to
represent text inside a computer and to transmit
text between computers or between a computer
and a peripheral device.

assembler: A language translator that converts a
program written in assembly language into an
equivalent program in machine language. The
opposite of a disassembler.

attributes word: Determines how memory blocks
are allocated and maintained. Most of the
attributes are defined at allocation time and can’t
be changed after that; other attributes can be
modified after allocation.

auto-key: A keyboard feature and an event type, in
which a key being held down continuously is
interpreted as a rapid series of identical
keystrokes.

auxID: A subfield of the User ID. An application
may place any value it wishes into the auxID
field.

auxiliary type: A secondary classification of
ProDOS files. A file’s auxiliary type field may
contain information of use to the applications
that read it. Compare file type.

background: The pixels within a character or
other screen object that are not part of the
object itself.

background color: The color of background
pixels in text; by default it is black.

background pattern: The pattern QuickDraw II
uses to erase objects on the screen.

background pixels: In a character image, the
pixels that are not part of the character itself.

background procedure: A procedure run by the
Print Manager whenever the Print Manager has
directed output to the printer and is waiting for
the printer to finish.

backup bit: A bit in a file’s access byte that tells
backup programs whether the file has been
altered since the last time it was backed up.

bank: A 64K (65,536-byte) portion of the Apple
1IGS internal memory. An individual bank is
specified by the value of the 65816
microprocessor’s bank register.

bank-switched memory: On Apple II computers,
the part of language card memory in which two
4K portions of memory share the same address
range ($D000 to $DFFF).

bank $00: The first bank of memory in the Apple
IIGS. In emulation mode, it is equivalent to main
memory in an Apple Ile or Apple Ilc computer.

base line: A horizontal line that coincides with
the bottom of the main body of each character
in a font. Character descenders extend below the
base line.

BASIC: Acronym for Beginners All-purpose
Symbolic Instruction Code. BASIC is a high-level
programming language designed to be easy to
learn. Applesoft BASIC is built into the Apple
IIGS firmware.

batch: A mode of executing a computer program
in which all code and data required by the
program are loaded into the computer at the
beginning, the program is run, and all results are
output at the end. Batch mode is non-interactive.

binary file: (1) A file whose data is to be
interpreted in binary form. Machine-language
programs and pictures are stored in binary files.
Compare text file. (2) A file in binary file format.

Glossary 449

binary file format: The ProDOS 8 loadable file
format, consisting of one absolute memory
image along with its destination address. A file in
binary file format has ProDOS file type $06 and
is referred to as a BIN file. The System Loader
cannot load BIN files.

bit: A contraction of binary digit, the smallest
representation of data in a digital computer.

bit plane: A method of representing images in
computer memory. In a bit plane, consecutive
bits in memory specify adjacent pixels in the
image; if more than one bit is required to
completely specify the state of a pixel, more than
one bit plane is used for the image. Compare

chunky pixels.

block: (1) A unit of data storage or transfer,
typically 512 bytes. (2) A contiguous region of
computer memory of arbitrary size, allocated by
the Memory Manager. Also called a memory
block.

block device: A device that transfers data to or
from a computer in multiples of one block (512
bytes) of characters at a time. Disk drives are
block devices. Also called block /O device.

Boolean logic: A mathematical system in which
every expression evaluates to one of two values,
usually referred to as TRUE or FALSE.

Boolean variable: A variable that can have one
of two values, usually referred to as TRUE or
FALSE.

boot prefix: The ProDOS 16 prefix number */. It
specifies the name of the volume from which the
currently running version of ProDOS 16 was
started up.

boundary rectangle: A rectangle, defined as part
of a QuickDraw II LocInfo record, that encloses
the active area of the pixel image and imposes a
coordinate system on it. Its upper-left corner is
always aligned on the first pixel in the pixel map.

boundsRect: The GrafPort field that defines the
port’s boundary rectangle.

450 Glossary

breakpoint: A machine-language instruction in a_
program that causes execution to halt.

buffer: A holding area of the computer’s memory
where information can be stored by one
program or device and then read, perhaps at a
different rate, by another; for example, a print
buffer.

Busy flag: A feature that informs the Scheduler
whether a currently needed resource is busy or
available.

button: (1) A pushbutton-like image in a dialog
box where the user clicks to designate, confirm,
or cancel an action. Compare radio button,
check box. (2) A button on a mouse or other
pointing device.

byte: A unit of information consisting of eight
bits. A byte can have any value between 0 and
255, which may represent an instruction, letter,
number, punctuation mark, or other character.
See also bit, kilobyte, megabyte.

C: A high-level programming language. One of
the languages available for the Apple IIGS
Programmer’s Workshop.

cancel: To stop an operation, such as the setting
of page-setup values in a dialog box, without
saving any results produced up to that point.

Cancel: One of two predefined item ID numbers
for dialog box buttons (Cancel = 2). Compare
OK.

card: See peripheral card.

caret: A symbol that indicates where something
should or will be inserted in text. On the screen it
designates the insertion point, and is usually a
vertical bar (I).

carry flag: A status bit in the microprocessor
indicating whether an accumulator calculation
has resulted in a carry out of the register.

CDA: Sce classic desk accessory.
c flag: See carry flag,

character: Any symbol that has a widely
understood meaning and thus can convey
information. Some characters—such as letters,
numbers, and punctuation—can be displayed on
the monitor screen and printed on a printer.
Most characters are represented in the computer
as one-byte values.

character device: A device that transfers data to
or from a computer as a stream of individual
characters. Keyboards and printers are character
devices.

character image: An arrangement of bits that
defines a character in a font.

character origin: The point on the base line used
as a reference location for drawing a character.

character width: The number of pixels the pen
position is to be advanced after the character is
drawn.

check box: A small box associated with an option
in a dialog box. When the user clicks the check
box, that may change the option or affect related
options.

Choose Printer: A part of the Print Manager that
lets the user select a printer or port for printing.

chunkiness: The number of bits required to
describe the state of a pixel in a pixel image.

chunky pixels: A method of representing images
in computer memory. In chunky pixel
organization, a number of consecutive bits in
memory combine to specify the state of a single
pixel in the image. Consecutive groups of bits
(the size of the group is equal to the image’s
chunkiness) define adjacent pixels in the image.
Compare bit plane.

clamp values: The x- and y-limits, in terms of
pixels, on cursor position controlled by mouse
movement.

classic desk accessory (CDA): Desk accessories
designed to execute in a non-desktop, non-event-
based environment. Compare new desk
accessory.

click: To position the pointer on something, and
then to press and quickly release the button on
the mouse or other pointing device.

clip: To restrict drawing to within a particular
boundary; any drawing attempted outside that
boundary does not occur.

Clipboard: The holding place for what the user
last cut or copied; a buffer area in memory.
Information on the Clipboard can be inserted
(pasted) into documents. In memory, the
contents of the Clipboard are called the desk
scrap.

clipping region: The region to which an
application limits drawing in a GrafPort.

clock: (1) The timing circuit that controls
execution of a microprocessor. Also called the
system clock. (2) An integrated circuit, often with
battery-backup memory, that gives the current
date and time. Also called the clock-calendar.

clock speed: The frequency of the system clock
signal in megahertz.

close box: The small white box on the left side of
the title bar of an active window. Clicking it
closes the window.

CMOS: Abbreviation for complementary metal-
oxide semiconductor, one of several methods of
making integrated circuits out of silicon. CMOS
devices are characterized by their low power
consumption. CMOS techniques are derived
from MOS techniques.

color table: One of 16 possible lookup tables in
Apple IIGS memory, that lists the available color
values for a scan line.

Glossary 451

command line: (1) In APW, the line of text with
which the user invokes a procedure or function
or executes a program. The command line often
includes both the name of the function to
execute and a list of parameters to be passed to
the function. (2) The line on the screen on which
a command is entered.

command-line interface: The type of interface
between user and program in which information
is passed in a command line.

compaction: The rearrangement of allocated
blocks in memory to open up larger contiguous
areas of free space.

compiler: A program that produces object files
(containing machine-language code) from source
files written in a high-level language such as C.
Compare assembler.

content region: The area in a window in which an
application presents information to the user.

control: An object in a window with which the
user, using the mouse, can cause instant action
with visible results or change settings to modify a
future action.

controlling program: A program that loads and
runs other programs, without itself leaving
memory. A controlling program is responsible
for shutting down its subprograms and freeing
their memory space when they are finished. A
shell, for example, is a controlling program.

Control Manager: The Apple 1IGS tool set that
manages controls.

Control Panel: A desk accessory that lets the user
change certain system parameters, such as
speaker volume, display colors, and configuration
of slots and ports.

coordinate plane: A two-dimensional grid
defined by QuickDraw II. All drawing commands
are located in terms of coordinates on the grid.

452 Glossary

coordinates: X-Y locations on the QuickDraw II
coordinate plane. Most QuickDraw routines
accept and return coordinates in the order (Y,X).

copy: To duplicate something by selecting it and
choosing Copy from the Edit menu. A copy of
the selected portion is placed on the Clipboard,
without affecting the original selection.

creation date: An attribute of a ProDOS file; it
specifies the date on which the file was first
created.

creation time: An attribute of a ProDOS file; it
specifies the time at which the file was first
created.

C string: An ASCII character string terminated by
a null character (ASCII value = 0).

cursor: A symbol displayed on the screen
marking where the user’s next action will take
effect or where the next character typed from the
keyboard will appear.

cut: To remove something by selecting it and
choosing Cut from the Edit menu. The cut
portion is placed on the Clipboard.

data area: A document as viewed in a window.
The data area is the entire document, only a

portion of which (the visible region) may be
seen in the window at any one time.

data bank register: A register in the 65816
processor that contains the high-order byte of
the 24-bit address that references data in
memory.

data bus: A set of the electrical conductors that
carry data from one internal part of the
computer to another.

data structure: A specifically formatted item of
data or a form into which data may be placed.

DB register: See data bank register.

debugger: A utility used for software development
that allows you to analyze a program for errors
that cause it to malfunction. For example, it may
allow you to step through execution of the
program one instruction at a time.

default prefix: The pathname prefix attached by
ProDOS 16 to a partial pathname when no prefix
number is supplied by the application. The
default prefix is equivalent to prefix number 0/.

definition procedure: A routine that defines the
characteristics of some desktop feature such as a
window or control. For example, TaskMaster
needs a pointer to a window-content definiton
procedure (wContDefProc) in order to draw the
contents of windows that it manipulates.

DefProc: See definition procedure.

dereference: To substitute a pointer for a
memory handle, or a value for a pointer. When
you dereference a memory block’s handle, you
access the block directly (through its master
pointer) rather than indirectly (through its
handle).

descender: Any part of a character that lies
below the base line (such as the tail on a lower-
case “p”) .

descent: In a font, the distance between the base
line and the descent line.

descent line: A horizontal line that coincides with
the bottom of the character descender that
extends farthest below the base line. See also
ascent line, font height.

desk accessory: A “mini-application” that is
available to the user regardless of whether
another application is running. The Apple 1IGS
supports two types of desk accessories: classic
desk accessories and new desk accessories.

desk accessory event: An event that occurs when
the user enters the special keystroke
(Control-Apple-Escape) to invoke a classic desk
acoessory.

Desk Manager: The Apple I1IGS tool set that
executes desk accessories and enables
applications to support them.

desk scrap: A piece of data, maintained by the
Scrap Manager, taken from one application and
available for insertion into another.

desktop: The visual interface between the
computer and the user—the menu bar and the
gray (or solid-colored) area on the screen. In
many applications the user can have a number of
documents on the desktop at the same time.

desktop interface: See desktop.
destination: See destination location.

destination location: The location (memory
buffer or portion of the QuickDraw II coordinate
plane) to which data such as text or graphics is
copied. Compare source location. See also

destination rectangle.

destination rectangle: The rectangle (on the
QuickDraw II coordinate plane) in which text or
graphics are drawn when transferred from
somewhere else. Compare source rectangle.

development environment: A program or set of
programs that allows you to write applications. It
typically consists of a text editor, an assembler or
compiler, a linker, and support programs such as
a debugger.

device: A piece of hardware used in conjunction
with a computer and under the computer’s
control. Also called a peripheral device because
such equipment is often physically separate from,
but attached to, the computer.

device driver: A program that handles the
transfer of data to and from a peripheral device,
such as a printer or disk drive.

device-driver event: An event generated by a
device driver.

Glossary 453

dial: An indicator on the screen that displays a
quantative setting or value. Usually found in
analog form, such as a fuel gauge or
thermometer. A scroll bar is a standard type of
dial.

dialog: See dialog box.

dialog box: A box on the screen that contains a
message requesting more information from the
user. See also alert.

Dialog Manager: The Apple IIGS tool set that
manipulates dialog boxes and alerts, which
appear on the screen when an application needs
more information to carry out a command or
when the user needs to be notified of an
important situation.

dialog record: Information describing a dialog
window that is maintained by the Dialog
Manager.

dialog window: The window in which a dialog box
appears.

digital oscillator chip (DOC): An integrated
circuit in the Apple IIGS that contains 32 digital
oscillators, each of which can generate a sound
from stored digital waveform data.

digital RGB video monitor: A type of RGB video
display in which the intensities of the red, green,
and blue signals are fixed at discrete values.

dim: On the Apple IIGS desktop, to display a
control or menu item in gray rather than black,
to notify the user that the item is inactive.

direct page: A page (256 bytes) of bank $00 of
Apple IIGS memory, any part of which can be
addressed with a short (one-byte) address
because its high-order address byte is always $00
and its middle address byte is the value of the
65816 direct register. Co-resident programs or
routines can have their own direct pages at
different locations. The direct page corresponds
to the 6502 processor’s zero page. The term
direct page is often used informally to refer to
any part of the direct-page/stack space.

454 Glossary

direct-page/stack segment: A program segment
that is used to initialize the size and contents of
an application’s stack and direct page.

direct-page/stack space: A single block of
memory that contains an application’s stack and
direct page.

direct register: A hardware register in the 65816
processor that specifies the start of the direct

page.

disable: To make unresponsive to user actions. A
dialog box control that is disabled does nothing
when selected or manipulated by the user. In
appearance, however, it is identical to an enabled
control. Compare inactive.

disabled menu: A menu that can be pulled down,
but whose items are dimmed and not selectable.

disassembler: A program that converts machine-
language code in memory into assembly-
language instructions. Opposite of assembler.

disk operating system: An operating system
whose principle function is to manage disk-based
file access.

disk port: The connector on the rear panel of the
Apple IIGS for attaching disk drives.

Disk II: A type of disk drive made and sold by
Apple Computer, Inc., for use with the Apple II, I
Plus, and Ile computers. It uses 5.25-inch disks.

display mode: A specification for the way in
which a video display functions, including such
parameters as whether displaying text or
graphics, available colors, and number of pixels.
The Apple IIGS has two text display modes (40
column and 80 column), two standard Apple II
graphics display modes (Hi-Res and Double
Hi-Res), and two new Super Hi-Res graphics
display modes (320 mode and 640 mode).

display rectangle: A rectangle that determines
where an item is displayed within a dialog box.

dispose: To permanently deallocate (a memory
block). The Memory Manager disposes of a
memory block by removing its master pointer.
Any handle to that pointer will then be invalid.
Compare purge.

dithering: A technique for alternating the values
of adjacent pixels to create the optical effect of
intermediate values. Dithering can give the effect
of shades of gray on a black-and-white display, or
more colors on a color display.

DOC: See digital oscillator chip.
document: A file created by an application.

document window: A window that displays a
document. One of the two predefined window
formats. Compare alert window.

dormant: Said of a program that is not being
executed, but whose essential parts are all in the
computer’s memory. A dormant program may
be quickly restarted because it need not be
reloaded from disk.

double-click: To position the pointer where you
want an action to take place, and then press and
release the mouse button twice in quick
succession without moving the mouse.

draft printing: The print method that the
LaserWriter uses. QuickDraw II calls are converted
directly into command codes the printer
understands, which are then immediately used to
drive the printer. Compare spool printing.

drag: To position the pointer on something,
press and hold the mouse button, move the
mouse, and release the mouse button. When you
release the mouse button, you either confirm a
menu selection or move an object to a new
location.

drag area: A subregion in 2 window (usually the
title bar) in which the mouse pointer must be
placed before the user can drag the window.

draw: In QuickDraw II, to color pixels in a pixel
image.

drawing environment: The complete description
of how and where drawing may take place. Every
open window on the Apple IIGS screen is
associated with a GrafPort record, which specifies
the window’s drawing environment. Same as port,
graphic port.

drawing mask: An 8-bit by 8-bit pattern that
controls which pixels in the QuickDraw pen will
be modified when the pen draws.

drawing mode: One of eight possible interactions
between pixels in QuickDraw II's pen pattern and
pixels already on the screen that fall under the
pen’s path. In COPY mode, for example, pixels
already on the screen are ignored. In XOR mode,
on the other hand, bits in pixels on the screen
are XOR’d with bits in pixels in the pen; the
resulting pixels are drawn on the screen.

drawing pen: See pern.
D register: See direct register.
driver: See device driver.

dynamic segment: A load segment capable of
being loaded during program execution.
Compare static segment.

edit record: A complete text editing environment
in the Line Edit Tool Set, which includes the text
to be edited, the GrafPort and rectangle in which
to display the text, the arrangement of the text
within the rectangle, and other editing and
display information.

e flag: One of three flag bits in the 65816
processor that programs use to control the
processor’s operating modes. The setting of the e
flag determines whether the processor is in
native mode (6502), or emulation mode (65816).
See also m flag and x flag.

emulate: To operate in a way identical to a
different system. For example, the 65816
microprocessor in the Apple IIGS can carry out
all the instructions in a program originally
written for an Apple II that uses a 6502
microprocessor, thus emulating the 6502.

Glossary 455

emulation mode: The 8-bit configuration of the
65816 processor in which it functions like a 6502
processor in all respects except clock speed.

enable: To make responsive to user manipulation.
A dialog or menu that is enabled can be selected
by the user. Enabling does not affect how an item
is displayed. Compare activate.

end-of-file: See EOF.

EOF: The logical size of a ProDOS 16 file; it is the
number of bytes that may be read from or
written to the file.

erase: In QuickDraw II, to color an area with the
background pattern.

error: The state of a computer after it has
detected a fault in one or more commands sent
to it. Also called error condition.

error message: A message issued by the system or
application program when it has encountered an
abnormal situation or an error in data.

event: A notification to an application of some
occurrence (such as an interrupt generated by a
keypress) to which the application may want to
respond.

event code: A numeric value assigned to each
event by the Event Manager. Compare task code.

event-driven: A kind of program that responds to
user inputs in real time by repeatedly testing for
events. An event-driven program does nothing
until it detects an event such as a click of the
mouse button.

Event Manager: An Apple 1IGS tool set that
detects events as they happen, and passes the
events on to the application or to the
appropriate event handler, such as TaskMaster.

event mask: A parameter passed to an Event
Manager routine to specify which types of events
the routine should apply to.

event queue: A list of pending events maintained
by the Event Manager.

456 Glossary

event record: The internal representation of an
event, through which your program learns all
pertinent information about that event.

execution mode: One of two general states of
execution of the 65816 processor—native mode
and 6502 emulation mode.

extended task event record: A data structure
based on the event record that contains
information used and returned by TaskMaster.

FALSE: Zero. The result of a Boolean operation.
Opposite of TRUE.

file: Any named, ordered collection of
information stored on a disk. Application
programs and operating systems on disks are
examples of files; so also are text or graphics
created by applications and saved on disks. Text
and graphics files are also called documents.

file level: See system file level
file mark: See Mark.

filename: The string of characters that identifies a
particular file within its directory. ProDOS
filenames may be up to 15 characters long.
Compare pathname.

file type: An attribute of a ProDOS file that
characterizes its contents and indicates how the
file may be used. On disk, file types are stored as
numbers; in a directory listing, they are often
displayed as three-character or single-word
mnemonic codes.

fill mode: A display option in Super Hi-Res 320
mode. In fill mode, pixels in memory with the
value 0 are automatically assigned the color of
the previous nonzero pixel on the scan line; the
program thus need assign explicit pixel values
only to change pixel colors.

firmware: Programs stored permanently in ROM;
most provide an interface to system hardware.
Such programs (for example, the Monitor
program) are built into the computer at the
factory. They can be executed at any time but
cannot be modified or erased. Compare
hardware and software.

fixed: Not movable in memory once allocated.
Also called immovable. Program segments that
must not be moved are placed in fixed memory
blocks. Opposite of movable.

fixed-address: A memory block that must be ata
specified address when allocated.

fixed-bank: A block of memory that must start in
a specified bank.

flag: A variable whose value (usually 1 or 0,
standing for true or false) indicates whether some
condition holds or whether some event has
occurred. A flag is used to control the program’s
actions at some later time.

folder: See subdirectory.

font: In typography, a complete set of type in one
size and style of character. In computer usage, a
collection of letters, numbers, punctuation marks,
and other typographical symbols with a
consistent appearance; the size and style can be
changed readily. See also font scaling.

font family: All fonts that share the same name
but may vary in size or style. For example, all
fonts named Helvetica are in the same family,
even though that family contains Helvetica,
Helvetica Narrow and Helvetica Bold.

font height: The vertical distance from a font’s
ascent line to its descent line.

font ID: A number that specifies a font by family,
style, and size.

font scaling: A process by which the Font
Manager creates a font at one size by enlarging
or reducing characters in an existing font of
another size.

font strike: A 1 bit/pixel pixelmap consisting of
the character images of every defined character
in the font, placed sequentially in order of
increasing ASCII code.

foreground color: The color of the foreground
pixels in text; by default it is white.

foreground pixels: In a character image, the
pixels corresponding to the character itself.

frame region: The part of a window that
surrounds the window’s content region and
contains standard window controls.

full pathname: The complete name by which a
file is specified, starting with the volume
directory name. A full pathname always begins
with a slash (), because a volume directory
name always begins with a slash. See also
pathname.

Function Pointer Table (FPT): A table,
maintained by the Tool Locator, that points to all
routines in a given tool set.

general logic unit: See GLU.

GetNextEvent: The Event Manager call that an
application can make on each cycle through its
main event loop. Compare TaskMaster.

global coordinates: The coordinate system
assigned to a pixel image (such as screen
memory) to which QuickDraw II draws. In global
coordinates, the origin (upper-left corner) of the
pixel image’s boundary rectangle has the value
(0,0). Compare local coordinates.

global symbol: A label in a segment that may be
referenced by other segments. Compare with
local symbol, private symbol.

GLU: Abbreviation of general logic unit, a class of
custom integrated circuits used as interfaces
between different parts of the computer.

go-away area: A subregion in a window frame,
corresponding to the close box. Clicking inside
this region of the active window makes the
window close or disappear.

Glossary 457

GrafPort: A data structure (record) that specifies
a complete drawing environment, including such
elements as a pixel image, boundaries within
which to draw, a character font, patterns for
drawing and erasing, and other pen
characteristics.

graphic interface: An interface between computer
and user in which all screen drawing or other
output, including text, is done by graphic
routines. Desktop programs use a graphic
interface. Compare text-based interface.

graphic port: A specification for how and where
QuickDraw II draws. A graphic port is defined by
its GrafPort record; an application may have
more that one graphic port open at one time,
each defined by its own GrafPort. Same as
drawing environment.

grow area: A window-frame subregion in which
dragging changes the size of the window.

handle: See memory handle.

hardware: In computer terminology, the
machinery that makes up a computer system.
Compare firmware, software.

Heartbeat Interrupt Task queue: A list of tasks,
such as cursor-movement updating or checking
stack size, to be performed during vertical
blanking. Heartbeat tasks are manipulated by the
Miscellaneous Tool Set.

Heartbeat routines: Routines that execute at some
multiple of the heartbeat interrupt signal, which
occurs during the vertical blanking interval
(every Y60 of a second).

hex: See hexadecimal.

hexadecimal: The representation of numbers in
the base-16 system, using the ten digits 0 through
9 and the six letters A through F. Each
hexadecimal digit corresponds to a sequence of
four binary digits (bits). Hexadecimal numbers
are usually preceded by a dollar sign ($).

458 Glossary

hide: To make invisible (but not necessarily to
discard) an object on the screen such as a
window.

highlight: To make something visually distinct.
For example, when a button on a dialog box is
selected, it appears as light letters on a dark
background, rather than dark-on-light. An active
window or control is highlighted differently than
an inactive one.

HodgePodge: A sample Apple IIGS desktop
application; the program described in this book.

horizontal blanking: The interval between the
drawing of each scan line on a video display.

Human Interface Guidelines: Apple Computer’s
set of conventions and suggestions for writing
desktop programs. Programs that follow the
Human Interface Guidelines present a consistent
and friendly interface to users.

IC: See integrated circuit.

icon: An image that graphically represents an
object, a concept, or a message.

i flag: A bit in the 65816 microprocessor’s
Processor Status register that, if set to 1, disables
interrupts.

image: A representation of the contents of
memory. A code image consists of machine-
language instructions or data that may be loaded
unchanged into memory. See also pixel image.

inactive: Controls that have no meaning or effect
in the current context, such as an Open button
when no document has been selected to be
opened. These inactive controls are not affected
by the user’s mouse actions and are dimmed on
the screen. Compare disable.

index register: A register in a computer processor
that holds an index for use in indexed
addressing. The 6502 and 65816 microprocessors
used in the Apple II family of computers have
two index registers, called the X register and the
Y register.

information bar: An optional component of a
window. If present, the information bar appears
just below the title bar. It may contain any
information the application that created the
window wishes.

initialization file: A program (in the
SYSTEM.SETUP subdirectory of the boot disk)
that is loaded and executed at system startup,
independently of any application.

initialization segment: A segment in an initial
load file that is loaded and executed
independently of the rest of the program. It is
commonly executed first, to perform any
initialization that the program may require.

input/output: See I/O.

insertion point: The place in a document where
something will be added; it is selected by clicking
and is normally represented by a blinking
vertical bar.

instrument: A data structure, used by the Note
Sequencer and Synthesizer, that specifies such
parameters as the amplitude envelope, pitchbend
and vibrato characteristics, and the specific
waveforms that characterize the sound to be
played.

integer: A whole number in fixed-point form.

Integer Math Tool Set: The Apple IIGS tool set
that performs simple mathematical functions on
integers and other fixed-point numbers and
converts numbers to their ASCII string
equivalents.

integrated circuit: An electronic
circuit—including components and
interconnections—entirely contained in a single
piece of semiconducting material, usually silicon.
Often referred to as a chip.

interface: (1) The general form of interaction
between a user and a computer. (2) In
programming, the compile-time and runtime
linkage between your program and toolbox
routines.

interface library: A S€U Of variablc UCIUOLLS 4118
data-structure definitions that link a program
(such as a C application) with software written in
another language (such as the Apple IIGS
Toolbox).

interrupt: A temporary suspension in the
execution of a main program that allows the
computer to perform some other task, typically
in response to a signal from a peripheral device
or other source external to the computer.

interrupt environment: The machine state,
including register length and contents, within
which the interrupt handler executes.

invert: To highlight by changing white pixels to
black and vice versa.

1/0: Input/Output. A general term that
encompasses input/output activity, the devices
that accomplish it, and the data involved.

1/0 space: The portion of the memory map in a
standard Apple II (and in banks $00, $01, $EO,
and $E1 of an Apple 11GS) with addresses
between $C000 and $CFFF. Programs perform
I/O by writing to or reading from locations in
this I/O space.

item: A component of a dialog box, such as a
button, text field, or icon.

item ID: A unique number that defines an item in
a dialog box and allows further reference to it.

item line: The line of text that defines a menu
item’s name and appearance.

item list: A list of information about all the items
in a dialog or alert box.

item type: Identifies the type of dialog item,
usually represented by a predefined constant
(such as editLine) or a series of constants
(such as editLine+itemDisable).

Job dialog box: A dialog box presented when the
user selects Print from the File menu.

Glossary 459

joystick: A peripheral device with a lever,
typically used to move creatures and objects in
game programs; a joystick can also be used in
applications such as computer-aided design and
graphics programs.

JSL: Jump to Subroutine (Long), a 65816 assembly-
language instruction that requires a long (3-byte)
address. JSL can be used to transfer execution to
code in another memory bank.

JSR: Jump to Subroutine, a 6502 and 65816
assembly-language instruction that requires a 2-
byte address.

Jump Table: A table constructed in memory by
the System Loader. The Jump Table contains all
references to dynamic segments that may be
called during execution of the program.

K: See kilobyte.

keyboard equivalent: The combination of the
Apple key and another key, used to invoke a
menu item from the keyboard.

key-down: An event type caused by the user’s
pressing any character key on the keyboard or
keypad. The character keys include all keys except
Shift, Caps Lock, Control, Option, and Apple,
which are called modifier keys. Modifier keys are
treated differently and generate no keyboard
events of their own.

kilobyte (K): A unit of measurement consisting of
1024 (210) bytes. In this usage, kilo (from the
Greek, meaning a thousand) stands for 1024.
Thus, 64K memory equals 65,536 bytes. See also
megabyte.

kind: See segment kind.

460 Glossary

language card: Memory with addresses between
$D000 and $FFFF in any Apple II-family
computer. It includes two RAM banks in the
$Dxoxx space, called bank-switched memory. The
language card was originally a peripheral card
for the 48K Apple II or Apple II Plus that
expanded the computer’s memory capacity to
64K and provided space for an additional dialect
of BASIC.

leading: (Pronounced LED-ing.) The space
between lines of text. It is the number of pixels
vertically between the descent line of one
character and the ascent line of the character
immediately beneath it.

length byte: The first byte of a Pascal string. It
specifies the length of the string, in bytes.

library (or library file): An object file containing
program segments, each of which can be used in
any number of programs. The linker can search
through the library file for segments that have
been referenced in the program source file.

library dictionary segment: The first segment of 2
library file; it contains a list of all the symbols in
the file together with their locations in the file.
The linker uses the library dictionary segment to
find the segments it needs.

line: In QuickDraw I, the straight-line trajectory
between two points on the coordinate plane. The
line is specified by its starting and ending points.

LineEdit Tool Set: The Apple 1IGS tool set that
provides simple text-editing functions. It is used
mostly in dialog boxes.

line height: The total amount of vertical space
from line to line in a text document. Line height
is the sum of ascent, descent, and leading.

LinkEd: A command language that can be used to
control the APW Linker.

linker: A program that combines files generated
by compilers and assemblers, resolves all
symbolic references, and generates a file that can
be loaded into memory and executed.

Lisa: A model of Apple computer; the first
computer that offered windows and the use of a
mouse to choose commands. The Lisa is now
known as the Macintosh XL.

list: See list control

list control: A custom control created by the List
Manager. It is a scrollable, vertical arrangement
of similar items on the screen; the items are
selectable by the user.

List Manager: The Apple 1IGS tool set that allows
an application to present the user with a list from
which to choose. For example, the Font Manager
uses the List Manager to arrange lists of fonts.

load: To transfer information from a peripheral
storage medium (such as a disk) into main
memory for use—for example, to transfer a
program into memory for execution.

load file: The output of the linker. Load files
contain memory images that the system loader
can load into memory, together with relocation
dictionaries that the loader uses to relocate
references.

lo_ad segment: A segment in a load file. Any
number of object segments can go into the same
load segment.

local coordinates: A coordinate system unique to
each GrafPort and independent of the global
coordinates of the pixel image that the port is
associated with. For example, local coordinates
do not change as a window is dragged across the
screen; global coordinates do not change as a
window’s contents are scrolled.

local symbol: A label defined only within an
individual segment. Other segments cannot
reference the label. Compare with global symbol

LocInfo: Acronym for location information. The
data structure (record) that ties the coordinate
plane to an individual pixel image in memory.

lock: To prevent a memory block from being
moved or purged. A block may be locked or
unlocked by a call to the Memory Manager.

long (or long word): On the Apple IIGS, a 32-bit
(4-byte) data type.

Macintosh: A family of Apple computers; for
example, the Macintosh 512K and the Macintosh
Plus. Macintosh computers have high-resolution
screens and use mouse devices for choosing
commands and for drawing pictures.

macro: A single keystroke or command that a
program replaces with several keystrokes or
commands. For example, the APW Editor allows
you to define macros that execute several editor
keystroke commands; the APW Assembler allows
you to define macros that execute instructions
and directives. Macros are almost like higher-
level language instructions, making assembly-
language programs easier to write and complex
keystrokes easier to execute.

macro library: A file of related macros.

main event loop: The central routine of an event-
driven program. During execution, the program
continually cycles through the main event loop,
branching off to handle events as they occur and
then returning to the event loop.

mainID: A subfield of the User ID. Each running
program is assigned a unique mainID.

manager: See tool set.

Mark: The current position in an open file. It is
the point in the file at which the next read or
write operation will occur.

mask: (n) A parameter, typically one or more
bytes long, whose individual bits are used to
permit or block particular features. See, for
example, event mask. (v) To apply a mask.

master color value: A 2-byte number that
specifies the relative intensities of the red, green,
and blue signals output by the Apple IIGS video
hardware.

Glossary 461

Lisa: A model of Apple computer; the first
computer that offered windows and the use of a
mouse to choose commands. The Lisa is now
known as the Macintosh XL.

list: See list control

list control: A custom control created by the List
Manager. It is a scrollable, vertical arrangement
of similar items on the screen; the items are
selectable by the user.

List Manager: The Apple 1IGS tool set that allows
an application to present the user with a list from
which to choose. For example, the Font Manager
uses the List Manager to arrange lists of fonts.

load: To transfer information from a peripheral
storage medium (such as a disk) into main
memory for use—for example, to transfer a
program into memory for execution.

load file: The output of the linker. Load files
contain memory images that the system loader
can load into memory, together with relocation
dictionaries that the loader uses to relocate
references.

lo_ad segment: A segment in a load file. Any
number of object segments can go into the same
load segment.

local coordinates: A coordinate system unique to
each GrafPort and independent of the global
coordinates of the pixel image that the port is
associated with. For example, local coordinates
do not change as a window is dragged across the
screen; global coordinates do not change as a
window’s contents are scrolled.

local symbol: A label defined only within an
individual segment. Other segments cannot
reference the label. Compare with global symbol

LocInfo: Acronym for location information. The
data structure (record) that ties the coordinate
plane to an individual pixel image in memory.

lock: To prevent a memory block from being
moved or purged. A block may be locked or
unlocked by a call to the Memory Manager.

long (or long word): On the Apple IIGS, a 32-bit
(4-byte) data type.

Macintosh: A family of Apple computers; for
example, the Macintosh 512K and the Macintosh
Plus. Macintosh computers have high-resolution
screens and use mouse devices for choosing
commands and for drawing pictures.

macro: A single keystroke or command that a
program replaces with several keystrokes or
commands. For example, the APW Editor allows
you to define macros that execute several editor
keystroke commands; the APW Assembler allows
you to define macros that execute instructions
and directives. Macros are almost like higher-
level language instructions, making assembly-
language programs easier to write and complex
keystrokes easier to execute.

macro library: A file of related macros.

main event loop: The central routine of an event-
driven program. During execution, the program
continually cycles through the main event loop,
branching off to handle events as they occur and
then returning to the event loop.

mainID: A subfield of the User ID. Each running
program is assigned a unique mainID.

manager: See tool set.

Mark: The current position in an open file. It is
the point in the file at which the next read or
write operation will occur.

mask: (n) A parameter, typically one or more
bytes long, whose individual bits are used to
permit or block particular features. See, for
example, event mask. (v) To apply a mask.

master color value: A 2-byte number that
specifies the relative intensities of the red, green,
and blue signals output by the Apple IIGS video
hardware.

Glossary 461

master User ID: The value of a User ID,
disregarding the contents of the auxID field. If an
application allocates various memory blocks and
assigns them unique ID’s consisting of different
auxID values added to its own User ID, then all
will share the same Master User ID and all can be
purged or disposed with a single call.

Mb: See megabyte.

megabyte (Mb): A unit of computer memory or
disk drive capacity that equals 1,048,576 bytes.

megahertz (MHZ): A unit of measurement of
frequency, equal to 1,000,000 hertz (cycles per
second); abbreviated MHz.

memory block: See block (2).

memory expansion card: A memory card that
increases Apple IIGS internal memory capacity
beyond 256K, up to 8 megabytes

memory fragmentation: A condition in which
free (unallocated) portions of memory are
scattered because of repeated allocation and
deallocation of blocks by the Memory Manager.

memory handle: A number that identifies a
memory block. A handle is a pointer to a
pointer—it is the address of a master pointer,
which in turn contains the address of the block.

memory image: See image.

Memory Manager: The Apple IIGS tool set that
manages memory use. The Memory Manager
keeps track of how much memory is available,
and allocates memory blocks to hold program
segments or data.

Memory Segment Table: A linked list in memory,
created by the loader, that allows the loader to
keep track of the segments that have been loaded
into memory.

menu: A list of choices presented by a program,
from which the user can select an action. See also

pull-down menu.

462 Glossary

menu bar: The horizontal strip at the top of the
screen that contains menu titles for the pull-down
menus.

menu ID: A number in the menu record that
identifies an individual menu.

menu line: A line of text plus code characters
that defines the appearance of a particular menu
title.

Menu Manager: The Apple IIGS tool set that
maintains the pull-down menus and the items in
the menus.

m flag: One of 3 flags in the 65816
microprocessor’s Processor Status register that
controls execution mode. When the m flag is set
to 1, the accumulator is 8 bits wide; otherwise, it is
16 bits wide.

MHz: See megahertz.

microprocessor: A central processing unit that is
contained in a single integrated circuit. The
Apple IIGS uses a 65816 microprocessor.

minipalette: In Super Hi-Res 640 mode, a quarter
of the color table. Each pixel in 640 mode can
have one of four colors specified in a
minipalette,

Miscellaneous Tool Set: The Apple IIGS tool set
that includes mostly system-level routines that
must be available for other tool sets.

missing symbol: In a font, the symbol substituted
for any ASCII value for which the font does not
have a defined symbol. In the Apple IIGS system
font, the missing symbol is a box containing a
question mark.

modal dialog box: A dialog box that puts the
machine in a state such that the user cannot
execute functions outside of the dialog box, until
the dialog box is closed.

mode: A state of a computer or system that
determines its behavior. A manner of operating.

modeless dialog box: A dialog box that lets the
user take other action besides responding to the
dialog box. Compare modal dialog box.

modification date: An attribute of a ProDOS file;
it specifies the date on which the content of the
file was last changed.

modification time: An attribute of a ProDOS file;
it specifies the time at which the content of the
file was last changed.

Monitor program: A firmware program built into
the ROM of Apple II computers, used for directly
inspecting or changing the contents of main
memory and for operating the computer at the
machine-language level.

monospaced: Said of a font whose character
widths are all identical. Compare proportionally
spaced.

MOS: Abbreviation for metal-oxide
semiconductor, a method of fabricating
integrated-circuits on silicon by using layers of
silicon dioxide in the make-up of the devices.
Compare CMOS.

mouse: A small device that the user moves
around on a flat surface next to the computer.
The mouse controls a pointer on the screen
whose movements correspond to those of the
mouse. The pointer selects operations, moves
data, and draws graphic objects.

mouse button: A button on a mouse device with
which the user selects objects on the screen.

mouse-down: An action or an event, signifying
that the user has pressed the mouse button.

mouse-up: An action or an event, signifying that
the user has released the mouse button.

movable: Able to be moved to different memory
locations during program execution (a memory
block attribute).

native mode: The 16-bit operating configuration
of the 65816 microprocessor.

NDA: See new desk accessory.

new desk accessory (NDA): A desk accessory
designed to execute in a desktop, event-driven
environment. Compare classic desk accessory.

newline read mode: A file-reading mode in which
each character read from the file is compared to
a specified character (called the newline
characte?); if there is a match, the read is
terminated. Newline mode is typically used to
read individual lines of text, with the newline
character defined as a carriage return.

NewWindow parameter list: A template
describing the features of a window that is to be
created. A pointer to a NewWindow parameter
list is a required input to the NewWindow call.

NIL: Pointing to a value of 0. A memory handle is
NIL if the address it points to is filled with zeros.
Handles to purged memory blocks are NIL.
Compare null.

Note Sequencer: The Apple IIGS tool set that
makes it possible to play music asynchronously
in programs.

Note Synthesizer: An Apple 1IGS tool set that
facilitates creation and manipulation of musical
notes.

null: Zero. A pointer is null if its value is all zeros.
Compare NIL.

null event: An event reported when there are no
other events to report.

null prefix: A prefix of zero length (and therefore
nonexistent).

object file: The output from an assembler or
compiler, and the input to a linker. It contains
machine-language instructions as well as other
information. Also called object program or
object code. In APW an object file cannot be
loaded into memory. Compare source file, load
file.

Glossary 463

object module format (OMF): The file format
used in Apple IIGS object files, library files, and
load files.

object segment: A segment in an object file.

offset: The number of character positions or
memory locations away from a point of
reference.

OK: One of two predefined item ID numbers for
dialog box buttons (OK = 1). Compare Cancel.

OMEF: See object module format.

operating environment: The overall hardware
and software setting within which a program runs.
Also called execution environment.

operating system: A general-purpose program
that organizes the actions of the various parts of
the computer and its peripheral devices. See also

disk operating system.

origin: (1) The first memory address of a
program or of a portion of one. The first
instruction to be executed. (2) The location (0,0)
on the QuickDraw II coordinate plane, in either
global coordinates or local coordinates. (3) The
upper-left corner of any rectangle (such as a
boundary rectangle or port rectangle) in
QuickDraw II. (4) See character origin.

oscillator: A device that generates a vibration. In
the Apple IIGS Digital Oscillator Chip, an
oscillator is an address generator that points to
the next data byte in memory that represents
part of a particular sound wave.

oval: A circle or ellipse, one of the fundamental
classes of objects drawn by QuickDraw II.

overlay: One of a set of program segments meant
to alternately occupy the same memory space.
Use of overlays is one way to minimize the
amount of memory a program needs.

pack: To compress data into a smaller space to
conserve storage space.

464 Glossary

page: (1) A portion of memory 256 bytes long
and beginning at an address that is an even
multiple of 256. Memory blocks whose starting
addresses are an even multiple of 256 are said to
be page-aligned. (2) (usually capitalized) An area
of main memory containing text or graphic
information being displayed on the screen.

page-aligned: Starting at a memory address that
is an even multiple of 256 (a memory block
attribute). See page (1).

palette: The full set of colors available for an
individual screen pixel.

parameter: A value passed to or from a function
or other routine.

parameter RAM: RAM on the Apple IIGS clock
chip. A battery preserves the clock settings and
the RAM contents when the power is off. Control
Panel settings are kept in battery RAM.

partial pathname: A pathname that includes the
filename of the desired file but excludes the
volume directory name (and possibly one or
more of the subdirectories in the path). It is the
part of a pathname following a prefix—a prefix
and a partial pathname together constitute a full
pathname. A partial pathname does not begin
with a slash because it has no volume directory
name.

Pascal: A high-level programming language.
Named for the philosopher and mathematician
Blaise Pascal.

Pascal string: An ASCII character string preceded
by a single byte whose numerical value is the
number of characters in the string. Compare C
string.

paste: To place the desk scrap (contents of the
Clipboard—whatever was last cut or copied) at
the insertion point.

patch: To replace one or more bytes in memory
or in a file with other values. The address to
which the program must jump to execute a
subroutine is patched into memory at load time,
when the System Loader performs relocation on
a file.

pathname: A name that specifies a file. It is a
sequence of one or more filenames separated by
slashes, tracing the path through subdirectories
that a program must follow to locate the file. See

full pathname, partial pathname, prefix.
pathname prefix: See prefix.

Pathname Table: A table constructed in memory
by the System Loader. The Pathname Table
contains cross-references between load files
referenced by number (in the Jump Table) and
by pathname (in the file directory).

pattern: (1) An 8-by-8 pixel image, used to define
a repeating design (such as stripes) or color. (2)
A series of commands to the Note Synthesizer.

PB register: See program bank register.

PC register: A register within the 65816
microprocessor that keeps track of the memory
address of the next instruction to be executed. PC
stands for program counter.

pen: The conceptual tool with which QuickDraw II
draws shapes and characters. Each GrafPort has
its own pen.

pen location: The position (on the coordinate
plane) at which the next character or line will be
drawn.

pen pattern: See pattern (1).

peripheral card: A hardware device placed inside
a computer, and connected to one of the
computer’s peripheral expansion slots.
Peripheral cards perform a variety of functions,
from controlling a disk drive to providing a
clock/calendar.

peripheral device: See device.

phrase: In music synthesis, a set of pointers to
patterns that make it easy to build repetitive,
complex passages out of simple patterns.

picture: A saved sequence of QuickDraw drawing
commands (and, optionally, picture comments)
that you can play back later with a single
procedure call; also, the image resulting from
these commands.

pixel: Short for picture element. The smallest dot
you can draw on the screen. Also a location in
video memory that corresponds to a point on
the graphics screen when the viewing window
includes that location. In the Super Hi-Res
display on the Apple IIGS, each pixel is
represented by either two or four bits. See zlso

pixel image..

pixel image: A graphics image picture consisting
of a rectangular grid of pixels.

plain-styled: Said of a font or character that is
not bold, italicized, underlined, or otherwise
styled apart from ordinary text.

plane: The front-to-back position of a window,
compared to other windows on the desktop.

point: A unit of measurement for type; 12 points
equal 1 pica, and 6 picas equal 1 inch; thus, 1
point equals Y72 inch.

pointer: (1) An item of information consisting of
the memory address of some other item. For
example, the 65816 stack register contains a
pointer to the top of the stack. (2) The mouse
pointer, an arrow-shaped cursor whose screen
location is controlled by mouse movements.

pointing device: Any device, such as a mouse,
graphics tablet, or light pen, that can be used to
specify locations on the computer screen.

polygon: Any sequence of connected lines.

port: (1) A socket on the back panel of the
computer where the user can plug in a cable to
connect a peripheral device, another computer,
or a network. (2) A graphic port (GrafPort).

Glossary 465

portRect: The GrafPort field that defines the
port’s port rectangle.

port rectangle: A rectangle that describes the
active region of a GrafPort’s pixel map—the part
that QuickDraw II can draw into. The content
region of a window on the desktop corresponds
to the window’s port rectangle.

position-independent: Said of code that can
execute, without modification of any kind, at any
location in memory. Compare absolute,
relocatable.

post: To place an event in the event queue for
later processing.

prefix: A pathname starting with a volume name
and ending with a subdirectory name. It is the
part of a full pathname that precedes a partial
pathname—a prefix and a partial pathname
together constitute a full pathname. A prefix
always starts with a slash (/) because a volume
directory name always starts with a slash.

prefix number: A code used to represent a
particular prefix. Under ProDOS 16, there are
nine prefix numbers, each consisting of a
numeral followed by a slash: 0/, 1/,...,8/, and */.

P register: Sce status register.

printing loop: The page-by-page cycle that an
application goes through when it prints a
document.

Print Manager: The Apple IIGS tool set that allows
an application to use standard QuickDraw II
routines to print text or graphics on a printer.

print record: A record containing all the
information needed by the Print Manager to
perform a particular printing job.

private scrap: A buffer (and its contents) set up
by an application for cutting and pasting,
analogous to but apart from the desk scrap.

private symbol: A label in a segment that may be
referenced by other segments in the same file,
but not by segments in other files.

466 Glossary

Processor status register: See status register.

ProDOS: A family of disk operating systems
developed for the Apple 1I family of computers.
ProDOS stands for Professional Disk Operating
System, and includes both ProDOS 8 and
ProDOS 16.

ProDOS 8: A disk operating system developed fo
standard Apple II computers. It runs on 6502-
series microprocessors and on the Apple IIGS
when the 65816 processor is in 6502 emulation
mode.

ProDOS 16: A disk operating system developed
for 65816 native-mode operation on the Apple
IIGS. It is functionally similar to ProDOS 8 but
more powerful.

program bank register: The 65816 register whose
contents form the high-order byte of all 3-byte
code address operands.

program counter: See PC register.
program status register: See status register.

proportionally spaced: Said of a font whose
characters vary in width, so the amount of
horizontal space needed for each character is
proportional to its width. Compare monospaced.

pull-down menu: A set of choices for actions that
appears near the top of the display screen in a
desktop application, usually overlaying the
present contents of the screen without disrupting
them. Dragging through the menu and releasing
the mouse button while a command is
highlighted chooses that command.

purge: To temporarily deallocate a memory
block. The Memory Manager purges a block by
setting its master pointer to NIL (0). All handles
to the pointer are still valid, so the block can be
reconstructed quickly. Compare dispose.

purge level: A memory block attribute, indicating
that the Memory Manager may purge the block if
it needs additional memory space. Purgeable
blocks have different purge levels, or priorities
for purging; these levels are set by Memory
Manager calls.

queue: A list in which entries are added at one
end and removed at the other, causing entries to
be removed in first-in, first-out (FIFO) order.
Compare stack.

QuickDraw II: The Apple IIGS tool set that
controls the graphics environment and draws
simple objects and text. Other tools call
QuickDraw II to draw such things as windows.

QuickDraw II Auxiliary: An Apple IIGS tool set
that provides extensions to the capabilities of
QuickDraw II.

quit: To terminate execution in an orderly
manner. Apple IIGS applications quit by making a
ProDOS 16 QUIT call or the equivalent.

quit return stack: A table, maintained in memory
by ProDOS 16, that contains the User ID’s of
programs that want to be reexecuted after the
current program quits.

radio button: A common type of control in
dialog boxes. Radio buttons are small circles
organized into families—clicking any button on
turns off all the others in the family, like the
buttons on a car radio.

RAM: See random-access memory.

random-access memory (RAM): Memory in
which information can be referred to in an
arbitrary or random order. Programs and other
data in RAM are lost when the computer is
turned off. (Technically, the read-only memory
(ROM) is also random access, and what's called
RAM should correctly be termed read-write
memory.) Compare read-only memory.

read-only memory (ROM): Memory whose
contents can be read, but not changed; used for
storing firmware. Information is placed into ROM
once, during manufacture; it then remains there
permanently, even when the computer’s power is
turned off. Compare random-access memory.

rectangle: One of the fundamental shapes drawn
by QuickDraw II. Rectangles are completely
defined by two points—their upper-left and
lower-right corners on the coordinate plane. The
upper-left corner of any rectangle is its origin.

reentrant: Said of a routine that is able to accept
a call while one or more previous calls to it are
pending, without invalidating the previous calls.
Under certain conditions, the Apple IIGS
Scheduler manages execution of routines that are
not reentrant.

region: An arbitrary area or set of areas on the
QuickDraw coordinate plane. The outline of a
region must be one or more closed loops.

RELOAD segment: A segment that is always
reloaded from disk when a program is executed,
even if the program is in a dormant state in
computer memory. Some programs require
RELOAD segments in order to be restartable.

relocatable: Characteristic of a load segment or
other OMF program code that includes no
references to specific address, and so can be
loaded at any memory address. A relocatable
segment consists of a code image followed by a
relocation dictionary. Compare absolute.

relocation: The act of modifying a program in
memory so that its address operands correctly
reflect its location and the locations of other
segments in memory. Relocation is performed by
the System Loader when a relocatable segment is
first loaded into memory.

relocation dictionary: In object module format, a
portion of a load segment that contains
relocation information necessary to modify the
memory image portion of the segment. See
relocation.

Glossary 467

resource: A type of organization for certain
components of Macintosh files. Resources
provide a convenient means for manipulating
the fixed (unchanging) parts of a program file.

resource editor: A program for editing resources,
especially data in a program, without having to
recompile the program. '

Resource Manager: The Macintosh toolbox
component that retrieves, manipulates, and
disposes of resources.

restart: To reactivate a dormant program in the
computer’s memory. The System Loader can
restart dormant programs if all their static
segments are still in memory. If any critical part
of a dormant program has been purged by the
Memory Manager, the program must be reloaded
from disk instead of restarted.

restartable: Said of a program that reinitializes its
variables and makes no assumptions about
machine state each time it gains control. Only
restartable programs can be resurrected from a
dormant state in memory.

RGB: Abbreviation for red-green-blue, a method
of displaying color video by transmitting the
three primary colors as three separate signals.
There are two ways of using RGB with computers:
TTL RGB, which allows the color signals to take
on only discrete values; and analog RGB, which
allows the color signals to take on any values
between their upper and lower limits.

ROM: See read-only memory.

routine: A part of a program that accomplishes
some task subordinate to the overall task of the
program.

RTI: Return from Interrupt, a 65816 assembly-
language instruction.

RTL: Return from Subroutine (Long), a 65816
assembly-language instruction.

RTS: Return from Subroutine, 2 65816 assembly-
language instruction.

468 Glossary

SANE: See Standard Apple Numeric
Environment.

SANE Tool Set: The Apple IIGS tool set that
performs high-precision floating-point
calculations, following SANE standards.

scaled font: A font that is created by the Font
Manager by calculation from a real font of a
different size.

scan line: A single horizontal line of pixels on
the screen. It corresponds to a single sweep of
the electron gun in the video display tube.

scanline control byte (SCB): A byte in memory
that controls certain properties, such as available
colors and number of pixels, for a scan line on
the Apple IIGS. Each scan line has its own SCB.

Scheduler: The Apple IIGS tool set that manages
requests to execute interrupted software that is
not reentrant. If, for example, an interrupt
handler needs to make system software calls, it
must do so through the Scheduler because
ProDOS 16 is not reentrant. Applications
normally need not use the Scheduler because
ProDOS 16 is not in an interrupted state when it
processes applications’ system calls.

Scrap Manager: The Apple IIGS tool set that
supports the desk scrap, which allows data to be
copied from one application to another (or from
one place to another within an application).

scroll: To move an image of a document or
directory in its window so that a different part of
it becomes visible.

scroll bar: A rectangular bar that may be along
the right side or bottom of a window. Clicking or
dragging in the scroll bar causes the view of the
document to change.

segment: A component of an OMF file, consisting
of a header and a body. In object files, each
segment incorporates one or more subroutines.
In load files, each segment incorporates one or
more object segments.

segment kind: A numerical designation used to
classify a segment in object module format.

self-booting: Said of a program that executes
automatically when the computer is turned on or
reset.

sequence: A series of commands that tells the
computer what notes to play and when.

serial interface: A standard method, such as RS-
232, for transmitting data serially (as a sequence
of bits).

serial port: The connector for a peripheral
device that uses a serial interface.

Shaston: The Apple IIGS system font.

shell: A program that provides an operating
environment for other programs, and that is not
removed from memory when those programs are
running. For example, the APW Shell provides a
command processor interface between the user
and the other components of APW, and remains
in memory when APW utility programs are
running. A shell is one type of controlling

program.

shell application: A type of program that is
launched from a shell and runs under its control.
Shell applications are ProDOS 16 file type $BS.
In APW, compilers and certain Shell commands
are shell applications that are launched from the
APW Shell.

shell call: A request from a program to the APW
Shell to perform a specific function.

shut down: To remove from memory or
otherwise make unavailable, as a tool set that is
no longer needed or an application that has quit.

size box: A small square in the lower-right corner
of some windows, with which the user can resize
the window. The size box corresponds to the
grow region.

65C816: The version of the 65816 microprocessor
used in the Apple IIGS. The 65C816 is a CMOS
device.

65816: A general term for the type of
microprocessor used in the Apple IIGS. The
65816 is related to, but more advanced than, the
6502 microprocessor. It has a 16-bit data bus and
a 24-bit address bus.)

65816 assembly language: A low-level
programming language written for the 65816
family of microprocessors.

6502: The microprocessor used in the Apple II, in
the Apple 11 Plus, and in early models of the
Apple Ile. The 6502 is an NMOS device with an 8-
bit data bus and a 16-bit address bus.

640 mode: An Apple IIGS video display mode,
640 pixels horizontally by 200 pixels vertically.

slot: A narrow socket inside the computer where
the user can install peripheral cards. Also called
an expansion slot.

SmartPort: A set of firmware routines supporting
multiple devices connected to the Apple IIGS disk
port.

software: A collective term for programs, the
instructions that tell the computer what to do.
Software is usually stored on disks. Compare
firmware, hardware.

Sound Tool Set: The Apple IIGS tool set that
provides low-level access to the sound hardware.

source: See source location.

source file: An ASCII file consisting of
instructions written in a particular language, such
as Pascal or assembly language. An assembler or
compiler converts source files into object files.

source location: The location (memory buffer or
portion of the QuickDraw II coordinate plane)
from which data such as text or graphics are
copied. Compare destination location. See also
source rectangle.

source rectangle: The rectangle (on the
QuickDraw 1I coordinate plane) from which text
or graphics are taken when transferred
somewhere else. Compare destination rectangle.

Glossary 469

special memory: On an Apple 1IGS, all of banks
$00 and $01, and all display memory in banks
$E0 and $E1 . It is the memory directly accessed
by standard-Apple II programs running on the
Apple IIGS.

spool printing: A two-step printing method used
to print graphics on the ImageWriter. In the first
step, it writes out (spools) a representation of
your document’s printed image to a disk file or
to memory. In the second step, this information
is converted into a bit image and printed.
Compare draft printing,

S register: See stack register.

stack: A list in which entries are added (pushed)
and removed (pulled) at one end only (the top
of the stack), causing them to be removed in last-
in, first-out (LIFO) order. The stack usually refers
to the particular stack pointed to by the 65816’s
stack register. Compare queue.

stack pointer: See stack register.

stack register: A register in the 65816 processor
that indicates the next available memory address
in the stack.

Standard Apple Numerics Environment
(SANE): The set of methods that provides the
basis for floating-point calculations in Apple
computers. SANE meets all requirements for
extended-precision, floating-point arithmetic as
prescribed by IEEE Standard 754 and ensures
that all floating-point operations are performed
consistently and return the most accurate results
possible.

standard Apple II: Any computer in the Apple I
family except the Apple IIGS. That includes the
Apple II, the Apple II Plus, the Apple Ile, and the
Apple IIc.

Standard File Operations Tool Set: The Apple
IIGS tool set that creates a standard user interface
for opening and closing files.

470 Glossary

standard linker (APW): One aspect of the linker
supplied with APW. The operation of the
standard linker is automatic. Compare advanced
linker.

standard window parts: The window features that
allow the user to scroll through the data in the
window, change the window’s shape, or close the
window. They also provide information about the
document currently displayed in the window.

START: The name of the program in the
SYSTEM/subdirectory of the startup disk that is
launched automatically when the system is
booted. START is typically a finder or program
launcher,

start up: To get the system or application
program running.

static segment: A program segment that must be
loaded when the program is started, and cannot
be removed from memory until execution
terminates. Compare dynamic segment.

static text: Text on the screen that cannot be
altered by the user.

status register: A register in the 65816
microprocessor that contains flags reflecting the
various aspects of machine state and operation
results.

string: A sequence of characters. See C string,
Pascal string,

structure region: An entire window; its content
region plus its frame region.

Style dialog box: A dialog box that allows the
user to specify formatting information, page size,
and printer options.

styled variation: An italicized, boldfaced,
underlined, or otherwise altered version of a
plain-styled character or font.

subdirectory: A file that contains information
about other files. In a hierarchical file system,
files are accessed through the subdirectories that
reference them.

subroutine: A part of a program that can be
executed on request from another point in the
program and that, upon completion, returns
control to the point of the request.

Super Hi-Res: Fither of two high-resolution Apple
1IGS display modes. 320 mode consists of an
array of pixels 320 wide by 200 high, with 16
available colors; 640 mode is an array 640 wide
by 200 high, with 16 available colors (with
restrictions).

switcher: A controlling program that rapidly
transfers execution among several applications.

switch event: An event type reserved for future
use, such as in conjunction with a switcher.

symbolic reference: A name or label, such as the
name of a subroutine, that is used to refer to a
location in a program. When a program is linked,
all symbolic references are resolved; when the
program is loaded, actual memory addresses are
patched into the program to replace the
symbolic references. (This process is called
relocation.)

synthesizer: (1) A hardware device capable of
creating sound digitally and converting it into an
analog waveform that you can hear. (2) By
analogy, any sound-making entity, such as the
Note Synthesizer tool set.

system disk: A disk that contains the operating
system and other system software needed to run
applications.

system event mask: A set of flags that control
which event types get posted into the event queue
by the Event Manager.

system failure: The unintentional termination of
program execution due to a severe software error.

System Failure Manager: A part of the
Miscellaneous Tool Set that processes fatal errors
by displaying a message on the screen and
halting execution.

system file level: A number between $00 and $FF
associated with each open ProDOS 16 file. Every
time a file is opened, the current value of the
system file level is assigned to it. If the system file
level is changed (by 2 SET_LEVEL calD, all
subsequently opened files will have the new level
assigned to them. By manipulating the system file
level, a controlling program can easily close or
flush files opened by its subprograms.

system folder: The SYSTEM/subdirectory on 2
ProDOS 16 system disk.

system library prefix: ProDOS 16 prefix number
2/. Tt specifies the directory containing library
files used by system software.

System Loader: The program that manages the
loading and relocation of load segments
(programs) into the Apple 1IGS memory. The
System Loader works closely with ProDOS 16 and
the Memory Manager.

system menu bar: The menu bar that always
appears at the top of the screen in desktop
applications. It contains all of the commonly
used functions, in menus such as File, Edit, and so
on.

system prefix (ProDOS 8): The one prefix
maintained by ProDOS 8.

system software: The components of a computer
system that support application programs by
managing system resources such as memory and
1/0O devices.

system window: A window in which a desk
accessory is displayed.

task code: A numeric value assigned to the result
of each event handled by TaskMaster. Compare
event code.

task mask: A parameter passed to TaskMaster,
specifying which types of events TaskMaster is to
respond to.

Glossary 471

TaskMaster: A Window Manager routine that
handles many typical events for an application.
Applications may call TaskMaster instead of
GetNextEvent.

template: A data structure or set of parameters
that defines the characteristics of a desktop
feature, such as a window or control. The
NewWindow parameter list is a template that
defines the appearance of a window to be
opened by the NewWindow call.

text-based interface: An interface between
computer and user in which all screen drawing
(or other output) consists of characters. The form
of each character is stored in ROM and can be
involved with a single byte of data. Compare
graphic interface.

text buffer: A 1-bit-per-pixel pixel image reserved
for the private use of the QuickDraw II text-
drawing call.

text file: A file consisting of the ASCII
representation of characters.

text mode: One of 16 possible interactions
between pixels in text being drawn to the screen
and pixels on the screen that fall under
characters being drawn. Compare drawing mode.

Text Tool Set: An Apple IIGS tool set that
provides an interface between Apple II character
device drivers and applications running in native
mode.

320 mode: An Apple IIGS video display mode,
320 pixels horizontally by 200 pixels vertically.

tick count: The (approximate) number of 60th
second intervals since system startup.

title bar: The horizontal bar at the top of a
window that shows the name of the window’s
contents. The user can move the window by
dragging the title bar.

tool: See tool set.

472 Glossary

toolbox: The collection of built-in routines on
the Apple IIGS that programs can call to perform
many commonly needed functions. Functions
within the toolbox are grouped into tool sets.

tool call: A call to a function within a tool set.

Tool Locator: The Apple IIGS tool set that
dispatches tool calls. The tool locator knows and
retrieves the appropriate routine when you make
a tool call.

Tool Pointer Table (TPT): A table, maintained by
the Tool Locator, that contains pointers to all
active tool sets.

tool set: A group of related routines (usually in
ROM) that perform necessary functions or
provide programming convenience. They are
available to applications and system software.
The Memory Manager, the System Loader, and
QuickDraw II are Apple IIGS tool sets.

tool table: A list of all needed tool sets and their
minimum required versions. An application
constructs this table in order to load its RAM-
based tool sets with the LoadTools call.

track: (1) One of a series of concentric circles
magnetically recorded on the surface of a disk
when it is formatted. Each track is further divided
into sectors. Each sector can hold several K of
data. (2) A grouping of items in a musical
sequence. The Note Sequencer supports multiple
tracks to facilitate writing multi-instrument music.

transfer mode: A specification of which Boolean
operation QuickDraw should perform when
drawing. See, for example, XOR.

TRUE: Nonzero. The result of a Boolean
operation. Opposite of FALSE.

TTL RGB: A type of color video consisting of
separate red, green, and blue signals that can
have only discrete values.

typelD: A subfield of the User ID. The User ID
Manager assigns a typelD value based on the
type of program (application, tool set, and so
on) requesting the memory.

unhighlight: To restore to normal display.
Selected controls, menu items, or other objects
may be highlighted (usually displayed in inverse
colors) while in use, and unhighlighted when not
in use.

unload: To remove a load segment from
memory. To unload a segment, the System
Loader does not actually “unload” anything; it
calls the Memory Manager to either purge or
dispose of the memory block in which the code
segment resides.

unlock: To permit the Memory Manager to move
or purge a memory block if needed. Opposite of
lock.

unmovable: See fixed.

unpack: To restore 10 normal format from a
packed format.

unpurgeable: Having a purge level of zero. The
Memory Manager is not permitted to purge
memory blocks whose purge level is zero.

update: A type of window even, signifying that all
or part of the window needs to be redrawn.

update event: An event posted by the Window
Manager when all or part of a window needs to
be redrawn.

update region: A description of the part of a
window that needs to be redrawn. The Window
Manager keeps track of each open window’s
update region.

User ID: An identification number that specifies
the owner of every memory block allocated by
the Memory Manager. User ID’s are assigned by
the User ID Manager.

User ID Manager: A part of the Miscellaneous
Tool Set that is responsible for assigning User
ID’s to every block of memory allocated by the
Memory Manager.

vector: A location that contains a value used to
find the entry point address of a subroutine.

vertical blanking: The interval between successive
screen drawings on a video display. It is the time
between drawing the last pixel of the last scan
line of one frame and the first pixel of the first
scan line of the next frame.

visible region: The part of a window that's
actually visible on the screen. The visible region
is a GrafPort field manipulated by the Window
Manager.

voice: Any one of 16 pairs of oscillators in the
Ensoniq sound chip on the Apple 1IGS.

volume name: The name of the volume directory.

wedge: A filled arc, one of the fundamental
shapes drawn by QuickDraw II.

window: A rectangular area that displays
information on a desktop. You view a document
through a window. You can open or close a
window, move it around on the desktop, and
sometimes change its size, scroll through it, and
edit its contents. The area inside the window’s
frame corresponds to the port rectangle of the
window’s GrafPort.

window frame: The outline of the entire window
plus certain standard window controls.

window Manager: The Apple IIGS tool set that
updates and maintains windows.

window menu bar: A menu bar that appears at
the top of the active window, below the system
menu bar. Window menu bars can contain
document titles, applications, and functions.

window record: The internal representation ofa
window, where the Window Manager stores all the
information it needs for its operations on that
window.

Glossary 473

word: On the Apple IIGS, a 16-bit (2-byte) data
type. Compare long word.

x flag: One of three flag bits in the 65816
processor that programs use to control the
processor’s operating modes. In native mode, the
setting of the x flag determines whether the index
registers are 8 bits wide or 16 bits wide. See also
e flag and m flag.

XOR: Exclusive-OR. A Boolean operation in
which the result is TRUE if, and only if, the two
items being compared are unequal in value.

X register: One of the two index registers in the
65816 microprocessor.

Y register: One of the two index registers in the
65816 microprocessor.

zero page: The first page (256 bytes) of memory
in a standard Apple II computer (or in the Apple
IIGS when running a standard Apple II program).
Because the high-order byte of any address in
this part of memory is zero, only a single byte is

needed to specify a zero-page address. Compare
direct page.

zoom box: A small box with a smaller box
enclosed in it, found on the right side of the title
bar of some windows. Clicking the zoom box
expands the window to its maximum size; clicking
it again returns the window to its original size.

zoom area: The window subregion that
corresponds to the zoom box.

474 Glossary

Bibliography

Here are four categories of books that can help you learn more
about desktop programming on the Apple IIGS. We list only a few
titles in each category; many more books are available.

Several of the books listed below are part of the Apple IIGS
technical suite. See “Introduction to the Programmer’s
Introduction” for other titles in the suite.

Apple lIGS technical manuals

In this category, the most important book for writing programs is
the toolbox reference manual. You cannot write desktop
applications without it.

Apple IIGS Firmware Reference. Reading, Mass.: Addison-Wesley,
1987.

Apple IIGS Hardware Reference. Reading, Mass.: Addison-Wesley,
1987.

Apple 1IGS ProDOS 16 Reference. Reading, Mass.: Addison-Wesley,
1987.

Apple IIGS Toolbox Reference, Volumes 1 and 2. Reading, Mass.:
Addison-Wesley, 1987.

Technical Introduction to the Apple IIGS. Reading, Mass.:
Addison-Wesley, 1986.

475

476

Bibliography

Programming manuals

This category includes both books and development
environments. APW (Apple IIGS Programmer’s Workshop) is
essential if you plan to compile and modify HodgePodge. The
usefulness of the other books depends on which language(s) you
are programming in. This list is by no means complete:
additional books for these and other Apple IIGS programming
languages are available.

“ APDA: Books marked “[APDAJ” are distributed through the
Apple Programmer’s and Developer’s Association. See
Chapter 9.

Apple IIGS Programmer’s Workshop Assembler Reference.
Cupertino, Calif.: Apple Computer, Inc., 1987. [APDA]

Apple 1IGS Programmer’s Workshop C Reference. Cupertino,
Calif.:'Apple Computer, Inc., 1987.* [APDA]

Apple 1IGS Programmer’s Workshop Reference. Cupertino, Calif.:
Apple Computer, Inc., 1987.* [APDA]

Eyes, David, and Ron Lichty. Programming the 65816, Including
the 6502, 65C02, and 65802. New York: Prentice Hall Press, 1986.

Jensen, Kathleen, and Niklaus Wirth. Pascal User Manual and
Report. 3rd.ed. New York: Springer-Verlag, 1982.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. Engelwood Cliffs, N. J.: Prentice-Hall, 1978.

ORCA/ Pascal: A Pascal Compiler and Development System for
the Apple IIGS. Albuquerque, N. M.: The Byte Works, Inc., 1987.*

TML Pascal for the Apple IIGS: User’s Guide and Reference
Manual (APW version). Jacksonville, Fla.: TML Systems, Inc.,
1987.*

* Includes software.

All-Apple manuals

Here, nole especially the Human Interface Guidelines book—it
contains a wealth of information to help you design your program
for maximum effectiveness and ease of use.

Apple Numerics Manual. Reading, Mass.: Addison-Wesley, 1987.

Human Interface Guidelines: The Apple Desktop Interface.
Reading, Mass.: Addison-Wesley, 1987.

Macintosh programming manuals

These books are included because many desktop concepts,
although developed originally for the Macintosh, are directly
applicable to the Apple IIGS. Remember, though, that details of
implementation are often quite different!

Chernicoff, Stephen. Macintosh Revealed. Volume One: Unlocking
the Toolbox. Hasbrouck Heights, N. J.: Hayden Book, 1985.

Chernicoff, Stephen. Macintosh Revealed. Volume Two:
Programming With the Toolbox. Hasbrouck Heights, N. J.:
Hayden Book, 1985.

Inside Macintosh, Volumes V. Reading, Mass.: Addison-Wesley,
1987.

Programmer’s Introduction to the Macintosh Family. Reading,
Mass.: Addison-Wesley, 1988.

Bibliography 477

A
“About...” dialog boxes 31,
142-144
“About HodgePodge” dialog box
39
absolute code 24, 196, 226-227,
295
vs. relocatable code 24, 227
access byte 215
accessing files 162-165
accumulator 4, 66, 294
action routine (NDA) 265
activate events 68, 69, 72, 73
activateEvt 69
activating 73
active controls 128, 129
active windows 114-116
AddToMenu 55, 59, 120, 154, 305,
306
AdjWind 57,59, 155
advanced linker (APW) 223, 235,
236
alert box 135
default button 135
template for creating 140
alerts 135-136
Caution Alert 135
Note Alert 135
programming techniques 141
sound in 135
Stop Alert 135
alert windows 110, 111, 116, 136
ALLOC_INTERRUPT 272
Alternate Display Mode 157
APDA (Apple Programmer’s and
Developer’s Association) XiX,
35, 224, 278

\\\\\\\\

Index

applEvt 69
Apple Certified Developer
278-279
Apple Desktop Bus 2, 8, 21, 174
Apple Desktop Bus Tool Set 21,
174
Apple menu 31, 47, 75, 147
Apple Programmer’s and
Developer’s Association
(APDA) xix, 35, 224, 278
AppleTalk 2, 8,9, 167
Apple II 13, 21
defined xxi
Apple Ilc xxi, 7, 8, 13, 290
Apple lle xxi, 7-9, 13, 174, 290
Apple 1IGS. See also ProDOS 8;
ProDOS 16; programming
techniques
built-in I/O 8-9
clock-calendar 9
clock speeds 4
compatibility with standard Apple
II 9-10, 291-292
Control Panel 9
disk port 8
execution modes 4
firmware xviii
game 1/0O connectors 2,8
general xiii-xxii, 2-27
hardware xvii
keyboard 2, 8
memory 2, 4, 56
microprocessor 2, 3-5
programming (general) xvii
registers 4
serial I/O ports 2, 8,9
slots 2, 6, 89

sound 2, 8, 174
video 2, 6-7
Apple 1IGS Debugger 224,
248-253
Apple IIGS Programmer’s
Workshop (APW) xviii, 26-27,
65, 205, 220-225, 296
advanced linker 223, 235, 236,
238
assembler xviii, 222
C compiler xviii, 222
editor 222
language considerations 225
linker 222
parameter-passing 225
program descriptions 221-224
Shell 199, 221-222, 259, 261
standard linker 223, 235, 238
utilities 223
Compact 223
Crunch 223
DumpOB] 223
Equal 224
Files 224
Init 224
MacGen 224
MakeLib 224, 238
Search 224
Apple IIGS Toolbox xviif, 17-22,
42, 62-106, 108-144,
146-183. See also tool sets or
specific routine/tool set
calls (typographic convention for)
xxii, 36
compared to Macintosh 284-289
constants 38
data structures 38

479

errors 65, 66, 67
macros 65
memory requirements 5
Apple II Plus xxi, 8, 9, 290
application-defined events 69, 73
application prefix 209
applications 256-259
hybrid 292-293
programming techniques 26,
228-229, 256-259
restartable 259
self-booting 257-258
application system disk 300-301
application windows 111
APW. See Apple 1IGS
Programmer’s Workshop
arc (QuickDraw II) 87, 91
ascent/ascent line 93
AskUser 59, 121, 163, 211, 306
assembler (APW) xviii, 222
assembly language xiv, 4, 65, 225,
234
HodgePodge and 65-66, 190,
202, 311-376
programming examples 190,
193, 239-246, 263, 265,
311-376
programming techniques 4,
283-284, 290
typographic convention for xxii
attrAddr 187
attrBank 187
attrFixed 187
attributes word 188
attrLocked 187
attrNoCross 187
AttrNoSpec 187
attrPage 187
attrPurge 187
auto-key events 69, 71-72
autoKeyEvt 69
auxID field 192-194
auxiliary type field (ProDOS) 217
auxiliary type file attributes 217,
218

background colors 92
background pattern 85

480 Index

background pixels 93

background procedure 173

backup bit 215

bank-boundary limited 187

banks. See memory banks

bank zero 4, 6, 192, 203, 248,
267-270, 293-296

base line 93

batch mode 13

Battery RAM routines 181

BeginUpdate 115, 118, 134

bit images 286

bit planes 98

black and white drawing, QuickDraw
II 103

blocks. See memory blocks

boot prefix 209

bottom scroll bar 110

boundary rectangle 80-84, 103

boundsRect 80

breakpoints, (debugging) 250-251

built-in interrupt handler 267

built-in I/O 2, 8-9

Busy flag 157, 182, 183

buttons 125, 128, 132-135

Cc

CalcMenuSize 154, 155, 165

Cancel button 132, 133, 139

carry bit. See c flag

Caution Alert 135

C compiler (APW) xviii, 222

CDA. See classic desk accessory

Certified Developer 278-279

c flag 66

CHANGE_PATH 214

character devices 173

character image 93

character origin 93

characters 92, 93-94

character width 93

check boxes 125, 128

CheckDiskError 136, 140,
308-310

CheckFrontW 50, 116

CheckToolError 46, 306-307

ChooseFont 97

Choose Printer command (File
menu) 32, 166, 289

Chooser 167, 289
chunky pixel organization 98
circles 90
C language xiv, xviii, 65, 202, 225,
230, 234, 259
HodgePodge and 377-412
programming examples 190,
377-412
classic desk accessory,
programming examples 263
classic desk accessory (CDA) 156,
247, 262, 300. See also desk
accessories; new desk
accessory
supporting 157
writing 263
CLEAR_BACKUP_BIT 215
Clear command (Edit menu) 32
clicking (mouse) 14, 15, 48, 110
Clipboard 32, 92, 159, 160, 161
clipping 77, 81-82, 83, 105, 136
clipping region 81, 82, 84
clipRgn 82
clock-calendar 9
clock (microprocessor) 9
clock (real-time) 9
clock routines 181
clock speeds 4, 269, 271, 290
CLOSE 210, 211, 213
close box 48, 110, 111, 114
Close command (File menu) 32
CloseDialog 134, 144
CloseNDA 158
CloseNDAbyWinPtr 57, 158
ClosePort 97
close routine (NDA) 265
CloseWindow 57, 114
closing files 210
color palette 7, 99-100
colors 98-103
dithered 101-103
QuickDraw I 98-103
Super Hi-Res 7, 98
window frame 111
color tables 7, 99-100
command-line interface 13
commands. See specific command
compaction 188
Compact utility (APW) 223
compatibility (Apple II) 9-10

compiler xviii, 222
complete system disk 298-300
constants
event codes 69
memory-block attributes 187
task codes 74
toolbox-defined 38, 50
constructing menus 149-152
content region 112, 114, 129
control action procedure 118
Control-Apple-Escape 73
control definition procedure 130
controlling programs 197, 199,
259-260
controlling user access to files 218
Control Manager 20, 64, 71, 117,
124-131, 158, 264 288
control manipulation (HodgePodge)
130
Control Panel 9, 157, 174
control-related events,
programming techniques 129
controls 20, 116, 117, 124-131
active 128, 129
custom 130
events and
frame 129
highlighting 128
inactive 128
invisible 128
types of 124-125
value 125, 128, 130
windows and 129
coordinate plane 76, 77-79, 80
locations on 78
size of 77
coordinates
global 70, 77, 82-84
local 77, 82-84, 103, 105,
117-118
Copy command (Edit menu) 32,
141, 159, 160
COPY mode 87
CopyPixels 103
CREATE 210, 213
Crunch utility (APW) 223
C strings 92, 287
CtlShutDown 58
ctstartUp 45
cursor 116

129-130

cursor keys 8
custom controls 130
custom menus 149
custom windows 111
Cut command (Edit menu) 32,
141, 159, 160
cutting and pasting 159-161
internally 160
large amounts of data 161
private scrap 161
programming techniques
160-161
publicly 160

D

data area 105, 112, 117
Data Bank register 294, 295
data structures 277
initializing (HodgePodge) 38-41
toolbox-defined 38
DEALLOC_INTERRUPT 272
debugging 246-254
with Apple IIGS Debugger
248-253
with desk accessories 246-247
with Monitor program 247-248
default button
alert box 135
dialog boxes 139
default prefix 208, 209
default properties (windows) 108
definition procedures 51, 109, 130,
136, 149
delete 141
DeleteMitem 154
Deref 190
dereferencing 189, 190
descent/descent line 93
desk accessories 21, 47, 75,
156-158, 182. See also classic
desk accessory; new desk
accessory
Apple menu and 31
debugging with 246-247
246-247
HodgePodge and 158
Macintosh 156, 289
programming techniques

262-265

supporting 156158
TaskMaster and 158
writing 262265
desk-accessory event 69
deskAccEvt 69
Desk Manager 21, 47, 64, 71,
156-158, 182, 262-265
desk scrap 21, 141, 159
data types 160
on disk 160
DeskShutDown 58, 158
DeskStartUp 45, 158
desktop, programming techniques
10
desktop applications 10, 13, 124
desktop features, supporting ’
156-161
desktop interface xviii, XiX—XX,
10-13, 20-21, 257
desktop-interface tool sets 20-21
DESTROY 210, 213
destroying files 210
Developer Technical Support 279
device-driver events 69, 73
device drivers 69, 166, 173
device independence 12
device-interface tool sets 21
DIALOG.ASM 353-360
dialog boxes 21, 131-136
default button 139
message 135
modal 133, 139
modeless 133, 136
DIALOG.CC 400-404
dialog items 137-140
defining with a template 140,
285
disabling 138
display rectangle 137, 139
inactive controls as 138
invisible 138
item ID 137, 139
item type 137, 138
Dialog Manager 21, 116, 131-144,
308
DIALOG.PAS 429-433
dialog records 137
dialogs, programming techniques
141
DialogShutDown 58

Index 481

DialogStartUp 45
dialog windows 116, 136
dials 125
digital oscillator chip (DOC) 8, 175
direct page 4, 202, 203, 283
direct-page/stack segment
202-207, 260, 262
ProDOS 16 default 206
direct-page/stack space 192, 203,
260, 296
location and arrangement 204
for tool sets 42
direct register 4, 203, 262, 293,
294
disabling
dialog items 138
interrupts 293
menus and menu items 116
148
disassembling 248
disassembly, watching while running
249
disk port 8
disks 14, 298-301
Disk 1I, slot for 9
DispFontWindow 53
display rectangle dialog items 137,
139
DisposeAll 193, 194
DisposeHandle 57, 190
disposing of memory handles 194,
277
dithered colors 101-103
dividing line (menus) 148
DoAboutItem 55, 142
DOC (digital oscillator chip) 8, 175
DoChooseFont 97, 121, 305
DoChooserItem 56, 167
DoCloseItem 56,57
document coordinates 83
document window 110, 111, 133
DoMenu 54, 153
DoOpenItem 55, 120, 163, 305
DoPrintItem 56, 170
DoQuitItem 56
dormant 200, 259
DoSavelItem 56, 164, 213
DoSetMono 56
DoSetupItem 168
DoSetUpItem 56

482 Index

DoTheOpen 121, 211, 305

double-clicking (mouse) 71

Double Hi-Res 7

DoWindow 56

down arrow (scroll bar part) 126

draft printing 171

drag area/dragging 71, 110, 114

DragWindow 114, 115

DrawDialog 134

drawing contents of windows

115-116

drawing mask 85

DrawMenuBar 47, 154, 155

DrawString 44, 94, 106, 143

DrawTopWindow 170

driverEvt 69

drivers. See device drivers

DumpOB]J utility (APW) 223

dynamic segments 23, 25, 195,

196, 200, 232

programming examples 245
unloading 246

E

EDASM assembler 296
editable text 138
Edit menu 32, 133
Clear command 32
Copy command 32, 141, 159,
160
Cut command 32, 141, 159, 160
Paste command 32, 141, 159,
161
Undo command 32, 277
editor (APW) 222
8-bit Apple 1I. See standard Apple
11
80-column text display 6, 260
slot for 8
EMShutDown 58
EMStartUp 43
emulation mode 4, 9, 173, 269,
291, 293
EndUpdate 115, 134
EOF 214
Equal utility (APW) 224
erasing (QuickDraw II) 87, 91
error handling (HodgePodge)
306-310

errors
Apple IIGS Toolbox 65, 66, 67
printing 172
testing for 277
EVENT.ASM 330-336
EVENT.CC 385-389
event code 69, 73
event-driven programming
techniques 13-16, 51
event handling 15-16, 67-75
51-57
event loop. See main event loop
Event Manager 16, 20, 48, 63,
67-75
event mask 70, 74, 265
EVENT.PAS 422-424
event queue 68-70
event records 67, 70
events 48. See also specific event
compared to interrupts 67
controls and 129-130
defined 14, 67
types of 69-70, 74
execution modes. See emulation
mode; native mode
Exerciser (ProDOS 16) 253-254
expansion memory 6
extended task event record 54, 74,
153
extended type 179
external references 197

fields within records 36
file attributes 214
access 215
auxiliary type 217
creation and last-modification date
and time 215
File menu 32, 133, 166
Choose Printer command 32,
166, 289
Close command 32
Open command 32
Page Setup command 32
Print command 32
Quit command 32, 58
Save As command 32
Save command 50

filename 208
files 215
accessing 162-165
closing 210
controlling user access to 218
creating 210
destroying 210
flushing 210
HodgePodge and 33, 34
I/0O buffer 210
opening 162, 210
reading 211-214
saving 164
writing 211-214
Files utility (APW) 224
file type 215-217, 256
$04 218
$06 218
$BO 218
$B3 256-259, 261, 297
$BS 256, 261-262
$B6 256, 266, 300
$B7 256, 266, 300
$B8 256, 265, 300
$B9 256, 263, 300
$BA 256, 300
$C1 215, 218
filling (QuickDraw 1) 87, 91
fill mode 100
FindControl 129
FindMaxWidth 105
FindWindow 74, 114, 115, 129, 152
firmware xviii, 294
FixAppleMenu 47, 158
fixed address (memory-block
attribute) 187
fixed bank (memory-block
attribute) 187
fixed (memory-block attribute)
187, 189, 195
fixed type (Integer Math) 179
FixMenuBar 47
flag word (QUIT) 202
FLUSH 210
flushing files 210
FMShutDown 58
FMStartUp 46
FONT.ASM 361-366
FONT.CC 405-408
font families 95

font height 93
Font Manager 21, 64, 92, 94-96
font name 95
font number 95
FONT.PAS 434-436
fonts 21, 34, 92, 94-97
where stored on disk 96
font size 95
Fonts menu 33
font strike 94
font style 96
font subsitution 167
font windows, HodgePodge and
34, 53, 104-106, 305
foreground color 92
foreground pixels 93
frac type (Integer Math) 179
frame 81
alert window 110
colors 111
controls 129, 130
document window 110
region 112
scroll bars 117, 129, 288, 289
window 109
framing (QuickDraw II) 87, 91
free-form synthesizer 176
FrontWindow 57, 154, 165, 170
full pathname 208
function number (tool set) 66, 274
FWEntry 294

G

game 1/O connectors 2, 8

generators (sound) 176

GET_EOF 214

GetFamInfo 97, 105

GET_FILE_INFO 214

GetFontFlags 105

GetFontInfo 105, 123

GET_LEVEL 211

GET_MARK 214

GetNewModalDialog 134, 142

GetNextEvent 48, 68, 70, 73, 74,
113, 114, 129, 152, 153, 286

GetPen 106

GetPort 52, 53, 97, 134

GET_PREFIX 209

GetTick 181

GetWRefCon 52, 53, 57, 154, 165,
171
global coordinates 70, 77, 82-84
global page (ProDOS 8) 292, 296
GLOBALS.ASM 373-376
GLOBALS.PAS 152, 443446
global symbols 238
GLU. See Sound GLU
go-away box/area 110, 114
GrafPort 81-82, 103, 108, 136
printing 170
relation to windows 108-109
graphic ports 76, 81, 103
graphics tablets 8
grow box/area 48, 114
GrowWindow 114

H

handles 189, 190
hardware. See Apple 11GS
HeartBeat 181
HeartBeat Interrupt Task queue
181
HidePleaseWait 46, 134
HideWindow 114
hierarchical file system 288
high-level languages 65 282-283,
290
highlighting 72, 116, 128, 153
high-order byte, of handles 190
HiliteMenu 54
Hi-Res 7
Hi-Res video display 7
HiWord 54
HLock 104, 211
HodgePodge 30-60. See also
specific subroutine
“About...” dialog box 142-144
assembly language 65-66, 190,
202, 311-376
auxiliary type 218
C 377-412
code-listing conventions xxii, 36
control manipulation 130
desk accessory support 158
differences between the
languages 69, 74, 105
direct-page/stack space 206
Edit menu disabled 161

Index 483

error handling 306-310
event handling 51-57
files 33, 34
font windows 34, 53, 104-106,
305
general description xx
languages 35
Macintosh resource equivalents
285
main event loop 48-50
main program 36, 37
memory-block attributes 188
menus 31-33, 47, 153
mouse events and 71
organization of 35-36
Pascal 36, 413-446
picture files 215-217, 218
picture windows 33, 52-53,
103-104, 305-306
QuickDraw II coordinates and 82
QUIT 202
scrolling and 117
shutting down 57, 58-59
starting up 38-47, 64
subroutines 35, 59-60, 302-304
System Loader and 195
TaskMaster and 51-53, 75, 286
update routine 116
User ID use 193
versions of 35
windows 56--57, 72, 120-124
horizontal blanking 100
HP .ASM 312-314
HP.CC 378-381
HP.H 411-412
HP.PAS 414-418
Human Interface Guidelines
xix-xx, 11-13, 139, 146, 277
HUnLock 104, 211
hybrid applications 292-293

icons 10, 285, 286
ID. See item ID; menu ID; User ID
image pointer 80
image width 80
ImageWriter 167
inactive controls 128
as dialog items 138

484 Index

inactive windows 115
index registers 4, 294
information bar 110
INIT.ASM 315-323
InitCursor 124, 165, 170, 309
InitGlobals 35, 3941, 150
initialization files 256, 266
initialization segment 196
initializing data structures
(HodgePodge) 38-41
initializing. See starting up
Initial Load 260
init routine (NDA) 264
Init utility (APW) 224
InsertMenu 47
InsertMItem 154, 155
InstallFont 105, 123
instrument 177
Int2Hex 307, 309
Integer Math strings 179
Integer Math Tool Set 22, 179
integer type (Integer Math) 179
interactive programming 13, 14
international markets 277
interrupt control routines 181
interrupt environment 269
interrupt handlers 182, 183, 256,
267-272
interrupt mode (Note Sequencer)
178
interrupts 176, 177, 178, 267
compared to events 67
disabling 293
IntToString 105, 122, 165
InvalRgn 117, 118
inverting (QuickDraw II) 87, 91
invisible controls 128
invisible dialog items 138
I/0. See also slots
buffer files 210
built-in 2, 8-9
serial ports 8
I0.ASM 371-372
item character (menu and item
lines) 150
itemDisable 138
item ID
dialogs 137, 139
menus 54, 151-152, 155
items

dialog 137-140
menus 149
Note Sequencer 178

J

Job dialog box 169
joysticks 8

JSL 294

JSR 294

Jump Table 196, 198

K

keyboard 2, 8, 10

keyboard equivalents 148, 153

key-down events 15, 16, 69,
71-72, 73

keyDownEvt 69

KIND 205

L

language considerations (APW) 225

LaserWriter 167

launching under ProDOS 16
200-202

leading 93

LEShutDown 58

LEStartUp 45

LETextBox 142

LETextBox2 142

library dictionary segment 238

library files 238-239

licensing Apple software 279

LineEdit scrap 141, 161

LineEdit Tool Set 21, 64, 138, 139,
141-142

line (QuickDraw II) 87, 88-89

LinkEd 205, 234

assigning load segments with

236

linker (APW) 222, 223, 235-238

Lisa 14

list controls 131

List Manager 20, 64, 131

lists 130-131

ListShutDown 58

ListStartUp 46

Loader Dumper 247, 249, 250

load files 23, 26, 196, 226-229
order of load segments in 235
loading
applications (System Loader)
198, 199
relocatable segments (System
Loader) 197
segments 198
tool sets 63
LoadOne 164, 211, 306
load segments 194-195, 196, 230,
231-234
assigning with LinkEd file 236
assigning in source code
234-236
characteristics of 232
difference from object segments
230
dynamic 232
memory blocks and 194
number of 232
order in load file 235
types of (System Loader) 196
LoadTools 42, 44, 63
local coordinates 77, 8284, 103,
105, 117-118
local references 197
location information 76, 79
LocInfo record 76, 79, 81, 103
locked handles 187, 189, 195, 277
longint type (Integer Math) 179
LoWord 43, 54, 121, 123

M

MacGen utility (APW) 224
Macintosh 13, 14, 17, 167, 180
Control Manager 288
converting programs to the Apple
IIGS 282-289
desk accessories 156, 289
file system 287-288
Memory Manager 288
Print Manager 289
QuickDraw 286-287
resources 285
Standard File Package 289
TaskMaster not available 286
toolbox compared to Apple IIGS
284-289

Window Manager 288
macros 222 65
MainEvent 35, 36, 50
main event loop 14-15, 16, 48, 67
HodgePodge and 48-50
mainlD 192
main program (HodgePodge) 36,
37
main routine 233
MakeATemplate 140, 310
MakelLib utility (APW) 224, 238
manager. See tool sets or specific
tool set
ManyWindDialog 120
Mark 214
master color values 98
master User ID 192, 193
DisposeAll and 194
math tool sets 22, 178-180
maximum segment size 23
memory 2, 4, 5-6, 76
allocatable by Memory Manager
191
allocation 191-194
compaction 188
disposal 193
minimum configuration 5
RAM expansion 5
requirements (Apple IIGS
Toolbox) 5
ROM expansion 5
special 187
memory banks 6
$00 4, 6, 192, 203, 248, 267,
270, 293-296
$01 6, 295
$E0 6, 295
$E1 6, 267, 295
memory blocks 187, 197, 247
attributes 187, 188
disposing of 194, 277
handles to 189
load segments and 194
pointers to 189
purgeable 194, 233
unlocking 194
memory fragmentation 188
memory image 228
Memory Manager 20, 22, 23, 42,
63, 180, 186-195, 288

Memory Mangler 247
memory protection ranges, using
252
MENU.ASM 324-329
menu bar 115, 146, 147, 152
MENU.CC 382-384
menu-event handling
(HodgePodge) 54-56
menu ID 54, 55, 151-152, 155
menu interface 13
menu items 146
disabled 148
keyboard equivalent 149, 153
menu lines 149, 265
Menu Manager 21, 47, 64, 71,
146-155, 264
MENU.PAS 419-421
menus 10, 14, 21, 116, 146. See
also specific menu/menu
command
accepting user input 152-153
appearance 148-149
constructing 149-152
custom 149
disabling 116
dividing lines 148
HodgePodge and 31-33, 47
modification of 154-155
organization of 149
MenuSelect 115
menu selections, handling 153
MenuShutDown 58
MenuStartUp 45
menu title 146, 153
message dialog box 135
message (event-record field) 70
MIDI (Musical Instrument Digital
Interface) 178
mini-palettes 7, 99
Miscellaneous Tool Set 20, 22, 42,
181-182, 248
missing characters/symbol 95
MMStartUp 43
ModalDialog 141, 144
modal dialog boxes 133, 139
modeless dialog boxes 133, 136
modes (program) 12, 133
modifier key 71
modifiers (event-record field) 70,
71

Index 485

Monitor program 267
debugging with 247-248
MountBootDisk 45, 307-308
mouse 8, 10
clicks 14, 15, 48
double-clicks 71
slot for 9
mouse-down events 15, 16, 69, 71,
73, 129
mouseDownEvt 69
mouse routines (Miscellaneous Tool
Set) 182
mouse-up events 69, 71
mouseUpEvt 69
movable (memory-block attribute)
188
MoveTo 43, 94, 106, 143
MTShutDown 58
MTStartUp 43
multiple-language programs,
debugging 252-253
multiple-segment programming
examples 241-245
Munger routine (Miscellaneous Tool
Set) 182
Musical Instrument Digital Interface
(MIDI) 178

N

native mode 4, 173, 271-272, 274,
291
NDA. See new desk accessory
new desk accessory (NDA) 156,
263, 289, 300. See also classic
desk accessory; desk
accessories
programming examples 265
supporting 157-158, 161
writing 264-265
NewDlItem 134, 143
NewHandle 41, 43, 122, 192, 211
NEWLINE 211
NewMenu 47, 149
NewModalDialog 142, 143
NewWindow 109, 124
NewWindow parameter list 109,
121, 123
NIL 190
Note Alert 135

486 Index

Note Sequencer 22, 177-178

Note Synthesizer 22, 177. See also
sound/sound hardware

notXOR mode 87

null event 69, 73

nullEvt 69

null prefix 209

numeric keypad 8

(o)

object files 26, 226-229
object module format xviii, 26,
198, 226, 257, 296
object segments 230-231
offset (into color table) 99
OK button 132, 133, 139
OMF. See object module format
OPEN 210, 211, 213
Open command (File menu) 32
OpenFilter 162, 164, 218, 306
opening files 162, 210
OpenNDA 158
OpenPort 97
open routine (NDA) 265
OpenWindow 55, 120, 121, 163,
305
operating-environment tool sets
22, 180-183
operating systems xix
calls (typographic convention for)
xxii
origin
of character 93
of QuickDraw II coordinate plane
77
of rectangle 82
oscillators (sound) 175-176
ovals (QuickDraw II) 87, 90
overlays 233

P

PackBytes routine (Miscellaneous
Tool Set) 182

page-aligned (memory-block
attribute) 187

page-down region (scroll bar part)
126

page settings, printing 167-168

Page Setup command (File menu)
32
page-up region (scroll bar part) 126
Paint 52-53
painting (QuickDraw II) 87, 91
PaintIt 52-53, 104, 170
PAINT.PAS 439-442
palettes 7, 99-100. See also color
palette; color tables
standard (640 mode) 102
standard (320 mode) 100
parameter lists (ProDOS 16) 214
parameter-passing 253 225
ParamText 141
part code 127
partial pathname 208
parts, standard window 110
Pascal 65, 202, 225
HodgePodge and 36, 413446
Pascal string 92
Paste command (Edit menu) 32,
141, 159, 161
patching 24, 227
pathnames 196, 208, 288
pointer (QUIT) 202
Pathname segment 196
pathname table 196
pattern
Note Sequencer 178
QuickDraw II 85
pen 85
pen location 84, 85, 92
pen mode 86, 173
pen pattern 85
pen size 85
permanent initialization files 266,
300
phrase (Note Sequencer) 178
picture files, HodgePodge and
215-217, 218
picture (QuickDraw II) 92
picture windows, HodgePodge and
33, 52-53, 103-104, 305-306
pixel images 76, 103-104, 112,
171, 286
defined 79
pixels 77, 79
background 93
defined 7
foreground 93

relation to coordinate plane
locations 78
shape of 77, 90, 284
plain-styled characters 95
plane (window) 113, 136
PMShutDown 58
PMStartUp 46
pointers 189-190
pointing devices 10, 71
point (QuickDraw II) 88-89
point (typesetting) 95
polygon (QuickDraw 1) 87, 96
port (printer) 166
port (QuickDraw ID. See graphic
ports; GrafPort
port rectangle 81-82, 83, 103, 108
120
portSCB 80
position-independent

code/segments 188, 195, 196,

197
PPToPort 103, 104, 118
PrChooser 167
PrCloseDoc 170, 172
PrClosePage 170, 172
PrDefault 41
prefixes 208-210, 288
initial values 210
prefix numbers 208-209
PRINT.ASM 367-370
PRINT.CC 409410
Print command (File menu) 32
printing 166-173
background procedure 173
choosing a printer 166-167
draft 171
errors 172
GrafPort 170
page settings, making 167-168
printing loop 172
QuickDraw 1l and 170, 172, 173
spool 172
printing loop 172
Print Manager 21, 64, 76, 166-173
289
PRINT.PAS 437-438
print records 171
private scrap 161
PrjobDialog 170
ProDOS 8 xix, 9, 207, 257, 290

global page 292, 296
ProDOS 16 compared to 291,
296
ProDOS 16 QUIT call and 202
ProDOS file system xix, 207-218
ProDOS 16 xix, 10, 199, 200-202,
257-259, 260
compared to Macintosh file
system 287-288
compared to ProDOS 8 291, 296
direct-page/stack segment,
default 206
Exerciser 253-254
interrupt handling 271-272
parameter lists 214
prefixes 208-210
QUIT call 58, 202
shell applications and 262
Program Bank register 293
program descriptions (APW)
221-224
program launcher 201
programming examples. See also
HodgePodge or specific
routine
assembly language 190, 193,
239-246, 263, 265, 311-376
C 190, 377412
classic desk accessory 263
dynamic-segment 245
multiple-segment 241-245
new desk accessory 265
single-segment 240-241
programming techniques

absolute vs. relocatable segments

24, 227
applications 26, 228-229,
256-259
assembly language 4, 283-284,
290
auxID field 193
controlling programs 259-260
control-related events 129
cutting and pasting 160-161
desk accessories 262-265
desktop 10
dialogs and alerts 141
Edit menu 161
error testing 277
event-driven 13-16, 51

event handling 70
file types 255-274
general xvii, 11, 277
high-level languages 282-283,
290
HodgePodge, using 34-36, 276
hybrid applications 292-293
initialization files 266
interactive 13, 14
interrupt handlers 270, 271-272
language considerations 225
loading programs 199
loading segments 198
load-segment characteristics 232
Macintosh program conversions
282-289
math computing 178-180
memory allocation 191-194
menu modification 154-155
menu organization 149
object module format and 26
parameter-passing 225
Print Manager 171-173
restartability and C 259
segmentation 23-25, 219-254
shell applications 261-262
standard Apple II program
enhancement 290-297
static vs. dynamic segments 25,
232-235
System Loader 195
TaskMaster and 75
tool sets 18, 62, 272-274
window drawing 103-106,
115-116
window origin, resetting 120
window-related events 113-120
program selector 201
PrOpenDoc 170, 172
PrOpenPage 170, 172
PrPicFile 170, 172
PrStiDialog 169
ptrToPixIlmage 80
pull-down menus. See menus
purgeable memory blocks 194,
233
purge level 187, 195
purging 190, 194, 195, 197, 200

Index 487

Q

QDAuxShutDown 58
QDAuxStartUp 45
QDShutDown 58
QDStartUp 43
QuickDraw (Macintosh) 136
286-287
relation to QuickDraw 11 75, 77,
79, 286-287
QuickDraw II 20, 42, 63, 75-106,
170. See also specific topic
black and white drawing 103
color 98-103
coordinates 77, 82
how it draws 85-88
limits to drawing 77
Macintosh QuickDraw, relation to
75, 77, 79, 286-287
pattern 85
printing and 170, 172, 173
text drawing 92-97
what it draws 88-92
where it draws 76-84
QuickDraw II Auxiliary 20, 75
QUIT 58, 199, 200-202, 260,
261-262
flag word 202
in high-level languages 201
pathname pointer 202
Quit command (File menu) 32, 58
quit return stack 201

R

radio buttons 125, 128
RAM 6, 9, 18. See also memory
RAM-based tool sets 43, 63
RAM expansion 5
RAM patches (tool sets) 43, 293
READ 211
reading files 211-214
rectangles (QuickDraw II) 87, 89
data structure 90
origin of 82
reentrant code 182
RefreshDesktop 45
regions (QuickDraw II) 87, 91
defined 112
registers 4, 66, 283

488 Index

RELOAD segments 200, 207, 259
relocatable code 23, 24, 196, 197,
226-227, 291, 295
relocation dictionary 228
required tool sets 62-63
resources (Macintosh) 285
Restart 200
restartability, C and 259
restartable 197, 200, 259
restart-from-memory flag (QUIT)
202
restarting programs in memory
199-200
return flag (QUIT) 202
RGB video 2,7
right scroll bar 110, 111
ROM 9, 18. See also memory
ROM expansion 5
rounded-corner rectangle
(QuickDraw II) 87, 90
routines (HodgePodge) 35, 59-60,
303-304. See also specific
routine
routines (tool set) 17. See also
specific routine
how to call 65-67
routine numbers 66, 274
total number of 62
RTI 269
RTL 260, 261, 262, 265

S

sample programs, See also
HodgePodge; programming
examples

SANE (Standard Apple Numeric
Environment) xix—xx

Save As command (File menu) 32

Save command (File menu) 50

SaveOne 164, 165, 213

saving files 164

scaled fonts 287

defined 96

scan-line control byte 80, 100

Scheduler 22, 182-183

Scrap Manager 21, 64, 158,
159-161, 264

ScrapShutDown 58

ScrapStartUp 46

screen memory 76, 79
scroll bars 72, 110, 112, 117, 126,
129 288, 289
scrolling 73, 112, 117-120
ScrollRect 117, 118
Search utility (APW) 224
segmentation 23-25, 228,
230-238, 284 219-254
absolute 24
direct-page/stack 204
dynamic 25, 195
maximum segment size 23
object 230-231
relocatable 24
static 25, 195
segmented programs, debugging
249
SelectWindow 114
self-booting applications 257-258
257-258
sequence (Note Sequencer) 177
serial ports 2, 8, 9. See also 1/0
SetBackColor 43, 94, 143
SetCtlParams 127
SetDAFont 141
SET_EOF 214
SET_FILE_INFO
SetFontFlags 105
SetForeColor 43, 94, 143
SET_LEVEL 211
SET_MARK 214
SetMenuFlag 154, 155
SetMItem 165
SetMItemID 155
SetMTitleStart 47
SetOriginMask 124
SetPenMode 17
SetPenSize 17
SetPort 97, 124, 134, 143
SET_PREFIX 209
SetRect 39, 40, 41, 104, 122, 123
134
SetTextFace 143
SetUpDefault 35,41, 168
SetUpMenus 35, 36, 47, 158
SetUpWindows 35, 41, 123
SetWTitle 165
SFAllCaps 45
SFGetFile 162, 163
SFPutFile 164, 165

214

SFShutDown 58
SFStartUp 45
shadowed rectangle 148
shape of pixels 77, 90, 284
Shaston 95
shell 197
shell applications 241, 256, 259,
261-262 .
Shell (APW) 199, 221-222, 259,
261
shell identifier 261
ShowCursor 44
ShowFont 53, 97, 105, 170
ShowPleaseWait 46, 116, 134,
142
shutDownTools 35,58, 158
shutting down 197, 199-200
HodgePodge 57, 58-59
single-segment, programming
examples 240-241
640 mode 7, 80, 98, 99 102
65816 microprocessor Xxiv, 3-5, 10,
65, 291
6502 microprocessor xxi, 3, 9,
294-295
size box 110, 111, 112, 114
size of coordinate plane 77
SizeWindow 114
slots 2, 6, 8-9, 166. See also 1/0
for 80-column text display 8
for mouse 9
SmartPort, slot for 9
smoothing 167
Software Licensing 279
SOS 215-217
Sound GLU 8, 175
sound/sound hardware 2, 8, 9, 22,
135, 174-176. See also Note
Synthesizer
Sound Tool Set 22, 176
source files 26, 226-229
assigning load segments in
234-236
specialized tool sets 22
special memory 187
spool printing 172
stack 4, 203, 269, 284, 293, 296
stack overflow 207
stack pointer 203, 262, 269, 294
stack underflow 207

Standard Apple Numeric
Environment (SANE) xix—xx
Standard Apple Numeric
Environment Tool Set 22,
179-180
standard Apple II 4, 10, 203, 290
compatibility of Apple IIGS with
9-10, 291-292
defined xxi
program enhancement 290-297
Standard File Operations Tool Set
21, 64, 162-165, 288, 289
standard linker (APW) 223, 235,
238
standard window parts 110
START 257, 258
starting up
HodgePodge 38-47, 64
tool sets 3841, 42-46, 62-67
StartUpTools 35, 36, 42, 158,
188
static segments 25, 195, 196, 200,
232-235
static text 140, 141
step mode (Note Sequencer) 178
StopAlert 309
Stop Alert 135
structure region 112
Style dialog box 167
styled variations (fonts) 34, 95, 96
subroutines 230
HodgePodge 35, 59-60,
303-304
Super Hi-Res xviii, 2, 6-7, 98, 284
available colors 7, 98
color palettes 7
640 mode 7, 99, 102
320 mode 7, 99, 101
switch events 68, 69, 73
switchEvt 69
switching execution 199
symbolic reference 226, 238
synthesizer. See Note Synthesizer;
sound/sound hardware
SysBeep routine (Miscellaneous
Tool Set) 182
SysFailMgr 307
SystemClick 158
system clock 9
system disk 298-301

application 300-301
complete 298-300
SystemEdit 158
system event mask 70
System Failure Manager 176, 181
system file levels 201, 211
system library prefix 209
System Loader 22, 23, 180,
195-200, 259
loading applications 198
loading relocatable segments
197
types of load segments 196
system menu bar 147
system program (ProDOS 8) 257
SYSTEM.SETUP/ subdirectory 300
system windows 111

T

task codes 48, 70, 74
taskData field 54, 153
task mask 74
TaskMaster 48, 50, 51-53, 73-75,
113-117, 152
compared to GetNextEvent 68
in converting Macintosh programs
286
desk accessories and 158
extended task event record 74
frame controls and 129, 130
HodgePodge and 51-53, 75,
286
menu-selection handling 153
programming techniques and 75
scroll bars and 117
window-related events and 115
templates 140, 285
temporary initialization files 266,
300
termination character (menu and
item lines) 150
text 92-97, 104-106
text block 92
text document 112
text mode 92
text strings 285
Text Tool Set 21, 173, 261
320 mode 7, 80, 98, 99, 147 100
thumb (scroll bar part) 126, 129

Index 489

title bar 110, 111, 114
title character (menu and item lines)
150
TLMountVolume 307, 308
TLStartUp 43
toolbox-defined constants 38, 50
toolbox-defined data structures 38
Toolbox. See Apple 1IGS Toolbox
tool initialization 134
Tool Locator 18, 20, 42, 62, 65-66,
272-273
tool numbers 273
tool sets 17-22, 291. See also
Apple IIGS Toolbox or specific
tool set
advantages of using 18
basic 20
categories of 19-22
defined 17
desktop-interface 20-21
device-interface 21
direct-page space for 42
function numbers 66, 274
independence from operating
system 18
loading 63
math 22
number of 62
numbers 66, 273
operating-environment 22
programming techniques 18, 62,
272-274
RAM-based 43, 63
RAM patches 43, 293
required 62-63
sound 22
specialized 22
starting up 38-41, 42-46, 62-67
62-67
user-written 272-274
version number 63
where stored on disk 63
TOOL.SETUP 300
tool table 42, 63
TrackControl 71, 129
TrackGoAway 114, 115
tracking 153
TrackZoom 114
translation 277
trigger value 251

490 Index

typelD 192
types 36
U

underlining 96

Undo command (Edit menu) 32,
277

unhighlighting 72, 153

unloading 197, 198, 233, 246

unlocking handles 194, 277

unpurgeable 195

up arrow (scroll bar part) 126

update events 68, 69, 72, 115, 118

updateEvt 69

update region 115, 117

update routine, HodgePodge and
116

updating 72, 73

user-defined constants 36

User ID 192-194, 201, 202, 241,
247, 261

User ID Manager 182, 192

user interrupt vector 268, 270

User Shutdown 199, 200, 260

user tool sets 256, 272-274

user-written tool sets 272-274

utilities (APW) 223

\"

value controls 125, 128, 130
variable initialization (HodgePodge)
38-41
vector routines 181
versions 301
of HodgePodge 35
of tool sets 63
video display 2, 6-7. See also
Super Hi-Res
Double Hi-Res 7
80-column text 6, 8, 260
Hi-Res 7
visible region 81, 82, 84, 115
visRgn 82
volume name 208

w
WaitCursor 46, 165, 170, 211

wContDefProc 109
wedges 91
wFrame 109
what (event-record field) 70
when (event-record field) 70
where (event-record field) 70
width (field in LocInfo record) 80
wInactMenu 75
wInContent 74
wInDesk 74
wInDeskItem 75
WINDOW.ASM 337-352
WINDOW.CC 390-399
window content definition
procedures 51
window drawing, programming
techniques 103-106, 115-116
window events 51, 72
HodgePodge and 56-57, 72
window frame 109, 111
window list 154
Window Manager 20, 64, 71-73, 82,
91, 108-124 288
window menu bars 147
window origin, resetting 120
WINDOW.PAS 425-428
window records 109
window-related events
programming techniques
113-120
TaskMaster and 115
windows 10, 14, 51, 81, 82,
108-124
active 114, 115, 116
alert 110, 111, 116, 136
application 111
basic features 108-113
controls and 129
custom 111
default properties 108
definition procedures 51
dialog 116, 136
document 110, 111
drawing contents of 115-116
frame colors 111
GrafPorts, relation to 108-109
HodgePodge and 57, 120-124
inactive 115
port rectangle origin 120
scrolling 117-120

standard parts 110

system 111
Windows menu 32
wInDrag 74
WindShutDown 58
WindStartUp 45
WindStatus 58
wInFrame 75
wInGoAway 74
wInGrow 74
wInInfo 75
wInMenuBar 50, 54, 74, 153
wInSpecial 75
wInSysWindow 75
wInZoom 74
wRefCon 109
WRITE 211, 213
writing to files 211-214

X
X register 66, 261

Y
Y register 261

z

zero page 203, 269, 293, 296

z00m box/area 48, 110, 111, 112,
114

ZoomWindow 114

Index 491

ale
-

Programmer’s Introduction to the Apple Ics®
The Official Publication from Apple Computer, Inc.

The Apple Ies” personal computer —with its high speed, expandable memory,
super-high-resolution color graphics, and extensive Toolbox of programming
routines —has created a powerful new programming environment. Written for
programmers and software developers, Programmer’s Introduction to the Apple IlGs
explains essential concepts and provides tips and practical advice from the designers
of the Apple Iles Toolbox and the new ProDOS® 16 operating system.

To illustrate these concepts, Programmer’s Introduction to the Apple Ilcs includes
three complete versions of a functioning sample program called HodgePodge—in
65816 assembly language, C, and Pascal. Using HodgePodge as an example, the book
demonstrates:

- Event-driven programming techniques

+ Programming with the Apple” Desktop user interface

- Effective use of the Apple Ilcs Toolbox

» How to write segmented, relocatable code that will make programs run more efficiently
- File handling

+ Memory management

- How to write specialized programs such as shells and desk accessories

Appendices include complete source code listings of HodgePodge in all three
languages, as well as hints on converting Apple Macintosh® programs and earlier Apple
II programs for the Apple Ilcs.

Programmer’s Introduction to the Apple IGs contains a 3.5-inch disk that includes both
source code and executable versions of HodgePodge.

030-3122-A
Printed in USA.
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 9961010
TIX 171576

80201717
Addison-Wesley Publishing Company, Inc. ISBN 0-201-17745-5

