Software and

Hardware
Details

PART 2
SOFTWARE AND HARDWARE
DETAILS

Chapter 1
Apple II CP/M Software Details

Introduction 2-4

I/0 Hardware Conventions 2-4

6502/Z-80 Address Translation 2-5

Apple II CP/M Memory Usage 2-6

Assembly Language Programming with 2-7
the SoftCard

ASCII Character Codes 2-7
Interrupt Handling 2-10
Chapter 2
Apple II1 CP/M
I1/0 Configuration Block
Introduction 2-12

Console Cursor Addressing/Screen Control 2-12
The Hardware/Software Screen Function Table
Terminal Independent Screen Functions/Cursor

Addressing
Redefinition of Keyboard Characters 2-17
Support of Non-Standard Peripherals 2-17
Devices and I/0 Software

Assigning Logical to Physical 1/0 Devices:
the IOBYTE
Patching User Software Via the I/0 Vector
Table
Calling of 6502 Subroutines 2-24
Indication of Presence and Location 2-26
of Peripheral Cards

2-1

Chapter 3
Hardware Description

Introduction

Timing Scheme
SoftCard Control
Address Bus Interface
Data Bus Interface
6502 Refresh

DMA Daisy Chain
Interrupts

SoftCard Parts List
SoftCard Schematic

2-2 .

2-30
2-30
2-31
2-31
2-33
2-33
2-34
2-34
2-34
2-36

CHAPTER 1
APPLE II CP/M SOFTWARE
DETAILS

 Introduction

* I/0 Hardware Conventions

* 6502/Z-80 Address Translation

» Apple 11 CP/M Memory Usage

» Assembly Language Programming with the
SoftCard

« ASCII Character Codes

* Interrupt Handling

2-3

Introduction

This chapter deals with the software features that are peculiar to Apple II —.
CP/M, and how these features relate to the I/0 hardware installed in the
different slots of the Apple. First we will discuss the hardware 1/0 protocol
supported by Apple CP/M. Then we will examine the software support of
this hardware protocol: the I/O Configuration Block. For more information
ontheuse of the CP/M operating system, see the “CP/M Reference Manual?’

I/0 Hardware Conventions

The 1/0 hardware protocol is identical to that supported by the initial
release of Apple PASCAL, with a few exceptions. All standard Apple I/0
peripherals are supported, as well as a few others, such as California
Computer Systems’ 7710A Asynchronous Serial Interface, the Videx
Videoterm, and M&R Enterprises Sup-R-Term. Apple CP/M does not
support horizontal scrolling on the Apple 24 X 40 video screen.

Apple Peripheral Cards: What Goes Where

Unlike Applesoft and Integer BASIC (but similar to Apple PASCAL), Apple
CP/M requires that peripheral 1/0 cards be plugged into specific slots
depending on their functions. For instance, a printer interface card must be
plugged into slot one in order to use a printer. When the system is booted,
CP/M s able to recognize the presence or absence of certain standard Apple
peripheral interface cards. Once the system is booted, I/0 is performed by
usingeither the hardware directly or by calling the 6502 soft ware on the card.

Below is a table of the assigned functions for each of the Apple slots, along
with the card types that are recognized when plugged into each. (See the list
of recognized card types following the table.) Note that unless otherwise
noted below, unrecognized cards or empty slots are ignored.

SLOT VALID CARD TYPES PURPOSE

0 Not used for I70 This slot may contain a Language Card
or an Applesoft or Integer BASIC ROM
card. (the latter are not used by CP/M)

1 types 2,3,4 Line printer interface (CP/M LST:
device)
2 input: 2,3,4 General purpose I/0 (CP/M PUN: and o
output: 1,2,34 RDR: devices) —_

2-4

3 types 2,3,4 Console output device (CRT: or TTY:)
The normal Apple 24 X 40screen is used

— as the TTY: deviceif no card is present.
4 type 1 Disk controller for drives E: and F:
5 type 1 Disk controller for drives C: and D:
6 type 1 Disk controller for drives A: and B:

(must be present)

7 any type No assigned purpose. The SoftCard
may be installed in slot 7.

NOTE: The SoftCard may be installed in any empty slot except slot
zero.

Below is a list of the I/0 peripheral card types that are currently recognized
by Apple CP/M.

TYPE CARD NAME

1 Apple Disk II Controller
2 Apple Communications Interface

*California Computer Systems 7710A Serial Interface
3 Apple High Speed Serial Interface

Videx Videoterm 24 X 80 Video Terminal Card
M&R Enterprises Sup-R-Term 24 x 80 Video Terminal Card
4 Apple Parallel Printer Card

*The CCS 7710A serial interface card is the preferred type 2 card as it
supports hardware handshaking and variable baud rates from 110-19200 baud.

6502/Z-80 Address Translation

Because of the memory address translation performed by the hardware on

the SoftCard, a particular data byte is not accessed at the same address

for both processors. The correspondence of memory addresses between the

7-80 and 6502 is shown below (All addresses are hexadecimal). Use of this

table is necessary when translating 6502 BASIC or assembly language
7~ goftware for use with the SoftCard.

2-5

Z-80 65602

ADDRESS ADDRESS
—

0000H-OFFFH $1000-$1FFF Z-80 location zero

1000H-1FFFH $2000-$2FFF

2000H-2FFFH $3000-$3FFF

3000H-3FFFH $4000-$4FFF

4000H-4FFFH $5000-$5FFF

5000H-5FFFH $6000-$6FFF

6000H-6FFFH $7000-$7FFF

7000H-7FFFH $8000-$8FFF

8000H-8FFFH $9000-$9FFF

9000H-9FFFH $A000-SAFFF

0AO000OH-0AFFFH $B000-$BFFF

0B00OH-0BFFFH $D000-$DFFF

0C000H-OCFFFH $E000-$SEFFF

OD000OH-ODFFFH $F000-$FFFF 6502 RESET, NMI, BREAK

vectors
O0E000H-OEFFFH $CO000-$CFFF 6502 memory mapped 1/0
OF000H-OFFFFH $0000-0FFF 6502 zero page, stack, Apple
screen
Apple II CP/M Memory Usage
Here is how the Apple memory is used by Apple CP/M:
6502 Z-80

ADDRESS ADDRESS PURPOSE

$800-$FFF 0F800-OFFFF Apple disk drivers and disk buffers

$400-$7FF 0F400-OF7FF Apple screen memory

$200-$3FF OF200H-OF3FFH 1/0 Configuration Block.

$000-$1FF OF000H-OF1IFFH Reserved 6502 memory area — 6502
stack and zero page.

$C000-$CFFF OEOOOH-OEFFFH Apple memory mapped I/0

$FFFA-SFFFF ODFFAH-ODFFFH 6502 RESET, NMI, and BREAK
vectors.

$D400-$FFF9 0C400H-ODFF9H 56K Language Card CP/M (if
Language Card installed)

$D000-$D3FF 0CO000H-OC3FFH Top 1K of free RAM space with
56K Language Card CP/M

$A400-$BFFF 9400H-0OAFFFH 44K CP/M. (Free memory with
56K CP/M)

$1000-$A3FF 0000H-093FFH Free RAM (CP/M uses lowest 256 ™
bytes)

2-6

Assembly Language Programming
with the SoftCard

The Z-80 processor executes all of the 8080 instruction set plusits own set of
instructions. You can run software written for either the 8080 or Z-80
processor on the SoftCard. There is, however, a different set of instruc-
tion mnemonics for each of the processors.

Included with the standard CP/M utilities are ED, a line oriented text
editor; ASM, an 8080 assembler; and DDT, an 8080 machine language
debugger. These programs can be used to write and debug 8080 programs.

It is also possible to write 6502 subroutines for use with the SoftCard.
The Microsoft Assembly Language Development System is available
separately for the development of both Z-80 and 6502 software.

ASCII Character Codes

DEC = ASCII decimal code
HEX = ASCII hexadecimal code
CHAR = ASCII character name

DEC HEX CHAR WHAT TO TYPE
0 .00 NULL ctrl @
1 01 SOH ctrl A
2 02 STX ctrl B
3 03 ETX ctrl C
4 04 ET ctrl D
5 05 ENQ ctrlE
6 06 ACK ctrl F
7 07 BEL ctrl G
8 08 BS ctrl H or «
9 09 HT ctrl I
10 0A LF ctrlJ
11 0B vT ctrl K
12 0oC FF ctrl L
13 oD CR ctrl M or RETURN
14 0E SO ctrl N
15 OF SI ctrl O
16 10 DLE ctrl P
17 11 DC1 ctrl Q
18 12 DC2 ctrl R

2-7

L X~THU W =D~

QEPEPE~>V I AT

ctrl S

ctrl T
ctrlU or —
ctrl V

ctrl W

ctrl X

ctrl Y

ctrl Z

ESC

ctrl [

ctrl shift-M
ctrl *

ctrl _

space

F \@§%# 3 -

OO W W =D

QEWFE~ VI AT

o
&

= NN SO N IO O ZZE RS~ I QEE D

-

o+ n "‘.0'5055‘—‘77"—""':‘0!: o0 o

/SN E<cinovoZgEr R Io=Eg

(shift-M)

> —

B R TR SO0 O

o St R OTY o

)
©

117
118
119
120
121
122
123
124
125
126
127

75 u u
76 v v
77 w w
78 X X
79 y y
7A z z
B (
7C | I
D))
TE ~ ~
7F RUB

Interrupt Handling

Because of the way the 6502 is “put to sleep” by the SoftCard using the
DMA line on the Apple bus, ALL interrupt processing must be handled by
the 6502. An interrupt can occur at two times: while in Z-80 mode and while
in 6502 mode.

Handling an interrupt in 65602 mode:
Handle the interrupt in the usual way — simply end the interrupt processing
routine with an RTI instruction.

Handling an interrupt in Z-80 mode:
Both processors areinterrupted when aninterrupt occursin Z-80 mode. Here
is the step-by-step process for handling an interrupt while in Z-80 mode:

1.

2.

Save any registers that are destroyed on the stack.

Save the contents of the 6502 subroutine call address (See Calling of
6502 Subroutines above) in case an interrupt has occurred during a
6502 subroutine call.

. Set up the 6502 subroutine call address to $FF58, which is the address

of a 6502 RTS instruction in the Apple Monitor ROM.

. Return control to the 6502 by performing a write to the address of the

SoftCard (again see Calling of 6502 Subroutines).

. When control is returned to the Z-80, restore the previous 6502

subroutine call address.

. Restore all used Z-80 registers from the stack.

Enable interrupts with an EI instruction.

. Return with a RET instruction.

2-10

CHAPTER 2
APPLE 11 CP/M
I/0 CONFIGURATION BLOCK

* Introduction
* Console Cursor Addressing/Screen Control
The Hardware/Software Screen Function Table
Terminal Independent Screen Functions/Cursor
Addressing
* Redefinition of Keyboard Characters
* Support of Non-Standard Peripherals and
170 Software
Assigning Logical to Physical
1/0 Devices: the IOBYTE
Patching User Software
Via the 170 Vector Table
+ Calling of 6502 Subroutines
* Indication of Presence and Location of Peripheral
Cards

2-11

Introduction

The I/0 Configuration Block contains the information necessary to
interface Apple CP/M to the various hardware and software configurations
available to the Apple CP/M user. Every Apple CP/M system disk has its
own I/0 Configuration Block, which is loaded and initialized when the
system is booted.

There are five primary functions of the I70 Configuration Block:
1. Console cursor addressing/screen function interface
2. Redefinition of keyboard characters
3. Support of non-standard peripheral devices and 1/0 software
4. Calling of 6502 subroutines
5. Indication of the presence and location of peripheral cards
Each is detailed in its own section in the following pages.

Note: The CONFIGIO program is used to examine and modify the 1I/0
Configuration Block — See Part 5, “Software Utilities Manual” for more
information.

Console Cursor Addressing/Screen Control

Most popular video terminals, including the normal 24 x40 Apple screen,
can support special features such as direct cursor addressing, screen clear,
highlighted text, etc. Apple CP/M applications software such as word
processors and business softwarecan easily takeadvantage of these features.

These advanced screen functions are usually initiated by sending a certain
sequence of characters to the terminal. The sequences required to perform
a specific screen function are often different for different terminals. Most
applications software designed to take advantage of these screen functions
can be configured for a number of popular terminals. However, if your
terminal is NOT compatible with your software, you must usually write
some specialized machine language subroutines to take care of the problem.
Since the Datamedia terminal screen function sequences supported by
Apple PASCAL and the popular 24 X80 plug-in video boards are not
considered “popular” by many CP/M applications programmers, they are
rarely supported.

2-12

Under Apple CP/M, these problems are solved in most cases by translating
the functions as they are received, into the corresponding function expected
by the terminal hardware. This is achieved by two translation tables: the
Software Screen Function Table and the Hardware Screen Function Table,
both part of the 1/0 Configuration Block. Apple CP/M uses the Software
Screen Function Table to recognize an incoming screen function sequence,
which is then translated to the corresponding sequence found in the
Hardware Screen Function Table. Thissequence is then sent to the terminal
device.

For example: Suppose that you want to use a CP/M screen-oriented word
processor (designed to work with a SOROC IQ 120 terminal) with a Videx
Videoterm 24 X 80 video board. The problem: Since the Videoterm board
recognizes only the Datamedia type terminal character sequences, it does
not recognize the screen function character sequences (meant for the
SOROC) that the word processor sends.

To solve this problem, you would use the CONFIGIO utility (see the
Software Utilities Manual) to encode the SOROC screen function sequences
into the Software Screen Function Table and encode the Datamedia
sequences into the Hardware Table. Now when your word processor sends
characters to the terminal, they are compared to the SOROC function
sequences that have been placed in the Software Screen Function Table. A
match means that your word processor is attempting to perform a screen
function. Next, the corresponding Datamedia character sequence is taken
from the Hardware Screen Function Table and sent to the terminal, where
the function is actually performed.

The Hardware/Software Screen Function Table
There are nine screen functions supported by Apple CP/M:

Clear Screen

Clear to End of Page

Clear to End of Line

Set Normal (lowlight) Text Mode

Set Inverse (highlight) Text Mode

Home Cursor

Address Cursor

Move Cursor Up

. Non-destructively Move Cursor Forward

LONST R W

The Backspace character (ASCII 8) is assumed to move the cursor
backwards, and the Line Feed character (ASCII 10) is assumed to move the
cursor down one line.

2-13

Screen function character sequences supported by Apple CP/M may be of
two forms:

1. A single control character, or
2. Any ASCII character preceded by a single character lead-in.

Screen function sequences longer than two characters are not supported.

The internal format of each of the two 11-byte tables is identical. Below are
listed the function number, the hexadecimal address and a description of
each table entry.

FUNC. # SOFTWARE HARDWARE DESCRIPTION

0F396H 0F3A1H Cursor address coordinate
offset. Range: 0-127. If the
high order is @, the X and Y
coordinates are expected to
be transmitted Y first, X last,
If the high order bit is 1, the
coordinates are sent X first,
Y last.

0F397H 0F3A2H Lead-in character. Thisbyteis
zero if there is no lead-in.

NOTE: The following rules apply to the screen function
table entries below: If the table entry is zero, the function is
not implemented. If the entry has the high order bit set, the
function requires a lead-in. An entry with the high order bit
clear means the function does not require a lead-in.

1 0F398H 0F3A3H Clear screen

2 0F399H 0F3A4H Clear to End of Page

3 0F39AH 0F3A5H Clear to End of Line

4 0F39BH 0F3A6H Set Normal (low-light) Text
Mode

5 0F39CH 0F3A7H Set Inverse (high-light) Text
Mode

6 0F39DH 0F3A8H Home Cursor

2-14

Vi

7 0F39EH 0F3A9H Address Cursor (See above)
8 0F39FH OF3AAH Move Cursor Up One Line

9 O0F39FH OF3AAH Non-destructively Move
Cursor Forward

The standard 24 X 40 Apple screen supports all nine functions independent
of the Hardware Screen Function Table. However, if a Software Screen
Function Table entry is zero, that function will be disabled.

The Hardware and Software Screen Function Tables can be examined and
modified with the CONFIGIO program. Use of this program and more
information concerning terminal configuration can be found in the Apple
CP/M Utilities Reference Manual.

Terminal Independent Screen Functions/Cursor
Addressing

Because of the general-purpose nature of the Hardware and Software Screen
Function Tables, it is possible to write programs that use the information
containedin these tables to perform screen functions. These programs would
work with any terminal, aslong as the Hardware Screen Function Table was
set up correctly for the particular terminal. Below is a short segment of 8080
assembly language code that illustrates the use of the Screen Function
Tables for terminal-independent screen programming:

Terminal Independent Screen 1/0

This routine will execute the screen function

specified by E, where E contains the screen function
number from one to nine. If the function is not implemented,
the subroutine simply returns. All registers are destroyed.

’
’
’
’
’
’
>
’
’
’

(NK 5/80)

Equates:
BDOS EQU 0005H :CP/M function call address
SXYOFF EQU 0F396H ;Software cursor address XY coord.

offset

SFLDIN EQU O0F397H ;Software function lead-in character
SSFTAB EQU 0F398H ;Software screen functions
SCRFUN: MVI D, ; Prepare for index

LXI H,SSFTAB-1 ;Point to Software Screen
Function table minus one
DAD D ;Index to desired function char.

2-15

MOV AM ;Get the char.

ORA A ;See if a Lead-in is required
RZ ;If the function isn’t there, quit
JP CONOUA ;If pos., no
PUSH PSW ;Save char.
LDA SFLDIN :Get software lead-in char.
CALL CONOUA ;Output char. in A
POP PSW ;Re-get char.
CONOUA: MOV EA ;Put char. in its place
CONOUE: MVI C,2 ;Console output function
JMP BDOS ;:Call CP/M BDOS at 0005H
; This routine will position the cursor at the X,Y coords
; in [HL].
GOTOXY: PUSH H ;Save coords while we do seq.
MVI E;7 ;Do a Cursor Address function
CALL SCRFUN
POP H ;Get coordinates back
LDA SXYOFF ;Get software XY coordinate offset
ORA A ;Set CC’s on [A]
JP NORVS ;Reverse coords if neg.
MOV E,L :Reverse H&L
MOV LH
MOV HE
NORVS: MOV EA ;Save offset
ADD H ;Add offset
MOV HA ;Save for later
MOV AE ;Re-get offset
ADD L
PUSH H ;Save all this
CALL CONOUA ;Output first coord.
POP H ;Restore coords.
MOV EH ;Output second coordinate

JMP CONOUE ;And return.

Notice that the screen function character sequences are determined by the
Software Screen Function Table in the subroutines above. Thisis necessary
for these subroutines to work with the normal Apple screen. Also note that
a NUL entry in either Screen Function Table will disable that function on
the Apple’s 24 X 40 screen.

2-16

RS

Redefinition of Keyboard Characters

Some CP/M software requires specific keys for proper operation that are
normally unavailable on some keyboards. The Apple keyboard is par-
ticularly deficient in this respect. Common characterssuch asthe left square
bracket ([),and RUBOUT simply cannot be typed. This problem issolved by
the Keyboard Character Redefinition Table found in the I/ O Configuration
Block.

The function of the Keyboard Character Redefinition table is simple: it
redefines any key on the keyboard as any of the ASCII character codes. For
example, Ctrl-K could be redefined as the left square bracket. Then when
Ctrl-K is typed, the [character appears.

Another somewhat tricky use of Keyboard Character Redefinition is to
disable BASIC program termination with Ctrl-C by redefining Ctrl-C as
some other character such as NUL. Thus it would be impossible to break out
of a BASIC program because it is impossible to type Ctrl-C. (It is also clear
from this example that messing around with this table can cause some
annoying problems.)

Keyboard redefinition takes place only during input from the TTY: and
CRT: devices. (See Assigning Logical to Physical I70 devices below.)

The Keyboard Character Redefinition Table

The Keyboard Character Redefinition Table will support up to six character
redefinitions. The table is located at OF3ACH from the Z-80. Entries in the
table are two bytes: the first is the ASCII value of the keyboard character to
beredefined, and the second is the desired ASCII value of the character. Both
bytes must have their high order bits cleared.

If there are less than six entries in the Keyboard Character Redefinition
Table, the end of the table is denoted by a byte with the high order bit set.

Modifications to the Keyboard Character Redefinition Table may be made
using the CONFIGIO program. See the “Software Utilities Manual?

Support of Non-Standard Peripherals and
I/0 Software

The 170 Information Block also provides for the support of non-standard
Apple peripherals and 1/0 software. All of the primitive character 1/0
functions are vectored through the 170 Vector Table which is contained in
the I/0 Configuration Block. These vectors normally point to the standard
1/0 routine located in the CP/M BIOS, but they can be altered by the user
to point to hisown drivers. Three blocks of 128 byteseach are provided within

2-17

the 1/0 Configuration Block for user I/0 driver software. Each of the three
128-byte blocks is allocated to a specific device, and thus to a specific slot, in
order to prevent memory conflicts.

ASSIGNED ASSIGNED
ADDR SLOT LOGICAL DEVICE

0F200H-0F27FH Slot 1 LST: — line printer device
0F280H-0F300H Slot 2 PUN: and RDR: — general purpose 1/0
0F300H-0F37FH Slot 3 TTY: — the console device

Most Apple I/0 interface cards have 6502 ROM drivers on the card. The
easiest way to interface these types of cards to Apple CP/M is to write Z-80
code to call the 6502 subroutines on the ROM. This should be sufficient to
interface most common 1/0 devices to Apple CP/M. (See Calling of 6502
Subroutines below.)

If no card isinstalled in a particular slot, its allocated 128-byte space can be
used for other purposes relating to its assigned logical device. These include
lower-case-input drivers for the Apple keyboard, cassette tapeinterface, etc.

1/0 driver subroutines are patched to CP/M by patching the appropriate
1/0 vector to point to the subroutine. A table of vector locations and their
purposes is shown below:

VEC
ADDR VECTOR NAME DESCRIPTION

1 0F380H Console Status Returns OFFH in register
A if a character is ready to
read, O0H in register A
otherwise.

2 OF382H Console Input vector #1 Reads a character from

3 0F384H Console Input vector #2 the console into the A

register with the high
order bit clear.

4 OF386H Console Output vector #1 Sends the ASCII
5 OF388H Console Output vector #2 character in register C to
the console device.

6 OF38AH Reader Input vector #1 Reads a character from
7 OF38CH Reader Input vector #2 the “paper tape reader”
— device into register A.

8 OF38EH Punch Output vector #1 Sends the character in
9 0F390H Punch Output vector #2 register C to the “paper
tape punch” device.

10 0F392H List Output vector #1 Sends the character in
11 O0F394H List Output vector #2 register C to the line
printer device.

NOTE: During Console Output, the B register contains a number
corresponding to one of the nine supported screen functions during output
of a screen function. B contains zero during normal character output. B is
also non-zero during the output of the Cursor Address X Y coords after
executing screen function #7.

Assigning Logical to Physical 1/0 Devices: the

IOBYTE

As explained in the CP/M reference documentation, the IOBYTE can be
used to assign logical 1/0 devices to physical devices. The IOBYTE is
changed with the STAT program. See the “CP/M Reference Manual” for
more information on changing and using the IOBYTE.

The IOBYTE function creates a mapping of logical and physical devices
which can be altered by CP/M programs or with the STAT utility. The
mapping is performed by splitting the IOBYTE into four bit fields, asshown
below:

IOBYTE at 0003H: [LIST__] PUNCH | READER | CONSOLE]
bits: 7 6 5 4 3 2 1 0

Thevaluein each field can bein the range 0-3. The meaning of the values that
can be assigned to each field is outlined below:

CONSOLE field (bits 0,1)
0 - CONSOLE is the TTY: device
1- CONSOLE is the CRT: device
2. Batch mode — Uses the RDR: device as the CONSOLE input, and the
LST: device as the CONSOLE output (BAT:)
3. User defined CONSOLE device (UC1:)

7 READER field (bits 2,3)
0- READER is the TTY: device
1 - READER is the CRT: device
2. READER is the “paper tape reader” device (PTR:)
3 - User defined READER device #2 (UR2:)

2-19

PUNCH field (bits 4,5)
0 - PUNCH is the TTY: device
1- PUNCH is the “paper tape punch” device (PTP:)
2 - User defined PUNCH #1 (UP1:)
3 - User defined PUNCH #1 (UP2:)

LIST field (bits 6,7)
0 - LIST is the TTY: device
1-LIST is the CRT: device
2 - LIST is the line printer device (LPT:)
3 - User defined LIST device (UL1:)

Below is a description of the Apple CP/M implementation of the physical
devices mentioned above:

TTY:

CRT:

UCt:

PTR:

URI1:

UR2:

PTP:

UP1:

UP2:

Either the standard Apple screen and keyboard or an external
terminal installed in slot 3. This routine vectors through Console
Input Vector #1 and Console Output #1. The Console status is
always vectored through the Console Status vector.

Same as TTY:

User defined console device. This deviceis vectored through Console
Input #2 and Console Output #2.

A standard Apple interface capable of doing inputinstalledinto slot
2.If no card is plugged into slot 2, the PTR: device always returns a
1AH end-of-file character. Input from the PTR: device is vectored
through Reader Input vector #1. Characters are returned in the A
register.

User defined reader #1. A characterread from this deviceis returned
in the A register. Thisinput device is vectored through Reader Input
vector #2.

User defined reader #2. This device is physically the same as UR2:.

Any standard Apple interface capable of doing outputinstalled into
slot 2. If no card is plugged into slot 2, the PTP: device does nothing.
Output to the PTP: deviceis vectored through Punch Output vector
#1.

User defined punch #1. The character in register C is output
through Reader Input vector #2.

User defined punch #2. This device is physically the same as UP1:
2-20

LPT: The LPT: deviceis any standard Apple interface card installed into
slot 1 capable of doing output. The character in register C is output
through List Output vector #1.

UL1: Userdefined list device. The character in register Cis output via List
Output vector #2.

The IOBYTE can be changed with the STAT program, or it may be modified
from an assembly language program using the CP/M Get IOBYTE and Set
IOBYTE (#7 & # 8) functions. See “An Introduction to CP/M Featuresand
Facilities” and the “CP/M Interface Guide” in the “CP/M Reference
Manual” for more information.

Patching User Software Via the I/0 Vector Table

User subroutines can be patched into the I/0 Configuration Block with the
CONFIGIO program. Any patches made can also be permanently saved
onto a CP/M system disk as well as with CONFIGIO.

To create a code file, use ASM to write the driver software, and then use
LOAD to create a COM file from the HEX file produced by ASM.

The code file loaded by CONFIGIO must be of a certain internal format.
Only one code segment may be patchedintothel/O Configuration Block per
code file. However, as many vectors in the I/0 Vector Table may be patched
as desired.

Below is outlined the format of a disk code file to be loaded with CONFIGIO
and patched to the I70 Configuration Block:

First byte: No. of patches to I/0 Vector Table to be made.
Next 2 bytes: Destination address of program code.
Next 2 bytes: Length of program code.

Repeat for each 170 vector patch to be made:

Next byte: Vector Patch type — either 1 or 2.

If Vector Patch type = 1:

Next byte: Vector number to be patched. May be from 1-11. (See
vector location definitions above)

Next 2 bytes: Address tobe patched into the vector referred by the

previous byte. Points into the user’s code.

If Vector Patch type = 2:
Next byte: Vector number to be patched. May range from 0-11.
(See vector location definitions above)

2-21

Next 2 bytes: Address in which to place the current contents of

the specified vector. (May be the address field of a

JMP, etc.)
Next 2 bytes: New address to be placed in the specified vector.
Next: The actual program code is located after the patch

information above. Convention restricts the size of
the program code to 128 bytes per slot-dependent
block. Use the block appropriate for your applica-
tion and slot use. (See above)

Below is an example of a program that could be patched into the 1/0
Configuration Block using CONFIGIO. While it is listed here primarily
as a model for writing your own programs, it is useful in its own right
with a 24x80 video card or standard Apple video and keyboard, so you
may want to enter it for your own use.

Notice how OFFSET is used to allow the program to be ORGed at 0100H.

To patch this program to the I/0 Configuration Block, you would:

1.

Use the DDT “S” command to enter the program into memory at
100 hex.

Use the CP/M SAVE command to save it to disk.

Use CONFIGIO option #3 to load the lower case driver into the I/0
Configuration Block.

Use CONFIGIO option #4 to save the patched I/0 Configuration
Block to the disk.

If you patch this lower case input routine for your own use, note the
following:

This driver defaults in upper case shift lock. The forward-arrow key is
used as the shift key. Hit the arrow key once to enter lower-case input
mode. Now, all characters typed will be entered in lower case. To shift
a letter, hit the arrow key once—don’t hold it down. The next charac-
ter typed will be shifted. To enter shift-lock mode, hit the arrow key
twice in a row.

; AFFLE CF/M LOMER CASE INPUT ROUTIHE

;

i This routine can be sssembled usins ASH and
i LOAD to rroduce s file that can be losded snd
ralched into the 1/0 Confisuration Hiock with
CONFIGIO, It is also intended to be used as

3 model for Sour own FrOSFams.
i

2-22

0015
F3BY
£000

0100
F300

0100
0101
0103

0105

0106
0107
0109

0108
010E
0110
0111

0113
0116
0117
011A
011D
011f

0120
0122
0125
0126
0128
0129
012€

012F
0130
0133
0135
0136
0138

0139
0134
013B
013C
013D
013E

01
00F3
3E00

02
06F3
00F3

3ABEF3
FEO3
CA0000

3JA00EQ
B7
F208F3
3210E0
E6TF
4F

0613
213DF3
7E
FEOL
79
LIAJEF 3
CAZEF3

k8
CAJ2F3
FE40
]
EE20
(084

34
B8
co
35
35
C300F3

SHFCHR EOU
SLTTYP EQU
KEYRD EQU
i

OKG
ORIGIN EQU
OFFSET SET
V

DE

oW

il

DB

-

U]
0]
]
y
i Check Lo make

’

LWRCASE (LDA
CFI
JZ

OLDINP EQU

21
OF3H9H
QEQOUH

0100H
OF 300H
ORIGIN-LWRCASE

1
ORIGIN
PRGENDI-LWRCASE

-
<

2

OLDINPHOFFSET
LWRCASE+OFFSET

iSnift kew is the forward-arrow
3Slot tuyres table
jhddress of Arrle kesboard

$This 15 so LOADR will load st 10uh
ikeal orisin of rrosram
jhiust be saced Lo 1é-pit sddresses

thishe one ratch
jlestination addresz of Frosram
sLensth of rrosram

iFatch tsre 2
;Patch Console Inrut vector #1

iFlace Lo rul curreni contents o
silew contents of vector

=

vector

sure he isn’t using an external tersinsl’

SLTTYF42
3
0000

32

ils there & card in 37
iIs he usins & Com C
illumms address

sPlace Lo rut normal inrut routine ador

ot 3
ra as & Lerminsi?

5
28

i
; Gel a character from the Aprle kesboard:

?

KELOOP: LDA
ORA
JP
STA
ANI
HOV

HVI
LXI
Hov
CPI
KOV
JC

JZ

STATE2: CHP
JZ
CPI
RC
XK
RET

inFut mode.

) = e ae e e me

TATEL: INR
ChF
RNZ
ICR
SETONE: [CR
JHP

KEYED

A
KELOOP+OFFSET
KEYEI+10H

7FH

CrA

Ky SHFCHR
HySTATE+OFFSET
ArN

1

ArC
STATEO+OFFSET
STATE1+OFFSET

B
SETONE+OFFSEY
54

00100000k

H
|3

M

M
LWKRCASE+OFFSET

2-23

sSee if char availashle al keshoard
iSet condition codes on keshd loc
sLoor if char not available

iClear Keuboard sirobe

#Hask high bit of char

iSave character in {C]

#Shift character into CEI
iFoint to shift state

iGet state.

iltetermine state

jCel twred character into [A]
iCarrys set - state 0

iState |

Here if in lower case inrut mode.

all siehahetic characters are converlied

Lo lower cases unless the shifi character is
tureds which enters ‘shift next character’ made

yfor shifl char.

#IL uwasy set state = 1

$IL wasn’ts so convert all
izlrhabetic chars Lo lower case
iThis does the conversica

iAll done

Here if in ‘shift next chasracter’ modes entered
by turing the shift chsr once in lower case
If shift characler is tyred agains
urrer case shift lock mode uwill be entered.

iResel stater= 2 = lower case made
jHit shift character?

iLet urrer case characler 2o,

isel state to zero! urrer shifi lock

;Get another chsracter

Here if in urrer case shift lock mode.
Shifl character must be tsred once Lo enter lower
case inFul mode.

0141 B8 STATEO: CMP B iltid he tsre shift char?

0142 CO RNZ sNot shifis return urrer case char.,
0143 3502 HYI He2 iSet stale = 2 = lower case inrul node
0145 C300F3 JHP LMRCASE+OFFSEY #and et anolher characler

H
0148 00 STATE: DB 0 s5hift state. Default = urrer loch

H

FRGENDS
0149 END

0100 01 00 F3 3E 00 02 02 05 £3 00 F3 3A BB F3 FE 03
0110 CA 00 $0 3A 00 EO B7 F2 08 F3 32 10 EO E6 JF 4F
0120 04 15 21 30 F3 7E FE 01 79 A 36 F3 CA 2E F3 B8
0130 CA 32 F3 FE 46 D8 EE 20 C9 34 R8 CO 35 35 C3 00
0140 F3 B8 CO 34 02 C3 00 F3 00

Calling of 6502 Subroutines

As discussed in the Hardware Details section of this manual, the 6502
processor is enabled from Z-80 mode by a write to the slot-dependent location
OENOOH, where N is the slot location of the SoftCard, Z-80 mode is
selected from 6502 mode with a write to the same slot dependent loca-
tion, which is addressed at $CNOO in 6502 mode. (See the 6502 / Z-80
address translation table on page 2-5). Since the SoftCard may be
plugged into any unused slot except zero, the location of the SoftCard
will vary from system to system.

However, when the system is booted, the location of the SoftCard is
determined by CP/M and its address is stored in the I/0 Configuration
Block. This address is thus available to CP/M software for calling 6502
subroutines. See the “Hardware Details” section of this manual.

Calling 6502 subroutines is a simple matter. The programmer simply sets up
the address of the subroutine tobe called,and then does a write to the address
of the SoftCard explained above. It is also possible to pass parameters
to and from 6502 subroutines through the 6502 A, X, Y, and P (status)
registers. The 6502 stack pointer is also available after a 6502 subroutine call.
Remember that 6502 and Z-80 addresses are not equivalent — See the
6502/7-80 Address Translation Table on page 2-30.

Z-80 ADDR 6502 ADDR PURPOSE

0F045H $45 6502 A register pass area

0F046H $46 6502 Y register pass area

0F047H $47 6502 X register pass area

0F048H $48 6502 P (status) register pass area

0F049H $49 Contains 6502 stack pointer on exit from
subroutine

0F3DEH Address of SoftCard held here—low byte

= 0 followed by high byte of form OENH
where N is the slot occupied by the SoftCard.

2-24

0F3DOH Address of 6502 subroutine to be called is
stored here in low-high order.

$3C0 Start address of 6502 to Z-80 mode switching
routine. 6502 RESET, NMI, and BREAK
vectors point here. A JMP to this address puts
the 6502 on “hold” and returns to Z-80 mode.

NOTE: Locations $800-$FFF are NOT available for use by a 6502
subroutine. The Apple disk driver software and disk buffers reside here.

Special Note for Language Card Users:

When in Z-80 mode, the Language Card RAM is both read- and write-en-
abled. When a 6502 subroutine is called, the Apple’s on-board ROM is
automatically enabled, making the Apple Monitor available to the 6502
subroutine. However, the Language Card RAM is write-enabled during a
6502 call, which means that a write to any location above 6502 $D000 will
write in the Language Card RAM.

A side effect of read-enabling the on-board Apple ROMs is that the Z-80
memory from 0CO00H to OEFFFH ($D000-$FFFF on 6502) cannot be read
by the 6502 unless the appropriate Language Card addresses are accessed.

The first of the two available 4K banks for the 6502 $D000-$ DFFF area isnot
used by Apple CP/M.

Below is a short segment of 8080 assembly language code toillustrate the use
of the above addresses to call a 6502 subroutine:

; Subroutine to read the value of
; Paddle zero into register A.
; Demonstrates 6502 subroutine
; calling conventions and parameter
; passing. (NK 5/80)
3 Equates
Z$CPU EQU OF3DEH ;Location of SoftCard stored here
ASVEC EQU OF3DOH ;Addr of 6502 sub. to call goes here
ASACC EQU (F045H ;6502 A register goes here
ASXREG EQU 0F046H ;6502 Y register pass area
PREAD EQU OFBIEH ;Apple Monitor paddle read routine
PDL: XRA A ;Clear A register

STA A$XREG ;Read paddle zero

LXI H,PREAD ;Get addr of subroutine

SHLD A$VEC ;And store it for 6502 caller

2-256

LHLD Z$CPU ;Get SoftCard addr...
MOV MA ;Go do it! (Must be a write)

; Execution resumes here after 6502 does a RTS
LDA ASACC ;A = paddle value.
RET ;All done — return

Indication of Presence and Location of
Peripheral Cards.

The Card Type Table

When Apple CP/M is booted, each of the slots of the Apple is checked to see
if a standard Apple 170 card is installed. This is done by checking to see if
there is ROM present in the slot-dependent memory space allocated to
peripheral card driver ROMs, and then comparing two signature bytes to
those of the standard Apple 1/0 peripheral cards.

This information is then stored in the Card Type Table, which is located in
the I/0 Configuration Block. There are seven bytes in the Card Type Table,
each corresponding to the seven slots from 1 to 7.

The value of a table entry may range from 0 to 5. The meaning of each value
is as follows:

VALUE EXPLANATION

0 Noperipheralcard ROM was detected (Usually means that no card
is installed in the slot)

1 A peripheral card ROM was detected, but it was of an unknown
type.

2 An Apple Disk II Controller card is installed in the slot.

3 An Apple Communications Interface or CCS 7710A Serial Inter-
face is installed in the slot.

4 An Apple High-Speed Serial Interface, Videx Videoterm, M&R
Sup-R-Term or Apple Silentype printer interface is installed in the
slot.

5 An Apple Parallel Printer Interface is installed in the slot.

2-26

This information can be useful to the programmer. For instance, if the third
entry (slot 3 — console device) of the Card Type Table is either 3 or 4, a
program can assume that the useris usingan 80 column external terminal of
some kind. In this way, it is possible to write software that configures itself
for 40 or 80 column terminals automatically.

The Card Type Table is located at 0OF3B9H. The entry for a given slot is
located at 3B8H + S, where S is an integer from 1 to 7.

Disk Count Byte

The Disk Count Byte is a single byte equal to the number of disk controller
cards in the system times two. This value does not reflect an odd number of
disk drives (i.e., only one drive plugged into a controller card).

The Disk Count Byte is located at OF3B8H.

To Boot a Diskette Without Powering Down

The following program will allow you to boot diskettes from CP/M with-
out having to turn the Apple’s power off. This program is not necessary;
it simply bypasses the power-off step.

1. Use the DDT “S” command to enter the following data at 100 hex.

0100 OF 01 CD 05 60 21 77 C7 22 00 30 2t 00 Cé 22 0
0110 F3 2A DE F3 C3 00 30

2. Type Control-C to exit DDT.

3. Type SAVE 1 BOOT.COM

The program is now saved on disk. To use it, just type BOOT and press
RETURN. Wait a few seconds, then insert the disk you wish to boot.

Press any key to reboot the disk. Your system will reboot exactly as if
you had typed PR #6 in Applesoft or Integer BASIC.

2-27

2-28

CHAPTER 3
HARDWARE DESCRIPTION

* Introduction

* Timing Scheme

» SoftCard Control

* Address Bus Interface
* Data Bus Interface

* 6502 Refresh

* DMA Daisy Chain

* Interrupts

* SoftCard Parts List

* SoftCard Schematic

2-29

This chapter describes the SoftCard itself, both physically and
operationally. You won’t need this information for normal use of the
SoftCard; it isincluded here to satisfy your curiosity andin case youhave an
unusual application in which this information would be needed.

Introduction

The Microsoft SoftCard is a peripheral card for the Apple family of
computers. The SoftCard contains the necessary hardware to interface a
Z-80 microprocessor (contained on the card) to the Apple bus. This permits
the direct execution of 8080 and Z-80 programs, including Digital Research’s
CP/M operating system and all of the programs written to execute in the
CP/M software environment.

The SoftCard plugsinto any Apple slot except slot zero, and will work in the
Apple I1, Apple IT Plus, or either machine with the Apple Language System.
When the Language System is used, the additional memory of the Language
Card is made available for use by CP/M or any program operating under
CP/M.

Timing Scheme

The Z-80 microprocessor on the SoftCard is synchronized and phase locked
to the Apple clocks. This is accomplished by generating a syncopated clock
for the Z-80 from the Apple clocks.

During each video refresh period (01), the seven MHz Apple clock is divided
down to provide three half clock periods of 135 nsec. The first half-clock is
always high, the second always low, and the third always high again. After
theend of the third half clock, the signal goeslow and stays low until thestart
of the next 01. This means that the Z-80 clock is low during all of 02 plus a
small part of 01. This fourth half-cycle is typically 563 nsec long. (This time
isstretched by 69 nsec at the end of each video line.) The effective Z-80 clock
rate is 2.041 MHz.

Each kind of machine cycle always contains one memory access period (02).
The read/write line is constructed by synchronizing the leading edge of the
write transition to the SoftCard clock, thus ensuring that write will only go
low during the time that the SoftCard clock is high.

Because all address transitions from the Z-80 occur when its clock is high,
they all must occur during 01, when the video update accesses are occurring.
Therefore, each 02 cycle has stable addresses for the entire duration of the
cycle.

2-30

The clock generation is performed by U4 and parts of Ul and U9. The circuit
is arranged so that it will still work if the seven MHz clock occurs just prior

___ to the start of 01, or vice-versa. Q1 and the associated components form an
analog buffer to provide the high speed switching to within a few tenths of a
volt of the supply voltage.

SoftCard Control

The SoftCard is controlled by write commands to the area of memory that
normally contains peripheral read-only-memory. It is important to use a
write instruction to ensure that the 6502 will not perform two accesses in
succession (which would prevent switching back to the 6502).

When the Apple is powered up, the Apple reset signal forces the SoftCard to
the off state. The reset signal is synchronized to the Apple clocks to ensure
that a write operation cannot beinterrupted. The Z-80 isimmediately placed
in a wait mode, and remains there until the SoftCard is activated.

Upon receipt of a write to the proper area of memory, the SoftCard is
activated, and the red LED is turned on. The Z-80 remains in a wait mode
until one memory cycle occurs with SoftCard address information. At this
point, the Z-80 is released from the wait mode and allowed to run with no
further wait cycles required.

Receipt of another write to the same area of memory (this time from the
SoftCard itself) will de-activate the SoftCard.

The table below shows the memory addresses used to control the SoftCard
as a function of slot location:

SLOT CONTROL ADDRESSES

$C100-$C1FF
$C200-$C2FF
$C300-$C3FF
$C400-$C4FF
$C500-$C5FF
$C600-$C6FF
$C700-$C7FF

~I O Ut 0N

— Address Bus Interface

The SoftCard address bus is interfaced to the Apple I/0 bus through a bank
translation circuit. This circuit, consisting of U7, U8, U1l, and half of U12,
resolves the memory address conflicts that exist between the 6502

2-31

architecture and the conventions used by both CP/M and the Z-80
microprocessor. When enabled by S1-1 turned off, the translator adds $1000
to all addresses. This effectively shifts the Z-80 interrupt addresses and
CP/M starting addresses out of the 6502 zero page of memory. In addition,
addresses in the range of $C000-$EFFF are shifted to allow apparent
contiguous memory for CP/M. The table below shows exactly how the
translator functions:

Z2-80 ADDRESS APPLE ADDRESS
$0000-$0FFF $1000-31FFF
$1000-$1FFF $2000-$2FFF
$2000-$2FFF $3000-$3FFF
$3000-33FFF $4000-$4FFF
$4000-$4FFF $5000-85FFF
$5000-$5FFF $6000-$6FFF
$6000-$6FFF $7000-$7FFF
$7000-$7FFF $8000-$8FFF
$8000-$8FFF $9000-$9FFF
$9000-$9FFF $A000-$AFFF
$A000-$AFFF $B000-$BFFF
$B000-$BFFF $D000-$DFFF
$C000-$CFFF $E000-$EFFF

$D000-$DFFF $F000-$FFFF
$E000-$EFFF $C000-$CFFF
$F000-$FFFF $0000-$0FFF

Notice that when theLanguage Card is installed, the Z-80 can address
contiguous memory from $0000-$DFFF, without accessing the 6502 zero
page of memory or the Apple peripheral area.

When the translator is disabled (S1-1 turned on) addresses presented by the
Z-80 are buffered and appear at the Apple /0 bus unchanged.

All of the address buffers are tri-state buffers capable of sinking or sourcing
24 mA of current. All of the buffers are turned off whenever the SoftCard
relinquishes control of the bus. The timing at turn-on and turn-off is
arranged to prevent the SoftCard buffers from driving the address bus when
the Apple is driving the bus.

The timing of the SoftCard forces all address transitions to occur during the
time that the video display (and dynamic memory) is being refreshed by the
Apple. Because for each memory access the address lines are stable at the
start of the cycle, no wait states are used for memory accesses.

2-32

PN

Data Bus Interface

The data from the SoftCard to the Apple (memory writes) is buffered by the
same high current driver type as used by the address businterface. It isonly
enabled when the following two conditions occur:

1. The SoftCard has control of the bus
2. The SoftCard is attempting to write

When the SoftCard is reading memory, the data is buffered and latched by
U15. The outputs of Ul5 are tri-state, and only enabled when the SoftCard
is performing a read. The latch is needed to save data not latched by the
Apple (such as the keyboard characters) until the Z-80 can look at it.

Because the SoftCard timing is synchronous and phase locked with the
Apple, the timing signals generated by the Z-80 can be used to drive the
buffers and the latch.

When an interrupt is recognized by the Z-80 (assuming they are enabled in
both hardware and software) the pull-up resistors guarantee that a
predictable response is generated for any of the interrupt modes of the Z-80.
The byte of data read during an interrupt sequence will be $FF.

6502 Refresh

The 6502 is a dynamic microprocessor, meaning that it requires clock cycles
to maintain the contents of its internal registers. The Apple DMA circuitry
interrupts operation of the 6502 by turning its clock off. Occasionally, this
clock must be turned back on if the 6502 is to remain ready to operate.

Thisis accomplished by holding the 6502 in a non-ready state (by holding the
“RDY” line low) and allowing one memory fetch to be controlled by the 6502.
The data fetched is not used by the 6502, and control of the bus reverts back
to the SoftCard immediately after the “refresh” memory cycle.

The Z-80 dynamic refresh control lines are used to implement this function.
Therefore, the 6502 “refresh” occurs immediately after an op code fetch, and
is thus transparent to the SoftCard and the user. No wait cycles have to be
added to any Z-80 machine cycles, because the 6502 refresh time is used by
the Z-80 to decode the op code. While the 6502 has control of the bus again,
the SoftCard address and data buffers are placed in the tri-state mode.

If higher priority DMA devices are allowed to interrupt operation of the
SoftCard, the 6502 refresh does not continue. Therefore if it is important to
retain theregister contents of the 6502 during a DMA cycle, the length of the
cycle must be limited to a few microseconds (less than 5).

2-33

During a normal mixture of instructions, the 6502 refresh occurs every 4-5
microseconds, well under the data sheet maximum of 40 microseconds. The
longest instruction will allow 11.25 microseconds to elapse between refreshes.

DMA Daisy Chain

The Apple DMA daisy chain is fully supported, to the extent that a higher
priority DMA device may cause the SoftCard to relinquish control of the
bus. Switch S1-2 (when on) enables DMA requests tointerrupt the SoftCard.
If this switch is on, and the DMA daisy chain input (pin 27) is driven low, the
Z-80 will finish the current machine cycle, then the SoftCard will give up
control of the bus by raising the DMA control line on pin 22 of the I/0 bus.
At this time another device may assume control by lowering pin 22. Control
must not commence sooner, because the SoftCard buffers will still be driving
the bus.

If S1-2 is off, the daisy chain is preserved if the SoftCard is off. When the
SoftCard is turned on, the daisy chain output (pin 24) indicates to lower
priority devices that DMA activity is in progress. The lower priority devices
are therefore locked out of doing any DMA. Likewise, the higher priority
devices are also locked out because the SoftCard will not relinquish control
of the bus.

Interrupts

Hardware has been included to allow interrupts to berecognized by the Z-80
on the SoftCard as well as by the 6502 microprocessor. When S1-4 is on, the
Z-80willrespond to interrupts occurringin the Apple. Theinterrupt handler
programshould not attempt to service theinterrupt. Instead, control should
be passed back to the 6502 for the actual processing. This permits the 6502,
which also sees the interrupt, to clear itself of the interrupt status.

Regardless of the interrupt mode selected for the Z-80, the data byte read
during the interrupt sequence will always be $FF. This may be used to vector
to a particular memory location for the interrupt handling routine.

Switch S1-3 performs the same function for the non-maskable interrupt.

Parts List
SoftCard

Component

Identifier Part No. Description
U1 74L.S00 Quad Nand
U2 74L.S05 Hex Inverter
U3 741.S32 Quad Or

2-34

U4
Ub
Ué
u7
U8
U9
U10
U11
U12

U13
U14
U156
U16
U17

C12
* “Card On”
S1

74LS107
74LS74A
74LS74A
74L.S86
7415283
74LS367A
Z-80A
74LS138
74520 (must
be “S” part)
74LS367A
74LS367A
7418373
74LS367A
74LS367A

2N3906

Dual Flip-Flop
Dual Flip-Flop
Dual Flip-Flop
Quad Ex-Or

4 Bit Adder
Hex Buffer
Z-80A (4 MHz)
Octal Decoder

Dual Nand
Hex Buffer
Hex Buffer
Octal Latch
Hex Buffer
Hex Buffer

PNP Transistor

2.2KQ, 5%, % watt
22Q, 5%, Y4 watt
220Q, 5%, 4 watt
12K, 5%, 4 watt
100Q, 5%, Y% watt
10082, 5%, Y4 watt
47K, 5%, Y4 watt
6802 , 5%, Y watt
Resistor Pack, 10K{2,
47KQ, 5%, Y4 watt
1009, 5%, Y4 watt
1009, 5%, Y4 watt
Resistor Pack, 10K

Capacitor, 0.05 uF

Capacitor, 0.05 uF

Capacitor, 0.05 uF

Capacitor, 47 pF, 10%, 1000V
Capacitor, 0.05 pF

Capacitor, 200 pF, 10%, 1000V
Capacitor, 0.05 uF

Capacitor, 200 pF, 10%, 1000V
Capacitor, 0.05 uF

Capacitor, 0.05uF

Capacitor, 0.05uF

Capacitor, Solid Tant., 2.2 uF, 20%, 35V

Light Emitting Diode
Dip Switch — Quad
Printed Circuit Card

2-35

1Y

{
I
{

g6 | CHANGE NOTES
/00 \mohn sSwiter FUNCTION
‘l@ -1 ADDRESS OFFSET (WHEN OFF)
2 3 _ St-2 ,_ 280 DMA ENABLE (WHEN ON) L
n b
2 oopF H <(-3 NON-MASK INT. (WHEN ON)
-4 Z80 INTERRUPTS (WHEN ON)
(s36TA
L8> r/W
+Sv
H +Sv olHll@ +Sv
ciz * 0.cSuf e, ¢z, C3
N.N\mH T,:ww s, Gm cs
=3 8 PLALES Qo\e SND
9 =
s 7
4 S g INT N
| = '@ INT ouT
A Vee
2
A% uio
280-A
(4 uHz)
L
4o Alo
29
AS T
381 a8
2 a1 D7
2% ! at D6
351as bs
E2 VY D4
33 >W UW
32102 D2
31 | an b1
20 1a0 Do
d s378] [
.12 24 Jonw BUATF 3 BN 24) DMA our
ELSP, -7 X — il W S Dy QYN
11 ——
164 TRT ﬂnﬁ“:ﬂ S Lses 52 BMA
17 4 AR 505
B MAY 0 7 1380
|
- _MICROSOS T
. R9 “, CONSUMER \ PRODUCTS
—_ o 4 |iox s
1RQ vafs— 2l ;b REV
\M_ ! G2 sna | SOFT CARD E
o

IsHEET / OF /

TT /RNt (JUNE 73] PRINTED On DIETERICH-P03Y CLLARFRINT 102018

2-36

