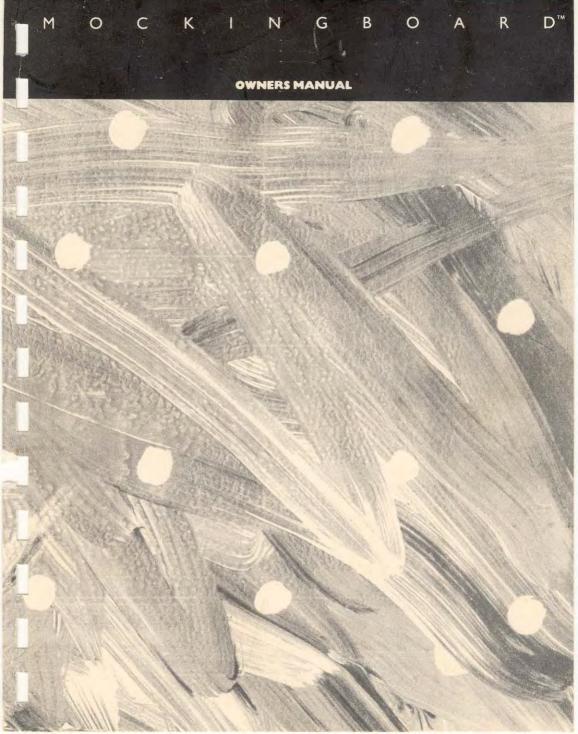
Mockingboard D Manual v1.0


Release Date: 8-28-6

.PDF By: Henry S. Courbis of GSE-Reactive.com

Any corrections or additional information please contact Henry at <u>hscourbis@GSE-Reactive.com</u>.

If you have a manual to be edited and converted to a .PDF please contact Henry at the above address. This is a free service we offer for the benefit of the Apple II Community.

For legacy hardware sales, support, software and additional manuals please visit our Website at www.GSE-Reactive.com.

PREFACE

Fine Art pleases man as much by what it implies as by what it depicts. Theater succeeds equally by the actual and the illusory. But, in certain human activities, what is not supplied detracts.

We have come to expect from computers fine graphics and animation, thoughtful adventures and new approaches to education. Yet, in the silent delivery of these marvels something is missing. Sound!

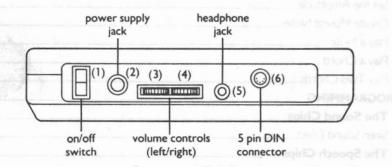
MOCKINGBOARD was developed to give the programmer and the player, the teacher and the pupil, computer applications loaded with vitality, music, speech and sound effects. With MOCKINGBOARD, the computer moves from silence to stereo and using the computer will never be the same.

MOCKINGBOARD was designed to bring refreshing excitement and surprise to this great new art form and you have a front row seat. We hope you enjoy it thoroughly.

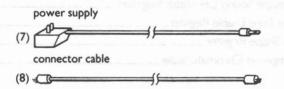
M O C K I N G B	O A R D
CONTENTS	
PREFACE	0-1
CONTENTS	CONSISTER STREET BOOM
DESCRIPTION	0-4
	0-5
Getting Started	0-6
ABOUT THE MANUAL	0-7
ABOUT THE MANUAL RADIO FREQUENCY INTERFERENCE STATEME SPEECH	NT 0-8
SPEECH	1-1
Add Inflection with the Director's Cues	1-2
Add Texture to the Voice	1-5
Soft to Loud Voice	1-6
Low to High Voice	1-6
Slow to Fast Voice	
Alter the Voice Quality	1-7
Pulling it All Together	1-8
Save the Words Created	
The Rule Table	
A Word About Phonemes	1-9
How to Make Changes to the Rule Table	1-10
Let's Hear It	1-12
Locate the Source of the Problem	1-13
How to Read a Rule	
Create a New Rule	1-17
Make Corrections	
Save the Changes	1-20
Delete a Rule	
Other Useful Commands	1-22
One Final Instruction	1-23
SOUND	2-1
A Few Words About the Sound Utility	2-1
What You Need to Know About Sound	2.2

M	0	C	K	1	N	G	в	0	A	R	D
---	---	---	---	---	---	---	---	---	---	---	---

SOUND (continued)	Desicher Tries
MOCKINGBOARD "Knobs"	2-3
Getting Acquainted	2-3
Noise Only Sound Effects	
Turn On Noise Only	2-8
the stereo two evolvier chose a 6801 micratic A 65400 K	0.0
What Makes A Train Sound Not a Gunshot?	AND AS MAN 2.9
How Fast is the Train Going?	2-10
Change a Train into a Helicopter	2-11
Change a Helicopter into a Gunshot	2-11
Tone Only Sound Effects	2-11
Start Fresh with a Clean Screen	
Turn On Tone Only	2-13
Set the Amplitude	2-13
Create Musical Notes	2-13
Play a Note	2-14
Play a Chord	2-14
Play Two Chords	2-14
PROGRAMMING	3-1
The Sound Chips	3-1
Siren Sound Effect	3-2
The Speech Chips	3-7
Using Text to Speech and the Rule Table in Your Program	
APPENDIX A How to Create Basic Sounds	
Phoneme Charts	A-3
APPENDIX B Programmable Sound Generator Registers	A-5
APPENDIX C Noise and Tone Enable Register	A-6
APPENDIX D Envelope Shape Register	A-7
APPENDIX E Equal Tempered Chromatic Scale	
LIMITED WARRANTY	


DESCRIPTION

MOCKINGBOARD D is a stand alone device capable of producing complex synthesized sound and speech. The unit plugs directly into your Apple IIc.


Internally, it contains two sound chips that produce tone and noise, a speech chip to pronounce words, two three-inch speakers that can broadcast sounds or speech in stereo, two amplifier chips, a 6801 microprocessor, 1K of RAM as buffer for sound and speech data, and 2K of firmware in ROM.

Externally, the rear panel of MOCKINGBOARD has an on/off switch, a power supply jack, two volume controls (one for each speaker), a stereo output jack for headphones or external speakers, and a five pin DIN connector for connection to the IIc computer.

Below is a diagram of MOCKINGBOARD D. Note that all of the jacks are different – so, you don't have to worry about plugging a cable into the wrong jack!

Also included with MOCKINGBOARD are a DC power supply and a connecter cable. These two items are pictured below.

MOCKINGBOA	A R	DTM
------------	-----	-----

INSTALLATION

We know many companies claim a child can install their products. But, what does one do if no child is available? Sweet Micro Systems has written these installation instructions for adults.

any order and as many times as you wish. The sounds alternate 9UT32

- 1. Turn off your Apple IIc and turn it so the back of the computer faces you.
- 2. Remove the MOCKINGBOARD D. the DC power supply (7) and the connector cable from the package (8).
- 3. Plug the connector cable into port 2 on the back of the Apple IIc. Port 2 has a telephone icon above it.
- 4. Plug the other end of the connector cable into the connector (6) on the back of your MOCKINGBOARD.
- 5. Plug the DC power supply into the power supply jack (2) on the back of MOCKINGBOARD. Plug the other end into a wall socket.
- 6. If you'd like, plug in your own headphones or external speakers (you'll need to buy a stereo "Y" connector for the speakers) into the headphone jack (5) on the back of MOCKINGBOARD.
- 7. Insert the Sound and Speech Tools disk into your Apple IIc disk drive and close the drive door.

8. Omitted

and then press the RETURN key Artes NOCMBGROARD has finated speaking what you've byped, the question mark mappings. Type more words or phrases fou may type its many is 239 characters at one take **To return to** the menu, type QUIT, and then press RE1URA key **Also for the menu** are Text Maker and fext Reader. That Maker allow bods to type as much text as you for and size at to a text file to prigod back by Text Reader. Here MOCANGROARD much rack are the essay you wrote and durch for priors. Text Maker and any text To carry now the text file, not just those any text file to pre-existly saved as a text file, not just those any text file es and enter the file name PSTP who requested? The feat Reader using Text Maker and provides you will be the pression utilize both programs.

This disk contains other upblices which allow goin autor of prostavition from sound and speech. Have fund

M	0	С	K	1	N	G	В	0	A	R	DTM
---	---	---	---	---	---	---	---	---	---	---	-----

GETTING STARTED

- 9. When the disk is finished booting, a menu will appear on the screen. Select Sound Effects Demonstration from the menu. This demonstration is also presented in a menu form so you may hear the sound effects in any order and as many times as you wish. The sounds alternate between speakers: the first selection plays on one speaker, the next sound effect plays on the other.
- Select A for GUNSHOT and press the RETURN key. With the front of MOCKINGBOARD facing you, adjust the volume by turning the left volume control knob (4) on the back of MOCKINGBOARD. Turn the knob to the right to lower the volume or to the left to raise it.

Select B for MACHINE GUN and press the RETURN key. Adjust the volume by turning the right volume control knob (3) as described above.

The BOMB sound effect jumps from one speaker to the other. Some sounds, like CLOCK, play continuously until you select another letter. You may play two sounds at once on separate speakers. Menu items A and B will play at the same time, but not items A and C because they use the same speaker.

- 11. To return to the Main Menu, press the <ESC> key.
- Select Speech from the Main Menu and then select Message from the Speech Menu. Or, select Text To Speech to have MOCKINGBOARD speak your own words.

When a question mark appears on the screen, type any word or phrase and then press the RETURN key. After MOCKINGBOARD has finished speaking what you've typed, the question mark reappears. Type more words or phrases. You may type as many as 239 characters at one time. To return to the menu, type QUIT, and then press RETURN key.

Also on the menu are Text Maker and Text Reader. Text Maker allows you to type as much text as you like and save it to a text file to be read back by Text Reader. Have MOCKINGBOARD read back a letter or essay you wrote and check for errors. Text Reader will read any text previously saved as a text file, not just those created using Text Maker. To learn how to use Text Maker and Text Reader, run Text Reader and enter the file name HELP when requested. This file was created using Text Maker and provides you with the necessary instructions to utilize both programs.

This disk contains other utilities which allow you to further explore both sound and speech. Have fun!

M O C K I N G B O A R DTM

ABOUT THE MANUAL

The manual has been separated into sections so you may progress at your own pace. The first section is Speech. Here, you will learn how to develop different personalities for MOCKINGBOARD by creating intonations and voices. If you'd like to, delve deeper and learn to correct mispronounced words using The Rule Editor.

The second section is Sound. Learn to develop, modify or completely change sound effects. Take a ping and change it into a plunk or start with an explosion and change it into a train. Learn how MOCKINGBOARD produces sounds and how to create them from scratch using the Sound Utility.

The third section is Programming. Learn how to include the speech and sound you've created into your own programs. If you don't have a program in mind now, you will after you've explored the many possibilities of MOCK-INGBOARD sound and speech.

WAIT ...

The utilities, demonstrations and sound libraries use most of the available disk space. The Rule Editor and Sound Utility allow you to save additional files. If you plan to use the utilities, please separate the sound and speech portions so that you'll have adequate room to expand. The following procedure should be followed:

- 1. Make a back up disk before proceeding. See your Apple IIc manual for instructions.
- 2. Format a new disk for speech. See your Apple IIc manual for instructions.
- 3. Type CATALOG and scroll through the list of files on the disk until you come to the name S/ONLY. This stands for Speech Only. All the files related to speech are listed below this file. Copy all the files from S/ONLY down onto a new disk.
- 4. Type RUN S/ONLY and the speech menu appears.
- You may also wish to do the same with the remaining sound portion. Copy all the files above S/ONLY, except HELLO, onto another formatted disk. When you boot your new disk, type RUN SOUND and a sound menu appears.

M O C K I N G B O A R D[™]

RADIO FREQUENCY INTERFERENCE STATEMENT

This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict accordance with Sweet Micro Systems instructions. may cause interference to radio and television reception. It has been tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Turn the receiving antenna until interference stops.
- Move the computer to one side or the other of the TV or radio.
- Move the computer farther away from the TV or radio.
- Plug the computer into a different outlet so that computer and receiver are on different branch circuits.

If necessary, consult your dealer or an experienced radio/television technician for suggestions. You may find the following booklet prepared by the Federal Communications Commission helpful:

"How to Identify and Resolve Radio-TV Interference Problems." During

This booklet is available from the U.S. Government Printing Office, Washington, DC 20402, Stock No. 004-000-00345-4.

M O C K I N G B O A R D™

SPEECH

Man's ability to articulate sounds for the purpose of communicating ideas distinguishes him from the rest of the animal kingdom. This ability, which we now take so much for granted, was once thought to have been conferred upon man by the gods themselves. In the Book of Genesis, for example, Adam is given the power of speech by the Lord in order to name the animals, thereby demonstrating his likeness to God. Given such history, it is not surprising that man perceived the power of speech as an integral part of his quest for divinity.

As man evolved and had more needs and desires to articulate, a complex system of speech organs was developed in order to provide a more varied and sophisticated means of expression. The human voice is now capable of a wide range of sounds from grunts to operatic cadences. It was only natural that, the computer, as man's brainchild, became more complex and imitative of human abilities, it would reach a stage of evolution which would require the ability to communicate in a more human fashion.

MOCKINGBOARD gives your computer the power of speech. Like a human, it will read text aloud pronouncing each word according to a series of rules. These rules are the basis for Sweet Micro Systems' method of converting text into a code MOCKINGBOARD can understand.

MOCKINGBOARD will allow you to introduce expression into the voice. Expression is important to the intelligibility and the meaning of the words spoken. The Sweet text to speech program automatically sets the speech parameters for general use and allows you to introduce stress and intonation to text by using special markers. You may change these parameters to create different voices.

There are many exceptions to standard pronunciation rules. Names are especially difficult and are frequently mispronounced. Remember how your teacher stumbled through her class list on the first day of school? How disappointed you must have been if your name was incorrectly announced to the class!

If MOCKINGBOARD has trouble with your name or names of family members and friends, you can easily correct it and we'll show you how. We *know* the name Robert is mispronounced. We will step through the corrections necessary, and in the process tell you about MOCKINGBOARD's features, capabilities and our method of converting text into speech.

R

The third section of this manual explains how to enhance your programs with speech you create using the Rule Editor or using the text to speech program.

ADD INFLECTION WITH THE DIRECTOR'S CUES

M

MOCKINGBOARD is all set to start talking. With a little assistance, MOCKING-BOARD will express itself with the use of inflection or pitch patterns, and show emotion. Limited use of inflection is automatically performed by the Text To Speech program. For example, it recognizes punctuation marks and responds accordingly. You will be able to employ inflection more creatively as you compose your sentences.

Boot your tools disk, select Speech from the Main Menu and then select the Rule Editor. You will be asked to SELECT CHARACTER TABLE TO EDIT. Type A and the A rule table will appear. Type T for Test Mode at ENTER COMMAND. Now we are ready to proceed.

The cursor, next to the question mark, means the computer is ready for you to type in a word. After you type the word, press the RETURN key. The word will be spoken at an average speed, in an average voice with minimal variation or emotional coloring. These speech characteristics have been preset to normally used values. If you would like MOCKINGBOARD to be more expressive, you may take advantage of its interpretive talents. MOCK-INGBOARD's theatrical abilities are not to be underestimated.

Fine actors, regardless of their talent, require good directors. MOCKING-BOARD may be directed by inserting special markers into the text as it is typed in. These markers will tell MOCKINGBOARD when to show emotion. It already recognizes normal punctuation marks, such as commas, periods and question marks, and will respond with an appropriate pause, or raise or lower its voice. You may also place emphasis on a particular word or syllable, by inserting slash key stress markers (/) as cues to indicate when MOCK-INGBOARD should play up a scene.

From the Test Mode, enter the word, "hello" at the prompt. Think, like a good director, of the different ways that HELLO can be interpreted. When an actor speaks, he conveys emotion by changing the pitch, volume, and rate at which he speaks. Press RETURN and listen. How could you make this word more expressive? Try typing in the following examples. Each time you wish to clear an entry, type N for new entry. Should you wish MOCK-INGBOARD to repeat itself, type R for repeat. The comments to the right

M	0	С	K	9	N	G	в	0	A	R	DTM
---	---	---	---	---	---	---	---	---	---	---	-----

explain what effect the markers have on the word. (Note: You do not have to type the question mark, it will appear automatically.)

- ? HELLO ...would have no variation in stress
- ?/HE/LLO ...would stress HE
- ? HELL/O/ ...would stress O
- ? HELLO? ...would cause a rise in pitch at the end
- ? HELLO. ...would cause a drop in pitch at the end

Other combinations of punctuation marks and stress marks are also possible. Stress markers generally work in pairs, but you may insert any number of them into a text. The number of stress markers and their position will determine how each word or syllable will be spoken. Be experimental!

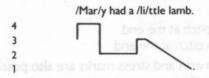
Try typing the following examples, and listen to MOCKINGBOARD perform.

uon. The dual stress pattern was interpreted with greatur emphasis on the fitst part of markers than on the second. Such Alless pattern, in which he interpretes is more temphatic than stresses which follow, is benefit of the

INFLECTION DIAGRAM 1: DECLARATIVE SENTENCE

MOCKINGBOARD has just described Mary's pet. Diagram 1 shows the inflection pattern, or the rate of change of pitch, for a basic declarative sentence, which emphasizes the lamb's size.

The English language has several levels of pitch. Our text to speech method approximates these levels by using four main pitch levels. These levels are designated by the digits which appear on the left side of the diagram.

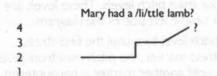

"Mary had a little lamb" is spoken at pitch level two until the first stress marker is encountered. At the first stress marker, the pitch rises from level 2 to level 3. It will remain at level three until another marker is encountered. At the second stress marker, the pitch will glide up or down depending on the final punctuation. A period at the end of a sentence, as in this example, indicates a drop in pitch. If no final punctuation mark exists, then a period is assumed.

to be insignificant, but we must remember that pitch assists us in interpretion a speaker's intent and helps us to recognize when he is stating or questionen. We are now doubting the famble small use

М	0	С	к	1	N	G	в	0	A	R	DTM
	-	-					_	_			_

If we want MOCKINGBOARD to show more feeling, we must give it additional direction. Try typing, "/Mar/y had a /li/ttle lamb."

INFLECTION DIAGRAM 2



This diagram shows the change of pitch for a declarative sentence with more than two stress markers. In this example, the pitch starts at level 3 and rises to level 4 upon reaching the first marker. The second marker signals a drop in pitch to level 2. Upon reaching the next pair of markers, the pitch level will again rise and then fall until the period is encountered.

MOCKINGBOARD's recitation of "Mary had a little lamb" deserves an ovation. The dual stress pattern was interpreted with greater emphasis on the first pair of markers than on the second. Such a stress pattern, in which the initial stress is more emphatic than stresses which follow, is typical of the English language.

Perhaps you would like MOCKINGBOARD to ask some questions about Mary? Let's change some of the cues and try some interrogatives. Type "Mary had a /li/ttle lamb?"

INFLECTION DIAGRAM 3, INTERROGATORY STATEMENT

If you compare this recitation with INFLECTION DIAGRAM 1, you will see that the performance differs only at the end where the different cue has caused a rise in pitch instead of a drop. The difference in pitch may appear to be insignificant, but we must remember that pitch assists us in interpreting a speaker's intent and helps us to recognize when he is stating or questioning. We are now doubting the lamb's small size.

MOCKINGBOARD	M	0	С	K	T	N	G	в	0	A	R	DT
--------------	---	---	---	---	---	---	---	---	---	---	---	----

The director's cues are actually much more sophisticated than they may appear. The stress markers not only cause MOCKINGBOARD to change its pitch, but also its volume, the number of words spoken per second and finally, the voice itself. When a syllable is stressed, it generally becomes louder, the speech rate slows to make the syllable longer, and the voice quality changes slightly. You can achieve all of these theatrical effects simply by typing in normal punctuation and experimenting with the stress markers.

ADD TEXTURE TO THE VOICE

As Director, you have only begun to utilize MOCKINGBOARD's many talents. With your assistance MOCKINGBOARD can change its voice. MOCKING-BOARD's voice is described by four parameters: amplitude, inflection, filter frequency and speech rate. These parameters have been preset to values which all appear in the lower half of the Test Module screen.

CURRENT PARAMETERS

11	-AMPLITUDE	232	-FILTER FREQUENCY
8	-INFLECTION	8	-SPEECH RATE

Should you wish to change any of these parameters, the commands below will allow you to do so. The ^ mark represents the CONTROL key (or CTRL).

1	91 ZOÙ	COMMAND	RANGE	differ	COMMAND	RANGE	
	^A	AMPLITUDE	0-11	^F	FILTER FREQUENCY	0-253	
	^I	INFLECTION	0-25	^R	SPEECH RATE	0-13	

NOTE: If you typed a word or phrase to be spoken and have not cleared it with an N for new entry, you will not be permitted to make any changes. The CURRENT PARAMETERS display is replaced by an ENTER COMMAND: prompt which will only accept R for repeat, N for new entry or CONTROL S for save the word. Type N for new entry and you will be returned to an entry mode to make changes.

1-5

M O C K I N G B O A R DTM

SOFT TO LOUD VOICE 'A AMPLITUDE

MOCKINGBOARD can speak in a variety of voices. It can speak in a barely audible whisper, or for stage purposes, in a deep sonorous voice.

Volume or amplitude, may be adjusted with the "A command. Type CONTROL A. The program will respond with a prompt:

ENTER NEW AMPLITUDE SETTING:

You may enter any setting from 0 to 11. The normal setting is set at 11. Try 4 and press RETURN. The new setting will be reflected in the CURRENT PARAMETERS Table.

CURRENT PARAMETERS

4 -AMPLITUDE 232 -FILTER FREQUENCY 8 -INFLECTION 8 -SPEECH RATE

Now type in "hello." If MOCKINGBOARD spoke too softly, type N for new entry, and "A for amplitude. This time, try typing in 8, press RETURN and check for the new value in the CURRENT PARAMETERS Table. Direct MOCK-INGBOARD to speak again. When you are satisfied that MOCKINGBOARD is speaking at a proper volume, you may turn your attention elsewhere.

LOW TO HIGH VOICE 1 INFLECTION

Different roles or personalities require different voices. A child speaks in a high pitched voice, an adult male in a low pitch. With your direction, MOCKINGBOARD can utilize its talents and do impersonations.

Suppose that MOCKINGBOARD was asked to play an evil villain in a theatrical production. Its normal voice won't do at all. In order to change pitch or inflection, type CONTROL I in the Test Mode. A prompt will appear to assist you.

ENTER NEW INFLECTION SET NUMBER:

You may enter any value from 0 to 25. When you change the inflection set, you are moving the four main pitch levels up or down on a musical scale. An evil character requires a very low voice, so let's type in 0, and press RETURN. The new value will appear in the CURRENT PARAMETERS Table. Now type "WEL/COME TO MY DOMAIN," press RETURN, and meet your villain.

MOCKINGBOARD's talents are far too great to play only evil character types. Let's create another role. Type N for new entry, 'I for inflection and set the inflection set to 25. Press RETURN.

MOCKINGBOARD will now speak like a little child in a very high pitched voice. Type "M/OMM/Y?" and press RETURN. MOCKINGBOARD's versatility will amaze you.

SLOW TO FAST VOICE R SPEECH RATE

Some roles will require that MOCKINGBOARD speak very quickly. The speech rate may be adjusted on a scale from 0 to 13, from excruciatingly slow to incredibly fast. Type CONTROL R for the prompt:

ENTER NEW SPEECH RATE:

Set the speech rate to 1 and press RETURN. Also, type ⁻¹ for inflection and change it back to 8. MOCKINGBOARD's new line is, "I am s/o/ tired," and it is spoken as though MOCKINGBOARD will be asleep before it reaches the word "tired." (Don't forget to type the stress markers around the O.) On the other hand, type in a speech rate of 11, and press RETURN. Now type "Peter Piper picked a peck of pickled peppers," and press RETURN. MOCKINGBOARD never stutters.

ALTER THE VOICE QUALITY FILTER FREQUENCY

The last parameter you may adjust is the Filter Frequency or voice quality. One of MOCKINGBOARD's greatest virtues is its ability to change its voice. If you type CONTROL F in the Test Mode, the prompt will read:

ENTER NEW FILTER FREQUENCY NUMBER:

By typing in any number from 0 to 253, and pressing RETURN, you may direct MOCKINGBOARD to speak in a different voice. Type in 242 and press RETURN. Change the speech rate back to 8. Type "TAKE ME TO YOUR LEADER." MOCKINGBOARD could play a creature from outer space.

Let's try another. Type N and CONTROL F. Suppose we type 220 and press RETURN. MOCKINGBOARD's voice acquires a previously undiscovered dignity. If MOCKINGBOARD now says, "YOU ARE A /GREAT/ DIRECTOR," we can believe it.

We have bnly whetted your appetite. With all the learnes prevented in to previous pages, you may create whatever creature or character your ima nation dictates. MOCKITIGROARD's latents are constrained only by your .

M	0	С	K	1	N	G	В	0	A	R	DTM

PULLING IT ALL TOGETHER

MOCKINGBOARD's abilities may be further explored by changing more than one parameter at a time. Try changing Filter Frequency and Inflection together. Any combination of the four parameters is possible, so you may create an unlimited number of voices.

Let's go back to the evil villain and make his voice more convincing. What the voice lacked earlier was the appropriate filter frequency.

Change the inflection to 0 and the filter frequency to 220, giving the speech a lower and deeper voice quality. Also slow the speech rate to 6. Now, type "/WELCOME/ TO MY DOMAIN. HA, HA, HA."

The child's whimper was high in pitch, but the voice quality was too strained. Change the voice quality to produce a softer, more innocent cry. Type 20 for inflection, 240 for filter frequency and 2 for speech rate. You may also lower the amplitude, if you wish. Type "/MOMM/Y? // LOVE YOU."

SAVE THE WORDS CREATED S SAVE

As you develop words or phrases using the above methods, you may wish to save them. While the words and speech parameters are still on the screen, type CONTROL S for save. DO NOT TYPE N FOR NEW ENTRY BEFORE YOU TYPE CONTROL S. This will erase your words. Remember that after you enter a word, the only acceptable commands are N for new entry, R for repeat and ^S for save.

When you type ^S you will be asked to enter a filename.

ENTER FILENAME:

You may enter any filename up to eight characters in length beginning with a letter A-Z. The following message will appear while the new file is written to your disk.

PLEASE WAIT - SAVING COMPOSITE FILE

The words you save may be used for current or future programs you may wish to enhance with speech. Please refer to the section on programming information for samples and an explanation of how you incorporate speech into your work.

We have only whetted your appetite. With all the features presented in the previous pages, you may create whatever creature or character your imagination dictates. MOCKINGBOARD's talents are constrained only by your imagination.

THE RULE TABLE

Sweet Micro Systems' method of converting text to speech is rule based. Words are broken into sound patterns, which are represented by rules. MOCKINGBOARD matches these rules to characters in words or phrases. When a match is made, MOCKINGBOARD speaks.

The quality of rules developed in each character table will determine the accuracy of the resulting speech. Our language presents a formidable challenge in developing a comprehensive rule table. The Sweet table should be considered a base rule table, which may be personalized to suit your particular application. Sweet Micro Systems has made an effort to free you from a predetermined vocabulary and pronunciation by including a utility called the Rule Editor. The Rule Editor will allow you to alter the Sweet table. New rules may be added, existing rules may be edited or redefined, and non-essential rules may be deleted from the tables. Personalize the Sweet table and let MOCKINGBOARD tell you what you want to hear.

A WORD ABOUT PHONEMES

MOCKINGBOARD produces speech using a building block method of combining basic sound units called phonemes. Phonemes are the basis for all languages and they are not necessarily letter specific. For example, the words "ate" and "eight" are comprised of the same phonemes, although they're spelled differently. The long "a" in "ate" is actually two sounds /A Y1/. The final "e" in "ate," although written, is silent, so no phoneme is needed. Conversely, in the word "eight," the four letters "eigh" represent only two sounds, the same two sounds represented by "a" in "ate." Learn to hear the phonemes in your words by slowly repeating words to yourself. Soon, with practice, you'll start to hear the phonemes and be able to teach MOCKING-BOARD to say your words intelligibly.

MOCKINGBOARD can produce 64 speech sounds in all, more than enough to reproduce any speech you care to hear. Appendix A provides two different charts of phonemes. The first chart is a guide to producing common sounds. If you're trying to produce a long A, you can find the phoneme combination in this chart. The familiar pronunciation symbol (ā) together with examples (ale, fate) help to locate the sound desired /A Y1/. The second chart is the list of phonemes, codes and examples of their pronunciation. Each phoneme has four possible codes, which allow you to select different durations for each sound. Both charts are divided into two tables, vowels and consonants.

M O C K I N G B O A R D TM	M	0	С	K	1	N	G	В	0	A	R	DTM
---------------------------------------	---	---	---	---	---	---	---	---	---	---	---	-----

Depending upon where you live, your pronunciation of certain words may vary from MOCKINGBOARD's. Some words may conflict with what you'd normally expect to hear. Don't hesitate to change the pronunciation, MOCK-INGBOARD has a great capacity to learn.

Boot the tools disk, select Speech and then select Text to Speech. Type your name following the question mark and press RETURN. How did MOCKING-BOARD do? If MOCKINGBOARD pronounced your name correctly, great! If not, let's correct the rule table so MOCKINGBOARD will always get it right.

Type QUIT to exit the Text to Speech mode and select the Rule Editor. The Rule Table has been designed to generate correct pronunciation for a majority of words. It operates using a text to speech method which allows the computer to analyze text, much in the way a person talks. Should the computer not be informed about a particular rule for pronunciation it will, like a human, make mistakes. Errors will occur because our alphabet is not an accurate representation of our phonemic system. There is not a one-to-one relationship between an alphabet letter and a particular phoneme. If you think back to your grade school days, you will remember the difficulties first graders have with the rules for silent e, the e which is not pronounced but signals a change in the preceding vowel.

HOW TO MAKE CHANGES TO THE RULE TABLE

spelled differently. The long "a" in "ate" is actually two sounds (TOBJAS 2"

When the Rule Editor is ready, you will see the following prompt at the top of the screen:

SELECT CHARACTER TABLE TO EDIT:

The Rule Table consists of all alphabet letters, all digits and their upper case symbols, and all punctuation marks. In order to demonstrate how to correct the Rule Table, we have selected the name, "Robert," which we know is mispronounced. Type R for the R character table. The R table will appear on the screen. It should look like Figure 1-1.

The first two lines tell you where you are in the rule table and the present status. The number of rules (B), address (C), and bytes (D) will constantly change as you edit the table.

Ten rules will appear on the screen at a time. If the character table contains more than ten rules, press the space bar to advance to the next ten. When you reach the end of the table, press the space bar to return to the first ten rules. Each rule table may contain a maximum of 99 rules.

1	RULE TABLE - R	NUMBER OF RULES - 22	[B]
	ADDRESS - 60954	LENGTH - 241 BYTES	[D
	2 !(RE)ACT = 1D01		
	3!(READY) = 5D4A4ADB	365EB0144	
	4 !(READ) = 1D41418665	EB	
	4 !(READ) = 1D41418665 5 !(REC) + = 1D0130	PRODE or the Test Mode and a screen sid	
	4 !(READ) = 1D414186651 5 !(REC) + = 1D0130 6 !(RECC) = 1D0A29EC	HODE or the Test Mode and a screen sid he Test Mode will allow you to e	
	4 !(READ) = 1D414186651 5 !(REC) + = 1D0130 6 !(RECC) = 1D0A29EC 7 !(REC) = 1D0A29EC	HUDDE or the Test Mode and a screen sin he Test Mode will allow you to e heres of characters at the question	
	4 !(READ) = 1D414186651 5 !(REC) + = 1D0130 6 !(RECC) = 1D0A29EC 7 !(REC) = 1D0A29EC	HODE or the Test Mode and a screen sid he Test Mode will allow you to e	

KEY TO THE RULE TABLE

[A] Indicates which character table you are viewing.

[B] Indicates the total number of rules contained in this table.

[C] Indicates the starting address in memory where this table can be found.

[D] Indicates the total length (in bytes) of this table.

[E] The first ten rules.

[F] Type one of the editor commands in Table 1-1.

KEY	FUNCTION	KEY	FUNCTION
^Z	Select new character	U	Update Main Rule Table
	table	°S	Save Rule Table to disk
E	Edit an entry	°L	Load Rule Table
1	Insert a new rule	^P	Print Character Table
D	Delete an entry	Ŷ	Quit or exit program
т	Test mode	^X	Help menu

SPACE

Advance to next page of current Character Table

Table 1-1 List of Rule Editor Commands

M O C K I N G B O A R D [™]	M	0	С	K	1	N	G	В	0	A	R	DTM
--------------------------------------	---	---	---	---	---	---	---	---	---	---	---	-----

LET'S HEAR IT

The Rule Editor has a test mode which allows you to evaluate MOCKING-BOARD's pronunciation of a word or phrase. You will be able to access this mode from any character table, and once in this mode, you may type any word or phrase.

T TEST MODE

Type T for the Test Mode and a screen similar to that of Figure 1-2 will appear. The Test Mode will allow you to enter 239 characters or about six and a half lines of characters at the question mark prompt. A beep will tell you that you have reached the limit. Type the letter A until you hear a beep. Press RETURN and listen to the results. The sequence of two digit numbers at the lower half of the screen are the phoneme codes selected from the rule table by the text to speech conversion program. When you typed the RETURN, the A's were converted to code using the rule(s) matching this character string.

	TEXT TO SE	PEECH TE	ST MODE
?	Subving.	ans uov are	ites which character table
	CURREN	T PARAM	ETERS
11	-AMPLITUDE	232	-FILTER FREQUENCY
8	-INFLECTION	8	-SPEECH RATE
	Figure I-2 Tes		
KEY	•		reen Display
KEY R	FUNCTION		
KEY R N	NOTION	KEY	HOIT DUIL
R	FUNCTION Speak again	KEY ^A	FUNCTION Set amplitude
R N	FUNCTION Speak again New entry	KEY ^A ^I	FUNCTION Set amplitude Set inflection

SPACE Advance to next phoneme page

Table 1-2 Test Mode List of Commands

MOCKING BOARD[™]

LOCATE THE SOURCE OF THE PROBLEM

Type N, to clear the input area for a new entry. Type Robert next to the question mark prompt and press RETURN. It sounds close, but not quite right. The sequence of two digit numbers at the bottom half of the screen represents the phoneme codes selected for Robert. If you compare each of these phoneme codes with those of the Phoneme List in Appendix A, you will find that this name is pronounced as /ROUBERT/ and not as /RAHBERT/, which is correct.

	1D	A110	56	64EB	1C	28EC	
1	R	0	U	В	ER	T	

In order to change the /OU/ sound to an /AH/ sound we must first determine which rule caused the error. Let us return to the rule table. Type N to clear for a new entry. Type CONTROL Z to return to the table from which you entered the Test Mode. Rather than go directly to the O rule table, we must first search the R rule table. The rules in the R table always define how the letter R will be pronounced, but the next character(s) in sequence may also be included in the R rule. It is possible that a rule which exists for (RO) caused the error.

HOW TO READ A RULE

Each rule in the table consists of three main parts, the rule definition on the left, the equals sign, and the phoneme codes on the right. The first rule of the R table states that R [1], which is preceded and also followed by a nonalphabetic character [2], is to be pronounced [3] as the composite sound of /AH-ER/, which is equal to the code 4E4E9B5C [4].

- Parentheses serve as boundary markers. They act to identify the particular character or characters which are to be matched. In this rule, only R will be pronounced.
- [2] The exclamation points indicate a nonalphabetic character which can be a space, punctuation mark, digit, or any other symbol except those which have been reserved as classification symbols (See Table 1-3).

[3] The equal sign acts to assign the phoneme code to the contents of the parentheses.

M

[4] If all the conditions on the left are met, then a match is achieved and the contents of the parentheses will be pronounced as indicated by the phoneme code(s) to the right. The codes are set aside in a buffer (a temporary memory location) until the entire word or phrase has been converted.

Other symbols used in rules are given in Table 1-3a. The symbols help to generalize rules to encompass as many words with the same pronunciation pattern as possible. For example, a rule states that the letter A, preceded by any single consonant ([^]) and followed by the single letter T, is to be pronounced as a short A. This rule may match the word BAT, CAT, FAT, HAT, MAT, PAT, RAT, SAT, etc. It will also match BATTLE, CATTLE, RATTLE, BATCH, CATCH, HATCH and so forth. This single rule will insure that the letter A, in all these words and many more like them, will be pronounced correctly.

How does the program know that B, C, F, etc. are consonants? The program is told. Each letter in the alphabet is classified as shown in Table 1-3b. When Robert was typed, the program converted it to these symbols and set it aside for reference.

S	ymbols	for V	OWELS	S		Symb	ools for	CON	SONA	NTS	an O Louis	
#	vov	vels: E	ore vow I Y		^	con		s: BDC	GJLMNI nsonan		eque En ch Sole 1	
Syn	nbol fo	r CHA	RACT	ER	28.9K	Syr	nbol fo	or ALL	OTHE	RS	n tar	
	use	the ch	aracter		!	non	alphab	etic			1	
		Та	ble 1-3	a Clas	sificatio	on Sym	nbols: u	sed in	rules			
A	в	С	D	Е	F	G	н	I	J	к	L	M
#		^		+	^		^	+		^		
N	0	Ρ	Q	R	S	Т	U	V	w	X	Y	Z
		11111	100.000	11111		12.11.11	111112	1201	1152 1 2 11		10. 10. 11 I	

Table 1-3b Classification Symbols: used in conversion

Rule number 1 does not apply to Robert, because the O in Robert fails to match the exclamation point on the right of R.

If we had typed in "R" alone, a match would have been achieved. The text to speech program automatically inserts a space on either side of a word or phrase to be converted, to mark where it begins and ends. Therefore, the exclamation point on the left matches the space which precedes the name, Robert. A match is not achieved on the right, because the letter O is a vowel, not a nonalphabetic character.

Compare the name, Robert, to the remaining rules in the R table. Each letter could be represented by its own character or a general symbol defining a vowel or a consonant. The letters in the name, Robert, may be represented by these symbols:

. #		+ , '	1. 6	^
A	^	#	^	n (C

Upon examination, we will see that a match will not occur until the last rule: (R) = 1D.

sails demand draw antice to million. Cleak thang tony veb balantie for a

The last rule states that R in any environment, excluding the rules preceding it, will be pronounced as the R in the word, "rat." Rule number 22 only defines the pronunciation for the letter R, and not the sound of the letter O. Therefore, we must look to the next letter in sequence, the letter O, to locate the source of the mispronunciation.

M O C K I N G B O A R D[™]

We now proceed to the O table. Type CONTROL Z to select a new character table and then O. If you page through the O table looking for a match, you should find a page of rules similar to Figure 1-3.

RULE TABLE - O	NUMBER OF RULES - 86
ADDRESS - 34207	LENGTH - 815 BYTES
51 T(O)V = 11	saul alway during a second of a
52 (O)V = 18	
53 ALL (OW) = 0 E5663	
55.(011)-1150	
56 (OW) = 5B4F5156	
57 ! (OXY) = 4E293047	
10/0105 115/	g 6 to glob nets (two if all 0 Mis Records a contral of the
ENTER COMMAND:	

Figure 1-3 The O Rule Table

A quick glance over the table indicates that all of these rules, after number 57 define a sequence of letters in which O must be followed by one consonant. To the left of O no symbol or character exists. This means that the rule is not affected by what precedes O and this position is left unconstrained.

So far any rule from 58 to 60 could match Robert. Since it does not matter what precedes O and it is the only character within parentheses, we check for a consonant to the right and find B. To the right of B is the vowel E. Search the rules, starting with 55, for E, + or * . Rules 58 and 59 can be eliminated since A follows $^{\circ}$. Rule 60 matches the $^{\circ}$ E. Since the rule boundary ends here, a match is made.

/ ROBERT / ||| O^E

This rule states that whenever an O is followed by any single consonant and the letter E, the O will be spoken as the O in "boat." If we try to change this particular rule so that Robert is pronounced correctly, we will find that this change affects other words, such as ROBE, ROPE, VOTE, and HOTEL. In order to avoid the possibility of such a side effect, let us create a rule just for Robert, since it appears to be an exception to this rule.

MOCKINGBOARD	M	0	C	K	1	N	G	в	0	A	R	D
--------------	---	---	---	---	---	---	---	---	---	---	---	---

CREATE A NEW RULE

In order to create a rule we first have to decide where to place it. The placement of a rule is very important, not only within a character table, but also among the rule tables. Always place your rule in the table represented by the first character to be pronounced (within the parentheses). Since the purpose of creating the rule is to insure that the name Robert will be pronounced correctly, we will enclose all the letters within the parentheses. This rule will be placed in the R table.

INSERT

Type CONTROL Z (\Z) to select a new character table. Type R and the R rule table will appear on the screen.

First, we must determine where this new rule should be inserted. The program will search through the tables sequentially in its conversion process, so it is important that all exceptions be listed before the general case. Otherwise, the search may end prematurely with a rule for a more general case. We could not, for example, place Robert at the end of the table after

(R) = 1D.

If we tried to do so, our search would end with the above rule. This is a default rule which will match any word with an R since it does not specify what is to the left or right of R. The program would proceed to the next character search without ever reaching our Robert rule.

In the event that you are working with a table of many exceptions, it is wise to alphabetize the exceptions without violating the exception to general case order. In this manner it is easier to locate and examine a particular rule.

Since only the name Robert will match the rule we wish to create, it may be placed anywhere as long as it is before the last rule. For this example, let's place it in alphabetical order. Search through the table and find:

14 (RI)V = 1D07 15 TH(ROUGH) = 5D5416

The Robert rule could be placed between these two rules. (Note: this is an example. These rules may not appear in this manner or consecutively.) Now

M	0	C	K	1	N	G	в	0	A	R	DTM

that we know where we would like to place the rule, let's write it. Type I for Insert. You will be prompted with the instruction:

ENTER RULE TO INSERT AT PROMPT BELOW

Type the first part of the rule as it appears below next to the > prompt. DO NOT PRESS RETURN! If you did press RETURN, just press RETURN again to display the Enter Command prompt, and begin once more by typing I for Insert.

>!(ROBERT)!

If while entering the rule, you make a typographical error, you may back space using the left arrow key and correct the error. However, if you type past the equal sign, you will not be permitted to back space past it. If this happens, press the RETURN key. Press it again in response to the next prompt in order to cancel your entry. No rule will be inserted until you type in the location to insert. Now type the equal sign. DO NOT PRESS RETURN!

The exclamation points in this rule represent spaces. In this way we may exclude the possibility of altering the pronunciation of the same sequence of letters which may happen to be contained in a larger word. If, for example, we write a rule for the name, ROB, and leave both sides of the word unspecified, it would affect the pronunciation of words such as stROBe. To avoid this, we may define a space to the left and right, !(ROB)!, so that only these three letters would match this rule. Even ROBert would not match, since there are more letters to the right.

Refer to the phoneme list in Appendix A and look for the phoneme code for an /AH/ sound to pronounce Robert correctly. A portion of that table has been reproduced below. Sometimes there may be more than one possibility. The list of phonemes contains two /AH/ sounds, specified by the phoneme codes beginning with 0E and 0F.

	PHON		. (/
PHONEME		CC	DDE		EXAMPLES
Culturen comos	1	2	3	4	r be parted to the top brock
AE	0C	4C	8C	CC	dad
AE1	0D	4D	8D	CD	laugh
AH	0E	4E	8E	CE	top, about
AH1	OF	4F	8F	CF	father
AW	10	50	90	D0	saw, caught

Notice, that for each sound in the phoneme list, there are four possible phoneme codes. As the value is changed from that of column 1 to columns 2, 3, or 4, the duration of the sound is shortened by approximately twenty-five percent. You may select the length which sounds best to you. If you wish to lengthen a sound, place two phoneme codes for the same sound together.

Try the /AH1/ sound from the first column. Type the codes as indicated below, replacing only 11 and 56 with 0F for the O sound. The rule to be inserted should appear as follows:

> !(ROBERT)! = 1D0F64EB1C28EC

All phoneme codes are comprised of two digits. Leading zeros are necessary. Should you make an error, you will be allowed to back space over the phoneme code. The back space works a little differently with phoneme codes. A single back space will move back and erase two digits rather than just one. This will prevent you from entering odd numbers of phoneme code digits. Please note that you will only be permitted numbers and the letters A-F on the right side of the equal sign. Now press RETURN, if you have not already done so.

The program will ask you where you would like to insert the rule:

INSERT BEFORE RULE NUMBER:

Insert the Robert rule before rule 15, TH(ROUGH) = 5D5416. This new rule will now be part of the table. The Editor will return to the first page of the table after inserting the rule. Press the space bar and find the new rule 15.

MAKE CORRECTIONS

Now, let's hear it. Type T for the Test Mode. Type Robert after the question mark prompt and press RETURN. How does it sound? It sounds much better, but let's try the other /AH/ sound, 0E. Type N for New Entry and [^]Z to return to the R table.

E EDIT

To make changes to a rule, type E for edit. You will be prompted with the following:

ENTER NUMBER OF RULE TO EDIT:

Type in the number of the rule, 15. Press RETURN. The Robert rule will now appear at the bottom of the screen above a prompt, so that you may refer

MOCKINGBOARI	М	0	С	к	1	N	G	В	0	A	R	0
--------------	---	---	---	---	---	---	---	---	---	---	---	---

to it during the edit. The entire rule MUST be reentered, not just the corrections. Partially typed rules will replace the original rule, in the manner typed. The rule number is not necessary. As was the case for the Insert command, any typographical errors must be corrected before the equal sign is typed. You will not be permitted to back space beyond the equal sign. If you type the equal sign, complete the rule, press RETURN and type E to begin again. The rule should be completed so that you will not have to reconstruct the entire rule from your memory.

Typographical errors on the right hand side of the equal sign may also be corrected using the left arrow key. Remember that in order to preserve the two digit code for a phoneme, a single back space will move back two digits, not one, and that you will only be allowed to type numbers and the letters A-F. Retype the rule with 0E, in place of 0F.

= !(ROBERT)! = 1D0E64EB1C28EC

Press RETURN and the edited rule will replace the old one. The display will show the first ten rules. Press the space bar and make sure the rule was edited properly. Test it once more. It may sound better and more intelligible. Once you are satisfied that this new rule functions correctly, type U to Update the table.

SAVE THE CHANGES

U UPDATE

When you select a character table, this one table is copied into a "buffer" area. A buffer area is like a temporary work space or scratch pad. You may make additions, deletions and changes to the rules while they are in this area. Once you are satisfied that the character table is correct, the Update command replaces the old table with the new table. Eventually, all the character tables will be saved permanently to disk.

The buffer area can only hold one character table at a time. If you select another character table, the current table in the buffer will be written over by the new table. Any changes made will be lost unless an update was performed. Therefore, if you would like to see another character table, and you are not sure if you updated the current table, type U to update. No harm will be done if you did update earlier or made no changes.

1-20

^S SAVE

Once your work is updated, type CONTROL S to save the new table on your disk. The following prompt will appear at the bottom of the screen:

ENTER TABLE NAME:

You have an option to save the corrections in the rule table you are currently working with or save them under another name and create a new rule table. If you would like to create a new table, enter any file name up to eight characters in length, beginning with a letter from A-Z and press RETURN. If you want to save the corrections in the current rule table, type CONTROL N. No file name is necessary. The standard rule table, provided on the demonstration disk, is called MKB:RULE. After entering the name or `N, the Rule Editor will respond with:

PLEASE WAIT - SAVING RULE TABLE FILES

DELETE A RULE

If you find that you have no use for a Robert rule, you may delete it. Any rule in any table may be deleted with the exception of the last rule. Each table must have at least one rule.

D DELETE

Assuming that you are still in the R table, type D for Delete at the ENTER COMMAND prompt. The program will respond with:

ENTER NUMBER OF RULE TO DELETE:

Type 15 and press RETURN. The screen will display the following prompt along with the rule you selected. The rule will appear near the bottom of the screen.

CONTINUE WITH DELETION? (Y/N)

Every attempt has been made to avoid mishaps, so you must confirm your intentions. If you respond Y, the deletion will proceed and all the rules following this rule will move up one position. The display will revert back to rules 1-10. Scroll through with the space bar to make sure the correct rule was deleted. Also check the last rule number to confirm the new rule count at the top of the screen display.

If you do not want to delete this rule, respond N, and the ENTER COM-MAND prompt will reappear.

OTHER USEFUL COMMANDS

L LOAD

After you become more familiar with the Rule Editor, you may discover more interesting applications for the text to speech capabilities. For example, you may be interested in foreign languages and might like MOCKINGBOARD to speak, maybe German? Or perhaps, you are writing a program which could use some speech. The standard rule table may be too bulky to be used with your program. The solution is to create a new rule table for your application. You don't have to give this one up to get another. The tools disk contains a semi-blank rule table called MKB:EMPT. It contains the required one rule in each character table.

If you do not wish to start from scratch, you may use the standard rule table (MKB:RULE), edit it and save it under another file name. This is done with the

^S SAVE COMMAND.

You may select a new rule table from any rule table. When you select the Rule Editor, the standard rule table (MKB:RULE) will automatically be loaded. Select any character table and type CONTROL L (^L) at the ENTER COM-MAND prompt. The following prompt appears:

ENTER TABLE NAME:

Type the name of the rule table you wish to access. When a rule table is saved, three files are saved, the table itself, the total length of the table, and an index used to locate the character tables within the rule table. When a rule table is saved, .TABLE, .LENGTH, and .INDEX are appended to the file name automatically. The load command will automatically load the appropriate files, including the suffix. Therefore, when you load a table, you need only to type its name.

PLEASE WAIT - LOADING RULE TABLE FILES

This prompt will appear, then the screen will clear and the initial select prompt (below) will appear. You are all set to begin working with your new table.

SELECT CHARACTER TABLE TO EDIT:

P PRINT

The Rule Editor provides a simple to use print command to print out the individual character rule tables. Turn on your printer and type CONTROL P. The following message appears:

PRESS <SPACE> WHEN PRINTER IS READY:

When you press the space bar the following message appears at the same time your printer begins to print:

PLEASE WAIT - PRINTING RULE SUBTABLE

The printout will look similar to the screen display, except that all the rules will be printed in succession. When the listing is completed the ENTER COM-MAND prompt will reappear.

*X HELP

CONTROL X(X) will display all the commands for the Rule Editor. It will also display the commands for the Test Mode when you are in that mode.

°Q QUIT

When you are finished with the Rule Editor and wish to exit the program, type 2 to select a new character rule table and type CONTROL Q (2 Q).

ONE FINAL INSTRUCTION

It is important to note that your idea of the correct pronunciation may not be that of your neighbors. Some will prefer to say tomahto, others tomato. The Rule Editor allows you to change rules to suit your listening pleasure. It's yours! Go ahead and make MOCKINGBOARD say your own name.

SOUND

The MOCKINGBOARD sound system generates a remarkable array of sound effects and music. It is a natural addition to any program because it introduces real-life action and excitement to silent images and text. It fills time or sets moods with background music, and captivates the youngest of users with familiar and recognizable sounds.

In a very short time, MOCKINGBOARD will be making interesting sound effects under your control. As a method of introducing each of the sound controls used to generate effects, we will create two different types of sound effects using the SOUND UTILITY program included on the tools disk. This step by step explanation will be followed by examples showing how to incorporate sound effects into BASIC programs. The programs are well documented with comments called REM (remark) statements to help you understand the purpose of each line. Just type in the code as written.

A FEW WORDS ABOUT THE SOUND UTILITY

The Sound Utility program, provided on the tools disk, will allow you to create sound effects without programming. In fact, all the sound effects on the disk were first developed with the utility, then saved and incorporated into the programs later.

Please boot the tools disk and select Sound Utility. The monitor or TV screen will look similar to Figure 2-1. SPEAKER: 1, at the top left hand corner, refers to the speaker which is the source of the sound. Below this line are the parameters which generate the sound.

At the bottom of the screen is a menu of commands. The cursor can be moved to different parameters using the arrow keys and/or CONTROL J for down and CONTROL K for up. Additional information about this utility will be presented as needed.

SPEAKER: 1	

REGISTER	MAX	CHANNEL			
NAME	VAL	ALL	А	В	С
TONE PER FINE	255	0	0	0	0
TONE PER COARSE	15	0	0	0	0
NOISE PERIOD	31	0			
ENABLE		0			
AMPLITUDE	16		0		
(FIX = 0-15/VAR = 16)					
ENVL PER FINE					
ENVL PER COARSE	255	0			
ENVL SHAPE	15	0			

P = PLAY B = SIMULTANEOUS L = LOAD X = CLEARR = RESET C = SPEAKER S = SAVE Z = END

Figure 2-1 Sound Utility Screen Display

WHAT YOU NEED TO KNOW ABOUT SOUND

Sound is a common phenomenon which we hear and feel every day, yet most of us have not given it much thought. What distinguishes one sound from another? How can a sound be duplicated? With MOCKINGBOARD, differentiating sounds is a natural process of developing them. Some sounds evolve into familiar, common sounds. Others become beautiful, exotic or mysterious. This process of developing MOCKINGBOARD sounds is comparable to adjusting your television set to get a clear picture. But instead of turning control knobs, you type in control adjustments to tune your sound.

M O C	K	1	N	G	В	0	A	R	DTM
-------	---	---	---	---	---	---	---	---	-----

MOCKINGBOARD "KNOBS"

Sound Quality	On/Off Switch	Volume	Pattern
Tone Period	Enable	Amplitude	Envelope Period
Noise Period			Envelope Shape

TONE PERIOD/NOISE PERIOD. Sound quality may be pure tone sounds, like musical notes, or noise, like rushing air. The Tone Period adjustment ranges from high to low pitch. The Noise Period adjustment also ranges from high to low, but not in terms of pitch. A high Noise Period sounds like the hissing of steam, while the low period sounds like the roar of rockets.

ENABLE. Turns on or off the tone or noise generating capability. This is important, because MOCKINGBOARD is capable of producing up to six different sounds.

AMPLITUDE. Controls the amplification or volume of the sound. There are two amplitude modes, fixed and variable. Fixed level amplitude provides 16 different levels of constant volume. Variable level amplitude passes the amplitude control to Envelope Period and Envelope Shape which generate amplitude patterns.

ENVELOPE PERIOD/ENVELOPE SHAPE. Most sounds have a recognizable pattern which repeats. The pattern you hear is the change in volume. A sound may become loud, hold its level and then fade or soften. Envelope Period adjusts the length of one pattern by expanding or contracting it. With Envelope Shape you may select from 8 different shapes or patterns.

GETTING ACQUAINTED

The Sound Utility program is capable of loading and saving sounds you develop. The sounds found on the tools disk were created using this program. To get acquainted with both the Sound Utility and the sound parameters, let's load a few existing sounds and play them. Each sound effect may be identified as either a pure tone, pure noise or a combination of the two. Type L for load. The following will appear in the area just above the commands:

ENTER SOUND NAME OR <C>ATALOG =>

Let's listen to a pure tone sound. Type PING. The parameters for this sound effect are loaded into their respective fields or locations on the screen for evaluation and modification. The screen appears as follows:

SPEAKER: 1	aneine th	to yd br	altero	o be	can'als
REGISTER	MAX	bataut	CH		e have
NAME	VAL	ALL	A	В	С
TONE PER FINE	255	0	20	0	0
TONE PER COARSE	15	0	0	0	0
NOISE PERIOD	31	0			
ENABLE	63	62			
AMPLITUDE	16	0	16	0	0
(FIX = 0.15/VAR = 16)					
ENVL PER FINE	255	0			
ENVL PER COARSE	255	4		1	
ENVL SHAPE	15	0			

Type P for Play and listen to the sound. As its name suggests, it is a "ping" sound. This one, quick, pure tone sound may be adjusted for a longer duration. Move the cursor down to ENVL PER COARSE, using the down arrow key or CONTROL J and type 8. Type P for play and listen to the change. Try a few more changes to this value; try 20, then 2, etc. Notice that the larger the value typed, the more drawn out the ping is. Conversely, if a smaller number is entered, the ping becomes a plunk; not only is it shorter in duration, but one might suspect that it is a different sound altogether. The difference between the sounds is relatively minor. It is characterized by a change in the rate of decay or gradual decrease in volume. The difference between rolling a ball down an incline and pushing the ball off a cliff-like drop. The ball rolling down the incline takes longer to reach the ground than the ball dropping off the cliff.

he diagram above because it is the sante pattern as for a value of 9 Change ENVL SHAPE to 14, and listen to your new sound. You are hea he occast and all we had to do way change gine parameter!

M	0	C	K	1	N	G	B	0	A	B	DTM
IVI	0	C	n		IN	G	D	0	A	•	U

Let's find out what fixed level amplitude sounds like. Change the ENVL PER value back to 4 before proceeding. Move the cursor up to AMPLITUDE. Using the right arrow key, move it to column A and type 10. Play the sound. Type R to stop the sound or type 0 to turn off the volume. This time the sound was piercing. The pitch was high and irritating. Move the cursor to Tone Period Fine tune to lower this pitch. Move the cursor to the A column and type 244. This value is a C note in the fourth octave (middle C). A chart of TONE PER values for each note is provided in Appendix E.

Our ping sound can also be altered by changing the amplitude pattern or the ENVL SHAPE. We have already adjusted the length of a decaying sound, but a sound which decays is only one of 8 possible patterns from which you may choose. The diagram below illustrates the different patterns we may select. Try each one to establish a relationship, in your mind, between the sound pattern and its picture.

VALUE (DEC)	GRAPHIC REPRESENTATION	
8		sivar - 10) (fine
9	255 4	R COARSE APE
10	\sim	
Hastois		may an ons che <i>e</i> uck
12 0000 0	/ / / / / / / / / /	negree adt
13		NTROL <mark>TER</mark> STROLETER
14		m arti (baq
15		enterestation sus ingin sus

Let's load a noise sound and play with it. Type L for Load, and type EXPLO-SION. Type P to play. The ping sound is gone. We now hear a powerful blast. What parameters are required to make an explosion?

Move the cursor down to ENVL SHAPE. Notice the ENVL SHAPE is set to 0. Do not take 0 to mean that this parameter has been shut off! There is a sound pattern associated with a value of zero. This pattern is not included in the diagram above because it is the same pattern as for a value of 9.

Change ENVL SHAPE to 14, and listen to your new sound. You are hearing the ocean, and all we had to do was change one parameter!

2-5

M O C K I N G B O A R D ⁿ	М	0	С	К	1	N	G	в	0	A	R	D"
--------------------------------------	---	---	---	---	---	---	---	---	---	---	---	----

Move the cursor up to ENVL PER COARSE and type 10. Type P to play and listen to the difference. The ocean roar changed to a swish. Continue to reduce the value until you reach 1. This is a train sound. By changing only two parameters, we have created a wide range of special effects: explosions, ocean roars, swishes and trains.

Finally, let's listen to a sound which has both tone and noise. Type L for load and type ENGINE. The screen will display:

SPEAKER: 1	ay noise i	90192	pres	E and	J8A
REGISTER	MAX	III DI IDO	CH		L
NAME	VAL	ALL	А	В	С
TONE PER FINE	255	0	0	0	0
TONE PER COARSE	15	0	5	5	5
NOISE PERIOD	31	10			
ENABLE	63	0			
AMPLITUDE	16	0	10	10	10
(FIX = 0-15/VAR = 16)					
ENVL PER FINE	255	0			
ENVL PER COARSE	255	0			
ENVL SHAPE	15	0			

Type P to play the engine sound. Tones are set at a coarse tune of 5 and noise is set at 10. The fixed amplitude is set to a moderate level of 10.

MOCKINGBOARD is capable of generating six different sounds at once. The three channels on each chip permit various combinations of tone and noise to be generated separately. The ENABLE parameter will allow you to designate whether a tone, noise, or a mixture of both is to be produced through each channel. A chart in Appendix C contains values for the different possible combinations of sound.

You may also find the proper ENABLE value in the Sound Utility by typing CONTROL E. Enable is currently set at 0, let's find out what a zero setting means. Type CONTROL E, type 0 and press the RETURN key. A prompt will appear on the screen.

ENTER #0 TO 63 OR 'S' TO SCROLL =>

The chart just above this prompt tells you that all three channels are open for both tone and noise. If you type 63, all the channels are turned off. No

M	0	C	K	1	N	G	в	0	A	R	DTM
---	---	---	---	---	---	---	---	---	---	---	-----

sound will be generated. Press the ESCape key and the cursor will return to where you typed CONTROL E. Type 63 and P for play. MOCKINGBOARD is silent.

To hear just the tone component of the engine, type 56 for ENABLE. Verify that this number is for tone only in all three channels. Type CONTROL E again and enter 56. Press ESCape to return to ENABLE. Type P to play and listen to the result. The sound is a low pitched buzz.

Now type 7 for ENABLE and press P to play noise only in all three channels. MOCKINGBOARD is producing a sound like television static. MOCKING-BOARD will allow you to mix these sounds just like an audio engineer. You may make either tone or noise dominant by restricting the other to one channel only. For example, type 28 for ENABLE. The tone sound is now generated in channels A and B, while noise is restricted to channel C. Experiment with other possible combinations, and listen to the difference.

Further discussion and detail is given in the next two sections on developing noise only sound effects and tone only sound effects (musical notes).

NOISE ONLY SOUND EFFECTS

You will have an opportunity to hear the difference between tone and noise, and the effects that can be created with them. We will begin with a noise effect — the sound of a train.

Using the Sound Utility, move the cursor to NOISE PERIOD. The Noise Period value ranges from 0 to 31. The value represents the amount of noise compressed within a period of time. The larger the value, the less noise compressed. The smaller the value, the more noise compressed. The result is similar to the sound of steam escaping from a kettle. The steam makes a high frequency hissing sound because the steam is trapped and is being compressed. If the lid is opened, the hiss immediately becomes lower in frequency because the steam is not being compressed.

The sound of a train is a soothing sound which is neither a high nor low frequency sound. Let's try a middle value. Type 16 next to NOISE PERIOD.

2-7

M O	C	K	1	N	G	B	0	A	R	D
-----	---	---	---	---	---	---	---	---	---	---

TURN ON NOISE ONLY

Sounds produced by MOCKINGBOARD are routed through a passage, called a channel, to the speaker. Each sound chip on MOCKINGBOARD has three such channels for generating three separate sounds. MOCKINGBOARD orchestrates the three sounds and sends them out to a speaker. Since MOCKINGBOARD has two sound chips, it is capable of producing six different sounds, simultaneously, through two speakers.

Each channel may produce tone only, noise only or both. A single value entered for ENABLE will set each of the channels according to its representation. A chart in Appendix C provides the values associated with all the possible combinations for three channels. We will work with three of the six channels to generate a train sound and designate each for noise only.

The Sound Utility also provides this information if you request it. Move the cursor to ENABLE. Type CONTROL E and the following will appear in the open box area near the bottom of the screen:

ENABLE		NOISE			TONE		
VALUE	С	В	A	С	В	A	
ENTER #0	TO 63 OF						
Type S and t	he follov	ving will a	appear:			orti (CR.)	
ENABLE		NOISE	NO A TOM		TONE		
VALUE	С	В	A	С	В	A	
0	ON	ON	ON	ON	ON	ON	
DDFCC CDA	CE TO CO	ALT/FOC					

PRESS SPACE TO CONT/ESC TO RETURN

Press the space bar once and the A channel for TONE will change to OFF. Continue to press the space bar until all TONE channels are turned OFF and all NOISE channels are ON. The corresponding ENABLE VALUE is 7. Press ESCape key and the cursor will return to ENABLE at the top half of the screen or to where you typed CONTROL E. Now type 7.

	1.00				100	-					***
M	0	С	K	1	N	G	в	0	A	R	DTM

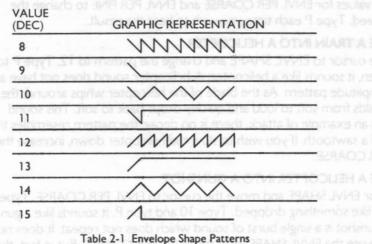
SETTING AMPLITUDE

Move the cursor to AMPLITUDE. In order to hear the train sound, volume (or loudness) must be added. Amplitude levels can be set by either of two methods, a fixed level amplitude and variable level amplitude. With fixed level amplitude, a specific level of volume is selected and held constant until it is shut off or changed. This is similar to the volume control on a television set. You can adjust the volume to a comfortable listening level and then listen to that level for the rest of the evening. If you wish to change it, you must get up to adjust it. The fixed level is selected by setting AMPLITUDE to a level within a range of 0 to 15.

Variable level amplitude is more dynamic. That is, the loudness is not constant and may be altered at any time. Natural sounds are dynamic; each has recognizable characteristics. A bird's chirp cannot be mistaken for a dog's bark nor the patter of rain on a window. The chug of a train is also distinguishable from the whirl of the helicopter or the blast of a gunshot. It is a steady sound but not constant.

The train sound is characterized by a variable amplitude. The variable level is selected by setting AMPLITUDE to 16. Type 16 in the ALL column and all three channels will be set to 16. When the cursor is moved away from AMPLITUDE the value in the ALL column will revert to zero.

WHAT MAKES A TRAIN SOUND NOT A GUNSHOT?


Change in amplitude distinguishes one sound from another. Amplitude may vary in any of three ways or modes. It can get louder (attack), it can hold at a particular level of loudness (sustain) and it can get softer (decay). Attack, sustain and decay are terms used to describe the amount of energy a sound gains or loses. For example, if you blow up a balloon and release it, the sound is very loud just as it is released. Almost immediately it begins to fade as the air escapes.

The amplitude pattern of the train sound (chug, chug) evenly increases and then decreases in volume; there is the same amount of attack as there is decay. If we were to draw a picture of this amplitude pattern, it would look like a zigzag. In contrast, a gun shot sound does not repeat itself. It is one quick blast. It starts out very loud, and then fades (decays). Conveniently, we do not have to create these patterns from scratch. MOCKINGBOARD can generate several common amplitude patterns.

These patterns, called Envelope Shapes or ENVL SHAPE, range from 0 to 15, but the actual number of different patterns is 8. These eight different

MOCKINGBOAR	M	0	C	K	1	N	G	В	0	A	R	1
-------------	---	---	---	---	---	---	---	---	---	---	---	---

patterns are illustrated in Table 2-1 and also in Appendix D. Shapes 0-7 generate only one cycle of any sound. Although they are usable, they may be uninteresting. Concentrate on shapes 8-15.

HAPT, ONLY INCLINE PERCORPORT BU

Shape 14 describes the zigzag pattern of a train sound; it starts soft, gets loud, then soft and continues until it is changed or shut off. Set ENVL SHAPE to 14.

HOW FAST IS THE TRAIN GOING?

The envelope establishes the basic amplitude pattern of a sound, but it is the duration of one cycle of the pattern which generates the effects. A train may be speeding along or slowing down. If the zigzag pattern of the train is compressed it will simulate a speeding train. A very loose zigzag will create the impression of a train moving slowly. The duration of a cycle is called an Envelope Period. Move the cursor to ENVL PER COARSE. ENVL PER COARSE stands for Envelope Period Coarse Tune. The envelope period range is from 0 to 65,535; this is broken down into fine tune (0-255) and coarse tune (0-255). Fine and coarse tuning may be thought of in terms of minutes and seconds. It takes 60 seconds to equal one minute. Similarly, a value of 256 for fine tune equals one unit of coarse tune. The coarse tune will determine general duration of one cycle of a particular envelope and the fine tune will define the exact duration.

MOCKINGBOARD	М	0	С	к		N	G	в	0	A	R	DT
--------------	---	---	---	---	--	---	---	---	---	---	---	----

The envelope period of a speeding train is short, so set the ENVL PER COARSE to 1. Let's listen to it. Type P for play. Stop it by typing R for reset. Now, type P again, but this time do not type R. Experiment by typing in different values for ENVL PER COARSE and ENVL PER FINE to change the train's speed. Type P each time you wish to hear the result.

CHANGE A TRAIN INTO A HELICOPTER

Move the cursor to ENVL SHAPE and change the pattern to 12. Type P to play. Listen, it sounds like a helicopter. A helicopter sound does not have a zigzag amplitude pattern. As the blade of the helicopter whips around, the sound builds from soft to loud and quickly drops back to soft. This sound pattern is an example of attack, there is no decay; the pattern resembles the outline of a sawtooth. If you wish to slow the helicopter down, increase the ENVL PER COARSE.

CHANGE A HELICOPTER INTO A GUNSHOT

Type 0 for ENVL SHAPE and move the cursor to ENVL PER COARSE. Type P. It sounds like something dropped. Type 10 and type P. It sounds like a gunshot. A gunshot is a single burst of sound which does not repeat. It does not appear to use the ENVL SHAPE, only the ENVL PER COARSE. But in fact, the envelope shape, when set to 0, is an example of a decaying sound; it starts loud and fades in one cycle. Shape pattern 0 is a duplicate of shape 9. The ENVL SHAPE and ENVL PER COARSE and FINE are turned off only by a fixed AMPLITUDE setting of 0 to 15. Try it.

Most of the sounds heard on this disk can be loaded using the Sound Utility. Type L for load and type the name of the sound or C for catalog to see the list. Each sound parameter will be displayed and can be changed. If you develop a sound you would like to save, type S for save and type a descriptive name. Do not use the same name used to load the sound, save it under another name. If you save it under the same name, you will lose the original sound and replace it with your new sound.

TONE ONLY SOUND EFFECTS

MOCKINGBOARD has a six channel sound capability and wide frequency range. Its full eight octave range makes it an ideal instrument for music composition. Two three-note chords can be played at the same time, allowing you to compose songs with full accompaniment.

2 - 11

M

Our train sound was made up of noise only. It was generated by setting the Noise Period to some value from 0 to 31. In contrast, musical notes consist of pure tone sounds. They are generated by setting the Tone Period. The Tone Period value ranges from 0 to 255 for fine tune and from 0 to 15 for coarse tune.

Tone Period values represent the amount of compression or expansion of pure tone sound within a period of time. The smaller the Tone Period value the more compressed the sound; and therefore, the higher the pitch. Conversely, if the value is larger, the tone sound is expanded and the pitch is lower.

Fine and coarse tune are MOCKINGBOARD's tuning pegs. It is important to be able to obtain the frequency or the particular note desired, because sour notes are easily identified. In order to adjust the pitch on your MOCKING-BOARD, use the coarse tune to get the general frequency range and the fine tune to get the desired pitch. The relationship behind the fine and coarse tune is similiar to the example given for Envelope Period. Coarse tune represents minutes of accuracy, fine tune allows us to determine the seconds. A fine tune of 256 is equal to 1 coarse tune.

A chart of the TONE PER values for each note is provided in Appendix E. The fourth octave of this chart has been reproduced in Table 2-2 so you can easily select a few notes to play. Let's begin with the C-note. The decimal equivalent is 244.

			TONE	PERIOD	
		NOTE	(DI	EC)	
NOTE	OCTV	FREQ	CRSE	FINE	
С	4	261.624	0	244	
C#	4	277.184	0	230	
D	4	293.664	0	217	
D#	4	311.128	0	205	
E	4	329.624	0	193	
F	4	349.232	0	183	
F#	4	369.992	0	172	
G	4 915	391.992	0	163	
G#	4 19	415.304	0	153	
A	4	440.000	0	145	
A#	4	466.160	0	137	
В	4	493.880	0	129	

Table 2-2 Equal Tempered Chromatic Scale: Fourth Octave

2-12

START FRESH WITH A CLEAN SCREEN

The screen is still set for a noise sound and must be cleared before we begin making tone sounds. Type X for clear and respond Y, for yes, to the prompt appearing in the box at the lower half of the screen. All the values previously set have been returned to zero. Move the cursor up to TONE PER FINE by typing CONTROL K (or the up arrow key). Move the cursor over to the right once to channel A, by typing the right arrow key. Type 244.

TURN ON TONE ONLY

Move the cursor to ENABLE and type CONTROL E. The box in the lower half of the screen will prompt you to enter either a number or S for scroll. Type S to scroll and press the space bar until only channel A for tone is ON; all other channels should be OFF. The Enable value is 62. Press the ESCape key and the cursor will return to ENABLE. Type 62 to enable channel A for tone only.

SET THE AMPLITUDE

AMPLITUDE or volume of a sound may be set in two ways. The first way is to generate a fixed level amplitude, which produces a sound with a constant volume. The sound will remain at the same level until it is changed or shut off by an R for reset (stop). Fixed level settings range from 0 for no volume to 15 for maximum volume.

Move the cursor to AMPLITUDE and press the right arrow key to move the cursor to channel A. Set the AMPLITUDE to fixed mode by typing 15. Type P to play and listen. Type R for reset to stop the sound. The sound is a tone or a musical note but the constant flow of the sound is annoying. Let's try to set the AMPLITUDE in another fashion.

CREATE MUSICAL NOTES

Variable level amplitude is controlled by a preset pattern of loud and soft levels. Variable level is selected by setting AMPLITUDE to 16. Under variable level amplitude, control is passed to the envelope shape and period controls.

The changes in amplitude which distinguish one sound from another are called the envelope. This amplitude pattern describes the shape of the envelope (ENVL SHAPE). Appendix D shows the 8 different patterns available on MOCKINGBOARD.

shie 2-2 Equal Tempered Chromatic Scale: Fourth Octavi

M O C K I N G B O A R DTM

The duration or envelope period (ENVL PER) of each pattern may also be controlled to create different effects. For example, a zigzag pattern, one which evenly glides up to loud and glides down to soft, may be compressed tightly so that the result is a tense and pulsating sound. The same zigzag pattern may be expanded. The sound is now calm and rolling.

PLAY A NOTE

You may make the sound stop automatically, by setting AMPLITUDE to variable level and the ENVL SHAPE to a one cycle pattern. The pattern should start loud and glide down (decay) until no sound can be heard (pattern 0 or 9). The rate at which the note decays may be determined by the ENVL PER value. This capacity to control a note's rate of decay allows you to define the note as whole, half, quarter, eighth, etc.

Set AMPLITUDE for channel A to variable by typing 16. The ENVL SHAPE should be set to a decay pattern since musical notes naturally decay after an initial burst. A strike of a piano key or a pluck of a guitar string starts loud and fades as the vibration subsides. You may leave ENVL SHAPE at 0; patterns 9 and 0 have the same decay pattern. Move the cursor to ENVL PER COARSE and set the period to 20. This period value will play the musical note just long enough to allow it to decay rather than end abruptly. Type P for play.

PLAY A CHORD

Now that we have learned to produce a note with proper decay, a chord can be built using the other two channels. Move the cursor back up to TONE PER FINE and over to the right to channel B. Type 193 for an E-note. Move the cursor to channel C and type 163 for a G-note. Move the cursor down to ENABLE and set it to 56, which enables all three channels for tone only. Move the cursor down to AMPLITUDE in the ALL column and type 16 for variable level. This will set the amplitude of all three channels to 16. Type P for play.

PLAY TWO CHORDS

The Sound Utility also allows you to play six notes simultaneously by setting three notes on one screen and three on a second screen. The three notes you have just played appear on the first screen. Type C and a new screen will appear. Note that the parameters are cleared to zeros. Type C again to return to the first screen. The three notes are still there.

MOCKINGBOAR	M) C	;	K	1	N	G	в	0	A	R	D
-------------	---	-----	---	---	---	---	---	---	---	---	---	---

The screens are oriented to the speakers through which the sounds are played. The chord just played was created for SPEAKER: 1. This designation appears in the upper left hand corner. Type C and note that SPEAKER: 2, in the upper right hand corner, replaced SPEAKER: 1.

The next three notes are also C, E, and G notes but on a lower octave. These note values include coarse tune values. Type the values as shown.

tor science and gate	MAX		C	HANN	IEL
	VAL	ALL	A	В	С
TONE PER FINE	255	0	209	7	140
TONE PER COARSE	15	0	3	3	2
NOISE PERIOD	31	0			
ENABLE	63	56			
AMPLITUDE	16	0	16	16	16
(FIX = 0.15/VAR = 16)			M.Y.CA		
ENVL PER FINE	255	0			
ENVL PER COARSE	255	20			
ENVL SHAPE	15	0			

Type P for play and listen to the deeper sound of this chord. Now, type B for both speakers and listen to six notes simultaneously. Note that both speaker designations appear at the top of the screen. If the sounds were continuous, R for reset would stop them. Since the notes decay automatically, a reset is not necessary.

PROGRAMMING

M

Whether you compose music, dialogue or design special effects, your masterpieces are unfinished until they are arranged in a production. What could be more original than to enhance one of your own programs with sounds of your own creation?

DTM

THE SOUND CHIPS

The Sound Utility program demonstrated all the parameters needed to produce a sound. There are 16 in all: six Tone Period (Fine and Coarse), one Noise Period, one Enable, three Amplitude, two Envelope Period (Fine and Coarse), and one Envelope Shape.

With the Sound Utility, the cursor is positioned over one of the 16 parameters and a value is typed. For example, if we wish to set the Tone Period (Fine Tune) for channel A to 145, the cursor is moved to the first row, column A, and 145 is typed in. A similar location called a register address, is also designated on the sound chip for this parameter. Each parameter has its own register address numbered 0 to 15. Table 3-1 shows each parameter and its associated register address. A chart of all registers and their descriptions is provided in Appendix B.

REGISTER			
ADDRESS	SOUND P	ARAMETERS	
0	Tone Period Fine Tune	for channel A	
1	Tone Period Coarse Tune	for channel A	
2	Tone Period Fine Tune	for channel B	
3	Tone Period Coarse Tune	for channel B	
4	Tone Period Fine Tune	for channel C	
5	Tone Period Coarse Tune	for channel C	
6	Noise Period		
7	Enable		
8	Amplitude	for channel A	
9	Amplitude	for channel B	
10	Amplitude	for channel C	
11	Envelope Period Fine Tune		
12	Envelope Period Coarse		
	Tune		
13	Envelope Shape		
14&15	Unused		
	ADDRESS 0 1 2 3 4 5 6 7 8 9 10 11 12 13	ADDRESSSOUND P0Tone Period Fine Tune1Tone Period Coarse Tune2Tone Period Fine Tune3Tone Period Coarse Tune4Tone Period Fine Tune5Tone Period Coarse Tune6Noise Period7Enable8Amplitude9Amplitude10Amplitude11Envelope Period Coarse12Envelope Period Coarse13Envelope Shape	ADDRESSSOUND PARAMETERS0Tone Period Fine Tunefor channel A1Tone Period Coarse Tunefor channel A2Tone Period Fine Tunefor channel B3Tone Period Coarse Tunefor channel B4Tone Period Coarse Tunefor channel C5Tone Period Coarse Tunefor channel C6Noise Periodfor channel C7Enablefor channel A8Amplitudefor channel A9Amplitudefor channel C11Envelope Period Fine Tune12Envelope Period Coarse13Envelope Shape

Table 3-1 Sound Chip Registers

М	0	С	K	1	Ν	G	в	0	A	R	DTM

SIREN SOUND EFFECT

Type this program right on your tools disk. (You may leave out the REM (remark) statements, as they serve only to explain the flow of the program.) It is the first sound of a siren. If you are using a fresh disk, you must copy the Sound Driver onto your disk and load it either before you run the program or within the program itself. Also, MOCKINGBOARD must be initialized at the beginning, with a CALL 32826.

5 REM

	15 = AMPLITUDE	D: 145 = FINE TUNE; 62 = E	and the most
10 DATA 18 REM	145,0,0,0,0,0,0,62,15,0	0,0,0,0,0,0	
	***STARTING ADDR	ESS F.OR STORAGE OF SOU	IND DATA
25 REM			
	SEQUENTIAL OR ***WHEN X = 0, IT IS	E ALL VALUES FOR SOUND DER STARTING AT LOCAT ADDED TO "A" WHICH IS ACE THE FIRST DATA FROM TION 33280	ION 33280 33280 TO
30 FOR X = 0 TC	15:READ D		
40 POKE A + X,[A tannais and		
50 NEXT		Tone Prived Course Lyru. Tone Period Prive Tune	
75 REM	or channel B		
	THE STARTING A	LOCATIONS 6 AND 7 TO 1 DDRESS OF SOUND, 33280 TO SEND DATA TO MOCKI OUND	; CALL
80 POKE 6,0:POI	KE 7,130:CALL 32808		
85 REM	A briedshol	Shared Street A	
	***USE DELAY LOOP	FOR DURATION OF SOUN	
90 FOR T = 1 TO	342:NEXT T		
145 REM			
	***CALL RESET TO S REGISTERS	TOP THE SOUND AND CLI	EAR
150 CALL 32779		philes , which and	
160 END			

M O C K I N G B O A R D[™]

Save and run this program. Lines 5 through 50 place the set of sound parameters sequentially in memory, starting at 33280. Line 80 plays the sound for the period of time designated in line 90. Line 150 stops the sound with a CALL to RESET

Now, let's add the second part of the siren sound.

15 DATA 86,1,0,0,0,0,0,62,15,0,0,0,0,0,0
30 FOR X = 0 TO 31: READ D
100 POKE 6,16:POKE 7,130:CALL 32808
120 FOR T = 1 TO 342:NEXT T

Line 15 is the data for the second sound and line 30 is changed to READ 16 more data. Line 100 plays the second sound. The temporary locations, 6 and 7, are changed to point to the second set of sound data. The Sound Driver is CALLed to send it to MOCKINGBOARD. Line 120 allows us to hear this sound for a given period of time.

Save and run this program. Did you hear a siren? This program demonstrates two manipulation techniques, duration (lines 90 and 120) and sequencing of two or more sounds (lines 80 through 120).

A delay loop follows each sound, because the sounds would alternate too quickly for you to hear them. The only difference between the two sounds is in the tone period register value for channel A.

Refer to the chart on musical notes in Appendix E. The first sound is a middle or 4th octave A with a Tone Period value of 145. The second sound falls between F# and G in the third octave; it has a Tone Period value of 342 or a coarse tune value of 1 and fine tune value of 86. The changes necessary to create these two tones involve only two registers. Therefore, load the base parameters needed to create the notes and change the Tone Period registers as required to alter the note. In addition, lines 70 and 140 place the sound generation in a loop so that the siren will play five times. Here's how to do it.

- 10 DATA 0,0,0,0,0,0,62,15,0,0,0,0,0,0
- 20 A = 33280
- 30 FOR X = 0 TO 15:READ D
- 40 POKE A + X,D
- 50 NEXT
- 55 REM

***SET THE POINTERS TO POINT TO LOCATION 33280

M	0	C	K	1	N	G	B	0	A	R	DTM

- 60 POKE 6,0:POKE 7,130
- 65 REM

***REPEAT THE SIREN SEQUENCE FIVE TIMES

70 FOR Z = 1 TO 5

75 REM

***PLAY THE FIRST SOUND

80 POKE 33280,145:POKE 33281,0:CALL 32808

90 FOR T = 1 TO 342:NEXT T

95 REM

***PLAY THE SECOND SOUND. CHANGE FIRST REGISTER TO 86 AND SECOND REGISTER TO 1. SINCE TONE PERIOD = 342, FINE TUNE = 342-INT(342/256) * 256 AND COARSE TUNE = INT(342/256)

100 POKE 33280,86:POKE 33281,1:CALL 32808 120 FOR T = 1 TO 342:NEXT T

135 REM

***IF Z IS LESS THAN 5, PLAY THE SEQUENCE AGAIN

140 NEXT 145 REM

***SHUT THE SOUND OFF**

150 CALL 32779 160 END

> Now, try this same program, but this time make use of the two sound chips and both speakers. You will be able to play one tone through the left speaker and the other through the right speaker.

The Sound Driver uses a temporary memory location to store the beginning address of the sound to be played back. This stored address is referred to as a "pointer" because it points to where the sound data begins.

We have already used locations 6 and 7, in our siren example, to store the address for the first sound chip. The second sound chip uses location 8 and 9. The address is divided into high and low bytes.

High byte is calculated by taking the beginning address and dividing it by 256. The resulting whole number is stored in location 7 or 9. Low byte is the remainder from the division and is stored in location 6 or 8. The siren sound effects program stores the data at 33280. When divided by 256, this address equals 130 with no remainder. The 130 is stored in 7 or 9 and 0 is stored in 6 or 8.

M O C K I N G B O A R D[™]

To produce the siren sound through both speakers, set the pointer locations, 8 and 9 to 33280. The pointer for the first sound chip, locations 6 and 7, also points to this same address. Both chips may utilize data in the same memory location because the data is not affected by use.

D <= => POINTER LOC 6, 7-> SOUND CHIP 1-> SPEAKER 1 A T A <= => POINTER LOC 8, 9-> SOUND CHIP 2-> SPEAKER 2

Change the following lines as indicated:

62 POKE 8,0:POKE 9,130 100 POKE 33280,86:POKE 33281,1 110 CALL 32779:CALL 32817 130 CALL 32796

Line 110, the CALL to 32779, is the RESET for the first sound chip. This CALL will shut off the first sound chip. If we do not shut off one of the chips, both would produce sound at the same time, and we would create a two-note chord. This CALL was not necessary in the earlier programs because both notes were generated by one sound chip. The second sound wrote over the register values of the first sound.

Line 100, the CALL 32808, is dropped and picked up in line 110 as CALL 32817, which is the second sound chip. It plays the second note through the other speaker. Line 130 turns off the second sound with a CALL to 32796. Note that the pointers (6,7 and 8,9) only have to have the address of the sound data POKEd once. The sound data has not moved from its location; therefore, its address remains the same.

10 DATA 0,0,0,0,0,0,62,15,0,0,0,0,0,0

```
20 A = 33280
```

```
30 FOR X = 0 TO 15:READ D
```

- 40 POKE A + X,D
- 50 NEXT
- 55 REM

	0	0	V	Sec	N	0	D	0		D	DTM
IVI	0	C	n	1.5	IN	G	в	0	A	н	D

***SET BOTH SOUND CHIP POINTERS TO POINT TO THE ADDRESS OF THE SOUND DATA, 33280.

- 60 POKE 6,0:POKE 7,130
- 62 POKE 8,0:POKE 9,130
- 70 FOR Z = 1 TO 5 GROOT ALLOS ALLOS
- 75 REM

***CHANGE THE SOUND DATA IN MEMORY TO THE FIRST SOUND AND PLAY IT THROUGH THE FIRST SPEAKER WITH A CALL TO THE SOUND DRIVER. (NOTE THAT 32808 IS THE ROUTINE FOR THE FIRST CHIP.)

- 80 POKE 33280,145:POKE 33281,0:CALL 32808
- 90 FOR T = 1 TO 342:NEXT T
- 95 REM

***CHANGE THE SOUND DATA IN MEMORY TO THE SECOND SOUND

100 POKE 33280,86:POKE 33281,1

Line 110, the CALL to 32779, is the RESET for the first sound chi MAR 201

***TURN OFF THE FIRST SOUND CHIP WITH A CALL TO RESET AND PLAY THE SECOND SOUND THROUGH THE SECOND SPEAKER WITH A CALL TO THE SOUND DRIVER. (NOTE 32817 IS THE ROUTINE FOR THE SECOND CHIP.)

```
110 CALL 32779:CALL 32817
120 FOR T = 1 TO 342:NEXT T
125 REM
```

***CALL RESET2 TO SHUT OFF THE SECOND SOUND CHIP 130 CALL 32796 135 REM

***IF Z IS LESS THAN 5, PLAY THE SEQUENCE AGAIN

140 NEXT 160 END

In this last example, one tone of the siren is played through one speaker and the other tone through the second speaker. Other variations are also possible.

THE SPEECH CHIPS

C

κ

0

M

The Rule Editor is used to develop words or phrases for use in your programs. Enter the Test Mode from any character table and type in the word or phrase you wish to use. Adjust the pronunciation, using the parameter controls and stress markers. Once you are satisfied with the quality of speech, save the word or phrase by typing CONTROL S from the Test Mode. Name the file using a maximum of eight characters, beginning with a letter (A-Z).

G

в

N

DTM

R

The word or phrase saved is a composite file of all the speech parameters. However, the composite file contains only data. This data is similar to the 14 sound parameters needed to produce a sound effect. While the sound parameters are finite, the speech parameters consist of four additional parameters for each phoneme code generated to produce the speech. If a word consists of 20 phoneme codes, then the composite file for that word contains 100 parameters (including the phoneme codes).

From the Rule Editor, a word or phrase is spoken using the Text To Speech Algorithm. Outside of the Rule Editor, another type of program must be employed to generate speech. The Text To Speech Algorithm is no longer necessary, because the conversion from text to phoneme codes has already been done and saved. A program called the Composite Driver, included on the tools disk, acts as a messenger and transmits speech codes to the speech chip from the composite data file.

The Composite Driver is similar in concept to the Sound Driver. The Sound Driver retrieves data and sends it to the sound chip. It knows where the data is located by using a pointer. The Composite Driver also has a pointer which tells it where the speech data is located.

These similarities standardize the programming method employed in generating both sound and speech. Let's enhance a short program with speech. Load the following files in memory prior to running the sample program or at the beginning of the sample program:

BLOAD COMPOSITE DRIVER

BLOAD < composite data file name >, A < address in memory >

The composite data file may be stored in any unused memory space. The

pointer location for the beginning address of the speech data is stored in locations 249 and 250. The high byte of the address is stored in location 250 and the low byte is stored in location 249. If you are unfamiliar with high and low bytes, the high byte value is obtained by dividing the address by 256 and the low byte value is the remainder of this division. If the data is stored at 35072, then the high byte value is 35072/256 or 137. The low byte value is zero since there is no remainder.

The following phrase was created using the Rule Editor and saved on the tools disk as PHRASE 1:

WITH MOCKINGBOARD YOU'LL NEVER BE SPEECHLESS

Type in the program below on your copy of the tools disk. If you are using a fresh disk, copy the COMPOSITE DRIVER and PHRASE 1 files onto your disk.

```
10 HOME
20 D$ = CHR$(4)
25 REM
```

```
***LOAD COMPOSITE DRIVER
```

```
30 PRINT D$"BLOAD COMPOSITE DRIVER"
```

35 REM

***LOAD THE DATA FILE PHRASE1 AT LOCATION 35072 40 PRINT D\$"BLOAD PHRASE1, A 35072"

45 REM

```
***TELL COMPOSITE DRIVER WHERE THE DATA FILE PHRASE1
RESIDES. CONVERT 35072: HIGH BYTE = INT (35072/256) OR
137, PUT IT IN LOCATION 250; LOW BYTE = 35072-
INT(35072/256)*256 OR 0, PUT IT IN LOCATION 249.
```

```
50 POKE 249,0: POKE 250, 137
```

55 REM

***TELL COMPOSITE DRIVER TO BEGIN SPEAKING. COMPOSITE DRIVER IS LOCATED AT 36864.

```
60 CALL 36864
70 END
```

This program will speak the entire phrase and then end at line 70. In most cases, the program would not speak and then end, it would continue on with other tasks. If this program did not end at line 70, the speech could be interrupted prematurely by an input from the keyboard or program code. In order to protect against such an interruption, the program should check to determine if the speech chip is finished speaking.

3-8

When MOCKINGBOARD speaks, a busy flag is set. This flag is located at location 30. When MOCKINGBOARD is finished speaking, the flag is cleared. Your program can monitor this flag. A standard BASIC programming command called PEEK may be used to look at the contents of this location.

Type the following lines into the above program. Delete line 70. Save the new version of the program and run it.

80 VTAB 6:HTAB 1:PRINT "WOULD YOU LIKE TO HEAR IT AGAIN?"; :GET A\$

```
90 IF A$ = "Y" THEN GOTO 60
```

- 100 IF A\$ = "N" THEN GOTO 120
- 110 GOTO 80
- 120 END

The question, "WOULD YOU LIKE TO HEAR IT AGAIN?" appears on the screen almost at the same time as the speech begins. If you respond to this question before the speech ends, you will interrupt it. Try it. Press the Y key several times in quick succession. The phrase is not allowed to finish until you stop pressing the key. To prevent this, insert the following lines in this program. Save and run it. You will no longer be permitted to interrupt the speech.

65 REM

***CHECK TO SEE IF FINISHED SPEAKING. IF NOT, KEEP CHECKING UNTIL IT IS.

70 IF PEEK (30)>0 THEN 70

To incorporate more than one phrase in your program, load each file at the beginning of the program. Load each one at a different location, so you will be able to call them at will. Change the pointers, 249 and 250, to point to the phrase you wish spoken just before CALLing the composite driver. Let's try it with PHRASE2, which says: I LOVE TO TALK. This time, let's print the phrases on the screen.

10 HOME

```
20 D$ = CHR$(4)
```

30 PRINT D\$"BLOAD COMPOSITE DRIVER"

```
40 PRINT D$"BLOAD PHRASE1, A 35072"
```

42 REM

***LOAD THE SECOND PHRASE AT 32768

м	0	С	к	1	Ν	G	В	0	A	R	DTM
45	DDIN	T D\$"BI			E2 A 33	769"					
45	DDIN	T "WITI	LOADT	KING	CAPD	YOU'U	NEVE		ECHIE	"22	
50		E 249.0:				100 11	INLYL	N DE SFI	LCHLL	30101	
60	CALL	36864	FORE 2	.50, 15/	e at the						
70											
	IF FEI	EK (30)	D 1 .DD	INIT "	VOLUE	VOUL	IVE TO		TACA	ND ".	
80		B 6 :HTA	BI:PR		VOULL	1001	IKE TO				
90	IF A\$	= "Y" T	HEN G	OTO 6	0 00	10100	W. Ib				
100	IF A\$	= "N" T	HEN G	OTO	20						
110	GOT	O 80					a oto	O MEH	L	SV 4	08
120	VTA	3 10 :HT	AB1:P	RINT "	WOUL	DYOU	LIKE TO	HEAR	ANOT	HER	10
	PI	HRASE?	"::GET	B\$					08 〇		
130	IF B\$	= "Y" T	HEN GO	OTO 1	52						
		= "N" T									
		0 100		TA TI							

150 GOTO 120

152 VTAB 10 :HTAB 1 :PRINT "I LOVE TO TALK!

155 REM

***CHANGE THE POINTERS TO POINT TO PHRASE2 AT 32768 :HIGH BYTE = INT (32768/256) OR 128, PUT IN 250; LOW BYTE = 32768-INT(32768/256)*256 OR 0, PUT IN 249. TELL COMPOSITE DRIVER TO SPEAK THIS PHRASE.

160 POKE 249,0 :POKE 250, 128 :CALL 36864 170 END

Save and run this program. If you would like to try out a different phrase, change line 40 and/or 45 to load your file. Don't forget to change the phrase printed on the screen in line 47 or 152. Why not make all the prompts in this program speak?

USING TEXT TO SPEECH AND THE RULE TABLE IN YOUR PROGRAM

The above programming method is a very convenient way to generate speech, provided you know what vocabulary will be required in your program. This is not always possible or desirable. You may wish to have a person using your program type in his or her own responses. These words could also be spoken by MOCKINGBOARD. However, unless the response is limited to a predefined vocabulary, words not previously coded will be left unsaid.

Another method of generating speech will allow MOCKINGBOARD to speak an unlimited vocabulary. This program incorporates the Text To Speech proO C K I N G B O A R DTM

gram included on the tools disk. It uses a table of rules (also included on the disk) to convert text into speech. The text may consist of characters typed from the keyboard or characters assigned to a string variable. It may also be text saved in a text file. If your program is very large, this method may not be economically implemented, due to the size of the rule table. However, if you can anticipate the vocabulary that may be used in your program, including responses from the user, an empty rule table may be used to build a custom list of words. The empty rule table will allow you to enter only rules which may pertain to your program. If you prefer, you may also trim the current rule table to a size more suitable to your program and save the revised version under another name.

Any rule table may be included in your program along with Text To Speech. A sample program using this method is given below. Regardless of whether you are converting input from the keyboard or assigning it to a string variable within your program, you must assign the input to the variable MB\$. The program, which Text To Speech uses to retrieve the text data, looks for this variable. This program is called MB\$ GETTEXT.

- 5 HIMEM: 34047 remove the way do not solve any monotest TUPM is all
- 10 HOME

M

- 20 D\$ = CHR\$(4)
- 30 PRINT D\$"BLOAD TEXT TO SPEECH"
- 35 PRINT D\$"BLOAD INFLECTION"
- 40 PRINT D\$"BLOAD TTS DRIVER"
- 50 PRINT D\$"BLOAD MB\$ GETTEXT"
- 55 REM

***LOAD THE RULE TABLE

- 56 A = PEEK (49289): B = PEEK (49289): REM WRITE TO UPPER RAM
- 60 PRINT D\$"BLOAD MKB :RULE. TABLE"
- 70 PRINT D\$"BLOAD MKB :RULE. LENGTH"
- 80 PRINT D\$"BLOAD MKB :RULE. INDEX"
- 82 C = PEEK (49290): REM WRITE PROTECT UPPER RAM
- 85 REM

***SET SPEECH PARAMETERS TO DEFAULT VALUES

- 90 POKE 37596,8 :REM ***INFLECTION
- 100 POKE 37597,8 :REM ***SPEECH RATE
- 110 POKE 37598,11 :REM ***AMPLITUDE
- 120 POKE 37599,232 :REM ***FILTER FREQUENCY
- 125 REM

***ASSIGN THE PHRASE TO BE SPOKEN TO MB\$

- 130 MB\$ = "WITH MOCKINGBOARD YOU'LL NEVER BE SPEECHLESS"
- 135 REM

MOCKINGBOAR	M	0	C	K	1	N	G	В	0	A	R	DT
-------------	---	---	---	---	---	---	---	---	---	---	---	----

***TELL TEXT TO SPEECH TO BEGIN SPEAKING THE PHRASE 140 CALL 26123 145 REM

***CHECK TO SEE IF FINISHED SPEAKING. IF NOT, KEEP CHECKING UNTIL IT IS.

150 IF PEEK (30)>0 THEN 150

ang responses from the user, an empty rule table may be used QNB info

MKB :RULE is the standard rule table designed by Sweet Micro Systems. You may replace this with your rule table file name. The .TABLE, .LENGTH and .INDEX must be appended to your rule table file name. These files monitor the expansion and reduction of the rule table as well as where all the character tables reside in memory. They are always updated and saved when you save a rule table.

If you wish to speak a response from the user change line 130 to:

130 INPUT "ENTER TEXT: ";MB\$

The INPUT statement may be any question or prompt. How many a

Lines 90-120 set the speech parameters for the voice. The parameters are the default values used in the Test Mode of the Rule Editor program (see page 1-5 for settings and ranges). You must always set these parameters when using Text To Speech and the rule table in your programs. The voice must be defined in order to hear it. You do not have to do this when using the Composite Driver since the speech parameters are a part of the speech data.

Also, you should set HIMEM to protect the Text to Speech Algorithm from being written over. Set HIMEM to 34047 (\$84FF). All phrases assigned to MB\$ will be stored from this address down.

82 C - PEEK (49290) REM WRITE PROTECT UPPER RAM
85 REM
***SET SPEECH PARAMETERS TO DEFAULT VALUES
90 POKE 37596.8 REM
***INFLECTION
100 POKE 37597.8 REM
***SPEECH RATE
110 POKE 37597.232 REM
***RILTER FREQUENCY
125 REM
***ASSEN THE PHRASE TO BE SPOREN TO MBS
130 MBS
WITH MOCKINGBOARD YOU'LL NEVER BE SPEECH 255

APPENDIX A How to Create Basic Sounds

K

CONSONANT SOUNDS

С

M

0

PRONUN	CIATION	SUGGESTED PHONEMES				
sound	EXAMPLE	SYMBOL (S)	CODE			
b	bat, tab	В	24 EB			
ch	church	T SCH	68 72			
d-	dub	D	25			
-d	bud	D	25 EB			
f	fun, laug <u>h</u>	F HF	34 AC			
g-	good, ragged	KV K	E6 E9			
-g	tag	KV K HVC HFC	A6 E9 AB ED			
h	has	HF	AC			
j	just, germ	DJ	25 31			
k-	kite, cat, chord	K HF	29 AC			
-k	back, pique	K HFC	29 AC C0			
1	lit	L	20			
-1	ill, table	LF	22			
m	man, home	M	37			
n	nun	N	38			
ng	song	NG HN	39 AE			
p-	pit	P HF	27 AC			
-P	tip	P HF	27 EC C0			
qu	quake	K HF W	29 EC 63			
r	rat, tree	R	1D			
S	cease	S	30			
sh	<u>sh</u> op, ma <u>ch</u> ine, na <u>ti</u> on, pen <u>si</u> on	SCH	32			
t	tot	T HF	28 EC			
th	bathe	THV	35			
th	bath	тн	36			
v	vow, wave	V	33			
w	way	W	23			
×	axe, extra	KS	29 30			
Y	year, yard	Y1	44			
z	zoo, tabs	Z	2F			
	pause	PA	00			

G

Ν

В

0

DTM

R

NOTE: A hyphen after a letter indicates the letter begins a word or is in the middle of a word. A hyphen before a letter indicates the letter ends a word. NOTE: The phoneme EB is a transitional sound which may be used after the phoneme codes for the B and D sounds to clarify those sounds.

MOCKINGBOAR	M	0	C	K	1	N	G	В	0	A	R	D
-------------	---	---	---	---	---	---	---	---	---	---	---	---

APPENDIX A How To Create Basic Sounds (continued)

VOWEL SOUNDS

PRONUN	CIATION	SUGGE	SUGGESTED PHONEMES					
SOUND	EXAMPLE	SYMBO	L	CODE	I. INBUO			
a	add, am	AE	A4	0C	24			
ā	ale, fate	AY1		08 44				
ar	arm, far	AH ER		0E 5C				
ār	air, fair, there	A ER		08 5C				
aw	saw, caught	AW		10				
e	bet, end	EH		0A				
ē	eve, mete, fairy	E		01				
silent e	cake	no phon	eme n	ecessary				
er	maker, herd	ER		1C				
ēr	ear, deer	E ER		01 5C				
i	ill, bit, nymph	13		07				
ī	ice, sight	AH Y1		0E 44				
ir	bird led del	ER		1C				
îr	fire, liar	AH Y1 I	ER	0E 44 5C				
0	odd, not	AH		OE				
ō	old, note	OU		11 56				
oi	oil, noise	OE		11 01				
oŏo	foot, put	00		13				
ōō	do, boot, new, tune	U		16				
oor	poor	UER		16 5C				
ōr	or, door	OER		11 5C				
wo	cow, loud	AH W		0E 63				
u	up, son, about	UH		18				
ū	use, humane	YIU		44 16				
ur	urn, hurt	ER		1C				
ūr	cure	Y1 U ER	2	44 16 5C				
			83					

The 4 columns of code for each phoneme allow lead to after the length of any sound, and choose the version which provides the levels intelligibility an natural quality, Each successive column represents a phoneme which approximately 25% shorter than its predecessor. For most purposes, column 1 will serve as a standard value.

M	0	С	K	- E.	N	G	в	0	A	R	DTM
	-	-					_	-			-

APPENDIX A Phoneme Chart

CONSONANT PHONEMES

		C	ODE	SOUS	NORADANUAN
PHONEME	1	2	3	4	EXAMPLES
В	24	64	A4	E4	bat, tab
D	25	65	A5	E5	dub, bud
F	34	74	B4	F4	fat, ruff, photo, laugh
HV	2A	6A	AA	EA	eh?
HVC	2B	6B	AB	EB	d(h)ouble
HF	2C	6C	AC	EC	hat, home
HFC	2D	6D	AD	ED	P(h)ad, fluff(h), black(h)
HN	2E	6E	AE	EE	hnh-hnh, ring (hn)
J	31	71	B1	Fl	job, rage
K	29	69	A9	E9	kit, tick
KV	26	66	A6	E6	big, gag
L	20	60	A0	EO	lab, ball
L1	21	02 61 00	Al	El	plan, club, slam
LF	22	62	A2	E2	bottle, channel
M	37	77	B7	F7	mad, dam
N	38	78	B8	F8	not, ton
NG	39	79	B9	F9	ring, rang
Р	27	67	A7	E7	pat, tap
R	1D	5D	9D	DD	rat 1000 10
S	30	70	BO	FO	sat, lass
SCH	32	72	B2	F2	shop, push
т	28	68	A8	E8	tap, pat
THV	35	75	B5	F5	bathe, the
ТН	36	76	B6	F6	bath, theory
V	33	73	B3	F3	vow, pave
W	23	63	A3	E3	why
Y1	04	44	84	C4	you
Z	2F	6F	AF	EF	zap, maze
	00	40	80	C0	[pause]

The 4 columns of code for each phoneme allow you to alter the length of any sound, and choose the version which provides the most intelligibility and natural quality. Each successive column represents a phoneme which is approximately 25% shorter than its predecessor. For most purposes, column 1 will serve as a standard value.

M	0	C	K	1	N	G	B	0	A	R	DTM
---	---	---	---	---	---	---	---	---	---	---	-----

APPENDIX A Phoneme Chart (continued)

		C	ODE	1993			6
PHON	EME 1	2	3	4	EXAMPL	ES	-
A	08	48	88	C8	day		
Al	09	49	89	C9	care		
AE	0C	4C	8C	CC	dad		
AE1	0D	4D	8D	CD	laugh		
AH	OE	4E	8E	CE	top, about		
AH1	OF	4F	8F	CF	father		
AW	10	50	90	D0	saw, caught		
E	01	41	81	C1	beet, be		
E1	02	42	82	C2	advent		
EH	0A	4A	8A	CA	leg, said		
EHI	OB	4B	8B	CB	silent		
ER	1C	5C	9C	DC	third, urn, he	ard	
100.36	07	47	87	C7	sit, bid		
0	11	51	91	DI	boat		
00	13	53	93	D3	put, pull, loo	k	
OU	12	52	92	D2	orb		
U	16	56	96	D6	boot, you		
UI	17	57	97	D7	poor		
UH	18	58	98	D8	cup		
UHI	19	59	99	D9	circus		
UH2	1A	5A	9A	DA	nation		
UH3	1B	5B	9B	DB	nation		
FOREIG		5					
AY	05	45	85	C5	français	French	
A	3A	7A	BA	FA	être	French o umlaut	
						in Ger	ma
E2	3E	7E	BE	FE	schön	German	
E	06	46	86	C6	il	French	
IU	14	54	94	D4	peut	French	
U1	15	55	95	D5	Goethe	German	
ОН	3B	7B	BB	FB	menu, tu	French	
U	3C	7C	BC	FC	fühlen	German	
UH	3D	7D	BD	FD	menu, t <u>u</u>	French	
Y	03	43	83	C3	У	French	
LB	3F	7F	BF	FF	il	French	
R1	1E	5E	9E	DE	réponse	French	
R2	1F	5F	9F	DF	richtig	German	

MOCKINO	G B	0	A	R D™
---------	-----	---	---	------

APPENDIX B Programmable Sound Generator Registers

	REGISTER	DESCRIPTION	DEC	HEX
RO		FINE TUNE	0-255	00-FF
R1	CHANNEL A TONE PERIOD	COARSE TUNE	0-15	00-0F
R2		FINE TUNE	0-255	00-FF
R3	CHANNEL B TONE PERIOD	COARSE TUNE	0-15	00-0F
R4		FINE TUNE	0-255	00-FF
R5	CHANNEL C TONE PERIOD	COARSE TUNE	0-15	00-0F
R6	NOISE PERIOD	ALL CHANNELS	0-31	00-1F
R7	ENABLE	NOISE/TONE	0-63	00-3F
R8	CHANNELA AMPLITUDE	AMPLITUDE LEVEL	0-16	00-10
R9	CHANNEL B AMPLITUDE	MODE SELECT FIXED = 0-15	0-16	00-10
R10	CHANNEL C AMPLITUDE	VARIABLE = 1	0-16	00-10
R11	ENVELOPE PERIOD	FINE TUNE ENVELOPE	0-255	00-FF
R12		COARSE TUNE COARSE TUNE COARSE TUNE	0-255	00-FF
R13	ENVELOPE SHAPE/CYCLE	CONT:ATTACK:ALT: HOLD	0-15	00-0F

R14NOT USEDREGISTER VALUE NOT SIGNIFICANTR15NOT USEDREGISTER VALUE NOT SIGNIFICANT

Κ

С

M

0

APPENDIX C Noise and Tone Enable Register (adapted from General Instrument Programmable Sound Generator Data Manual)

INGBOAR

DTM

	STER LUE							REGI	STER LUE		NOISI				
DEC	HEX	С	В	A	С	В	A	DEC	HEX	С	В	A	С	В	A
00	00	ON	ON	ON	ON	ON	ON	32	20	-	ON	ON	ON	ON	ON
01	01	ON	ON	ON	ON	ON	-	33	21	-	ON	ON	ON	ON	-
02	02	ON	ON	ON	ON	1	ON	34	22	-	ON	ON	ON	-	ON
03	03	ON	ON	ON	ON	-	+	35	23	-	ON	ON	ON	-	-
04	04	ON	ON	ON	~	ON	ON	36	24	-	ON	ON	5	ON	ON
05	05	ON	ON	ON		ON		37	25		ON	ON	-	ON	-
06	06	ON	ON	ON	-	1-	ON	38	26	-	ON	ON		-	ON
07	07	ON	ON	ON		-		39	27	-	ON	ON		-	
08	08	ON	ON	1	ON	ON	ON	40	28	140	ON	10	ON	ON	ON
09	09	ON	ON		ON	ON		41	29	-	ON		ON	ON	-
10	0A	ON	ON	-	ON	-	ON	42	2A	140	ON		ON	-	ON
11	OB	ON	ON	-	ON	-	-	43	2B	-	ON	-	ON	-	-
12	0C	ON	ON	14	4	ON	ON	44	2C	140	ON	19	-3	ON	ON
13	0D	ON	ON	-	-	ON	-	45	2D	-	ON	-	-	ON	-
14	0E	ON	ON		-	-	ON	46	2E	140	ON	4Q .	-	+	ON
15	OF	ON	ON	-	-	-	-	47	2F	-	ON	-	-	-	-
16	10	ON	170	ON	ON	ON	ON	48	30	170	5.03	ON	ON	ON	ON
17	11	ON	-	ON	ON	ON	-	49	31	-		ON	ON	ON	-
18	12	ON	-	ON	ON	-	ON	50	32	-	TTA	ON	ON	-	ON
19	13	ON	-	ON	ON	-	-	51	33	-		ON	ON	-	
20	14	ON	-	ON		ON	ON	52	34	-	-	ON	-	ON	ON
21	15	ON	-	ON	-	ON	4	53	35	-	-	ON	0	ON	01 <u></u>
22	16	ON	-	ON	-	-	ON	54	36	-	-	ON	-	-	ON
23	17	ON	-	ON	-	-	-	55	37	-	-	ON	-	-	-
24	18	ON	-	-	ON	ON	ON	56	38	-	-	-	ON	ON	ON
25	19	ON	-	-	ON	ON	-	57	39	-	-	-	ON	ON	-
26	1A	ON	-	-	ON	-	ON	58	3A	-	-	-	ON	-	ON
27	1B	ON	-	-	ON	-	-	59	3B	-	-	-	ON	-	-
28	1C	ON	-	-	-	ON	ON	60	3C	-	-	-	-	ON	ON
29	1D	ON	-	-	-	ON	-	61	3D	-	-	-	-	ON	-
30	1E	ON	-	-		-	ON	62	3E	-	-		-	-	ON
31	1F	ON	-	-	-	- 1	-	63	3F	-	-	-	-	-	-

M O C K I N G B O A R D TM	M	0	C	K	1	N	G	в	0	A	R	DTM
---------------------------------------	---	---	---	---	---	---	---	---	---	---	---	-----

APPENDIX D Envelope Shape Register (adapted from General Instrument Programmable Sound Generator Data Manual)

REGI	STER LUE	DISE		ISTER UUE		RECISTER MOSE TONE VALUE CHANNEL CHANNEL
DEC	HEX	CONT	ATTK	ALT	HOLD	GRAPHIC REPRESENTATION
08	08	ON		10	RE 19	MMMMM
09	09	ON	-	23	ON	
10	0A	ON	-	ON	ж_ и	
91	0B	ON	-	ON	ON	
12	0C	ON	ON	-28	04 _ V	MMM
13	0D	ON	ON	1.÷	ON	0 - 100 - 100 AD 01
14	0E	ON	ON	ON	14-1 V	
15	0F	ON	ON	ON	ON	1

SHAPE PATTERNS 0-7 ARE ONE CYCLE PATTERNS AND MAY BE REPRE-SENTED BY THE PATTERNS ABOVE. FOR EXAMPLE, SHAPE PATTERN 0 IS A DUPLICATE OF PATTERN 9.

+0	T		110	-	The	T	1	~		10	 10	÷1	00
00	VID.	00	1100	-	X	X		10	-	140	 210	- 21	
2001	1		NO NO			20	NE			NO	10	17	22
		240											
													25
								100					
		1					140						
													16

М	0	С	К	1	N	G	В	0	A	R	DTM
---	---	---	---	---	---	---	---	---	---	---	-----

APPENDIX E Equal Tempered Chromatic Scale (fCLOCK- 1.023 MHz)

(adapted from General Instrument Programmable Sound Generator Data Manual)

	0000000	1.000	1	TONE	PERIOD	
		NOTE	(DI	EC)	(H	EX)
NOTE	осту	FREQ	CRSE	FINE	CRSE	FINE
с	10 1	32.703	7.000	163	07	A3
C#	10 1 8	34.648	7:00.8	53	07	35
D	10 1 5	36.708	6	205	06	CD
D#	00 1	38.891	6	108	06	6C
E	00 1 0	41.203	6	15	06	OF
e F	00 1 5	43.654	5	184	05	B8
F#	00 1 3	46.249	5	102	05	66
G	00 1 5	48.999	5	24	05	18
G#	00 1 8	51.913	. 4	207	04	CF
A	00 1 5	55.000	4000	138	04	8A
A#	00 1 8	58.270	4	73	04	49
В	00 1	61.735	4	11	04	OB
С	2	65.406	300.0	209	03	DI
C#	00 2 0	69.296	3	154	03	9A
D	00 2 8	73.416	3	102	03	66
D#	00 2 5	77.782	3	54	03	36
E	00 2	82.406	3	7	03	07
F	0 2 3	87.308	2	220	02	DC
F#	00 2 5	92.498	2	179	02	B3
G	0 2	97.998	2	140	02	8C
G#	2 1	103.826	2	103	02	67
A	2 3	110.000	2000	69	02	45
A#	0 2	116.540	2	36	02	24
В	2	123.470	2	5	02	05
С	00 3 0	130.812	108.0	232	01	E8
C#	08 3 8	138.592	2.321	205	01	CD
D	00 3 1	146.832	2.761	179	01	B3
D#	co 3 T	155.564	lend	155	01	9B
E	00 3 0	164.812	167.8	131	01	83
8 F	00 3 N	174.616	1644	110	01	6E
F#	CO3	184.996	1/2.8	89	01	59
G	3	195.996	1	70	01	46

M O C K I N G B O A R D TM	M	0	С	K	- E	N	G	в	0	A	R	DTM
---------------------------------------	---	---	---	---	-----	---	---	---	---	---	---	-----

APPENDIX E Equal Tempered Chromatic Scale (continued) (fCLOCK- 1.023 MHz)

	OOMEN BH	1	TONE PERIOD					
NOTE	COME' SH	NOTE	(DE	EC)	(HEX)			
	ΟCTV	FREQ	CRSE	FINE	CRSE	FINE		
G#	3	207.652	1	51	01	33		
A	VO 3 0	220.000	1805	34	01	22		
A#	TO . 3 E	233.080	1.60-3.0	18	01	12		
В	80 3 3	246.940	7081	2	01	02		
с	4 8	261.624	0	244	00	F4		
C#	6 4 6	277.184	0	230	00	E6		
D	20 4 8	293.664	0	217	00	D9		
D#	86 4 9	311.128	0	205	00	CD		
E	²⁰ 4 *	329.624	0	193	00	CI		
F	× 4 V	349.232	0	183	00	B7		
F#	10 4 8	369.992	0000.	172	00	AC		
G	0 4 8	391.992	0	163	00	A3		
G#	10 . 4 I	415.304	0	153	00	99		
A	60 4 8	440.000	0	145	00	91		
A#	60 4 H	100.100	0	137	00	89		
В	C 4 0	493.880	0	129	00	81		
C	5	523.248	0	122	00	7A		
C#	5 5	554.368	0	115	00 2	73		
D	5 0	587.328	0	108	00	6C		
D#	5	022.250	0	102	00	66		
E	5 0	659.248	0	96	00	60		
F	5 8	698.464	0	91	00	5B		
F#	5 0	739.984	0000	86	00	56		
G	5 5	783.984	0	81	00	51		
G#	5	830.608	0	76	00	4C		
A	5 5	880.000	0	72	00	348		
A#	5 3	932.320	0	68	00	44		
В	10 5 8	1	0	64	00	40		
С	6	1046.496	0	61	00	3D		
C#	6	1108.736	0	57	00	39		
D	6 0	1174.656	0	54	00	36		
D#	6	1244.512	0	51	00	33		

MOCKING	в	0	A	н	D
---------	---	---	---	---	---

APPENDIX E Equal Tempered Chromatic Scale (continued) (fCLOCK- 1.023 MHz)

	1901 0401	regard to brin	TONE PERIOD						
	be come a	NOTE	(DE	EC)	(HEX)				
NOTE	OCTV	FREQ	CRSE	FINE	CRSE	FINE			
E	6	1318.496	0	48	00	30			
F	6	1396.928	0	45	00	2D			
F#	6	1479.968	0	43	00	2B			
G	6	1567.968	0	40	00	28			
G#	6	1661.216	0	38	00	26			
A	6	1760.000	0	36	00	24			
A#	6	1864.640	0	34	00	22			
В	6	1975.520	0	32	00	20			
С	7	2092.992	0	30	00	1E			
C#	7	2217.472	0	28	00	1C			
D	7	2349.312	0	27	00	1B			
D#	7	2489.024	0	25	00	19			
E	7	2636.992	0	24	00	18			
FRAM	JAT OU	2793.856	0	22	00	16			
F#	118 7140	2959.936	0	21	00	15			
G	18A 7 1AH	3135.936	0	20	00	14			
G#	7 7	3322.432	0	19	00	13			
A	7 313	3520.000	0	18	00	12			
A#	7	3729.280	0	17	00	11			
В	7	3951.040	0	16	00	10			
С	8	4185.984	0	15	00	OF			
C#	8	4434.944	0	14	00	OE			
D	8	4698.624	0	13	00	0D			
D#	8	4978.048	0	12	00	0C			
E	8	5273.984	0	12	00	0C			
F	8	5587.712	0	11	00	0B			
F#	8	5919.872	0	10	00	0A			
G	8	6271.872	0	10	00	0A			
G#	8	6644.864	0	9	00	09			
A	8	7040.000	0	9	00	09			
A#	8	7458.560	0	8	00	08			
В	8	7902.080	0	8	00	08			

MOCKINGBOARI	М	0	С	к	F	N	G	в	0	A	R	D
--------------	---	---	---	---	---	---	---	---	---	---	---	---

LIMITED WARRANTY

Sweet Micro Systems, Inc. warrants, to the original purchaser only, that this product shall be free from defects in materials and faulty workmanship under normal use and service for a period of ninety (90) days from the date of purchase. Defects covered by this Warranty shall be corrected either by repair or replacement, at the Company's option. In the event replacement is elected by Sweet Micro Systems, Inc., any replacement product shall be warranted under the terms of this warranty for the remainder, if any, of the original ninety (90) day period. Sweet Micro Systems, Inc.'s liability is limited to the cost of repair or replacement of any defective part or product and Sweet Micro Systems, Inc. shall not under any circumstances be liable for special, incidental or consequential damages of any kind resulting from use or possession of this product. SOME STATES DO NOT ALLOW THE EXCLU-SION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

If this product should require service, please contact us for a RETURN AUTHORIZATION number. Sweet Micro Systems, Inc. will assume no liabilities for unauthorized returns. Return products to Sweet Micro Systems, Inc., 50 Freeway Drive, Cranston, RI 02920, postage prepaid.

THE ABOVE WARRANTIES FOR GOODS ARE IN LIEU OF ALL WARRAN-TIES, EXPRESSED, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND OF ANY OTHER WARRANTY OBLIGATION ON THE PART OF SWEET MICRO SYSTEMS, INC. Some states do not allow the limitations on how long an implied warranty lasts so the above limitation may not apply to you.

This Warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

01-A