

First Edition (Preliminary)
First Printing
6—Novernber—1981

Copyright Notice:

This manual and all software is Copyrighted. All rights are
reserved. This document and software contained herein may
not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine
readable from without prior consent, in writing, from Videx,
inc.

© 1981 by: Videx, Inc.

897 NW Grant Avenue
Corvallis. Oregon 97330
(503) 758—0521

Enhancer][, Videoterm, Keyboard & Display Enhancer and
Soft Video Switch are all trademarks of Videx, Inc.

 P R E L I M I N A R Y D O C U M E N T A T I O N

Enhancer][

TABLE OF CONTENTS

Circa: 6—November—81

Part I

Chapter One: Introduction
1.a) Manual Organization and the Conventions Used
1.b) The Product Registration Form
1.c) Features and Options
1.d) Hardware Requirements

Chapter Two: Getting Started
2.a) Enhancer][Utilities Disc Checkout
2.b) How to Remove the Case From Your Apple
2.c) Lower Case Chip installation and Checkout
2.d) Enhancer][Installation
2.e) Enhancer][Installation Checkout

Chapter Three: H E L P I or What To Do If All Else Fails
3.a) Save Time & Money
3.b) Trouble—Shooting
3.c) The RMA Form
3.d) How to Package your Enhancer][before Shipping It

Back for Repair

Part II

Chapter Four: A Printer for Beginners
4.a) Introduction
4.b) Limitations of the Apple][Keyboard
4.c) What the Enhancer][Can Do

Chapter Five: Operation
5.a) Overview
5.b) Semantics
5.c) The Reset Key
5.d) The Caps Lock Mode
5.e) The Lower Case (Caps Unlock) Mode
5.f) User Definable Macro Keys
5.g) The Type Ahead Buffer
5.h) Self Test Diagnostics
5.i) Dvorak Option

Part III

Chapter Six: Apple][Language Considerations
6.a) Apple DOS & BASICs
6.b) 6502 Machine Language
6.c) Pascal
6.d) FORTRAN

Chapter Seven: Other Software Considerations
7.a) Word Processors
7.b) CP/M
7.c) Other Commercial Software

Chapter Eight: Peripheral Considerations
8.a) Peripherals in General
8.b) Videoterm
8.c) Language Card and Other RAM Cards
8.d) Softcard (Z80)
8.e) Printers, Parallel & Serial I/O Boards
8.f) Disc Drive Controllers

Part IV

Appendix A: The Lower Case Fix
A.a) CAPTST
A.b) Implementation
A.c) The ROM Card Solution
A.d) The RAM Card Solution
A.e) How to Modify the Monitor Without a RAM Card
A.f) Modifying a 2716 EPROM

Appendix B: Lower Case Display
B.a) Revision 0 through 6 Apples
B.b) How to Modify Your Old Enhancer for Display Only

Appendix C: Down Load Technical Data

Appendix V: Tech's Installation Checklist

Appendix W: Specifications

Appendix X: Supporting Software
X.a) The Configuration & Hello Programs
X.b) The Key Filter Program
X.c) Apple Writer Modify
X.d) The Macro Editor
X.e) The Down Load Program
X.f) The OUTPATCH (Pascal) Program

Appendix Y: Firmware Listing

Appendix Z: Schematic

Glossary

Notice:

Videx, Inc. reserves the right to make improvements or
changes in the product described in this manual at any time
without notice.

Disclaimer of All Warranties and Liability

Videx, Inc. makes no warranties, neither express nor
implied except as explicitly set forth in the Limited Warranty
below, with respect to this manual nor with respect to the
product described in this manual, its quality, performance,
merchantability or fitness for any purpose. Videx, Inc.
software is sold or licensed “as is”. The entire risk as to its
quality and performance is with the buyer. Should the programs
prove defective following their purchase, the buyer (and not
Videx, Inc., its distributors, or its retailers) assumes the
entire cost of all necessary servicing, repair, or correction
and any Incidental or consequential damages. In no event will
Videx, Inc. be liable for direct, Indirect, incidental, or
consequential damages resulting from any defect In the
hardware/software, even if Videx, Inc. has been advised of the
possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or
exclusion may not apply to you.

Limited Warranty:

Videx, Inc. warrants this product to be free from defects
in material and workmanship for a period of ninety (90) days
from the date of original purchase. Videx, trio. agrees to
repair or, at our option, replace any defective unit without
charge. Videx, Inc. assumes no responsibility for any special
or consequential damages. No other warranty, neither express
nor implied, is authorized by Videx, Inc. Sane states do not
allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

Chapter One: Introduction

Chapter Table of Contents.

1.a) Manual Organization and the Conventions Used
1.a.1) Protocol
1.a.2) References
1.a.3) Notation

1.b) Product Registration Form
1.c) Features and Options
1.d) Hardware Requirements

Chapter One:Introduction

Section 1.a Manual Organization and the Conventions Used

The purpose of this manual is to provide technical support
to the end user of the Enhancer [after the sale. While we
have attempted to make this manual as complete as possible, it
is not a replacement for the manuals to your Apple computer,
peripherals or software. This edition of the manual is a
preliminary edition. If you complete the product registration
form, you will be notified by mail when the Second Edition is
available.

The general organization is in four parts:

 Part I
 Preliminaries

Chapter One: General information
Product registration
Standard features
Optional features

Chapter Two: Installation and initial checkout

Chapter Three: Troubleshooting
How to save time and money
Some common problems

(with solutions)
The RMA form
Warranty and non—warranty

service

Part II
Operation
Chapters Four through Five

Part III
Interfacing
Chapters Six through Ten

Part IV
Quick Reference
Appendices: Concise technical data

This manual has been designed for ease of use by both the
beginner and advanced user. The various chapters deal with
certain topics in some detail, whereas the appendices contain a
more technical synopsis of operation.

Page 1—1

Chapter One: Introduction

Chapter one is devoted to general information. Chapter two
covers installation and initial checkout. Chapter three is the
crisis chapter. Reading chapters two and three carefully can
save both money and “system downtime”. Chapter three contains a
troubleshooting section and the return procedure for warranty
and non—warranty repairs. Chapter four is a primer for
beginners while subsequent chapters deal with the product in
more detail. The appendices contain quick, concise data with
references to sections containing more detailed information.

Section 1.a.1 Protocol

The sections are numbered with a chapter.section protocol,
the format of which is: chapter.section.subsection.sub—sub—
section.... This is family structured. i.e. each section of a
chapter may have subsections. each of which may, in turn, have
subsections of their own, ad infinitum. Each subsection is an
expansion of one theme expressed in its parent section or
subsection. Subsections may therefore be viewed as a closer or
more detailed look at one topic.

Each parent section begins with a lower case letter. For
example, the fifth section of chapter two would be labeled:
5.e. The first subsection of the fifth section would be:
5.e.1. The second subsection would bet 5.e.2. The first
subsection of subsection of 5.e.2 would be labeled: 5.e.2.1.

The pages are numbered with a chapter — page number
protocol. For example, the fifth page of chapter two would be:
2—5.

At the beginning of each chapter is a Chapter Table of
Contents. Each CTOC (\see—tock\) completely lists all sections
and subsections of that chapter. In this way, the reader can
know what topics are discussed in that chapter.

Section 1.a.2 References

References to particular pages or sections may be found
within square brackets. A reference to page 2—5, for example.
might appear like this:

[page: 2—5]

whereas a reference to section 2.e could appear as:

[section: 2.e].

Page 1—2

Chapter One: Introduction

Section 1.a.3 Notation

Control characters will be designated with a circumflex
preceeding the character. For example, a control X would appear
as:

ˆX

Sometimes we will use the name of the character rather than
the character itself. When this is done, the name of the
character — or it’s abbreviation — will be contained in angle
brackets. For example, a control left square bracket —ˆ[—
might appear as:

<escape>
or as:

<esc>

Likewise, a ˆM could be denoted as:

<cr>

Naturally, these characters are not meant to be entered
into the computer in this long hand fashion. To enter a ̂ G, for
example, one would hold the CTRL (control) key down and depress
the G key.

Section 1.b The Product Registration Form

You will find a product registration form attached in the
back of this manual. Another one may be found in this section.
While you are not required to mail this card to us for warranty
protection, it is strongly recommended that you do complete the
form and mail it to us at your earliest possible convenience.
This allows us to mail any information which may be of interest
to our customers at a later date. It also allows us to compile
data so that we may better determine the needs of all our
customers and to serve you better.

Please try to answer all the questions as completely as
possible. If you are unable to answer any question, leave it
blank. If you have any additional comments, please use the
comment card for that purpose or write us a letter. Please do
not write any comments on the Product Registration Form itself
since those cards are not reviewed by our technical staff.
Please do NOT fold the Product Registration form.

Page 1—3

Chapter One: Introduction

Section 1.c Features and Options

The following are some of the Enhancer]['s features:

* Full ASCII keyboard (128 ASCII codes)
* The complete printable ASCII character

set —including lower case — may be displayed
* User definable keys — with down loading from

disc [section: 5.f]
* Type ahead buffer [section: 5.g]
* Auto repeat [section: 5.a.3]
* Fast repeat [section: 5.a.3]
* Normal Apple][mode [section: 5.d]
* Typewriter like operation [section: 5.e]
* Shift—lock feature [section: 5.e.1]
* Control — Reset protection (section: 5.c.1]
* Simple installation [chapter two]
* Microprocessor controlled (6500 series)
* Self test diagnostics [section: 5.h]
* A 2716 EPROM is used for on board firmware
* Complete firmware listings [appendix Y]
* Complete schematic [appendix Z]

* Dvorak keyboard option [section: 5.i]

Your new keyboard Enhancer][utilizes a sophisticated
microprocessor with its own RAM. Although the Enhancer][is
more sophisticated than it’s predecessor, the Keyboard & Display
Enhancer, it is significantly easier to install. The
microprocessor extends the features of the Enhancer][beyond
those of the original Keyboard & Display Enhancer with features
such as user definable keys and a type ahead buffer. The caps
lock, caps unlock, shift lock and control — reset features are
preserved, thus supporting the normal Apple][keyboard as well
as a typewriter like mode.

Section 1.d Hardware Requirements

The Enhancer][may be installed on any Apple][or Apple
][plus with a piggyback style keyboard (normally found only on
revision 7 or greater Apples). Revision 0 through 6 Apples
(with piggyback keyboards) can use the Enhancer][but will
require a device for displaying lower case letters not supplied
with the Enhancer][. such as the Videoterm 80 column card.

To determine the revision of your Apple, look inside along
the left hand edge of your motherboard. You should see white
letters next to each row of chips. If next to the letter E you
see a socket labeled “memory select”, you have a revision 0
through 6 Apple. Otherwise, you should see a white dashed
rectangle with three large holes. This -is a revision 7 or
greater Apple.

Page 1—4

Chapter One:Introduction

Note: This manual assumes that the user has a revision 7
or greater Apple][you have a revision 0 through 6 Apple,
you should NOT install the Lower Case Chip in your system. All
references to lower case display (in 40 columns) would.
therefore, be invalid for your system unless you have some kind
of 40 column lower case display device [appendix B].

Page 1—5

Chapter Two:Getting Started

Chapter Table of Contents.

2.a) Enhancer][Utilities Disc Checkout
2.a.1) The BASICs Side
2.a.2) The Pascal Side

2.b) Row to Remove the Case From Your Ample
2.c) Lower Case Chip Installation and Checkout

2.c.1) Tools Required
2.c.2) procedure

2.d) Enhancer][Installation
2.d.1) Tools Required
2.d.2) Procedure

2.d.2.1) Installation of The
 Acknowledge Wire

2.d.2.2) Enhancer][
 Installation

2.d.2.3) Automatic Download Wire

2.e) Enhancer][Installation Checkout

Chapter Two: Getting Started

Section 2.a Enhancer][Utilities Disc Checkout

Since the disc which comes with the Enhancer][is not copy
protected, the user should ensure that the disc they receive is
in good working order and that adequate backups are made by the
user to insure against data loss.

The Enhancer][Utilities Disc is a double sided disc. The
primary (label) side is the BASICS side. The second (back) side
is the Pascal side. Since the Pascal side is intended to be
used only once, damage due to double sided usage is unlikely.
The Pascal side is not notched and is therefore write protected.

Section 2.a.1 The BASICs Side

To verify the data on the BASICs side, boot DOS, insert the
Enhancer][Utilities Disc into your drive and type the
following:

VERIFY CHECK OUT
EXEC CHECK OUT

If I/O ERROR appears anywhere, you may have a problem.
Repeat the steps, if an error still continues, you will need to
get a new copy of the disc from your dealer.

This concludes the checkout of the BASICs side of the
Enhancer][Utilities Disc. If you have a Pascal system,
continue with the next section. otherwise the disc checkout is
now complete.

Section 2.a.2 The Pascal Side

If you do not have the Pascal language system, you should
ignore this section. If you do have Pascal, you will want to
verify the Pascal side of the utilities disc. To do this,
perform the followings

Boot Pascal.
To enter the Filer type~ F

Once in the Filer, place the Enhancer][Utilities Disc into
one of your drives. To do this, hold the disc with label as you
normally would, then turn it over by rotating your wrist. This
should result in the correct orientation of the disc. To
verify, the label should be on the bottom of the disc as you are
ready to insert it and it should be the last part of the disc
which will enter the drive when you insert the disc.

Page 2—1

Chapter Two: Getting Started

Type: E
Pascal will ask: "Bad block scan of what vol?”
Type: Enh2:
Pascal will ask: “Scan for 28 blocks ? (Y/N)”
Type: y

If it says “0 bad blocks”, your disc is probably good,
otherwiSe it will name any files which are in danger. If no
files are in danger, don’t worry, even if there are many bad
blocks found. If the files OUTPATCH.CODE and OUTPATCH.TEXT are
both listed as endangered, then you will have to get at least
one good copy of these files. You can ask your dealer or call
Videex.

Section 2.b How to Remove the case From Your Apple

() EnSure that your Apple][is functioning properly.

() Turn your Apple][’s power off!

() Disconnect the power cord from the power supply.

() Now, remove the lid from your Apple. Curl your fingers
under the back corners of the lid, bracing your hands
against either side of it. Pull it up until it pops
loose. Do NOT pull the lid straight up, slide it back
until its front edge clears the keyboard end of the
case, then lift it clear. This procedure avoids prying
your keyboard off its mounts.

() Remove all peripheral cards from slots 0—7. This may
be done by rocking thin forward and back while pulling
up, until they come free. If you have a card in slot 0
(far left), it nay be necessary to remove a short cable
leading from it to the motherboard.

() If you have an RF modulator connected to the four—prong
video output connector of the Apple][’s motherboard,
disconnect it.

() Turn your Apple][upside down.

() Remove the screws around the edge of the Apple][which
hold the case on [photo: 2.1]. The four screws at the

Page 2—2

Chapter Two:Getting Started

Photo: 2.1

4

Photo: 2.2

Page 2—3

Chapter Two: Getting Started

front edge, under the keyboard, may have washers
mounted BETWEEN the Apple][case and the bottom. When
you remove these screws, lift the keyboard end of the
base off the case and remove these washers.

() Holding the top and bottom together, carefully turn the
Apple][over (top side up).

() Gently lift the front of the case just enough to reach
in and pry loose the keyboards ribbon cable connector
[photo: 2.2] using a screwdriver to lift first one end
then the other. If you plan to use your hand be
prepared to have two holes in your thumb and two bent
pins on the connector. NOTE CAREFULLY the orientation
of the cable; you will have to put it back the same way
later.

() Completely remove the case from the bottom of the Apple.

Section 2.c Lower Case Chip Installation and Checkout

The Lower Case Chip replaces the character generator chip
(A5) on your motherboard. No special knowledge of computer
systems nor electronics is required. No soldering nor cutting
of traces necessary. You should be able to do it yourself
without any special tools within a half hour. Please read this
section thoroughly before attempting to install your new Lower
Case Chip.

Section 2.c.1 Tools Required

These are the tools required to install your Lower Case
Chip

1) Phillips screwdriver
ii) Standard blade screwdriver or IC extractor

Section 2.c.2 Procedure

Please read these instructions carefully and completely
before attempting to install your Lower Case Chip. If you have
not already done so, refer to Section 2.b for instructions on
removing the case of your Apple.

Locate and remove the large chip at socket location A5
on the motherboard [photo: 2.4]. Wrap it in tinfoil
and set it aside where it will not be lost.

Place the chip labeled Lower Case in the A5 socket on
the motherboard. The notched end of the chip should be
to the left.

Page 2—4

Chapter Two: Getting Started

Photo: 2.3

Photo: 2.4

Page 2—5

Chapter Two: Getting Started

() Connect your monitor or RF modulator to the Apple’s
video output.

() Connect your power cord to the Apple’s power supply.

() Turn your monitor or television set on.

() Turn the power on to your Apple][and listen for its
initial beep. If the power light does not come on,
turn the power switch off and check the power
connections. If the power light does come on. but you
do not hear a beep, carefully recheck all your
installation.

() If you see vertical lines, graphic characters, or
anything unusual on your screen, your Lower Case Chip
is probably not installed correctly. Check to see that
the notched end is to the left. Carefully check to see
if any pins might be bent. If the problem does not
become obvious, refer to Section 3.b.

() If you see the normal characters on your screen, your
Lower Case Chip is probably installed correctly.

() Proceed to the Enhancer][installation section
[section, 2.d]

End of the Lower Case Chip installation.

Section 2.d Enhancer][Installation

The Enhancer][replaces the encoder board of your
keyboard, making installation relatively simple. No special
knowledge of computer systems nor electronics is required.
There is no soldering nor cutting of traces necessary. You
should be able to do it yourself without any special tools
within an hour. Please read this section thoroughly before
attempting to install your new Enhancer][.

Section 2.d.1 Tools Required

These are the tools required to install your Enhancer][:

 i) Phillips screwdriver
 ii) Pliers (preferably needle—nose)

 iii) Wire cutters (optional)
 iiii) Wire stripper (optional)

Page 2—7

Chapter Two:Getting Started

Section 2.d.2 Procedure

Please read these instructions carefully and completely
before attempting to install your Enhancer][. If you have not
already done so, refer to Section 2.b for instructions on
preparing your Apple.

Section 2.d.2.1 Installation of The Acknowledge Line

This Section describes the installation of the Acknowledge
wire (this enables use of the type ahead buffer and ensures
proper operation of the macro definitions). While this wire is
not necessary, it is strongly encouraged.

() Cut a length of wire about two inches long (about 5 cm).

() Strip one eighth inch (or 3 m) of insulation from each
end.

() Locate on the Apple motherboard the integrated circuit
(IC) at location B—? [photo: 2.31. It is in the
second row from the front and seventh from the left
edge of the motherboard, and is marked 74L5257 both on
the IC and on the motherboard next to it.

() Remove the 74LS257 by using a flat—bladed screwdriver
to pry up first one end, then the other, until the IC
is free. Use needle—nose pliers to straighten any pins
you may have bent.

() Locate pin number 5 of the empty socket at 3—7 [photo:
2.71. Insert one of the stripped ends of the short
wire Imo this hole.

() Examine the 74L5257 again for bent pins, then insert it
into the socket, letting pin 5 join the wire in the
hole. BE SURE that the end of the IC with the notch or
dimple is pointed toward the keyboard socket [photo:
2.71. If it is installed backward it and/or your
Apple could be damaged.

() After inserting the IC in B—7, check that the bare part
of the wire does not touch any pins other than pin 5.

() Bring the other end of the wire over to pin 9 of the
keyboard cable socket at location A—7. Insert it into
pin 9, makIng sure that it will not touch any other
pins of the keyboard cable plug.

Page 2—8

Chapter Two: Getting Started

Photo: 2.7

Photo: 2.8

Page 2—9

Chapter Two:Getting Started

Photo: 2.9

Photo: 2.10

Page 2—10

Chapter Two: Getting Started

Section 2.d.2.2 Enhancer][Installation

() Invert the case of your Apple and-observe the keyboard
and the ‘piggyback” encoder board mounted on it.

() Note the nylon spacers that extend through the
piggyback board. The board will have to slide off of
these spacers. Squeeze the ends of the spacers with
your pliers so they will fit through the board’s holes
[photo: 2.8]. At the sane tine, pull the piggyback
board away from the keyboard. There will be some
resistance from the 25—pin connector (the contacts are
spring—loaded) but it should slide smoothly out, once
the spacers are freed.

() Very carefully remove the 16—pin cable connector from
your piggyback board, using the flat screwdriver to pry
up alternately one end, then the other, until it is
free. Note the orientation of the connector. You will
have to plug it into your Enhancer][from the same
direction [photo: 2.9].

() Examine the 16 pin cable. At each end you should see a
white triangle or dot or perhaps some numbers. The dot
or other mark indicates pin one.

() Examine the Enhancer][circuit board. The socket at
the lower left hand corner is the keyboard cable
socket. The upper right hand pin is pin number one.
Take the 16 pin cable and insert it into this socket,
taking care to ensure that pin one of the cable is
inserted into pin one of the socket [photo: 2.10].

() Examine the 25—pin connector on the Enhancer][. Make
sure all pins are straight and parallel. Straighten
any that are not.

() Now, look at the underside of your keyboard. On some
Apples there will be a metal stiffener bar across the
back of the keyboard, extending up about three—eighths
inch from the keyboard surface. If this is present, it
must be covered before your Enhancer][is installed
further. There should have been included in your
Enhancer][box a strip of insulating material about
four inches long. This should be placed over the edge
of the bar so Chat when the Enhancer][is installed,
no Dare metal touches it [photo: 2.12].

() Look now at the plastic spacers that held the piggyback
board on. There will be a center post flanked by two
curved flanges. The right spacer (the one further from
the side of the Apple) must be rotated 90 degrees so
the flanges are parallel to the edge of the keyboard,
as shown in photo 2.13.

Page 2—11

Chapter Two: Getting Started

Photo: 2.11

Photo: 2.22

Page 2—12

Chapter Two: Getting Started

Photo: 2.13

Photo: 2.14

page 2—13

Chapter Two: Getting Started

() Once the 16—pin ribbon cable is installed and any of
the 25 pins straightened as necessary, you may install
the Enhancer][on the keyboard in place of the
piggyback board you removed. To line up the pins, tilt
the board a little so the tips of the pins press on
the edges of the holes in the keyboard [photo: 2.13].
By wiggling the Enhancer][you should be able to make
most of the pins pop into the correct holes, any that
do not may be lined up with a screwdriver.

() When all the pins line up, press the Enhancer][
smoothly onto the keyboard until the spacers lock in
place.

Section 2.d.2.3 Automatic Download Wire

This section concerns the installation of a wire that
allows totally automatic downloading of key redefinitions. If
you are not sure you wish to have this, refer to Section 5.f.4
for an explanation of its effects.

IMPORTANT: If you install this wire, the blue plastic cap
on Molex pin five [photo: 2.11] must be removed.

() Cut a length of wire about twelve inches (30 cm) long.

() Strip one eighth inch (or 3 mm) of insulation from each
end.

() Locate on the Apple motherboard the integrated circuit
(IC) at location F—14. It is in the sixth row from the
front, at the right edge of the motherboard. and is
marked as a 9334 (or 74LS259) both on the IC and on the
motherboard next to it. NOTE: There may be a Soft
Video Switch installed in this socket. If so. install
the wire under the SVS, not the 9334.

() Remove the 9334 by using a flat—bladed screwdriver to
pry up first one end, then the other, until the IC is
free. Use needle—nose pliers to straighten any pins
you may have bent.

() Locate pin number 12 of the empty socket at F—14.
Insert one of the stripped ends of the long wire into
this hole.

Page 2—14

Chapter Two: Getting Started

() Examine the 9334 again for bent pins, then insert it
into the socket, letting pin 12 join the wire in the
hole. BE SURE that the end of the IC with the notch or
dimple is pointed toward the keyboard. If it is
installed backward will be destroyed when you turn
the power on.

() After inserting the IC in F—14. check that the bare
part of the wire does not touch any pins other than pin
12.

() Bring the other end of the wire over to pin 4 of the
keyboard cable socket at location A—7. Insert it into
pin 4, making sure that it will not touch any other
pins of the keyboard cable plug.

() Make sure the blue shorting plug in photo 2.11 is
removed.

End of download—control—wire installation

() Now, place the case of your Apple back on its base.
left edge first. Be careful not to crush the keyboard
cable connector.

() Lift the right side of the case just enough to reach in
and grab the keyboard cable connector plug. Plug the
connector into its socket, making sure that pin one of
the cable enters hole number one of the socket (this
able will have a white dot silkscreened next to it).

() Reinstall two of the screws immediately under the
keyboard, but don’t bother replacing the washers. (If
your Apple is on a table you should be able to do this
without inverting it.)

() Proceed to the installation checkout section. If
everything checks out ok, complete the re—assembly of
your Apple][(with the power off), else refer to
Chapter 3.

End of installation.

Page 2—15

Chapter Two: Getting Started

Section 2.e Enhancer][Installation Checkout

The purpose of this section is to determine whether your
Enhancer][is installed and functioning correctly. If these
steps are followed precisely, independent variables which can
give the appearance of disfunction will be controlled. If you
are unable to perform any of these steps, proceed to Chapter
three.

() Turn the power off (important).

() Disconnect any and all, peripheral cards which may be
installed in slots 0—7.

() If your monitor is not connected to the Apples video
output, connect it.

() Turn the power on.

() If the power light does not come on, shut off the power
immediately and check your connections. Probably your
keyboard cable is plugged in backwards, this can damage
your Enhancer][. If it does not become obvious, turn
to Chapter 3: Troubleshooting.

() If the power light does cone on but there is no beep
and no prompt on the screen, check your connections,
and check that the IC’s you had pulled are plugged in
right. Again if it’s not something obvious, turn to
Chapter 3.

() If the you get a beep but no prompt on the screen,
check that your monitor is connected correctly and
powered up.

() If you get a beep and a prompt, you are ready to begin
checking your Enhancer][. If a message is displayed,
either ENHANCER CHECKSUM FAILURE, ENHANCER MEMORY
FAILURE. BREAK ERROR, or INTERRUPT, your Enhancer][
has failed its own self—check and must be fixed. Refer
to Section 3.a.

() Type some random characters, just to see that you can
enter characters. If none appear, your Enhancer][is
not working yet, recheck your installation, then refer
to Chapter 3 if you do not find anything.

Page 2—16

Chapter Two: Getting Started

() If characters are being entered, you may begin the full
check. Enter the following keys several times each, and
check that they are echoed to the screen properly.

Q W E R T Y T U I O P then 3 Q S D Z then

@ A B C D E F G H I J K L M N O P Z
<ctrl>G (expect a beep)
<ESC> then I (expect the cursor to move up one line)

(<ctrl> and <ESC> are the keys with those labels on them).

The first set of characters composes one row and one
column of the keyboard matrix, Table 3.1. The second
defines a row and column of the ASCII chart, Table 5.1
[section: 5.b.1]. Problems tend to show as patterns
of errors associated with the arrangement of one of
these charts. If these keys all produced the correct
characters, skip the next three steps.

() If any of the keys you pressed did not echo as the
correct character, try each of the other keys in that
row and column. The results of this check should be
noted down for use in servicing your Enhancer][.

() If the correct character is being entered but is
followed by an underline character, then PROBABLY your
download—control wire, the one leading from the
keyboard socket to position F—14 near the back edge of
your motherboard is not connected well. To check this,
remove the wire and reinstall the blue shorting plug
across pins 5 and 6 of the Molex connector, then repeat
the checkout sequence.

() If the wrong characters are entered but do not show a
regular pattern on Table 3.1, check the characters
against the chart in Chapter 5, Table 5.1. Again, if
you can detect any pattern, note it down.

() Assuming the characters tried so far have been correct,
we can now check the rest of the Enhancer][. Begin by
pressing RESET by itself. It should not cause a system
reset (a beep), if it does, the (left) blue shorting
plug to the left in photo 2.11 is in the wrong
position, or something is not right with your Enhancer
][.

() Enter a 'G' it should be displayed as such.

() Holding CTRL down, enter a ‘G' again, you should hear a
beep.

Page 2—17

Chapter Two: Getting Started

() Enter an ‘N’, you should see an ‘N,’ displayed.

() Now, hold SHIFT down while entering an ‘N’, you should
see an '^' displayed.

() If these characters work OK, then your character keys,
your control key, and your shift key are known to work.
Now check your REPEAT function. Hold REPEAT down and
press another key such as ‘F’. It should IMMEDIATELY
begin repeating at high speed.

() If you installed the wire that enables the type ahead
buffer, check it this way: Fill a line with
characters, then hold down REPT and RETURN for a few
moments, then let them up, the screen should continue
scrolling for a moment afterwards. If it does not,
check installation of the type ahead wire.

() Now, hold down the shift key, press reset and let it
up, then let op the shift key. This puts your Enhancer
][in Lower Case node.

() Now enter an ‘N’ then a <shift> ’N’, both should result
in an upper—case ‘N’. (The Enhancer][is actually
producing a lower case n’, but the Apple is converting
it to upper case.)

() The following steps check the automatic download
capability. If you installed the wire that enables
this, check it this way: If the prompt now displayed
at the left side of your screen is a ‘]’ or a '>’,
proceed to the next step, otherwise, enter a CTRL—’B’
then RETURN.

() Now. assuming you have a BASIC prompt, enter the line:

<cntl—reset> PRINT POKE —16290,0

and press RETURN. There should be an underline
character displayed just to the left of the cursor. If
not, the download control wire is not properly
installed.

() This concludes manual checkout of the Enhancer][. You
may wish to try the rest of the codes in Table 5.1,
especially if you had installed the keyboard cable
connector backwards.

You may now proceed to Chapter 4 for an introduction to
your new Enhancer][.

Page 2—18

Chapter Three: H E L P or What To Do If All Else Fails

Chapter Table of Contents.

3.a) Save Time & Money
3.b) Trouble—Shooting

 3.b.1) The Lower Case Chip
 3.b.2) The Enhancer][
 3.b.3) Later Problems

3.c) The RMA Form
3.c.1) How to Complete the RMA Form

3.d) How to Package your Enhancer][Before Shipping It
Back for Repair

Chapter Three: H E L P ! or What To Do If All Else Fails

Section 3.a Save Time & Money

Careful reading of this chapter can save you both time and
money. It covers most of the difficulties that you are likely
to encounter. You should read this chapter in its entirely
prior to calling Videx or shipping the Enhancer][back for
repair. You will probably want to skip the entire chapter
unless you encounter some nasty snag in installation or
operation.

A great deal of care and testing goes into each product
that we make. Your Enhancer][was exhaustively tested by our
quality control department prior to being packaged. Though it
may not seen like it, the problem which you have encountered is
probably not due to equipment failure. By reading this chapter
carefully, you will probably be able to resolve any problem
yourself without costly long distance phone calls or needless
shipping of a perfectly good Enhancer][for repair. This, in
turn, will tend to reduce “system down time.” If after you have
read this chapter. carefully checked the operation of the
Enhancer][and you are still having difficulty, please give us
a call.

All products returned to Videx must be accompanied by a RMA
(returned merchandize authorization) number. To receive an RMA
number. you must call or write Videx.

Section 3.b Trouble—Shooting

That you are reading this implies that something does not
seen to be working right with your Enhancer][. The following
sections are arranged in the order in which problems would be
discovered.

Section 3.b.1 The Lower Case Chip

This section refers to problems that occur in following the
instructions in Section 2.c. There are a number of problems
that could occur:

a. The power comes on, but the Apple does not beep.
1. Check installation, probably the Lower Case Chip is

installed backwards or offset one pin, this results
in a destroyed Lover Case Chip.

b. The Apple beeps, but the screen remains blank.
1. Check that the monitor is plugged in
2. Turned on
3. The cable is connected
4. The RF modulator, if any, is connected correctly.

Page 3—1

Chapter Three: H E L P ! or What To Do If All Else Fails

d. The screen lights up, but no characters are displayed.
There may be horizontal or vertical bars, or no real
pattern at all.

1. Check for bent pins on the Lower Case Chip.
2. The Lower Case Chip may be faulty, replace it with

the original and see if that works now.

e. Characters are displayed, but at random (no pattern).

f. Characters are displayed, but they are the wrong characters
for those positions.

NOTE: Turning the power on with the Lower Case Chip
plugged in backwards will destroy the Lower Case Chip. If this
occurs, you must return the Lower Case Chip for exchange.

Returned merchandise must be accompanied by an RMA form, a
detailed description of the problem will greatly speed
service.

Section 3.b.2 The Enhancer][

The Enhancer][is a complex device, many different
problems my occur, some gross, some subtle. This section
begins with those problems that may occur on power—up.

1. No power light, power supply make snapping noises power
supply is shorted out. Remove the keyboard connector
cable from A—7 and try again. Restore one feature of
your Apple to its original state at a time, each time
checking whether your Apple works afterward. If your
Apple is returned to its pristine state and still does
not work, there probably is a damaged chip on it, but
first check that all the chips are plugged in with the
notched or dimpled end pointed TOWARD the keyboard end
of the A Apple, any that are plugged backwards will
grow very hot immediately after powerup. If the Apple
works (beeps on powerup)) after removing the keyboard
cable, there is something drastically wrong with your
Enhancer][. Since each is checked before leaving
Videx. the most likely cause is either: one (or both)
of the wires leading to the wrong hole in a socket, or
one of the blue shorting blocks on the wrong pair of
Molex pins (if they should be there at all).

2. No power light, no snapping noises: Your keyboard cable
is probably plugged backwards (This would damage your
Enhancer][). If not, check other things: Assuming you
had already checked your Lower Case chip with the
keyboard cable disconnected, you should check that each
chip you removed is plugged right, with no pins bent
under or out; that the wires are plugged into the right

Page 3—2

Chapter Threes: H E L P! or What To Do If All Else Fails

holes, that they are not touching (and cannot touch)
any other pins; check that the wire leading to your
speaker is free, not pinned to the bottom of your
motherboard.

3. Power light, no beep: again, follow the instructions in
step 2

4. Power light, beep, no display: check the conditions in
b) above, as well as those in step 2. Check the
shorting plugs against photo 2.d.<> and the
instructions in Section 2.4.

5. Power OK, beep, APPLE][display, Basic prompt; no
character entry, no messages displayed: Then there is
anything serious wrong with the Enhancer][, this is
how it will usually fail. Is there a bar across the
back of your keyboard? If so, check that it is
adequately insulated from the Enhancer][. Is there
any other equipment under the position where the
Enhancer][mounts? If so, do they touch? The bottom
side of the Enhancer must not be allowed to touch bare
metal. If there is Anything occurring additionally, be
sure to note it on the RMA form.

6. Characters being entered, but erratically: this includes
any instance of characters being entered when you
haven’t been typing anything, usually it involves a
single character repeating indefinitely. Check that
the wires installed in the keyboard socket enter the
correct holes, and that they do not touch any pins
other than the proper ones.

7. Characters entered when key is struck, but more than one
character: If it is an underline, the
download—control—wire is improperly installed, or the
blue plastic shorting plug is on the wrong pair of
Molex pins [photo 2.d.x]. If it is a set off
characters, see if there is any correspondence between
which ones are produced for a certain character and
keys in Table 3.1 on the RMA form. Check the repeat
speed, if it is incredibly fast, write that down.

8. One character entered when one key is struck, but
(sometimes) the wrong character: Again, check for
correspondence against both Tables. 3.1 and 5.1. Note
amy patterns.

Page 3—3

Chapter Threes: H E L P ! or What To Do If All Else Fails

Section 3.b.3 Later Problems

This section deals with problems that occur some time after
installation checkout, It assumes that you had successfully run
through the installation checkout procedure some time before.

The most common problems will be:

1. No lower case entry to BASIC: refer to Section 6.a.

2. Repeat Won’t work well in Pascal: This is because Pascal is
too slow to pick up characters as they become available.
Use the "flush buffer” command (<reset> or <shift><resetS)
to stop the cursor where you want it, or anytime Pascal
runs away from you.

3. Shift—lock is too easily set: this feature my be turned
off by the down—load program supplied with your
Enhancer][.

4. Macros defined earlier are gone: what mode were they
defined under, Caps Lock or Lower Case? What node are
you in now? Try switching to the other mode and using
the macro -- it nay be there! Is it possible that you
have pressed <rept><reset> or shut off your Apple since
defining the macro? Are you running a program that
could be doing things with Annunciator #3, perhaps as a
"copy—protect” scheme? If so, you may wish to use the
down—load program to disable automatic downloading
(this would have to be done only once after turning the
power on but prior to running the offending program).

5. The Enhancer][works fine for about a half—hour, then
quits: First, check if you haven’t gotten it into a
weird mode: does it think you’re defining a macro?
Press <space> then <rept> and try it then. If that
doesn't do it, press <rept><reset>, which will clear
any macros now defined, including spurious ones. If
that doesn’t do it, try a system reset (probably
<ctrl><reset>) and try it then. If it works then, use
it for another ten minutes, very suspiciously: it may
be a subtle thermal problem. Finally, try turning the
system off, then on again. Again, try it for awhile.
with a wary eye on what it is (and you are) doing.
Anything you notice should be written on the RMA form.

Page 3—4

Chapter Three: H E L P ! or What To Do If All Else Fails

Section 3.c The RMA Form

All products returned to Videx for repair or replacement
should be accompanied by an RMA (returned merchandize
authorization) form. By completing an RMA form in detail and
returning it with your shipment, you will probably cut the
repair time at least by half. The RMA form ensures accurate
handling and quick diagnosis of your board. You will find one
of these forms in the back of this manual and smother in figure
3.3. Figure 3.1 is a sample of a completed RMA form.

If your blank RMA form is missing, you may use a photocopy
of figure 3.3. It is suggested that you do not write on figure
3.3 itself.

Section 3.c.1 How to Complete the RMA Form

Figure 3.2 is a sample of a completed RMA form. You should
ensure that the RMA form is complEtely filled in. If the form
is completed in detail, the repair time can be significantly
reduced.

The RMA form is divided into four parts. Section A is for
general information. Section 3 deals with your system’s
configuration. This data is useful in determining if some part
of your system may be conflicting with the Enhancer][or
related problem. Section C asks questions which we have found
to be useful in determining certain problems. Section D is
reserved for a complete description of the problem.

Please refer to figure 3.2 for the following discussion.

Page 3—5

Chapter Three: H E L P ! or What To Do If All Else Fails

RMA Form for Enhancer][ENH—000 RMA # __________________________
 Serial # __________________________

 Previous Service RMA # __________________________

Name _________________________ Shipping Address:
Organization _________________ Name __________________________________
______________________________ Addr.__________________________________
Addr. ________________________ __________________________________
______________________________ __________________________________
______________________________ Shipping Instr.___________________
Phone # ______________________ times _________________ time Zone
Phone # ______________________ times _________________ ______________
Dates purchased ______________ sent ___________________

System Configuration:
___ Autostart ___ Old Monitor ROM
___ Apple][plus ___ Apple][

Resident Language: ___ AppleSoft ___ Integer

Number of disc drives:

List on the back of the page all products installed in the Apple at the time
the failure occurred, and any software that was in use.

For problems that occurred during installation, did you get a:
___ power light?
___ power—up beep?
___ Display?

Were there any installation errors? (no penalty for honesty...)

Any messages displayed on power—up or later?:
___ ENHANCER RAM FAILURE
___ ENHANCER CHECKSUM FAILURE
___ BREAK ERROR
___ INTERRUPT

___ Single character repeating continuously? (no keys pressed)
___ Some keys produce several characters?
___ Some keys produce nothing?
___ Some keys produce Wrong characters?
___ All keys produce nothing?

No effect from:
___ Shift key
___ Control key
___ Repeat key
___ typeahead doesn’t work
___ autodownload doesn’t work

Does the problem occur only several minutes after powerup?

Describe on the back of the sheet, in detail, the circumstances under which
the problem occurred.

Page 3—6

Chapter Three: H E L P ! or What To Do If All Else Fails

 columns
| C9 C8 C7 C6 C5 C4 C3 C2 Cl C0

rows |--- legend:
|
| 3__ 4__ 5__ 6__ 7__ 8__ 9__ 0__ :__ —__ ˆH: backarrow
|
| Q__ W__ E__ R__ T__ Y__ U__ I__ 0__ P__ ˆU: forearrow
|
|
| D__ F__ G__ H__ J__ K__ L__ ;__ ˆH__ˆU__ ˆ]: ESC
|
| Z__ X__ C__ V__ B__ N__ M__ ,__ .__ /__ ˆM: RETURN
|
| S__ 2__ 1__ ˆ]__ sP__ ˆM__ sp: Space

Table 3.1: Substitution Chart (may be photocopied to speed service;
fill in the character produced for that key)

Page 3—7

Chapter Three: H E L P ! or What To Do If All Else Fails

Section 3.d How to Package your Enhancer][Before Shipping it
Back for Repair

Before you return your Enhancer][to Videx for repair,
please be sure that you have carefully followed the
troubleshooting section of this chapter [section: 3.b] . Many
problems can be corrected by carefully reading this manual
without the expense of costly long distance phone calls or
needless shipping.

All returned merchandise must be accompanied by a RMA
[section: 3.c] form AND a RMA number. You must call Videx for
the RMA number. Enclosing a completed RMA form will greatly
reduce the time necessary for repair.

Do NOT return manuals, cables, etc. Only return the board
itself. This will decrease the total shipping weight and speed
up our processing of your repair. Be sure to ship the boards
using the boxes in which they were originally shipped, including
any packing materials. Please ensure that any protruding parts
on the board are adequately protected.

You should insure your shipment for replacement cost.
Videx cannot assume liability for materials lost or damaged in
transit.

Send all repairs to the following address:

Videx, Inc.
Service Department
897 NW Grant Avenue
Corvallis, Oregon 97330

For a RMA number, call: (503) 758—0521.

Page 3—8

Chapter Four: A Primer for Beginners

Chapter Table of Contents.

4.a) Introduction
4.b) Limitations of the Apple][Keyboard
4.c) What the Enhancer][Can Do

Chapter four: A Primer for beginners

Section 4.a Introduction

This chapter is a primer for people who do not consider
themselves computer wizards, It attempts to answer many of the
questions which are probably racing through your mind. It
cannot anticipate all questions, however. Your Apple][
computer is a complex piece of machinery. The Enhancer][makes
it even more complex yet it can actually make your Apple][
easier to use. As with any device, machines cannot be utilized
to their fullest potential unless they are thoroughly
understood by the operator. In the end, your best teacher will
be yourself. This manual should be thought of as a tool in
teaching yourself how to use your improved keyboard. It is
strongly recommended that you install your Enhancer][, if you
have not already done so, before reading further so that you can
try the things that you will be reading about. This will
reinforce your learning and make the reading easier.

Even if you have never had any experience with computers
before, you will probably be able to install and learn how to
operate the Enhancer][in a relatively short period of time.
familiarity with your Apple][is a prerequisite to the use of
the Enhancer][’s advanced features. This manual is NOT a
substitute for the documentation supplied by Apple. If you do not
feel comfortable with the Apple][, you may leave the Enhancer
][installed but you should review your Apple][manuals before
proceeding with this manual.

There is a glossary in the back of this manual. We have
attempted to make it as comprehensive as possible. If you come
across a word or term you aren’t familiar with, refer to the
glossary.

Section 4.b Limitations of the Apple][Keyboard

The standard Apple][keyboard is an upper case only
keyboard. Even though it is equipped with shift keys, it is
incapable of lower case character entry. The shift keys are
only used to shift the number and a few other keys. The
Enhancer][changes all this so that the shift keys, and most
other keys, may be put to greater use.

The standard Apple][keyboard is capable of entering only
91 of the possible 128 ASCII characters. The characters which
cannot be entered are:

-\ <fg> (control backslash) { (left brace)
ˆ_ <Us> (control underscore) | (vertical bar)
[Cleft square bracket) } (right brace)
\ (backslash) ~ (tilde)
_ (underscore) <Rub> (Rub—out)
' (grave accent) a—z (all lower case

Page 4—1

Chapter Four:A Primer for Beginners

letters)

The Apple][keyboard does not have auto repeat nor fast
repeat, as found on many computer terminals and some
typewriters. Auto repeat means that when a key has been pressed
and held down, after a brief pause it will repeat that character
automatically.

The Apple][keyboard has a one character buffer. This
means that you may type only one character while the computer is
doing something else. If you type more than one character, the
last character typed will be the character buffered
(remembered).

The Apple][keyboard does not allow macro definitions. A
keyboard with macro definitions would allow all or some keys or
keystrokes to be defined as any combination of characters, up to
a given limit.

Section 4.c What the Enhancer][Can Do

The Enhancer][completely changes your old Apple][
keyboard into an intelligent keyboard. By installing the
Enhancer][, you have the potential to completely redefine the
operation of your keyboard. The Apple][(keyboard is divided
into two parts: the keyboard switches and the encode? board
(i.e. the electronics). The Enhancer][replaces the encoder
board, so your keyboard is keeping its switches, but is getting
a whole new brain. A much larger brain.

With the Enhancer][, your shift keys become fully
functional — like those of a typewriter [section: 5.e]. You
may enter upper and lower case characters. You may enter any
ASCII character, including those that the normal Apple][
keyboard is incapable of entering [section: 4.b].

The Enhancer][gives your keyboard auto repeat and fast
repeat (section: 5.a.31. When you press and hold a key down
for just less than a second, that key will begin to repeat at a
rate of about 15 characters per second. If you press and hold
the repeat (REPT) key down along with some other key
simultaneously, the other key will, be repeated at a faster rate.
approximately SO characters per second.

Since the Enhancer][has its own RAM, it is capable of
remembering characters that you type while your Apple][is
ignoring you (like when it’s talking to the disc system). This
is called a type ahead buffer [section: 5.g]. naturally. the
type ahead buffer is not unlimited. It has room for 128
characters. This is probably more than enough for most
purposes.

Page 4—2

Chapter Four: A Primer for Beginners

The Enhancer][is also blessed with user definable keys —
or macros [section: 5.f]. This means that you can equate a
particular key with a character or sequence of characters up to
510 characters in length.

Your Enhancer][should have come with a chip labeled:
“Lower Case”. This chip may already be installed on your Apple
][. It cannot readily be seen without disassembly of your Apple
][. The function of this chip is to allow the display of lower
case letters on your screen in the normal 40 column display
format. If you have the Videoterm 80 column card, you do not
need the Lower Case Chip to display lower case letters on the 80
column screen since the Videoterm has its own character
generator.

Note: Do NOT attempt to install the Lower Case Chip in a
Revision 0 through 6 Apple. Attempting to do so can cause
damage to your computer.

Page 4—3

Chapter Five: Operation

Chapter Table of Contents.

5.a) Overview
 5.a. 1) The Two Modes
 5.a.2) Macro Keys
 5.a.3) Auto & Fast Repeat
 5.a.4) The Type Ahead Buffer

5.b) Semantics
 5.b.1) ASCII Characters
 5.b.2) Keystrokes
 5.b.3) Function Keys and Character Keys
 5.b.4) Keyboard Characters

5.c) The Reset Key
5.c.1) The System Reset

5.d) The Caps Lock Mode
5.e) The Lower Case (Caps Unlock) Mode
5.f) User Definable Macro Keys

5.f.1) The Keys WhIch May Be Redefined
5.f.2) Macro Memory Usage
5.f.3) Defining a Macro

5.f.3.1) Macro Definitions From the Keyboard

5.f.4) Down Loading of User Defined Keys
5.f.5) Repeat Reset

5.g) The Type Ahead Buffer
5.g.1) The Acknowledge Line
5.g.2) Macros

5.h) Self Test Diagnostics
5.i) Dvorak Option

Chapter Five: Operation

Section 5.a Overview

This chapter will discuss the operation of the Enhancer][
This section is a brief overview of the chapter. Most of the
questions that are raised as you read this section will probably
be answered in subsequent sections. The Enhancer][is a
sophisticated product and it will take some time for the user to
become entirely familiar with its operation. Please do not feel
intimidated if you find it necessary to re—read this chapter
several times before all of the features are completely
understood.

The Enhancer][has two modes of operation: The Caps Lock
Mode, and the Lower Case Mode. If you think of your Apple][as
having two separate keyboards, each functioning differently, you
will begin to comprehend how the Enhancer][behaves. Each of
these keyboards corresponds to one of the two nodes.

Section 5.a.1 The Two Modes

The Caps Lock Mode behaves very much like the Apple’s
normal keyboard. Added are user definable macro keys, a type
ahead buffer and auto repeat. In the Lower Case Mode, the shift
key becomes fully functional for upper & lower case input and a
Shift Lock feature is added. All 128 ASCII characters may be
entered from this node [section: 5.e]

As we begin to use advanced features, the two modes begin
to diverge even farther. A macro defined in one node will not
be present in the other mode. It is as if your Apple had two
physically different keyboards. This is a very important
concept of this chapter.

Programmer’s Note: A Mode Lock feature is selectable from
down load [section: 5.f.4].

Section 5.a.2 Macro Keys

Later sections of this chapter will discuss exactly which
key combinations may be defined as macros [section, 5.f.1].
For now, we will state that there are 376 unique keystroke
combinations which may be defined. Exactly half of these
keystrokes are found in each node. If we define a keystroke
combination to be equal to some macro in one mode, change modes
and type the sane keystroke combination, that macro will not
exist in the second mode. Going back to our dual keyboard
analogy, if we define some key on one keyboard, we would not
expect it to have an effect upon the second keyboard. This is
perhaps the single most important factor in understanding the
use of macros.

Page 5—1

Chapter Five:Operation

Section 5.a.3 Auto & Fast Repeat

Your keyboard is now capable of auto repeat. That is, when
you press and hold a key down, after a brief pause (approximately
3/4 second), the character or macro associated with that key
will begin to repeat. If you hold the repeat key down
simultaneously, it will repeat at a faster rate. These two
features are known as Auto Repeat and Fast Repeat respectively.

Programmer’s Note: Auto and fast repeats nay be disabled
from a down load [section: 5.f.4].

Section 5.a.4 The Type Ahead Buffer

The Enhancer][is equipped with a 128 character type ahead
buffer. This means that you may type up to 128 characters while
the Apple][is not scanning the keyboard (like when its doing
disc operations). When the Apple is ready for more keyboard
input, the Enhancer][will tell the Apple exactly what you
typed. Naturally, there will probably he times when you want to
clear the buffer, so there are two flush buffer commands:
ˆC and Reset. More about this later [section: 5.g.2].

Programmer’s Note: The type ahead buffer may be disabled
from a down load [section: 5.f.4].

Section 5.b Semantics

This section deals with sons important definitions that
will be used throughout this chapter. The reader is encouraged
to understand the differences between the definitions of ASCII
CHARACTER, KEYBOARD CHARACTER, KEYSTROKE, FUNCTION KEY and
CHARACTER KEY. Once these definitions are clear, we will be
better suited to understand the sometimes complex operation of
macro key definitions and other functions.

Section 5.b.1 ASCII Characters

The ASCII character set consists of 128 characters. Table
5.1 shows these characters and their corresponding decimal and
hexadecimal values. With the Enhancer][, you can enter any
and all of these ASCII characters directly from your Apple][
keyboard.

Definition: An ASCII CHARACTER is defined as a single
element of Table 5.1.

Page 5—2

Chapter Five: Operation

Table 5.1 The ASCII Character Codes

|---
| Decimal: 128 144 160 176 192 208 224 240 |
Hex: $80 $90 $A0 $B0 $C0 $D0 $E0 $F0
0 $0
1 $1
2 $2
3 $3
4 $4
5 $5
6 $6
7 $7
8 $8
9 $9
10 $A
11 $B
12 $C
13 $D
14 $E
15 $F

Note: HOW TO READ TABLE 5.1. The ASCII value of any
character in table 5.1. may be determined by adding the value at
the top of the column with the value to the, left of the row that
the character appears in. [A dollar sign ($) preceeding any
value indicates hexadecimal. Values without a dollar sign are
represented in decimal or base ten.] The first two columns of
characters are the control characters. They are preceeded by
circumflexes (ˆ) and followed by their ASCII names.

Example: A control G is represented by: ˆG Bel. “Bel" is
a short hand notation for “bell”, meaning the bell character.
Its ASCII value is $87 (hexadecimal) or 135 (decimal,).

Programmer Note: Table 5.1 shows the ASCII values with the
high bit on. For equivalent ASCII representation with the high
bit off, subtract $80 (hexadecimal) or 128 (decimal).

Section 5.b.2 Keystrokes

Definition: A KEYSTROKE is, for the purposes of this text,
one and only one depression of any given key. Depressing two
keys simultaneously constitutes two keystrokes.

Each character in Table 5.1 has a unique name and a
corresponding ASCII value. Some ASCII characters may be entered

Page 5—3

Chapter Five: Operation

from the keyboard with only one, keystroke (e.g. Return and
Escape) while others may require as many as three keystrokes
(e.g. the null character is a control—shift F). Regardless of
how many keystrokes are required to type a particular ASCII
character, it is considered to be only a single ASCII
character. An ASCII character, therefore, is a single element
of Table 5.1.

Section 5.b.3 Function Keys and Character Keys

Definition: A FUNCTION KEY is a key that, when depressed by
itself or in combination with another key(s), causes some
function to occur. By themselves, function keys do not generate
ASCII characters. The function keys are: the repeat, reset,
control and shift keys. [Exception: depressing the Repeat and
Reset keys simultaneously will cause the rub—out character to be
generated.]

Note: Repeat — Reset should not be used to output a
rub—out since this particular key sequence has other
ramifications.

Definition: A CHARACTER KEY is any key on the Apple]['s
keyboard which is NOT a function key.

The Apple keyboard contains 52 keys, five of which are
function keys (One repeat key, one reset key. one control key
and two shift keys). The remaining 47 are character keys.

Section 5.b.4 Keyboard Characters

Definition: A KEYBOARD CHARACTER is one, two or three
keystrokes (of a mode) produced by a combination of one
character key and one of the following four possible function
key combinations: control, shift, control — shift or none.
There are 376 unique keyboard characters, 188 in each mode.

Example: Depressing the shift and escape keys
simultaneously produces an escape character. Depressing the
escape key produces the escape character. Shift — Escape and
Escape are two distinct keyboard characters. Normally, both of
these keyboard characters produce the same ASCII character:
<escape>.

Another Example: Depressing the Control and G keys
simultaneously in the Caps Lock Mode produces a ˆG. Depressing
the Control and 0 keys simultaneously in the Lower Case Mode
produces a ˆG. A control 0 in Caps Lock Mode is a different
keyboard character than a control G in the Lower Case Mode.
however, both of these keystrokes produce the sane ASCII
character, namely a ˆG.

Page 5—4

Chapter Five: Operation

The Apple][keyboard is capable of producing 188 unique
keyboard character combinations in each mode. This number is
calculated by the following formula:

(47 character keys) * 4 possible control—shift combinations

Where the 4 control—shift combinations are:

 i) A key nay be pressed by itself
 ii) A key may be shifted (with either or both shift keys)
iii) A key may be pressed in conjunction with the control key
 iv) A key may be control— shifted

There are a total of 376 keyboard characters. 188 in the
Caps Lock Mode, 188 in the Lower Case Mode.

Table 5.2 [section: 5.d] lists the 47 character keys by
their labels and the ASCII character returned by depressing
these keys with or without the control or shift keys in the Caps
Lock Mode. Table 5.3 [section: 5.e] is a similar table to
Table 5.2 except that the characters listed are those of the
Lower Case Mode. Table 5.4 [section: 5.e] depicts the
differences between Table 5.2 & Table 5.3.

Section 5.c The Reset Key

The Enhancer][uses the reset key as a command key. If,
for example, the reset key is depressed by itself, the Enhancer
will go into Caps Lock Mode. If the shift and reset keys are
depressed simultaneously, the Enhancer][will go into the Lower
Case Mode.

note: The above does not apply if the Mode Lock options
has been selected during down load (section: 5.f.4].

Section 5.c.1 The System Reset

The Enhancer][has the ability to select one of the
following system reset options:

i) Control—Reset
 ii) Reset Only
iii) Disable Reset

In the first setting, whenever the control and reset keys
are depressed simultaneously, a system reset (processor reset)
will occur. This node is the default node for which your
Enhancer][has been configured at the factory. Most people
prefer this configuration since it is less prone to accidental
resets. In the second setting, a system reset occurs whenever

Page 5—5

Chapter Five:Operation

the reset key is depressed. If the Reset Only option has been
selected, changing modes of the Enhancer][will also cause a
system reset — generally not very useful. The third setting
completely disables the system reset. With this option, it is
still possible to change between the two nodes.

Photo 2.11 shows the Enhancer][. At the top right of the
Enhancer][, you will see a 6 pin Molex connector. The left
three pins (1—3) are the reset control pins. When you examine
your Enhancer][, you should be able to see the plastic
(probably blue) shorting blocks on pins 2 and 3. If you place
this shorting block on pins 1 and 2, the Reset Only option is
selected. Removing the block altogether totally disables the
system reset.

Section 5.d The Caps Lock Mode

The Enhancer][has two fundamental modes of operation.
One is the Caps Lock Mode, the other is the Lower Case (caps
unlock) Mode [section: 5.d. With only one exception [section:
5.f.3.1], lower case letters may NOT be entered from Caps Lock
Mode.

In the Caps Lock Mode, any keystroke sequence will produce
the same character as would be produced on the standard Apple.
The difference between the standard Apple and the Enhancer][in
Caps Lock Mode is the auto and fast repeats, the user definable
macros and the type ahead buffer. Table 5.1 shows all the
possible combinations of keys and the ASCII values generated by
typing them.

Page 5—6

Chapter Five: Operation

Table 5.2 Keyboard Characters and their Associated ASCII
Characters In the Caps Lock Mode

| Key Alone Cntl Shift Both | Key Alone Cntl Shift Both |
| -- |
| Space | Return ˆM ˆM ˆM ˆM |
| 0 0 0 0 0 | G G ˆG G ˆG |
| 1 1 1 ! ! | H H ˆH H ˆH |
| 2 2 2 “ “ | I I ˆI I ˆI |
| 3 3 3 # # | J J ˆJ J ˆJ |
| 4 4 4 $ $ | K K ˆK K ˆK |
| 5 5 5 % % | L L ˆL L ˆL |
| 6 6 6 & & | M M ˆM] ˆ] |
| 7 7 7 ' ' | N N ˆN ˆ ˆˆ |
| 8 8 8 ((| 0 O ˆO O ˆO |
| 9 9 9)) | p P ˆP @ ˆ@ |
| :* : : * * | Q Q ˆQ Q ˆQ |
| ;+ ; ; + + | R R ˆR R ˆR |
| ,< , , < < | S S ˆS S ˆS |
| -= — — = = | T T ˆT T ˆT |
| •> . . > > | U U ˆU U ˆU |
| /? / / ? ? | v V ˆV V ˆV |
| A A ˆA A ˆA | W W ˆW W ˆW |
| B B ˆB B ˆB | X X ˆX X ˆX |
| C C ˆC C ˆC | Y Y ˆY Y ˆY |
| D D ˆD D ˆD | Z Z ˆZ Z ˆZ |
| E E ˆE E ˆE | Right Arrow ˆU ˆU ˆU ˆU |
| F F ˆF F ˆF | Left Arrow ˆH ˆH ˆH ˆH |
| | Escape ˆ[ˆ[ˆ[ˆ[|

Section 5.e The Lower Case (Caps Unlock) Mode

The Enhancer][has two fundamental modes of operation.
One is the Lower Case (caps unlock) Mode, the other is the Caps
Lock Mode [sections 5.d] . With only one exception [section:
5.f.3.1). lower case letters may ONLY be entered from the Lower
Case Mode.

In the Lower Case Mode, all 128 ASCII characters may be
entered directly from the keyboard. Naturally, user definable
macros, a type ahead buffer and auto and fast repeats are
available, table 5.3 shows all the possible combinations of
keys and the ASCII values generated by typing then.

Page 5—7

Chapter Five: Operation

Section 5.e.1 Shift Lock

When in the Lower Case Mode, if you depress the control key
BY ITSELF, you will be placed in shift lock mode. In this mode,
if you depress any key, the character output will be the same as
if the shift key were held down. This mode will be maintained
until either shift key is pressed.

Table 5.3 Keyboard Characters and their Associated ASCII Characters
In the Lower Case Mode

 --
Key Alone Cntl Shift Both	Key Alone Cntl Shift Both		
Space	Return ˆM ˆM ˆM ˆM		
0 0 ˆ@ @ ˆ@	G g ˆG G ˆG		
1 1	!		H h ˆH H ˆH
2 2 ~ “ ~	I i ˆt I ˆI		
3 3 rub # rub	J j ˆJ J ˆJ		
4 4 ˆ\ $ ˆ\	K k ˆK K ˆK		
5 5 ˆ] % ˆ]	L 1 ˆL L ˆL		
6 6 ˆˆ & ˆˆ	M m ˆM M ˆM		
7 7 ' ` '	N n ˆN N ˆN		
S 8 { ({	0 o ˆ0 0 ˆO		
9 9)) }	P p ˆP P ˆP		
:* : ˆ_ * ˆ_	Q q ˆQ Q ˆQ		
;+ +	R r ˆR R ˆR		
,< • [< !	S s ˆS S ˆS		
-= = _ = _	T t ˆr T ˆE		
.> •] >] U u ˆU U ˆU			
/? / \ ? \	V v ˆV V ˆV		
A a ˆA A ˆA	W w ˆW W ˆW		
B b ˆB B ˆB	x x ˆX K ˆX		
C c ˆC C ˆC	Y y ˆY Y ˆY		
D d ˆD D ˆD	Z z ˆZ Z ˆZ		
E e ˆE E ˆE	Right Arrow ˆU ˆU ˆU ˆU		
F f ˆF F ˆF	Left Arrow ˆH ˆH ˆH ˆH		
	Escape ˆ[ˆ[ˆ[ˆ[

Example: Depress the control key BY ITSELF. After
releasing the control key, depress the K key. Mi upper case K
will appear. Now depress the comma key, a less than sign will
appear on the screen. Numbers will also be shifted. Depressing
the shift key (and releasing) and depressing the K key again now
yields a lower case K.

Note: Shift Lock does NOT apply to macros either during
definition nor use.

Page 5—8

Chapter Five: Operation

Examples Suppose that the K key had been redefined as some
other character. Now if we depressed the control key by itself,
we would be in shift lock mode. If we depressed any key except
the K key, it would be shifted. The K key, because it has a
macro associated with it, is not effected by the Shift Lock
Mode. This is true even if the K key were redefined as a K.

Table 5.4 Differences Between Table 5.2 and Table 5.3 using the Values
of Table 5.3

Key Alone Cntl Shift Both	Key Alone Cntl Shift Both		
------------------------—----	-----------------------------------		
Space	Return		
0 ˆ@ @ ˆ@	G g		
1			H h
2 ~ ~	I i		
3 rub rub	J j		
4 ˆ\ ˆ\	K k		
5 ˆ] ˆ]	L l		
6 ˆˆ ˆˆ	M m M ˆM		
7 ` `	N n N ˆN		
8 { {	O o		
9 } }	P p P ˆp		
:* ˆ_ ˆ_	Q q		
;+ ˆ ˆ	R r		
,< [[S s		
-= _ _	T t		
.>]]	U u		
/? \ \	V v		
A a	W w		
B b	X x		
C C	Y y		
D d	Z z		
E e	Right Arrow		
F f	Left Arrow		
	Escape		

Section 5.f User Definable Macro Keys

With your Enhancer][you may redefine up to 170 single
character macros or one 510 character macro. A macro is a
keyboard character which has been redefined to be any ASCII
character, or sequence of ASCII characters up to 510 ASCII
characters in length. Careful reading of this section and
section 5.b is recommended if you plan to use this feature as it
is rather complex.

Page 5-9

Chapter Five: Operation

You have already learned how to issue some of the commands
that you may give the Enhancer][by using the reset and shift
keys. In this section you will learn how to use new commands
utilizing the repeat key.

Section 5.f.1 The Keys Which May Be Redefined

The Enhancer][has two nodes of operation [section, 5.d &
5.e3. Each keyboard character in one mode is distinct from any
keyboard character in the other node (section: 5.b.4). Since
there are 188 keyboard characters possible from the Apple]['s
keyboard, there are exactly 376 unique keyboard characters
possible in both the modes of operation [section: 5.b.4]. Any
of these 376 keyboard characters may be redefined. A definition
may be from one to 510 ASCII characters in length.

Example: Suppose the Enhancer][is in the Caps Lock Mode
and that we have redefined the shift C keyboard character to be:
CATALOG. Now if one depressed the shift C, CATALOG would be
printed on the screen. If we entered the Lower Case Mode and
depressed shift C, a shifted C would appear on the screen.
Returning to the Caps Lock Mode, and depressing a shift C would,
once again, cause CATALOG to be printed. Depressing the C key
by itself will produce a capital C.

Section 5.f.2 Macro Memory Usage

The Enhancer][has 512 bytes of memory reserved for macro
definitions. Each macro requires two bytes overhead and one
byte for each ASCII character of the macro. The following
formula determines the number of macros possible given the
average size of each macro:

 512
 Number of Macros = ----------------------------

 2 + Average Size of Macros

Likewise, the average size nay be computed by:

 512
Average Size of Macros = ------------------- - 2

Number of Macros

Page 5—10

Chapter Five: Operation
Section 5.f.3 Defining a Macro

Macros may be defined in two ways:

 i) From the Keyboard
ii) Down Loaded from a Disc File

Note: Both methods of Macro definitions may he selectively
disabled from a down load [section: 5.f.4].

Section 5.f.3.1 Macro Definitions From the Keyboard

Probably the beet way to describe how a Macro may be
defined from the keyboard is to start with an example. Let us
redefine a shift C keyboard character to he: CATALOG <cr>. Here
are the steps we would perform:

 Keystroke Sequence Characters Output from the Keyboard

Step 1: Control—shift—repeat <None>

Step 2: Shift C <None>

Step 3: CATALOG <cr> CATALOG <cr>

Step 4: Repeat <None>

Step 1 tells the Enhancer][that we want to define a
macro. At step 2. we enter the keyboard character that we wish
to define. Step 3 is to enter the macro itself and at Step 4 we
tell the Enhancer][that we wish to end the macro definition by
depressing the repeat key. Notice that the only step which
sends any ASCII character(s) to the Apple][is Step 3. The
characters of the macro definition are the only characters which
are output from the keyboard during a macro definition. [Please
note that these characters may or may not be output to your
monitor, depending upon what software is active at the time.]
Step 4 ends the macro definition.

If you depress the shift, control and repeat keys in
conjunction with a character key, the corresponding ASCII
character or macro definition is fast repeated, and a macro
definition is NOT begun.

Note: When fast repeating a character which is control —
shifted, it is recommended that the repeat key be the last key
pressed and the first key released to eliminate any keyboard
bounce.

Page 5—11

Chapter Five: Operation

Here is an example of how to clear a macro key definition
or abort a definition once you have depressed the shift, control
and repeat keys simultaneously:

 Keystroke Sequence Characters Output from the Keyboard

Step 1: Control—shift—repeat <None>

Step 2: Space Bar <None>

Step 3: Repeat <None>

Step 1 begins the macro definition. At Step 2 you enter
the macro to be cleared. If you wish to abort the definition
sequence once you have begun, you must enter some keyboard
character. You might want to use some key that you have not
already defined (perhaps the space bar). Step 3 is to end the
macro definition without entering any macro. This procedure
will clear any macro associated with the keyboard character in
Step 2.

Warning: Omitting Step 2 will not abort a macro
definition.

Note: You cannot use the repeat key when defining a macro.
You may, however, use the auto repeat function by pressing and
holding a key down.

When you are defining a macro, all other macros are
temporarily disabled. Recursive macros are not allowed, that
is, a macro cannot call another macro. A macro is defined as
being some set of ASCII characters, not keyboard characters.

Mode changes are legal when defining a macro. It is
possible, therefore, to define a macro in Caps Lock Mode using
lower case characters. Changing modes within a macro does not
take extra memory to store that macro since only the ASCII
values are stored in the macro definition, not the mode actually
used to generate the character. Likewise, use of a macro will
NEVER cause the node of your keyboard to change. If you begin a
macro in one mode, change the mode during the definition and end
the definition, your keyboard will be in the second mode once
the definition is complete. Your macro, however, will only be
defined in the first mode, the mode in which you are not (in
this scenario).

Example: You are in the Caps Lock Mode. You depress the
shift, control and repeat keys simultaneously. Now you depress
the shift and L keys simultaneously. You have just begun to
define a shift L in Caps Lock Mode. You now depress the shift

Page 5—12

Chapter Five: Operation

and reset keys simultaneously. This puts you into the Lower
Case Mode. You type: “Lower Case Characters” <repeat>. The
<repeat> means that you have depressed the repeat key. The
definition is now complete. Depressing another character, you
find that you are still in the Lower Case Mode. You depress the
shift L and a capital I appears on the screen. You now return
the Caps Lock Mode by depressing the reset key. Depressing
shift L, you find “Lower Case Characters” displayed on your
screen.

Section 5.f.4 Down Loading of User Defined Keys.

It is possible to program your keyboard’s macro definitions
directly from a disc file without having to enter them from the
keyboard. Two programs have been provided on the Enhancer][
Utilities Disc for this purpose: the Macro Editor [section:
X.d] and the flown Load Program [section: X.e]. You may create
disc files containing different macro definitions for various
purposes using the Macro Editor and down load them into your
keyboard anytime by using the Down Load Program. You may
therefore establish a turnkey system where your keyboard will
automatically be programmed by your hello program each time DOS
is booted.

Note: Macros CANNOT be down loaded from disc unless the
acknowledge wire has been installed [section: 5.g.1].

There are two methods of beginning the down load process.
The first is by depressing the repeat and reset keys
simultaneously. The second is by installing a one wire
modification from pin 12 of F14 on the motherboard to the
keyboard connector socket. When this is done, down loading can
be done without any operator intervention (i.e. automatically).
If the Enhancer I receives the signal to begin down load but
the down load program is not running, the down load is aborted.
however all, macro definitions are cleared.

Down loading has certain advantages over keyboard entry.
You will probably become accustomed to special macros that you
will want to have all the time. Down loading is a quick and
easy way to enter them into your Enhancer][. There are certain
other options which normally are not available from the keyboard
alone. These include the following:

 i) Disable Shift Lock
ii) Lock Keyboard Mode

iii) Select Mode After Down Load
iv) Disable Auto Repeat
 v) Disable Type Ahead
vi) Disable Keyboard Macro Entry & Clear

 vii) Disable Auto Down Load

Page 5—13

Chapter Five: Operation

For more information, refer to Appendix C and section X.d.

Section 5.f.5 Repeat Reset

Depressing the repeat and reset keys simultaneously will
clear all macro definitions and produce a rub—out character to
be output from the keyboard. Tt will also begin the down load
process IF the down load program is running.

Note: Use of the repeat — reset to produce a rub—out
character is discouraged due to the other effects.

Section 5.g The Type Ahead suffer

The type ahead buffer is useful in many applications,
especially when the microprocessor is busy with tasks other than
checking the keyboard output, such as disc operations. To take
full advantage of this feature, the acknowledge wire should be
installed (between sockets A7 and B7 on the motherboard). The
Enhancer][is programmed to give a pseudo type ahead buffer in
the absence of this wire, however this operation is discouraged
due to the possibility of data loss.

Programmer Note: The type ahead buffer may be disabled
from a down load [section: 5.f.4].

Section 5.g.1 The Acknowledge Line

Normally, when the keyboard has a character to send, it
sends it. When the Apple receives a character from the
keyboard, it will set a strobe. This means that programs know
when a character is waiting to be read from the keyboard. The
keyboard, on the other hand, does not know when that character
has been processed by the Apple. To make a type ahead buffer
function efficiently, it must know when the character has been
read so that it can send the next character. The acknowledge
wire gives this information to the Enhancer][. Without the
acknowledge wire, the Enhancer][has no way of knowing when the
Apple has read the data off the keyboard and is ready for more.

Note: The Enhancer][is programmed to send characters Out
at certain intervals IF the acknowledge wire has NOT been
installed, in the hope that the Apple will be ready to receive
the next character. Since many factors can determine when the
Apple is ready for character, this method is prone to data
loss. The Enhancer][has been programmed using techniques
which will minimize data loss without causing a severe delay in
overall throughput.

Page 5—14

Chapter Five: Operation

Installation of the acknowledge wire [section: 2.d] is
neither very difficult nor time consuming The time taken to
install it will pay for itself many times over and will
significantly improve the reliability and efficiency of your
Enhancer][.

Note: If the acknowledge wire is not installed, macros
CANNOT be down loaded from disc.

Section 5.g.2 The Flush Buffer Commands

There are two commands which will flush (empty) the type
ahead buffer. They are Reset and ˆC. A flush buffer command is
necessary for a number of reasons, the most significant of which
is to clear the buffer once you no longer need its contents or
when you believe that you may have entered garbage into it.

Control, C was chosen as a flush buffer command because of
BASIC. If ˆC did not flush the buffer, BASIC wouldn’t see the
ˆC if there was any character in the buffer before the ˆC and
you wouldn’t be able to halt program execution without a system
reset. Since it might be useful to enter a C into a macro. ˆC
will not flush the buffer IF the ˆC is PART of the macro
definition.

Note: If you redefine the Control—C keyboard character to
be a ˆC ASCII character, depressing Control—C will not cause the
buffer to be flushed (in the mode defined) since it is a macro.
If that macro is cleared, ˆC will once again cause a flush
buffer.

Note: Changing modes, or depression of the Reset key at
any time will cause the buffer to be flushed.

Section 5.g.3 Macros

Macros use the type ahead buffer. When a macro key is
struck, that macro is placed into the type ahead buffer. If the
buffer is filled, the Enhancer I will wait until a character is
output from the buffer before placing the next character of the
macro into the buffer.

Note: If the acknowledge wire has not been installed or
the type ahead buffer has been disabled, macros MAY appear not
to function properly due to data loss.

Notes: If the acknowledge wire is not installed, macros
CANNOT be down loaded from disc.

Page 5—15

Chapter Five: Operation

Section 5.h Self Test Diagnostics

Whenever the power is turned on to your Apple][computer,
your Enhancer][performs a self test. The entire test takes
less than a second but is rather comprehensive. The RAM is
tested and a checksum is performed on the firmware. If any
fault conditions are found, the Enhancer][will attempt to
print an error message to your screen. Naturally, there can be
conditions where output of an error message is impossible.

To initiate the self test routine manually, turn your Apple
]['s power off and remove any disc controller card you may have
in the system. Now turn the power on. If no error message is
printed and you can enter characters into the system normally.
your Enhancer][is probably in good working order. If an error
message is printed, refer to chapter three.

Generally, if errors which are subtle in nature do occur in
the Enhancer][, they will be detected by the self test
diagnostics. Gross errors will probably lock your keyboard up
entirely. Therefore, if no error message is printed on power
up, and your keyboard allows you to enter characters, it is very
likely that it is functioning correctly. If you feel, however,
that there is something wrong, refer to chapter three.

Note: The Enhancer]['s RAM and ROM are entirely separate
from any of your Apple][‘s memory (both RAM & ROM). You CANNOT
make a memory listing of your Enhancer][from your Apple][.

Section 5.1 Dvorak Option

As lore would have it, the Dvorak keyboard layout [photo:
5.i.l] was the result of a United States government grant — the
purpose of which was to find the most efficient keyboard layout
possible. Apparently, the beloved QWERTY keyboard, with which
the Apple][is blessed. was designed to actually slow the
typist down. This is because the first typewriters could not
type as fast as the first typists could strike the keys, causing
damage to their primitive mechanisms. Thus the QWERTY layout.

The Dvorak keyboard is a keyboard in which all the vowels
are located on the home row of keys. Supposedly all the other
keys are placed in such a way that the most frequently used keys
are easiest to get to. Proponents say that the Dvorak keyboard
can be learned 2 to 4 times more quickly than the QWERTY
keyboard. Typing speed is supposed to be increased by about
70%.

Since June of 1981, Videx has supported a Dvorak option for
the original Keyboard & Display Enhancer and will continue this
support for the Enhancer][. An optional firmware EPROM which
will remap your keyboard into the Dvorak layout may be purchased

Page 5—16

Chapter Five: Operation

from Videx. The user may then pull the key—caps off their
keyboard and change the layout of the keys themselves.

Page 5—17

Chapter Six: Apple][Language Considerations

Chapter Table of Contents.

6.a) Apple DOS & BASICS
6.a.1) The RAM Card Solution
6.a.2) ROM Cards
6.a.3) The Key Filter Program

6.b) 6502 Machine Language
6.c) Pascal
6.d) FORTRAN

Chapter Six: Apple][Language Considerations

Section 6.a Apple BASICs and DOS

In both of the Apple]['s monitor ROMs (old and new), there
is a routine that converts lower case characters to upper case
characters. This routine, named CAPTST, also converts certain
symbols into other characters (appendix: A). Unfortunately,
CAPTST is used by most of the major input routines of the
monitor, DOS and both BASICs (including BASICS INPUT
statement). Most lower case characters entered into the
computer will therefore be mapped into upper case characters
unless CAPTST is either altered or bypassed. The Videoterm 80
column board, when active, will bypass CAPTST. The text of this
section, therefore, applies only to the 40 column mode.

In this section, we will discuss software and hardware
methods of bypassing or altering CAPTST. Not all methods may be
used by all users. Please be careful to note any of the
cautions listed for the method you choose to use.

The optimal solution for your system configuration depends
upon whether or not it includes a RAM card, either Apple's
Language Card or some other brand.

Section 6.a.1 The RAM Card Solution

There are two types of RAM cards: those with on—board F8
ROMs and those without. The Apple Language Card contains this
ROM. moat of the others do not.

If your card does have a socket for a 2716 EPROM to replace
the PS ROM, you are advised to take advantage of this feature.
Here is what it does: the on—board F8 RON completely replaces
the F8 ROM on the motherboard. This means that the motherboard
F8 ROM is permanently disabled. It may be removed from the
system completely. If the RAM is active, both the on—board P8
RON and the motherboard P8 ROM are disabled. If you do replace
the on—board F8 ROM with your own copy, your resident language
can contain the Lower Case Fix. If you do not replace this ROM,
your system will behave just like the RAM cards without the
on—board F8 ROMs.

RAM cards without on—board F8 ROMs will not be able to
implement the Lower Case Fix in the resident BASIC. You may.
however, load either BASIC into the RAM card and once there,
make the Lover Case Fix. The Configuration Program on the
Enhancer][Utilities Disc will create modified FPBASIC and
INTBASIC files and set the HELLO program to load one of the two
BASICs into you RAM card every time you boot to that disc. When
you run the configuration program [section: X.a), you should
select the version of BASIC that you use the most to be loaded
into the RAM card.

Page 6—1

Chapter Six: Apple][Language Considerations

Note: If YOU have an Apple][plus system, cad you
configure your hello program to load Applesoft into the RAM
card, Integer BASIC will not be immediately available to you.
That is, if you try to RUN an Integer BASIC file, or type in
INT, you will get a LANGUAGE NOT AVAILABLE error message. To
use Integer BASIC, you need to types BRUN INTBASIC. At this
point, Integer BASIC is available, however Applesoft will no
longer be capable of lower case input since your system will use
the ROM version. To return to a Lower Case Fixed version of
Applesoft. you should BRUN FPBASIC followed by an attempt to
enter Integer BASIC (i.e. type INT). This has to do with the
version of Applesoft at which DOS is currently looking.

Section 6.a.2 ROM Cards

Owners of ROM cards may program and modify a 2716 EPROM to
allow lower case input in both BASICs [section: A.c].

Section 6.a.3 The Key Filter Program

There is a program on the Enhancer][Utilities Disc called
Key Filter. Key Filter is a software method of bypassing
CAPTST. It can be used to allow input of lower case characters
by most programs written in either BASIC or 6502 machine
language. The Key Filter program should not be used with word
processors [section: 7.a].

Since the Key Filter program lives in RAM, it will take up
some of your free memory — though not a great deal. It is
vulnerable to attack from other programs. It can be
disconnected with certain monitor, DOS and BASIC commands. It
must be loaded from disc each time the power is turned on or
DOS is booted. Key Filter is a good solution for many people.
however, there are other solutions as well.

Section 6.b 6502 Machine Language

When writing programs in 6502 machine code, if you do not
use the Apple][monitor’s GETLN routine (including GETLNZ &
GETLN1), you should not encounter problems with lower case
input. We suggest that you write your own GET LINE routine. If
you should choose not to. CAPTST must be modified. The
procedure is the same as that which is listed in the Apple DOS
and BASICS section [section: 6.a].

The single character input routines of the monitor, namely
KEYIN, RDKEY and RDCHAR have no problems inputting any ASCII
character, including lower case characters.

Direct reading of the keyboard causes no problems.

Page 6—2

chapter Six: Apple][Language Consideration.

Section 6.c Pascal

Pascal has no problems with lower case letters if you are
using the Videoterm 80 column card or once SYSTEM.APPLE has
been modified by OUTPATCH (40 columns) [section: X.f]

Section 6.d FORTRAN

Apple FORTRAN uses the Apple Pascal Operating System.
Therefore, if you have a Videoterm or, in 40 columns, if you
use a Outpatched [section: X.f] version of the SYSTEM.APPLE file
(which you might be using for your Pascal discs) on your FORTRAN
discs, Apple FORTRAN will have no more problems with lower case
characters than Pascal does, which presumably is none. If you
are having problems, refer to the Pascal section of this manual
(section: 6.c]

Page 6—3

Chapter Seven: Other Software Considerations

Chapter Table of Contents.

7.a) Word Processors
7.a.1) Generally
7.b.2) A Note on Wordstar

7.b) CP/M
7.c) Other Commercial Software

7.c.1) Applesoft, Integer BASIC and DOS
7.c.2) Pascal etc.
7.c.3) CP/M

Chapter Seven: Other Software Considerations

Section 7..a Word Processors

Most word processors will work with the Enhancer][. Some
have a special configuration for hardware input of lower case.
Some have various other Options available. This section
presents some general guidelines to follow.

Section 7.a.1 Generally

Almost all word processors have some kind of configuration
program or routine. You should read your word processing system
a manual to determine the various options available to you.
Since each word processing system is different, we will present
some of the options which are usually available and whether or
not they are appropriate.

The Enhancer][DOES have lower case (hardware)
DISPLAY capability.

The Enhancer][DOES have lower case (hardware)
INPUT capability.

The Enhancer][is NOT a shift wire, single wire
or single wire shift mod. It does not use any game
paddle port nor push button input. Answering yes to
this option of ten inhibits input of upper case
letters.

If your word processor does not have an option for hardware
input of lover case characters, you should select the software
input option (if any). Every time you go into the editor, you
should select the shift lock Option OF THE WORD PROCESSOR. On
some systems this is a double escape or perhaps a control C.
Read you Owner’s manual to find out what the command is for your
system. Once your word processor is in shift lock mode, it will
probably read the keyboard directly without trying to convert
anything to lower case. Since the Enhancer][produces true
upper and lower case, you should be able to use the Enhancer][.
as you normally would, to enter upper and lower case characters.
How long this shift lock will last (without having to re—issue
the command to invoke it) varies from word processor to word
processor. It may be that whenever you re—enter the editor, you
will also have to reset the shift lock mode.

Section 7.a.2 A Note on Wordstar

The original release of Wordstar 3.0 had an option for
hardware input of lower case. Unfortunately, this release
contained son software errors dealing with the use of control K

Page 7—1

Chapter Seven: Other Software Considerations

and control A. MicroPro has indicated that a patch to correct
this software problem will be available from MicroPro no later
than November, 1981. If your version of Wordstar doesn’t
function properly, contact MicroPro directly.

Note: Wordstar is a registered trademark of MicroPro.

Apple CP/M is compatible with the Enhancer][. Depending
upon your system configuration, you may have to inform your CP/M
system that you can display lower case characters.

If you have a Videoterm 80 column card, you will not need
to perform the following operation. The normal Apple does not
allow for the display of lower case characters in the 40 column
mode, therefore, 40 column CP/M does not normally display lower
case characters. Since the Lower Case Chip supplied with the
Enhancer][gives your Apple lower case display capability, you
will probably want to activate the lowercase display ability of
the CP/M system. To do this, you will need to perform the
following:

A> MBASIC CONFIGIO

The A> is, of course, the CP/M prompt. You will then be
asked if you have lower case, the answer is yes. Once you exit
CONFIGIO, you will be able to display lower case letters.

Section 7.c Other Commercial Software

How friendly your software packages are to lover case
characters depends upon a number of independent variables. This
section will discuss some of the reasons why certain programs
work or don’t work, how they might he made to work and the
ramifications involved.

Generally speaking, the largest single factor in
determining whether a program will like lower case characters is
the environment in which it lives. On the Apple][, we have
three basic environments:

i) Applesoft. Integer BASE or DOS.
ii) Pascal. FORTRAN. or any other language using the Pascal

operating system.
iii) CP/M

Page 7—2

Chapter Seven: Other Software Considerations

Section 7.c.1 Applesoft. Integer BASIC and DOS.

Note: The following paragraph does not apply to systems
using the Videoterm 80 column card.

Programs written in Applesoft, Integer BASIC or which use
the input routines of the Apple]['s monitor generally do not
like lower case letters. This is usually due to CAPTST
[section: 6.a; appendix: A] a routine of the Apple monitor.
If CAPTST is the root of the problem, modifying CAPTST
[appendix: A] might allow lower case entry. If CAPTST is not
the problem, then the software package in question probably has
its own input routines. If so. then the software itself will
probably have to be modified. This is usually more work than
profitable.

Assuming that one cam get a program to accept lower case
input, the the battle is not necessarily over. Since upper ease
characters have completely different ASCII values than lower
case characters, and since programs which are not designed to
accept lower case input are not expecting lower case characters,
it is likely that lower case characters cannot be substituted
for their upper case equivalents.

Example: A program may stop and ask a yes or no question.
You enter a lower case “y” in response. The program checks for
an upper case “Y” only. If the response is not an upper case
“Y”, it assumes the answer was no. It didn’t see an upper case
“Y”. You thought you said yes, the program thought that you
said no.

Section 7.c.2 Pascal, etc.

Note: FORTRAN and other languages which use the Pascal
operating system have the same restrictions as Pascal.

Once you have made the SYSTEM.APPLE patch [section: X.f]
you nay enter lower case characters to your hearts content.
Pascal recognizes lower case characters as legitimate commands.
Again, the same problem as outlined in the example of section
7.c.1 above applies to programs written in Pascal as well.

Note: If you have a Videoterm, 80 column card in slot 3.
Pascal will turn it on when you boot. With the Videoterm, you
do not need to make the patches to SYSTEM.APPLE as mentioned
above.

Page 7—3

Chapter Seven: Other Software Considerations

Section 7.c.3 CP/M

Any program in the CP/M or Softcard environment should be
able to enter lower case letters directly from the keyboard.
Naturally, CONFIGIO must be set for lower case display [section:
7.b]. Again, the restriction as illustrated in the example of
section 7.c.l applies to any CP/M based program.

Note: If you have a Videoterm 80 column card in slot 3.
CP/M will turn it on when you boot. With the Videoterm, you do
not need to run CONFIGIO as mentioned above.

Page 7—4

Chapter Eight: Peripheral Considerations

Chapter Table of Contents.

8.a) Peripherals in General
8.b) Videoterm
8.c) Language Card and Other RAM Cards
8.d) Softcard (Z80)
8.e) Printers, Parallel and Serial I/O Boards
8.f) Disc Drive Controllers

Chapter Eight: Peripherals Considerations

Section 8.a Peripherals in General

There should be no interference between the Enhancer][and
any peripheral. This is because the Enhancer][only modifies
the output of the keyboard. It does not use any of the Apple’s
memory or other address lines. Even the wires that you
installed for the type ahead buffer and the automatic down
loading of the macro definitions from disc should not affect any
peripheral. It is possible, however, that the software used to
automatically down load the macro definitions could interfere
with a device using the annunicator port number three. In this
event, the Auto flown Load Disable option should be selected
[section: 5.f.4].

Problems could arise if the firmware of some peripheral
looked at the keyboard output for an upper case character and
saw a lower case character instead. This problem may be negated
by selecting Caps Lock mode.

Section 8.b The Videoterm

The Videoterm 80 column card is completely compatible with
the Enhancer][. In fact, it can make life a lot easier since
it does not try to convert lower case characters into upper case
characters. The original Keyboard & Display Enhancer was
originally conceived as an option for the Videoterm. but our
engineers decided to make it a stand alone product which could
be used in the 40 column mode as well.

Throughout this manual, you are likely to find notes
indicating that use of the Videoterm 80 column card negates
certain problems and negates the need for various patches.

Section 8.c The Language Card and Other RAM Cards

There is no interference between the Enhancer][and any of
the RAM cards available on the market. As a matter of fact, the
use of a RAM card can actually be a benefit to the Enhancer][
[sections A.d] . This is true in the 40 column Apple BASICs or
DOS environments since the monitor may easily be modified to
accept lower case input.

Page 8—1

Chapter Eight: Peripherals Considerations

Section 8.d Softcard (Z80)

There is no problem using the Softcard in conjunction with
the Enhancer][. If you are using the Enhancer][without a
Videoterm 80 column card under CP/M, you will probably want to
refer to section 7.b.

Section 8.e Printers, Parallel & Serial I/O Boards

There should be no interference between the Enhancer][and
any I/O device. This is because the Enhancer][only modifies
the output of the keyboard, it does not use any Apple][RAM or
addresses other than the keyboard input byte. If you are having
problems with your printer or other device, it is probably a
software problem.

You should keep in mind that some software may be looking
for upper case characters and does not expect the input of any
lower case characters [section: 7c.1]. Also, some printers
cannot print lower case characters. To test your printer’s
capabilities, you might try the following from Applesoft:

]PR# <printer slot number>
]FOR DU=32 TO 127:PRINT CHR$(DU)””;:NEXT

Where the “]” is the Applesoft prompt (and is not typed
into the computer). This should print all of the 96 printable
ASCII characters that your printer cam print. If you do not see
any lower case characters printed, then your printer doesn’t
know how to print lower case characters.

Section 8.f Disc Drive Controllers

Generally, the Enhancer][should be completely compatible
with any disc drive and disc drive controller. Once again, the
only problem that one is likely to encounter is that the Disc
Operating System is likely not to be able to understand lower
case characters (section: 7.c.1].

Page 8—2

Appendix A:The lower Case Fix

While the Enhancer][turns your Apple Vs keyboard into a
full ASCII keyboard, not all programs will be able to read lower
case letters and certain special symbols, i.e. ASCII characters
with an ASCII value greater than $E0 (224 decimal). This is
because the routine CAPTST always subtracts $20 (32 decimal)
from ASCII characters greater than $E0 (224 decimal). To input
lower case characters directly from the keyboard. CAPTST must
either be modified or bypassed. This appendix deals with some
of the solutions which are possible.

Note: Use of the Videoterm 80 column board (or any
environment other than Apple DOS or BASIC, e.g. Pascal, FORTRAN
or CP/M) will bypass CAPTST.

There are basically four groups of system configuration:

 i) No card in slot zero (neither a RAM nor ROM card)
ii) A ROM card in slot zero (either Applesoft or Integer

BASIC)
iii) An Apple RAM card (i.e. a Language Card) or other RAM

card with an on board F8 ROM
iv) A non—Apple RAM card (i.e. without the on hoard F8

ROM)

Note: This appendix explains how to create a binary file
that can be used to program a 2716 EPROM. The 2716 nay be
plugged into any Apple Language Card. A 2716 EPROM is strongly
recommended for those who are able to take advantage of this
tact. A method of modifying a 2716 EPROM to plug directly into
the on—board ROM sockets is also described. Extreme caution is
urged when using a MODIFIED 2716 EPROM as damage to the
computer or it’s peripherals could result if it is improperly
implemented.

Section A.a CAPTST

CAPTST itself looks something like this:

FD7E:C9 E0 CAPTST CMP #$E0 ;Greater than $E0 ?
FD80:90 02 BCC FD84 ;No, Jump to next part
FD82:29 0F AND #$DF ;Yes, Convert to CAPS
FD84: ...

While several fixes are possible, we suggest a change in
the third instruction:

FD82: 29 FF AND, #$FF ;Yes, Do nothing

Page A—1

Appendix A: The Lower Case Fix

An AND with $FF will, of course, do nothing at all. To do
this, we need to change the byte at $FD83 — not $FD82 — from a
$DF to an $FF.

Section A.b Implementation

The Key Filter program [section: X.f] is a software method
which will work for all system configurations, however it will
not work with all programs. Aa with any program located in RAM,
it is volatile and can be disconnected or destroyed. Other
alternatives should be examined before deciding to rely on the
Key Filter program. Likewise, the Key Filter program should be
reviewed since it has some extra features. The Key Filter
program is completely compatible with the methods of this
appendix. Systems with ROM cards (either Applesoft or Integer)
nay program end modify a 2716 EPROM to replace the motherboard
FS ROM [section: A.c]. RAM card owners will find a number of
solutions, depending upon their needs and exact system
configuration [section: A.d].

Section A.c The ROM Card Solution

Applesoft cards and Integer BASIC cards are the same
except for the ROMs they come with. There is a single set of
solder pads labeled F8 near the bottom of the card, toward the
left of center. If this pad does not have a solder bridge
across it, the F8 socket on the motherboard will always be
active. Therefore, a modified 2716 EPROM [section: A.f] nay be
used in this socket. This solution will then allow direct entry
of lower case characters in both Applesoft and Integer BASIC.

Warning: If a modified 2716 EPROM is placed in the FS
socket on the motherboard, care should, be exercised at all
times to ensure that the F8 solder pad is never bridged end
that a RAM card is never used while the modified 2716 EPROM is
in any socket on the motherboard. Failure to observe this
restriction may result in permanent damage to your Apple][or
any of it’s peripherals. It is therefore suggested that labels
reminding you of this be placed on the modified 2716 EPROM. the
ROM Card and the RAM chip at socket location E3 on the
motherboard.

Note: It is strongly suggested that the F8 ROM which would
be replaced by the modified 2716 EPROM be kept and stored in
conductive foam, a metal box or some aluminum foil to prevent
damage from static electricity.

Page A—2

Appendix A: The Lower Case Fix

Section A.d The RAM Card Solution

There are a number of solutions available for RAM card
systems. The optimal would be an Apple Language Card with your
own 2716 EPROM on—board. This would allow easy implementation
of the patches to CAPTST in both Applesoft and Integer BASIC.
Things can become a little more complex if your RAN card does
not have an onboard 2716 EPROM. Let us now examine both of
these cases to see what cam be done and how it may be done.

RAM cards duplicate the area of memory used by the on—board
ROMs. This includes the F8 monitor ROM. Normally, when the
resident language is being used, the ROMs on the motherboard are
active and the RAM card is totally disabled. Likewise, when the
non—resident language is being used, the RAM card is active and
the motherboard ROMS are completely disabled.

Note: In the case of the Apple][Language Card, the
motherboard F8 ROM is always disabled. It is always replaced by
the RON on—board the RAM card. That is. when the motherboard
ROMs are active, the ROM on—board the RAM card is also active
(replacing the disabled F8 ROM on the motherboard). when the
RAM is active, all the ROMs are disabled (including the on—board
RAM) and the F8 area in RAM is active.

Section A.d.1 Apple Language Cards

Since the on—board ROM completely replaces the motherboard
F8 ROM. and since this ROM may be configured for a 2716 EPROM.
one may make the changes necessary in the monitor and program a
2716 so that the resident language will have lower case
capability. The non—resident language poses little problem
since it is contained in RAM and stored on disc. It may
therefore be easily modified and saved.

Note: If you do not intend to program a 2716 EPROM for use
on your Apple][Language Card, you will not be able to modify
the resident BASIC language (i.e. Applesoft on an Apple][
plus). You should therefore refer to the procedure for RAM
cards without the on—board F8 ROM.

Section A.d.1.1 Installing the 2716 EPROM

To use the programmed 2716 EPROM on the Language Card, you
will need to configure the card for a 2716. If you examine the
board, you will find a single pair of solder pads located near
the top right corner labeled 2716. You should place a solder
bridge across these pads, completing the circuit. Further
examination should yield an etched symbol which looks something
like two arrow heads meeting head on, or like the silhouette of
art hour glass, near the bottom center of the board. The

Page A—3

Appendix A: The Lower Case Fix

connection between the two triangles must be severed. Once both
of these steps have been performed, the Language Card is
configured for a 2716 EPROM.

The next step is to carefully replace the on—board ROM in
the socket on the Language Card with the 2716 EPROM. The
notched end of the EPROM should point toward the top of the
board (as silk screened) You should ensure that the window
portion of the EPROM has some kind of label over it to prevent
program erasure.

Section A.e Row to Modify the Monitor Without a RAM Card

Modifications for Old Monitor ROM are NOT the same as those
for the Autostart Monitor ROM. If you do not know which monitor
ROM you have, perform this simple test. Turn your power off and
turn it back on. If your disc drives start to boot or you see
either the Applesoft or Integer BASIC prompt or you see APPLE][
at the top of the screen, you have the Autostart Monitor,
otherwise you should see a screen full of garbage with a monitor
(asterisk) prompt at the lower left hand edge of the screen.

Section A.e.1 Modifying the Autostart Monitor

Boot DOS. From either BASIC, type: CALL —151 <cr> to get
into the monitor. Now type the following:

800<F800.FFFFM <Cr>
800:4A 08 20 <cr>
BB3:C9 E0 B0 5 29 3F 9 40 60 29 1F 60 <Cr>
D11:20 B3 FB EA <Cr>
D83:FF <Cr>

If you want a solid cursor, type: BBA:00 <Cr> Now type:

BSAVE MONITOR,A$800,L$800

This now completes the modifications to the monitor code.

Page A—4

Appendix A: The Lower Case Fix

Section A.e.2 Old Monitor ROM

Boot DOS. From either BASIC, type: CALL —151 <Cr> to get
into the monitor. Now type the following:

800<F800.FFFFM <Cr>
D83:FF <Cr>

If you want a solid cursor, type: D14:00 <Cr>

Now type:

BSAVE MONITOR,A$800,L$800

This now Completes the modifications to the monitor code.

Section A.f Modifying a 2716 EPROM

Warning: The following modification should never be used
in conjunction with a RAM card. Doing so could cause damage to
your RAM card.

Note: Apple][Language Cards can be configured for
unmodified 2716 EPROMs.

To allow the 2716 to be plugged directly into a ROM socket
on the Apple][motherboard (i.e. a socket which CANNOT be
configured for a 2716 EPROM), you will need to make the
following modifications to the EPROM AFTER it has been burned:

Place a jumper wire between pins 12 and 18. Place another
jumper wire between pins 21 and 24. These jumper wires should
be soldered into place. Bend pins 18 and 21 up flat next to the
bottom of the chip so that the pins do not go into the
motherboard socket.

Naturally, you will want to place some kind of label over
the window portion of the chip to prevent it from being erased.

Note: The pins are numbered from 1 to 24 on a 2716. One end
of the chip will have a notch, dot or depression. Placing this
at the twelve o’clock position with the top (window) side up,
pin one is the first pin to the left (counter—clockwise). The
pins are numbered counter—clockwise around the chip. Pin 24 is
directly opposite pin 1.

Page A—5

Appendix B: Lower Case Display

Section B.a Revision 0 through 6 Apples

The Enhancer][may be used on revision 0 through 6 Apples
with certain restrictions. Since the Enhancer][replaces the
keyboard encoder board, the keyboard must be the piggyback
style. Though revision 0 through 6 Apples usually don’t have
this style of keyboard, the user may purchase one from Apple
WITHOUT the encoder board — and install it on their system.
Older style keyboards may be used on the newer machines and vice
versa.

The other problem that one faces is that of lower case
display. The Lower Case Chip CANNOT be used with revision 0
through 6 Apples. Here are some solutions:

i) Use the Videoterm 80 column card. It is capable of
displaying lower case characters in the 80 column mode.

ii) Modify the an old Keyboard & Display Enhancer I to be a
display only device [section: B.b]

iii) Use some other revision 0 through 6 Apple 40 column
lower case display device

Note: This manual assumes that you have a revision 7 or
greater Apple. If you have a revision 0 through 6 Apple, all
references to lower case display (in 40 columns) does not apply
unless you have implemented options ii or iii above.

Appendix B.b How to Modify Your Old Enhancer for Display Only

Note: This section is applicable only to Revision 0
through 6 motherboards only.

This section addresses a modification which can be made to
the original Keyboard & Display Enhancer to turn it into a
display only device. This will allow the Keyboard & Display
Enhancer the be used as a 40 column lower case character
generator and the Enhancer][to be used as normal. The
Enhancer][will, of course, have to be installed on a piggyback
style keyboard.

All of these modifications nay be made on the back side of
the Keyboard & Display Enhancer. The first step is to disable
the control and shift key inputs. To do this we need only one
piece of wire not much longer than 6 centimeters (approximately
2 inches). This may be a bare wire of just about any thickness.
Wire wrap wire will do just fine. Referring to page A—4 of the
Keyboard & Display Enhancer Owner’s Reference Manual, you should
see the 6 fingered Molex connector jack to the right of the

Page B—1

Appendix B: Lower Case Display

board in the photograph. Pins 1 and 3 must both be connected to
ground (i.e. Pin 7 of 1J6). You say connect all six pins to
ground, if you like.

The next step is to jumper the normally no—connections from
the keyboard socket to the keyboard header going to the A7
socket on the motherboard. There are only two that we will
need. One is for the type ahead buffer, the other for the
automatic down loading of macro definitions. Simply jumper Pin
9 of P3 to Pin 9 of J1 and Pin 4 of P3 to Pin 4 of J1.

Note: You should place a piece of paper inbetween the two
Enhancers to prevent electrical contact. A standard piece of
note book paper will probably due the job nicely.

Page B—2

Appendix C: Down Load Technical Data

The data transmitted to the keyboard during down load is of
the following format:

byte name function
------- -------- -----------------------------
0 status. Selects down load options

1&2 pntend Pointer to end of table
(Low byte, high byte)

All
other macdef Macro definition (format below)
bytes

Last
Byte tabend End of Table (must be zero)

Where STATUS is of the following format:

0 $0 BitC: Disable Shift Lock
2 $2 Bit1: Lock Keyboard Mode
4 $4 Bit2: Select Lower Case Mode after flown Load
8 $8 Bit3: Disable Auto Repeat

16 $10 Bit4: Disable Type Ahead
32 $20 Bit5: Disable Macro Entry & Clear from Keyboard
64 $40 Bit6: Lock Out Auto Down Load

128 $80 Bit7: Unused

If any given bit is on, that option is selected. If Bit 2
Is off, Caps Lock Mode is selected after down load. If Bit 6 is
on, down load is disabled and it is impossible to change any of
the above conditions until the system has been powered off.

PNTEND is equal to the number of bytes in MACDEF + 1.

Where MACDEF (macro definition) is in the following format:

byte name function
---- ------ ---

0 mcsib Contains information on mode, control & shift keys

1 matrx Location on key map

 All
other macro ASCII values of macro definition, high bit set
bytes

Page C—1

Appendix C: Down load Technical Data

MCSIB is a value from 0 to 7. If MCSIB is in the range of
0 to 3, the macro being defined is in Caps lock Mode. If MCSIB
is in the range of 4 to 7, the macro is defined in lower Case
Mode. The following table define MCSIB:

Caps lock Mode | Lower Case Mode
 -------------------------------+-------------------------

Alone 0 | 4
Control 1 | 5
Shift 2 | 6
Control — Shift 3 | 7

Matrx is the location in the keyboard matrix. This table
lists the values in both decimal and hexadecimal:

| Decimal: 0 16 32 48 |
Hex: $00 $10 $20 $30
0 $0
1 $1
2 $2
3 $3
--------------+--
4 $4
5 $5
6 $6
7 $7
--------------+--
8 $8
9 $9
10 $A
11 $B
--------------+--
12 $C
13 $D
14 $E
15 $F

Page C—2

Appendix V: Tech’s Installation Checklist

These are the tools required to install the Enhancer][:

 i) Phillips screwdriver
 ii) PIiers (preferably needle—nose)
iii) Wire cutters
 iv) Wire stripper

() Unplug the Apple and remove all the cards from the
slots.

() Remove the case from the bottom of the Apple.

() Replace the chip in socket A—5 with the one marked
‘Lower Case

() Remove the piggyback board from the keyboard.

() Transfer the 16 pin cable to the equivalent socket on
the Enhancer][.

() Now, look at the underside of the keyboard; On some
Apples there will be a metal stiffener bar across the
back of the keyboard; a strip of insulating material
should be placed over the edge of this bar so that when
the Enhancer][is installed, no bare metal touches it.

() Look mow at the plastic spacers that held the piggyback
board on. The right spacer (the one further from the
side of the Apple) must be rotated 90 degrees so its
flanges are parallel to the edge of the keyboard
[photo: 2.13}.

() Install tine Enhancer][on the keyboard in place of the
piggyback board you removed.

() Optional: Install a wire leading from pin 5 of socket
B—7 to pin 9 of the keyboard cable socket. This
enables the type—ahead buffer.

() Optional: Install another wire leading from pin 12 of.
socket F—14 to pin 4 of the keyboard table socket and

() REMOVE THE BLUE SHORTING PLUG FROM PIN 5 OF THE MOLEX
CONNECTOR [photo: 2.11]. This enables totally
automatic downloading of key redefinitions.

() Place the case of tile Apple back on its base, being
careful not to crush the keyboard cable plug.

Page V—1

Appendix V: Tech's Installation Checklist

() Plug the keyboard cable connector into its socket,
making sure that pin one of the cable enters hole
number one of the socket.

() Reinstall two of the screws immediately under the
keyboard, but don’t bother replacing the washers.

() Proceed to the installation checkout section. If
everything checks out ok, complete the re—assembly of
the Apple][(with the power off), else refer to
Chapter 3.

End of installation.

Page V—2

Appendix W: Specifications

Microprocessor: 6504 (uses the 6502 instruction set)
RAM: 1K static (low power)
Firmware ROM: 2716 EPROM
Dimensions: 16.1 cm by 7.4 cm
Technology: LS TTL, MOS, and CMOS
Type ahead buffer: 128 characters
Auto repeat: approximately 15 characters per second
Fast repeat: approximately 50 characters per second
Installation: replaces keyboard encoder board
Control — Reset protection: plug/jumper selectable
Key redefinitations: down loadable from disc
Memory for macro definitions: 1/2 K (up to 170 single

character macros)
Self test diagnostics: RAM test & ROM checksum,

automatic on power up.

Specifications are subject to change without notice.

Page W—1

Appendix X: Supporting Software

Section X.a The Configuration & Hello Programs

The Configuration & Hello Programs run, for the most part,
automatically. When run the first time, the Hello program will
call one of the configuration programs. The configuration
programs request that you insert a DOS system master diskette.
This is to load in the FPBASIC and INTBASIC files, modify them
[appendix: A] with the Lower Case Fix and save them on the
Enhancer][Utilities Disc.

The configuration program will ask you whether you want to
load Integer BASIC or Applesoft in the RAM card. You should
respond with the BASIC that you plan to use the most. (If you
have a RAM card with an on—board F8 ROM and you have burned your
own 2716 EPROM monitor ROM, then you should respond with the
BASIC that is not resident.)

There are two Hello programs on the disc. One is in
Applesoft, the other in Integer BASIC. The Applesoft program is
named hELLO. The DOS is set to boot to this file. The Integer
file is named APPLESOFT. If you boot this disc on an Integer
system, DOS will attempt to load in HELLO, but since it is in
Applesoft, it will attempt to Load Applesoft into the system
from a file named APPLESOFT. Therefore, regardless of what kind
of ROMs you have, the appropriate file will be run upon
boot—up.

Line 10 of the Hello program controls what the program will
do when booted. If it is missing, the configuration program is
called. Otherwise, line 10 will set the variable I equal to 1,
2 or 3. If it is 1, Key Filter is run. If it is 2, Integer
BASIC is loaded into the language card. If it is 3, Applesoft
is selected (to be loaded into the language card).

Note: The configuration programs produce super fast
loading FPBASIC and INTBASIC files.

Page X—1

Appendix X: Supporting Software

]LIST

5 POKE 2l6,0: TEXT :PRINT :HOME :POKE — 23112,129: POKE — 23104,128
: REM CHANGE DOS TO SELECT NON RESIDENT BASIC FIRST

15 PRINT “DOS VERSION 3.3": IF LEN (J$) THEN PRINT CHR$ (4)”BRUN”J$
20 PRINT :PRINT "Apple II plus

 Loading";

25 ON I GOTO 50,100,150
30 PRINT “Configuration program”
40 PRINT CHR$ (4)”RUN CONFIGURE.A”
50 PRINT “Keyfilter”
60 PRINT CHR$ (4)”BRUN KEYFILTER"
70 PRINT CHR$ (4)”FP”
100 PRINT “Integer into Language card”
120 PRINT CHR$ (4)”BRUN INTBASIC”
140 END
150 PRINT “Applesoft into Language card”
170 PRINT CHR$ (4)”BRUN FPBASIC”
180 POKE 49280,0
190 END

]

Page X—2

Appendix X: Supporting Software

10 I = 2
20 REM
30 POKE 768,0: POKE 769,173: POKE 770,0: POKE 771,224: POKE 772,72: POKE

773,173: POKE 774,129: POKE 775,192, POKE 776,104:
40 POKE 777,72: POKE 778,205: POKE 779,0: POKE 780,224: POKE 781,208: POKE

782,35: POKE 783,173: POKE 784,131: POKE 785,192:
50 POKE 786,173: POKE 787,131: POKE 788.192: POKE 789,169: POKE 790,165:

POKE 791,141: POKE 792,0: POKE 793,208: POKE 794,205:
60 POKE 795,0: POKE 796,208: POKE 797,208: POKE 798,19: POKE 799,74: POKE

800,141: POKE 801,0: POKE 802,208: POKE 803,205:
70 POKE 804,0: POKE 805,208: POKE 806.208: POKE 807,10: POKE 808,173: POKE

809,129: POKE 810,192: POKE 811,173: POKE 812,129:
80 POKE 813,192: POKE 814,169: POKE 815,1: POKE 816,208: POKE 817,2: POKE

818,169: POKE 819,0: POKE 820,141: POKE 821,0:
90 POKE 822,3: POKE 823,104: POKE 824,205: POKE 825,0: POKE 826,224: POKE

827,240: POKE 828,3: POKE 829,173: POKE 830,128:
100 POKE 831,192: POKE 832,96:
110 CALL 769
120 IF PEEK (768) < >1 THEN I = 1: GOTO 280
130 REM
140 PRINT : PRINT “Language card found”
150 PRINT : INPUT “Insert DOS 3.3 Master diskette “;A$
160 PRINT CHR$ (4)”BLOAD INTBASIC,A$2000”: PRINT CHR$ (4)”BLOAD FPBASI

C ,A$5000”
170 POKE 19379,201: POKE 19380,224: POKE 19381,176: POKE 19382,5: POKE 1

9383,41: POKE 19384,63: POKE 19385,9: POKE 19386,64
180 POKE 19387,96: POKE 19388,41: POKE 19389,31: POKE 19390,96: POKE 197

29,32: POKE 19730,179: POKE 19731,251: POKE 19732,234: POKE 19843,25
5

190 POKE 31667,201: POKE 31668.224: POKE 31669,176: POKE 31670,5: POKE 3
1671,41: POKE 31672,63: POKE 31673,9: POKE 31674,64

200 POKE 31675,96: POKE 31676,41: POKE 31677,31: POKE 31678,96: POKE 320
17,32: POKE 32018,179: POKE 32019,251: POKE 32020,234: POKE 32131,25
5

210 PRINT : INPUT “Insert Enhancer Utility diskette “;A$
220 PRINT CHR$ (4)”BLOAD BASIC”: PRINT CHR$ (4)”BSAVE INTBASIC,A$1F04,

L$30FB”: PRINT CHR$ (4)”BSAVE INTBASIC,A768,L108”: PRINT CHR$ (4)”
BSAVE FPBASIC,A$4F04,L$30FB”: PRINT CHR$ (4)”BSAVE FPBASIC,A768,L10
8”

230 GOTO 500
300 PRINT : PRINT : PRINT : PRINT : PRINT CHR$ (4)”OPEN CONFIG”
310 PRINT CHR$ (4)”WRITE CONFIG”
320 PRINT “LOAD HELLO”
330 PRINT “10 I=”I”:J$=” CHR$ (34)A$ CHR$ (34)
340 PRINT “SAVE HELLO”
350 PRINT “RUN”
360 PRINT CHR$ (4)”CLOSE”
370 PRINT CHR$ (4)”EXEC CONFIG”
380 END
500 PRINT : PRINT : PRINT “Select one:”
510 PRINT : PRINT “1 Load Integer into Language card”
520 PRINT : PRINT “2 Load Applesoft into Language card”
530 VTAB PEEK (37) — 4: HTAB 12
540 GET A$:I = VAL (A$) + 1: IF I < > 2 AND I < > 3 THEN 540
550 VTAB PEEK (37): HTAB 1: INPUT “Enter Macro file to download

 or, RETURN for none ";A$
560 GOTO 300

Page X—3

Appendix X: Supporting Software

Section X.b The Key Filter Program

There is a program on the Enhancer][Utilities DISC called
Key Filter. Key Filter is a software method of bypassing
CAPTST. It can be used to allow input of lower case characters
by most programs written in either BASIC or 6502 machine
language. The Key Filter program should not be used with word
processors (section: 7.a)

Since the Key Filter program lives in RAM, it will take up
some of your free memory — though not a great deal. It is
vulnerable to attack from other programs. It can be
disconnected with certain monitor, DOS and BASIC commands. It
must be loaded from disc each time the power is turned on or DOS
is booted. Key Filter is a good solution for many people,
however, there are other solutions which we shall discuss in
subsequent sections.

Section X.b.1.1 Installing Key Filter

The disc which accompanies your Enhancer][contains a
copyable version of Key Filter. You may relocate the Key Filter
program by running the program FID on your DOS 3.3 system master
disc or by inserting the Enhancer][Utilities Disc in one of
your disc drives and issue the following DOS command:

BLOAD KEY FILTER,A$800

To save it onto another disc, place the destination disc into
your disc drive and type:

BSAVE KEY FILTER,A$800,L$ <unknown>

If you wish to save Key Filter on more than one disc, you may
repeat the second step above without having to reload Key Filter
from the Enhancer][Utilities Disc.

Section X.b.1.2 Using Key Filter

To use Key Filter, the DOS commands:

BRUN KEY FILTER
FP or INT

should be issued. This will cause Key Filter to be loaded into
memory and set up all the necessary vectors.

Page X—4

Appendix X: Supporting Software

Note: The Hello program on the Enhancer][Utilities Disc
will configure itself to automatically load in Key Filter if you
do not have a language card. If you do have a language card but
wish to have Key Filter loaded in each time you boot, change
line ten of the Hello program as follows:

10 I = 1

After you make this change, you should save the program.

Note: If you have an Apple][plus, the name of your
Hello program should be: HELLO. If you have Integer BASIC in
ROM (non—plus systems), the name of your Hello program should
be: APPLESOFT.

Note: If you Want to reconfigure the HELLO program, remove
line ten from the program by typing:

10 <Cr>

Issuance of the PR#nl and IN#n2 commands, or the equivalent
monitor commands, where n1 and n2 are integer values between 0
and 7 inclusive (e.g. PR#0:IN#0) will disconnect Key Filter.
If Key Filter becomes disconnected, it may be reconnected with a
control reset (Autostart ROM only), by a & command from
Applesoft, a 3F5G from the monitor or by a CALL 1013 from either
BASIC.

Example:

*3F5G

or
]&
or

>CALL 1013

Page X—5

6 *******************************
7 * *
8 * ENHANCER INTERFACE *
9 * *
10 * SOFTWARE 2.0 *
11 * *
12 * 10/31/1981 11:30 *
13 * *
14 *******************************
15 *
16 *
17 BASL EQU $28
18 PROMPT EQU $33
19 CSWL EQU $36
20 KSWL EQU $38
21 AlL EQU $3C
22 A1H EQU $3D
23 A2L EQU $3E
24 A2H EQU $3F
25 A4L EQU $42
26 A4H EQU $43
27 IN EQU $200
28 RSVECL EQU $3F2
29 RSVECH EQU $3F3
30 AMPER EQU $3F5
31 DEST EQU $9300
32 KEYIN EQU $FD1B
33 COUT1 EQU $FDF0
34 MOVE EQU $FE2C
35 *
36 OBJ $6000
37 ORG $6000
38 *
39 *******************************
40 * *
41 * RELOCATE KEYFILTER *
42 * *
43 *******************************
44 *

6000: A9 9A 45 RELOCATE LDA #$9A
6002: 8D 01 9D 46 STA $9D01
6005: A9 00 47 LDA #<DEST
6007: 85 42 48 STA A4L
6009: A9 93 49 LDA #>DEST
600B: 85 43 50 STA A4H
600D: A9 25 51 LDA #<START
600F: 85 3C 52 STA AlL
6011: A9 60 53 LDA >START
6013: 85 3D 54 STA A1H
6015: A9 4F 55 LDA $<END
6017: 85 3E 56 STA A2L
6019: A9 61 57 LDA #>END
601B: 85 3F 58 STA A2H
601D: A0 00 59 LDY #$00
601F: 20 2C FE 60 JSR MOVE
6022: 4C 00 9B 61 JMP DEST

62 *
63 ****************************

Page X—6

64 * *
65 * START UP ROUTINE *
66 * *
67 ****************************
68 *
69 START ORG DEST
70 *

9B00: 20 2A 9B 71 STARTUP JSR INITIAL
9B03: A9 4C 72 LDA #$4C ESTABLISH & AND RESET VECTORS
9B05: 8D F5 03 73 STA AMPER
9B08: A9 00 74 LDA #<STARTUP
9B0A: 8D F6 03 75 STA AMPER+1
9B0D: A9 9B 76 LDA #>STARTUP
9B0F: 8D F7 03 77 STA AMPER+2
9B12: A9 24 78 LDA #<RESTART
9B14: 8D F2 03 79 STA RSVECL
9B17: A9 9B 80 LDA #>RESTART
9B19: 8D F3 03 81 STA RSVECH
9B1C: 49 A5 82 EOR #$A5
9B1E: 8D F4 03 83 STA RSVECH+1
9B21: 4C EA 03 84 JMP $3EA

85 *
9B24, 20 2A 93 86 RESTART JSR INITIAL
9B27: 4C D0 03 87 JMP $3D0

88 *
89 ****************************
90 * *
91 * INITIALIZATION *
92 * *
93 ****************************
94 *

9B2A: A9 4C 95 INITIAL LDA #<KEYIN1 ; CHANCE INPUT AND OUTPUT HOOKS
9B2C: 85 38 96 STA KSWL
9B2E: A9 93 97 LDA #>KEYIN1
9B30: 85 39 98 STA KSWL+1
9B32: A9 03 99 LDA #<COUT2
9B34: 85 36 100 STA CSWL
9B36: A9 9C 101 LDA #>COUT2
9B38: 85 37 102 STA CSWL+1
9B3A: A9 00 103 LDA #$00 ; INITIALIZE VARIABLES
9B3C: SD 24 9C 104 STA XSAVE
9B3F: 8D 25 9C 105 STA YSAVE
9B42: 8D 26 9C 106 STA OLDCHAR
9B45: 8D 27 9C 107 STA FLAGS
9B48: 8D 28 9C 108 STA ESCFLG
9B43: 60 109 RTS

110 *
111 ****************************
112 * *
113 * INPUT ENTRY POINT *
114 * *
115 ****************************
116 *

9B4C: 8E 24 9C 117 KETIN1 STX XSAVE ; SAVE K
9B4F: 48 118 PHA
9B50: C9 E0 119 CMP #$E0 ; FIX LOWER CASE CURSOR
9B52: 90 04 120 BLT SKIP1
9B54: 29 1F 121 AND #$1F

Page X—7

9B56: 91 28 122 STA (BASL),Y
9B58: E0 00 123 SKIP1 CPX
9B5A: F0 lA 124 BEQ ; IF ZERO ASSUME GETLN
9B5C: CA 125 DEX
9B5D: AD 26 9C 126 LDA ; GET LAST CHARACTER FROM GETLN
9B60: C9 88 127 CMP ; IF BS ASSUME GETLN
9B62: F0 12 128 BEQ GETLN
9B64: DD 00 02 129 CMP IN,X
9B67: F0 0D 130 BEQ GETLN
9B69: 29 DF 131 AND #$DF
9B6B: DD 00 02 132 CMP IN,X ; IF SAME AS CHARACTER IN INPUT
9B6E: D0 28 133 BNE NTGETLN ; BUFFER THEN ASSUME GETLN
9B70: AD 26 9C 134 LDA OLDCHAR ; GET LAST CHARACTER FROM GETLN
9B73: 9D 00 02 135 STA IN,X ; FIX INPUT BUFFER
9B76: 38 136 GETLN SEC ; SET GETLN FLAG
9B77: 6E 27 9C 137 ROR FLAGS
9B7A: 68 138 PLA
9B7B: AE 24 9C 139 LDX XSAVE
9B7E: 20 lB FD 140 JSR KEYIN ; GET CHARACTER FROM KEYBOARD
9B81: 2C 28 9C 141 BIT ESCFLG
9B84: 30 2C 142 ESC1 ; IF LAST KEY WAS ESC THEN FINISH IT
 UP
9B86: C9 95 143 CMP #$95 ; CHECK FOR COPY KEY
9B88: D0 02 144 BNE NOTPICK
9B8A: B1 28 145 LDA (BASL),Y ; GET CHARACTER FROM SCREEN
9BSC: C9 9B 146 NOTPICK CMP #$9B ; CHECK TO ESCAPE
9B8E: F0 17 147 BEQ ESC ; BEGIN ESC SEQUENCE
9B9O: 8D 26 9C 148 STA OLDCHA; IF CR THEN FIX INPUT BUFFERR
9B93: C9 8D 149 CMP #$8D
9B95: F0 3E 150 BEQ FIXBUFF
9B97: 60 151 RTS
9B98: 68 152 NTGETLN PLA
9B99: AE 24 9C 153 LDX XSAVE
9B9C: 20 lB FD 154 JSR KEYIN ; GET CHARACTER FROM KEYBOARD
9B9F: 48 155 PHA
9BA0: A9 00 156 LDA #$00
9BA2: 8D 26 9C 157 STA OLDCHAR
9BA5: 68 158 PLA
9BA6: 60 159 RTS

160 *
9BA7: 48 161 ESC PHA
9BA8: A9 88 162 LDA #$88
9BAA: 8D 28 9C 163 STA ESCFLG ; SET ESCAPE FLAG
9BAD: 8D 26 9C 164 STA OLDCHAR ; AND OLDCHAR
9BB0: 68 165 PLA
9BB1: 60 166 RTS

167 *
9BB2: 8C 25 9C 168 ESC1 STY YSAVE ; SAVE Y
9BB5: C9 E0 169 CMP #$E0 ; MAKE UPPER CASE FOR ESCAPE FUNCTION
N
9BB7: 90 02 170 BLT SKIP
9BB9: 29 0F 171 AND #$DF
9EBB: A0 03 172 SKIP LDY #$03 ; CHECK FOR TYPE OF ESCAPE FUNCTION
9BBD: D9 Dl 9B 173 LOOP CMP XTBL,Y
9BC0: F0 06 174 BEQ ESC2
9BC2: 88 175 DEY
9BC3: 10 F8 176 BPL LOOP
9BC5: 4E 28 9C 177 LSR ESCFLG

Page X—8

9BC8: A0 88 178 ESC2 LDY #$88
93CA: SC 26 9C 179 STY OLDCHAR
9BCD: AC 25 9C 180 LDY YSAVE
93D0: 60 181 RTS
9BD1: C9 CA CB
9BD4: CD 182 XTBL HEX C9CACBCD

183 *
184 *

 48 185 FIXBUFF PHA ;CONVERT LOWER CASE TO UPPER CASE
 A5 33 186 LDA PROMPT ;EXCEPT THOSE WITHIN QUOTES
 C9 BE 187 CMP # ">" ;OR INPUTS WITHOUT > OR] PROMPTS
 93DA: F0 04 188 BEQ GOOD
9BDC: C9 DD 189 CMP #"]"
9BDE: D0 26 190 BNE FIXEXIT ;PROMPT DOESN’T MATCH, EXIT
9BE0: A2 00 191 GOOD LDX #$00
9BE2: 8E 29 9C 192 STX QTEFLG ;CLEAR QUOTE FLAG
9BE5: BD 00 02 193 FIXLOOP LDA IN,X ;GET CHARACTER
9BE8: C9 A2 194 CMP #$A2 ;IF QUOTE THEN FLIP QUOTE FLAG
9BEA: D0 06 195 BNE NTQTE
9BEC: 4D 29 9C 196 EOR QTEFLG
9BEF: 8D 29 9C 197 STA QTEFLG
9BF2: 2C 29 9C 198 NTQTE BIT QTEFLG ;CHECK FOR CONVERSION
9BF5: 30 0C 199 BMI NEXTIN ;NO, SKIP TO NEXT
9BF7: BD 00 02 200 LDA IN,X ;CONVERT TO UPPER CASE
9BFA: C9 E0 201 CMP #$EO
9BFC: 90 05 202 BLT NEXTIN
9BEE: 29 DF 203 AND #$DF
9C00: 9D 00 02 204 STA IN,X
9C03: E8 205 NEXTIN INX ;CONTINUE TO END OF BUFFER
9C04: D0 DF 206 BNE FIXLOOP
9C06: 68 207 FIXEXIT PLA
9C07: AE 24 9C 208 LDX XSAVE
9C0A: 60 209 RTS

210 *
211 *********************************
212 * *
213 * OUTPUT ENTRY POINT *
214 * *
215 *********************************
216 *

9C0B: 8C 25 9C 217 COUT2 STY YSAVE
9C0E: AC 27 9C 218 LDY FLAGS ;CHECK GETLN FLAG
9C11: 10 08 219 BPL DONE ;IF CLEAR THEN SKIP
9C13: AC 26 9C 220 LDY OLDCHAR ;GET LAST CHARACTER FROM GETLN
9C16: C0 20 221 CPY #$E0 ;IF IT IS LOWER CASE THEN USE IT
9C18: 90 01 222 BLT DONE
9C1A: 98 223 TYA
9C1B: AC 25 9C 224 DONE LDY YSAVE
9C1E: 4E 27 9C 225 LSR FLAGS
9C21: 4C F0 FD 226 HEX COUT1 ;OUTPUT CEARACTER
9C24: 00 227 XSAVE HEX 00
9C25: 00 228 YSAVE HEX 00
9C26: 00 229 OLDCHAR HEX 00
9C27: 00 230 FLAGS HEX 00
9C28: 00 231 ESCFLG HEX 00

232 QTEFLG HEX 00
233 LEN EQU *_STARTUP
234 END EQU LEN+START

Page X—9

——END ASSEMBLY——

ERRORS: 0

335 BYTES

SYMBOL TABLE — ALPHABETICAL ORDER:

AIB =$3D AlL =$3C A2H =$3F A2L =$3E
A4H =$43 A4L =$42 AMPER =$03F5 BASL =$28
COUT1 =$FDF0 COUT2 =$9C0B CSWL =$36 BEST =$9300
DONE =$9C1B END =$614F ESC =$9BA7 ESC1 =$9BB2
ESC2 =$9BC8 ESCFLG =$9C28 FIXBUFF =$9BD5 FIXEXIT =$9C06
FIXLOOP =$9BE5 FLAGS =$9C27 GETLN =$9376 GOOD =$9BE0
IN =$0200 INITIAL =$9B2A KEYIN =$FD1E KEYTN1 =$9B4C
KSWL =$38 LEN =$012A LOOP =$9BED MOVE =$FB2C
NEXTIN =$9003 NOTPICK =$9BBC NTGETLN =$9B98 NTQTE =$9BF2
OLDCHAR =$9C26 PROMPT =$33 QTEFLG =S9C29 ? RELOCATE =$6000
RESTART =$9B24 RSVECH =$03F3 RSVECL =$03F2 SKIP =$9BBB
SKIP1 =$9B58 START =$6025 STARTUP =$9B00 XSAVE =$9024
XTEL =$9BD1 YSAVE =$9C25

SYMBOL TABLE — NUMERICAL ORDER:

BASL =$28 PROMPT =$33 CSWL =$36 KSWL =$38
AlL =$3C A1H =$3D A2L =$3E A2E =$3F
A4L =$42 A4H =$43 LEN =$012A IN =$0200
RSVECL =$03F2 RSVECH =$03F3 AMPER =$03F5 ? RELOCATE =$6000
START =$6025 END =$614F DEST =$9300 STARTUP =$9300
RESTART =$9B24 INITIAL =$9B2A KEYIN1 =$9B4C SKIP1 =$9358
GETLN =$9B76 NOTPICK =$9B8C NTGETLN =$9B98 ESC =$9BA7
ESCL =$9BB2 SKIP =$9BBB LOOP =$9BBD ESC2 =$9BC8
XTBL =$9BDI FIXBUFF =$9BD5 GOOD =$9BE0 FIXLOOP =$9BE5
NTQTE =$9BF2 NEXTIN =$9C03 FIXEXIT =$9006 COUT2 =$9C0B
DONE =$9C1B XSAVE =$9024 YSAVE =$9025 OLBCHAR =$9C26
FLAGS =$9027 ESCFLG =$9028 QTEFLG =$9029 KEYIN =SF01B
COUT1 =$FDF0 MOVE =$FE2C

Page X—10

Appendix X: Supporting Software

Section X.c Apple Writer Modify

The Apple Writer Modify program contains patches for Apple
Writer which will permit-lower case entry and display. You
should type the followings

BRUN APPLE WRITER MODIFY

Just follow the instructions it gives you. You will be
requested to swap discs several tines. At the end of this
process, a copy of Apple Writer will appear on the Enhancer][
Utilities Disc. Your original Apple Writer disc is not altered.

Page X—11

6 ************************************
7 * *
8 * APPLE WRITER MODIFIER *
9 * *
10 * 10/30/81 19:00 *
11 * *
12 ************************************
13 *
14 BASEL EQU $00
15 BASEH EQU $01
16 HOME EQU $FC58
17 RDKEY EQU $FD0C
18 KEYIN EQU $FD1B
19 COUT EQU $FDED
20 COUT1 EQU $FDF0
21 *
22 ORG $6000
23 OBJ $6000
24 *

6000: 20 58 FC 25 JSR HOME ; CLEAR SCREEN
6003: 20 94 60 26 JSR HEADER ; PRINT PAGE HEADER
6006: 20 9B 60 27 JSR AWMSG ; PRINT INSERT APPLE WRITER
6009: 20 AF 60 28 JSR BLD ; BLOAD TEDITOR
600C: 20 BD 60 29 JSR TED
600?: 20 8F 60 30 JSR CROUT
6012: A2 15 31 LDX #$15 ; MAKE CHANGES
6014: A0 00 32 LDY #$00
6016: BD 20 62 33 TMLOOP LDA TLADR,X ; GET ADDRESS TO CHANGE
6019, 85 00 34 STA BASEL
601B: BD 36 62 35 LDA THADR,X
601E: 85 01 36 STA BASEH
6020: BD 4C 62 37 LDA TPATCH,X ; GET CHANGE
6023: 91 00 38 STA (BASEL),Y ; MAKE CHANCE
6025: CA 39 DEX
6026: 10 EE 40 EPL TMLOOP ; CONTINUE
6028: 20 6C 60 41 JSR GMOD ; ADD GENERAL MODIFICATION
602B: 20 B6 60 42 JSR BSV ; BSAVE TEDITOR
602E: 20 BD 60 43 JSR TED
6031: 20 CE 60 44 JSR SFX

45 *
6034: 20 9B 60 46 JSR AWMSG ; PRINT INSERT APPLE WRITER
6037: 20 AF 60 47 JSR BLD ; BLOAD PRINTER
603A: 20 C4 60 48 JSR PRNT
603D: 20 8F 60 49 JSR CROUT
6040: A2 07 50 LDX #$07
6042: AO 00 51 LDY #$00
6044: BD A0 62 52 PMLOOP LDA PLADR,X ; GET ADDRESS TO CHANGE
6047: 85 00 53 STA BASEL
6049: BD A8 62 54 LDA PHADR,X
604C: 85 01 55 STA BASEH
604E: BD B0 62 56 LDA PPATCH,X ; GET CHANGE
6051: 91 00 57 STA (BASEL),Y ; MAKE CHANGE
6053: CA 58 DEX
6054: 10 EE 59 BPL PMLOOP ; CONTINUE
6056: 20 6C 60 60 JSR GMOD ; ADD GENERAL MODIFICATION
6059: 20 B6 60 61 JSR BSV ; BSAVE PRINTER
605C: 20 C4 60 62 JSR PRNT
605F: 20 CE 60 63 JSR SFX

Page X—12

6062: A9 60 64 LDA #>ENDMSG
6064: AC EO 65 LDY #>ENDMSG
6066: 20 7A 60 66 JSR MESSAGE ; PRINT END MESSAGE
6069: 4C D0 03 67 JMP $3D0 ; JUMP TO BASIC

68 *
606C: A0 4F 69 GMOD LDA #END-OUTPATCH ;GENERAL MODIFICATION
606E: 39 C8 61 70 MDLOOP LDY GPATCH,Y ;GET BYTE
6071: 99 20 18 71 STA $1820,Y ;STORE IT IN TEDITOR OR PRINTER
6074: 88 72 DEY
6075: 10 F7 73 BPL MDLOOP ;CONTINUE UNTIL DONE
6077: 4C A5 60 74 JMP EUMSG ;INSERT ENHANCER UTILITY

75 *
607A: 8D 84 60 76 MESSAGE STA MSGLOOP+2
607D: SC 83 60 77 STY MSGLOOP+1
6080: A0 00 78 LDY #$00
6082: B9 29 61 79 MSGLOOP LDA MSG1,Y
6085: F0 07 80 BEQ RTS1
6087: 20 ED FD 81 JSR COUT
608A: C8 82 INY
608B: 4C 82 60 83 JMP MSGLOOP

84 *
608E: 60 85 RTS1 RTS

86 *
608F: A9 80 87 CROUT LDA #$8D
6091: 4C ED FD 88 JMP COUT

89 *
6094: A9 61 90 HEADER LDA #>HEAD
6096: A0 0B 91 LDY #<HEAD
6098: 4C 7A 60 92 JMP MESSAGE

93 *
6093: A9 61 94 AWMSC LDA #>MSG1
609D: A0 29 95 LDY #<MSG1
609?: 20 7A 60 96 JSR MESSAGE
60A2: 4C D2 60 97 JMP KEYWAIT

98 *
60A5: A9 61 99 EUMSG LDA #>MSG2
60A7: A0 5C 100 LDY #<MSG2
60A9: 20 7A 60 101 JSR MESSAGE
60AC: 4C D2 60 102 JMP KEYWAIT

103 *
60AF: A9 61 104 BLD LDA #>BLOAD
60B1: A0 93 105 LDY #<BLOAD
60B3: 4C 7A 60 106 JMP MESSAGE

107 *
60B6: A9 61 108 BSV LDA #>BSAVE
60B8: AC 93 109 LDY #<BSAVE
6OBA: 4C 7A 60 110 JMP MESSAGE

111 *
6OBD: A9 61 112 TED LDA #>TEDIT
60BE: A0 A3 113 LDY #<TEDIT
60C1: 4C 7A 60 114 JMP MESSAGE

115 *
60C4: A9 61 116 PRNT LDA #>PRINT
60C6: A0 31 117 LDY #<PRINT
60C8: 4C 7A 60 118 JMP MESSAGE

119 *
60C3: A9 61 120 SFX LDA #>SUFFIX
60CD: A0 EF 121 JMP #<SUFFIX

Page X—13

60CF: 4C 7A 60 122 JMP MESSAGE
123 *

60D2: 2C 10 C0 124 KEYWAIT BIT $C010
60D5: A4 24 125 LDY $24
60D7: A9 60 126 LDA #$60
60D9: 91 28 127 STA ($28),y
60DB: A9 A0 128 LDA
600D: 4C lB FD 129 JMP KEYIN

130 *
60E0: 8D 8D 131 ENDMSG HEX 8D8D
60E2: Cl F0 F0
60E5: EC E5 A0
60E8: D7 F2 E9
60E3: P4 E5 F2
60EE: AD ED EF
60F1: E4 E9 E6
60F4: E9 E3 El
60F7: F4 E9 EF
60FA: EE F3 132 ASC “Apple Writer Modifications”
60PC: 8D 133 HEX 8D
60FD: El F2 E5
6100: A0 E3 EF
6103: ED F0 EC
6106: E5 F4 E5 134 ASC “are complete”
6109: 8D 00 135 HEX 8D00

136 *
610B: Cl FC F0
610E: EC E5 A0
6111: D7 F2 E9
6114: F4 E5 F2
6117: A0 CD EF
611A: E4 E9 E6
611D: F9 A0 D0
6120: F2 EF E7
6123: F2 El ED 137 HEAD ASC “Apple Writer modify Program”
6126: 8D 8D 00 138 HEX 8D800
6129: 8D 8D 139 MSCI HEX 8D8D
612B: C9 EE F3
612E: E5 F2 F4
6131: AC Cl F0
6134: F0 EC E5
6137: A0 D7 F2
613A: E9 F4 E5
613D: F2 A0 E4
6140: E9 F3 EB
6143: E5 F4 F4
6146: E5 140 ASC “Insert Apple Writer diskette”
6147: 8D 141 HEX 8D
6148: El EE E4
614B: A0 F0 F2
614E: E5 F3 F3
6151: AC D3 D2
6154: C5 D4 D5
6157: D2 CE DD
615A: A0 142 ASC “and press [RETURN}"
615B: 00 143 HEX 00

144 *
615C: 8D 8D 145 MSG2 HEX 8D8D

Page X—14

615E: C9 EE F3
6161: E5 F2 F4
6164: AC 05 EE
6167: E8 El EE
616A: E3 E5 F2
6160: AC D5 F4
6170: E9 EC E9
6173: F4 F9 146 ASC “Insert Enhancer Utility”
6175: A0 E4 E9
6178: F3 EB E5
617B: F4 F4 E5 147 ASC “ diskette”
617E: 8D 148 HEX 8D
617F: El EE E4
6182: AC F0 F2
6185: E5 F3 F3
6188: AC 03 02
618B: C5 D4 05
618E: 02 CE DD
6191: AC 149 ASC "and press [RETURN)"
6192: 00 150 HEX 00

151 *
6193: 8D 84 152 BLOAD HEX 8D84
6195: C2 CC CF
6198: Cl C4 153 ASC "BLOAD"
619A: 00 154 HEX 00

155 *
619B: 8D 84 156 BSAVE HEX 8D84
619D: C2 D3 Cl
61A0: D6 C5 157 ASC "BSAVE”
61A2: 00 158 HEX 00

159 *
61A3: D4 C5 C4
61A6: C9 D4 CF
61A9: D2 AC Cl
61AC: A4 B8 B0
61AF: B3 160 TEDIT ASC "TEDITOR,A$803"
61B0: 00 161 HEX 00

162 *
61B1: D0 D2 C9
61B4: CE D4 D5
61B7: D2 AC Cl
6lBA: A4 B8 B0
61BD: B3 163 PRINT ASC "PRINTER,A$803"
61BE: 00 164 HEX 00

165 *
6lBF: AC CC A4
61C2: B1 B0 B7
61C5: B0 166 SUFFIX ASC ",L$1070"
61C6: 8D 167 HEX 8D
61C7: 00 168 HEX 00

169 *
170 ***********************************
171 * *
172 * Apple Writer nodifications *
173 * *
174 * *
175 ***********************************
176 *

Page X—15

177 *
178 GPATCR ORG $1820
179 *

1820: C9 E0 180 OUTPATCH CMP #$E0
1822: 90 02 181 BCC SKIP1
1824: 29 BF 182 AND #$BF
1826: C9 C0 183 SKIP1 CMP #$C0
1828: 90 02 184 BCC SKIP2
182A: 09 20 185 ORA #$20
182C: C9 40 186 SKIP2 CMP #$40
182E: B0 04 187 BCS SKIP3
1830: 49 20 188 EOR #$20
1832: 69 40 189 ADC #$A0
1834: 60 190 SKIP3 RTS

191 *
1835: C9 E0 192 INPATCH CMP #$E0
1837: 90 03 193 BCC SKIP4
1839: 29 DF 194 AND #$DF
183B: 60 195 RTS

196 *
183C: C9 C0 197 SKIP4 CMP #$C0
183E: 90 03 198 BCC SKIP5
1840: 29 1F 199 AND #S1F
1842: 60 200 RTS

201 *
1843: C9 A0 202 SK1P5 CMP #$A0
1845: 90 ED 203 BCC SKIP3
1847: 09 40 204 ORA #$40
1849: 60 205 RTS
 206 *
184A: 20 20 18 207 OUT1 JSR OUTPATCH
184D: 4C F0 FD 208 JMP COUT1

209 *
1850: 20 20 18 210 OUT2 JSR OUTPATCH
1853: 91 28 211 STA ($28),y
1855: C8 212 INY
1856: 60 213 RTS

214 *
1857: A5 10 215 CAPSET LDA $10
1859: C9 E0 216 CMP #$E0
185B: 90 02 217 BCC SKIP6
185D: 29 DF 218 AND #SDF
185F: C9 C9 219 SKIP6 CMP #$C9
1861: 60 220 RTS

221 *
222 *

1862: 48 223 SHPATCH PHA
1863: A5 0B 224 LDA $03
1865: D0 04 225 BNE SKIP7
1867: 68 226 PLA
1868: 29 3F 227 AND #$3F
186A: 60 228 RTS

229 *
186B: 68 230 SKIP7 PLA
186C: 4C 35 18 231 JMP INPATCH

232 *
186F: 00 233 END HEX 00

234 *

Page X —16

235 ORG $6220
236 OBJ $6220
237 *

6220: E0 238 TLADR HEX E0
6221: E6 E7 E8
6224: E9 239 HEX E6E7E8E9
6225: E6 E7 E8 240 HEX E6E7E8
6228: 05 06 07 241 HEX 050607
622B: 32 33 34
622E: 35 36 37
6231: 38 39 242 HEX 3233343536373839
6233: 49 4A 4B 243 HEX 494A4B

244 *
6236: 09 245 THADR HEX 09
6237: 09 09 09
623A: 09 246 HEX 09090909
623B: 0A 0A 0A 247 HEX 0A0A0A
623E: 15 15 15 248 HEX 151515
6241: 15 15 15
6244: 15 15 15
6247: 15 15 249 HEX 1515151515151515
6249: 15 15 15 250 HEX 151515

251 *
252 ******************************
253 * *
254 * PATCHES FOR *
255 * *
256 ******************************
257 *
258 TPATCH ORG $9E0

09E0: EA 259 NOP
260 *
261 ORG $9E6

09E6: 20 57 18 262 JSR CAPSET
09E9: EA 263 NOP

264 *
265 ORG $AE6

0AE6: 20 50 18 266 JSR OUT2
267 *
268 ORG $1505

1505: 4C 62 18 269 JMP SHPATCH
270 *
271 ORG $1532

1532: EA 272 NOP
1533: EA 273 NOP
1534: D0 DF 274 BNE $1515
1536: 20 01 15 275 JSR $1501
1539: 48 276 PHA

277 *
278 ORG $1549

1549: 20 4A 18 279 JSR OUT1
280 *
281 ORG $62A0
282 OBJ $62A0
283 *

6245: 9D 9E 9F 284 PLADR HEX 9D9E9F
62A3: CA CB 285 HEX CACB
62A5: DD DE DF 286 HEX DDDEDF

Page X—17

287 *
62A8: 10 10 10 288 PHADR HEX 101010
62AB: 10 10 289 HEX 1010
62AD: 10 10 10 290 HEX 101010

291 *
292 *********************************
293 * *
294 * PATCHES FOR PRINTER *
295 * *
296 *********************************
297 *
298 PPATCH ORG $1090

109D: 4C 35 18 299 JMP INPATCH
300 *
301 ORG $10CA

10CA: EA 302 NOP
10CR: EA 303 NOP

304 *
305 ORG $10DD

l0DD: 20 4A 18 306 JSR OUTl

——END ASSEMBLY——

ERRORS: 0

24 BYTES

SYMBOL TABLE - ALPHABETICAL ORDER:

AWMSG =$609B BASEH =$01 BASEL =$00 BLD =$60AF
BLOAD =$6193 BSAVE =$619B BSV =$60B6 CAPSET =$1857
COUT =$FDED COUT1 =$FDE0 CROUT =$608F END =$186F
ENDMSG =$60E0 EUMSG =$60A5 GMOD =$606C GPATCH =$61C8
HEAD =$610B HEADER =$6094 HOME =$FC58 INPATCH =$1835
KEYIN =$FD1B KEYWAIT =$60D2 MDLOOP =$606E MESSAGE =$607A
MSG1 =$6129 MSG2 =$615C MSGLOOP =$6082 OUT1 =$184A
OUT2 =$1850 OUTPATCH =$1820 PHADR =$62A8 PLADR =$62A0
PMLOOP =$6044 PPATCH =$62B0 PRINT =$61B1 PRNT =$60C4

? RDKEY =$fD0C RTS1 =$608E SFX =$60CB SHPATCH =$1862
SKIP1 =$1826 SKIP2 =$182C SKIPS =$1834 SKIP4 =$183C
SKIP5 =$1843 SKIP6 =$185F SKIP7 =$186B SUFFIX =$61BF
TED =$6OED TEDIT =$61A3 THADR =$6236 TLADR =$6220
TMLOOP =$6016 TPATCH =$624C

SYMBOL TABLE — NUMERICAL ORDER:

BASEL =$00 BASEH =$01 OUTPATCH =$1820 SKIP1 =$1826
SKIP2 =$182C SKIP3 =$1834 IMPATCH =$1835 SKIP4 =$183C
SKIP5 =$1843 OUTL =$184A OUT2 =$1850 CAPSET =$1857
SKIP6 =$185F SHPATCH =$1862 SKIP7 =$186B END =$186F
TMLCOP =$6016 PMLOOP =$6044 GMOD =$606C MDLOOP =$606E
MESSAGE =$607A MSGLOOP =$6082 RYS1 =$608E CROUT =$608F
READER =$6094 AWMSG =$609B EUMSG =$60A5 BLD =$60AF
BSV =$60B6 TED =$60B0 PRNT =$60C4 SFX =$60CB
KEYWAIT =$6002 ENDMSG =$60E0 HEAD =$610B MSG1 =$6129

Page X—18

MSG2 =$615C BLOAD =$6193 BSAVE =$619B TEDIT =$61A3
PRINT =$61B1 SUFFIX =S61BF GPATCH =$61C8 TLADR =$6220
THADR =$6236 TPATCH =$624C PLADR =$62A0 PHADR =$62A8
PPATCH =$6230 HOME =$FC58 ? RDKEY =$FD0C KEYIN =$FD1B
COUT =$FDED COUT1 =$FDF0

Page X—19

Appendix X: Supporting Software

Section X.d The Macro editor

Included on the Enhancer][utility diskette is an
Applesoft program to create, add, or modify predefined
keystrokes for use as Macro keys. To use the program just type.
RUN MACRO EDITOR and wait for the main menu to be displayed on
the screen. It is self explanatory and does not need a detailed
explanation. Just depress the letter corresponding to what
function you want. There is no need to press the return key.
Pressing the ESCAPE key will immediately return you to the main
menu from most of the program.

Section X.d.l The Edit Mode

Depressing the E key from the main menu will put you in the
edit mode. The editor will display at the top of the screen the
amount of memory which you have used and the amount of memory
that remains free for definitions. Editor node definitions are
explained below:

LOWERCASE: depress the L key to activate/deactivate this
node. When this option is displayed in inverse video,
you are accessing macros in the Lower Case Mode.

CONTROL: depress the C key to activate/deactivate this mode.
When this Option is displayed in inverse video, the
keyboard character for which you are about to define a
macro will be one that has the control key pressed.

SHIFT: depress the S key to activate/deactivate this mode.
When this option is displayed in inverse video, the
keyboard character for which you are about to define a
macro will be one that has the shift key pressed.

KEYPAD: depress the K key to activate/deactivate this mode.
When this option is displayed in inverse video, the
keyboard character for which your are about to define a
macro must come from an optional keypad input port on
the Enhancer][(keypad not available from Videx). You
may, therefore, only access the macro key from an
optional keypad that is connected to the Enhancer][.

Note: Keypad Mode automatically deselects all the other
three modes. Likewise, any of the other modes will deselect
Keypad Mode.

When you have selected the nodes above that you want to
use, depress the return key. The editor will ask which
character key you want to use.

Page X—20

Appendix X: Supporting Software

Example: Suppose we want to define a control D in the
Lower Case Mode. Here are our keystroke sequences (starting
from the main menu):

E
C
L
<Cr>
D

The E selects Edit Mode. The C selects the Control Mode
(i.e. CONTROL is displayed in inverse), The L selects Lower
Case Mode (not for the keyboard, however). The <cr> ends the
Edit Menu selection. The D selects the keyboard character key.

Once you have selected the Edit Mode and character key, the
editor will search through memory to see if that key has already
been defined. If it has, it will be displayed with the cursor
to the right of the definition. otherwise, the cursor will
appear along the left edge of the screen. The macro is now open
for editing. To type in a definition just type out the key
sequence normally — well, almost normally.

For example, if you had defined a shift—C for your macro
access key, you might type in the word CATALOG <Cr> for your
macro. If you do this, you will notice that the RETURN key gets
printed out as an inverse M on the screen. This is because the
RETURN is a control—M. The editor prints out all control
characters as inverse characters. Any control character may be
directly entered from the keyboard except for the left and right
arrow keys (i.e. ˆH and ˆU), ˆX, ˆC, ˆO. and ESCAPE (i.e. ˆ[).
Below is a brief explanation of each key and what they do.

CONTROL—C (ˆC): Accept. Once you have finished defining
your macro, type ˆC to accept the definition and return
you to the main menu.

ESCAPE (ˆ[): Depressing this key will delete the macro and
return you to the main menu.

CONTROL—X (ˆX): Depressing this key will delete the macro
definition and return the Cursor to the beginning of the
macro define sequence, with the mode and macro access
key already selected.

LEFT AND RIGHT ARROW (ˆH and ˆU): These keys allow you to
move through the text of the macro. With the Left arrow
deleting characters and the Right arrow key restoring
then.

Page X—21

Appendix X" Supporting Software

CONTROL—O (ˆO): Overide. Once you type in a ~O, the editor
will accept any character you wish — including the
command keys described above — but you may only enter
one at tine. So, if you want to place two ˆC’s right
next to each other, you must press the ˆO before each
occurence of a ~C else the editor will process the ˆC as
an Accept and return you to the Main Menu.

Section X.d.2 The Display Mode.

Typing D from the main menu will put you in the display
mode. The program will search through memory for the macros you
have defined and display them on the screen. Under the mode
column, the options that have been selected are indicated by the
first letter of the option (i.e. L meaning lowercase) being
shown for every option you have selected, if you haven’t
selected the option. it will not be printed. Following the mode
options is the macro access key, or the key that will have to
pressed to activate the macro. And finally, the description of
the macro itself with all control characters shown in inverse
video. Pressing any key will halt or resume the listing, with
the Escape key returning you to the main menu.

Section X.d.3 The Catalog Mode.

Typing C from the main menu will catalog the current disc
drive.

Section X.d.4 Save Macros to Disc

Typing S from the main menu will save the current macro in
memory (not the macros in the Enhancer) to the disc. The main
menu will be replaced with a new menu showing download options
you may wish to include in your macro file [appendix: C). To
select an option, just depress the corresponding number next
to the option and the option selected will be shown in inverse
video. Once you have selected the down load options you want.
you may continue the save operation by pressing the RETURN key.
The prompt: “ENTER FILENAME: MACRO.” will appear. At this
point you may type in whatever filename you want for your Macro
and a BRUN able file will be saved to the disc. If you don’t
want your file prefixed with “MACRO.” you may use the Left
arrow to backover it or use X to remove it from the filename.

Section X.d.5 Load Macros from Disk

Typing L from the main menu will give you the same “ENTER
FILENAME: MACRO.” prompt that you get in the Save node, To
load in your macro just type in your filename and press the

Page X—22

Appendix X: Supporting Software

RETURN key. If you don’t need the automatic “MACRO.” prefixed
to your file name, you may hack over it with the left arrow key
or use the X to remove it. Also, if you want to get a quick
catalog of you disc, you may type in a return without typing in
a filename. You will be returned to the ENTER FILENAME:’
prompt.

Section X.d.6 quit

Typing Q from the main menu will unceremoniously dump you
out into Applesoft Basic. If you want to re—enter the program
type in GOTO 1000 and you will be back in the main menu.
However, if you type GOTO 1000 and the program does not function
properly, it is likely that the program variables have been
altered or lost, and you will have to type RUN to re—initialize
the variables so the program will work properly.

Section X.d.7 Macro Down Load

Typing M from the main menu will automatically down load
the current macro in memory to the Enhancer. This option is
only available after a macro file has been saved or loaded from
disc.

Section X.d.8 Program Errata

Since the Macro Editor is written in Applesoft Basic it is
possible to tailor the program for your own use. The program is
commented and structured in a logical order. The last few REM
statements in the program give an abbreviated list of the
variables and what they stand for. However. we also want to say
that small changes in a program can lead to unexpected results.
so please be careful when you make changes. Murphy’s laws are
not a figment of the imagination. If you want to speed up the
Editor you cam compile it with Microsoft’s TASC without
modification using its default values. We estimate an
approximate 3001 increase in execution speed for many of its
functions.

Note: The down load program resides in memory from $8CA0
TO $8F90.

Page X—23

LIST

1 HIMEM: 30000: GOTO 25000
2 REM ******************************
3 REM * *
4 REM * ENHANCER][MACRO EDITOR *
5 REM * *
6 REM * NOVEMBER 4, 1981 *
7 REM * *
8 REM ******************************
10 FOR I — 1. TO 512:AP — AP + 1
20 IF PEEK (AD + AP) < 127 THEN I — 512
30 NEXT I: RETURN
40 IF CHR < 32 THEN INVERSE :CHR CHR + 64
50 PRINT CHR$ (CHR); NORMAL : RETURN
100 AP = 2:FA = 0: REM * SEARCH FOR SIMILAR MACRO KEY *
110 IF AP > = 512 - BU THEN FA = 1: RETURN
120 P0 = AP
130 IF PEEK (AD + AP) = MK AND PEEK (AD + AP - 1) = MO THEN 170
140 GOSUE 10: REM SEARCH FOR HI BIT CLEAR +1
150 IF AP > = 512 — BU THEN FA = 1: RETURN
160 GOTO 120
170 IF AP> = 512 — BU THEN FA = 1: RETURN
180 RETURN
200 PS = AP — 1:PO = PS + 2: REM * REMOVE MACRO & COMPACT BUFFER *
210 IF PEEK (AD + P0)> 127 THEN P0 = P0 + 1: GOTO 210
215 IF PO > = 512 — BU THEN BU = 512 — PS: RETURN
220 FOR PI = 0 TO 512 — BU — P0
230 POKE (AD + PS + PI), PEEK (AD + P0 + PI): NEXT
240 BU = BU + P0 — PS: RETURN
300 IF AL = 1 THEN INVERSE
310 VTAB 5: HTAB 07: PRINT “LOWERCASE”: NORMAL
320 IF CN = 1 THEN INVERSE
330 VTAB 5: HTAB 18: PRINT “CONTROL”: NORMAL
340 IF SH = 1 THEN INVERSE
350 VTAB 5: HTAB 27: PRINT “SHIFT”: NORMAL
360 IF KP = 1 THEN INVERSE
370 VTAB 5: HTAB 34: PRINT “KEYPAD”: NORMAL
380 MO = KP * 8 + AL * 4 + SH * 2 + CN
390 RETURN
400 PS = AP + 1:PO = 1
410 CHR = PEEK (AD + PS): IF CHR < 128 THEN 490
420 NA%(PO)=CHR:PS = PS + 1:PO = P0 + 1:IF PS > = 512 — PU THEN 490
430 GOTO 410
490 NA%(0) = PO — 1: RETURN
500 PS — 514 — EU: POKE AD + PS — 2,MO: POKE AD + PS — 1,MK
510 FOR P = 1 TO NA%(0): POKE AD + PS + P — 1,NA%(P): NEXT :BU = EU — NA

%(0) — 2: POKE AD + 512 — BU,0
520 RETURN
700 Q = MO:DU$ = ""
710 FOR P = 1 TO 4
720 IF Q — INT (Q /2) * 2 THEN DU$ = QA$(P) +DU$
740 Q = INT (Q /2)
750 NEXT HTAB 2: PRINT DU$;: RETURN
800 MR = — 1: FOR P = 0 TO 15
810 IF KA(P) = KY THEN MK = P
820 NEXT : RETURN
900 POKE — 16368,0: REM * GET BUT DON’T SHOW CURSOR *

Page 1—24

910 IF PEEK (— 16384) < 128 THEN 910
920 IF PEEK (— 16384) = 155 THEN POP : GOTO 1000
930 POKE — 16368,0:GC$ = CHR$ (PEEK (— 16384)): RETURN
1000 REM

* ENTRY POINT FOR MENU *

1010 TEXT : HOME POKE 34,2: INVERSE : PRINT HTAB 9: PRINT “ENHANCER
][MACRO EDITOR”: POKE — 16368,0: NORMAL : IF LEN (NA$) THEN PRINT
: HTAB (35 — LEN (NA$)) / 2: PRINT “File: "NA$

1020 VTAB 08: HTAB 10: PRINT “E — EDIT MACROB”
1040 VTAB 09: HTAB 10: PRINT “D — DISPLAY MACROS”
1050 VTAB 10: HTAB 10: PRINT “C — CATALOG DISK”
1060 VTAB 11: HTAB 10: PRINT “S — SAVE MACROS TO DISK”
1070 VTAB 12: HTAB 10: PRINT “L — LOAD MACROS FROM DISK”
1080 VTAB 13: HTAB 10: PRINT “Q — QUIT EDITOR”
1085 IF LEN (NA$) THEN VTAB 14: HTAB 10: PRINT “M — MACRO DOWN LOAD”
1090 EN = 1023 — BU:EL = EN — INT (EN / 256) * 256:EH = EN / 256
1095 POKE AD — 1,EL: POKE AD,EH
1100 VTAB 20: HTAB 05: PRINT “SELECT OPTION:”;: GET GC$: IF ASC (GC$) >
 95 THEN GC$ = CHR$ (ASC (GC$) — 32)
1110 IF GCS = “C” THEN : PRINT : PRINT D$”CATALOG”: GOSUB 19100: GOTO 10
 00
1120 IF GC$ = “Q” THEN TEXT : HOME : END

1130 IF GC$ = “L” THEN 13000
1140 IF GC$ = “S” THEN 3000
1150 IF GC$ = “H” THEN 5000
1160 IF GC$ = “U” THEN 4000

1170 IF GC$ = “M” AND LEN (NA$) THEN HOME PRINT : PRINT “Are you sur
e? ": GOSUB 900: IF CC$ = “Y” OR GC$ = “y” THEN PRINT : PRINT “Dow
n Loading.”: CALL 36000

1200 GOTO 1000: REM * MAIN MENU *
3000 REM

* DOWN LOAD OPTIONS *

3010 HOME : HTAB 11: INVERSE : PRINT “DOWN LOAD OPTIONS”: NORMAL POKE
 34,3: PRINT : PRINT
3500 Q = ST
3510 FOR P = I TO 7
3520 B(P) = Q — INT (Q / 2) * 2:Q = INT (Q / 2)
3530 NEXT
3600 VTAB 5: HTAB 2; PRINT “1 “;: IF B(1) = 1 THEN INVERSE
3610 PRINT “DISABLE SHIFT LOCK”: NORMAL
3620 VTAB 7: HTAB 2: PRINT “2 “;: IF B(2) = 1 THEN INVERSE
3630 PRINT “LOCK KEYBOARD MODE”: NORMAL
3640 VTAB 9: HTAB 2: PRINT “3 “;: IF B(3) = 1 THEN INVERSE
3650 PRINT “SELECT DEFAULT TO LOWER CASE”: NORMAL
3660 VTAB 11: HTAB 2: PRINT “4 “;: IF B(4) = 1 THEN INVERSE
3670 PRINT “DISABLE AUTO REPEAT”: NORMAL
3680 VTAB 13: HTAB 2: PRINT “5 “;: IF B(5) = 1 THEN INVERSE
3690 PRINT “DISABLE TYPE AHEAD BUFFER”: NORMAL
3700 VTAB 15: HTAB 2: PRINT “6 “;: IF B(6) = 1 THEN INVERSE
3710 PRINT “DISABLE KEYBOARD EDITING OF MACROS”: NORMAL
3720 VTAB 17: HTAB 2: PRINT “7 “;: IF B(7) = 1 THEN INVERSE
3730 PRINT “LOCK OUT AUTO DOWN LOAD”: NORMAL
3740 ST = 0: FOR P = 1 TO 7:ST = 2 * ST + B(8 — P): NEXT
3800 VTAB 24: HTAB 5: PRINT “SELECT OPTION (RET TO CONTINUE)”;: GOSUB 90

Page X—25

0
3810 IF GC$ = CHR$ (13) THEN 14000
3820 IF GC$ = CHR$ (27) THEN 1000
3830 IF GC$ < “8” AND GC$ > “0” THEN B(ASC (GC$) — 48) = 1 — B(ASC (GC

$) — 48)
3840 GOTO 3600
4000 REM

* DISPLAY MACROS *
4010 HOME :: HTAB 14: INVERSE : PRINT “DISPLAY MACROS” : NORMAL : POKE 34
,4
4020 PRINT “MODE KY MACRO DESCRIPTION” : PRINT
4030 I = 1
4040 IF BU > = 511 THEN GOSUB 19100, GOTO 1000
4050 PRINT :MO = PEEK (AD + I): GOSUB 700: HTAB 7, IF MO < 8 THEN CHR =
 LB(PEEK (AD + I + 1)): GOSUB 40, HTAB 10: GOTO 4060
4055 CHR = KA(PEEK (AD + I + 1)): GOSUB 40: HTAB 10
4060 I = 1+2
4070 CHR = PEEK (AD + I) — 128: IF CHR < 0 THEN 4050
4080 IF NOT PEEK (36) THEN HTAB 10
4085 GOSUB 40
4090 I = I + 1, IF BU + I = 512 THEN POKE 32,0: POKE 33,40: PRINT : GOSUB
 19100: GOTO 1000
4100 KY = PEEK (— 16384), IF KY = 155 THEN POKE — 16368,0, GOTO 1000
4110 IF KY > 127 THEN POKE — 16368,0: WAIT — 16384,128: POKE — 16368
 ,0
4120 GOTO 4070
5000 REM

 * EDIT MACRO ENTRY POINT *

5010 INVERSE HTAB 1, VTAB 1: PRINT “USED: FREE:
 “: NORMAL : VTAB 5
5020 HOME HTAB 15, INVERSE : PRINT “EDIT MACRO”, NORMAL , POKE 34,3, PRINT PRINT
5100 PRINT : VTAB 5: PRINT “MODE,”,NA$(0) = — 2: GOSUE 8180: GOSUB 300
5110 VTAB 5: HTAB 6: GOSUB 900: IF ASC (GC$) > 95 THEN GC$ = CHR$ (ASC

(GC$) — 32)
5120 IF GC$ = ”L” THEN AL = 1 — AL:KP = 0: GOSUB 300
5130 IF GC$ = “C” THEN CN = 1 — CN:KP = 0: COSUB 300
5140 IF GC$ = “S” THEN SH = 1 — SH:KP = 0: GOSUB 300
5150 IF GC$ = “K” THEN KP = 1 — KP:CN = 0:AL = 0:SH = 0: GOSUB 300
5160 IF GC$ = CHR$ (27) THEN 1000
5170 IF GC$ = CHR$ (13) THEN 5200
5180 GOTO 5110
5200 HTAB 1: VTAB 7: PRINT “ENTER MACRO ACCESS KEY: “;: GET GC$, IF GC$

=""THEN KY = 0, GOTO 5204
5201 IF ASC (GC$) > 95 THEN GC$ = CHR$ (ASC GC$) — 32)
5203 KY = ASC (GC$):CHR = KY: GOSUB 40
5204 MK = LF(KY), IF KP THEN GOSUB 800

5206 IF MK > 0 THEN PRINT CHR$ (8) ;“ “: GOTO 5200
5208 PRINT : VTAB 20: HTAB 16: FLASH : PRINT “WORING”
5210 GOSUB 100: IF FA = 0 THEN GOSUB 400: (JOSTlE 200: GOTO 5500
5220 NA%(0) = 0
5500 VTAB 9: CALL — 958: NORMAL : GOSUB 8000
5510 IF NA%(0) < = 0 THEN 1000

Page X—26

5600 GOSUB 500
5999 GOTO 1000: REM * MAIN MENU *
8000 REM

* EDIT MACROS HERE *

8010 IF NA%(0) THEN FOR DU — 1 TO NA%(0):CHR NA%(DU) — 128: GOSUB 40:
NEXT

8020 DU$ — CHR$ (8) + "" + CHR$ (8)
8030 MA% = NA%(0) — 1
8040 IF PEEK (— 16384) < 128 THEN GOSUB 8180
8050 CALL 769:DU = PEEK (768): IF DU = 131 THEN PRINT CHR$ (29);: CALL

— 868: GOTO 8170
8060 IF DU > 160 GOTO 8140
8070 IF DU = 143 THEN CALL 769:DU = PEEK (768): GOTO 8130
8080 IF DU = 155 THEN POP : GOTO 1000
8090 IF DU = 136 AND NA%(0) THEN NA%(0) = NAZ(0) = 1: PRINT DU$;: GOTO 8

040
8100 IF DU = 152 AND NA%(0) THEN FOR DU = 1 TO NA%(0): PRINT DU$;: NEXT

:NA%(0) = 0:GOTO 8030
8110 IF DU =149 AND NA%(0) < = MA% THEN DU — NA%(NA%(0) + 1): GOTO 813

0
8120 IF DU = 136 OR DU = 149 THEN 8040
8130 IF DU < 160 THEN INVERSE
8140 IF NAZ(0) ~ MAX THEN MAX — NA%(0)
8150 IF NA%(0) < BU — 1 THEN PRINT CHR$ (DU — 64 * (DU < 160));: NORMAL

:NA%(O) = NA%(0) + 1:NA%(NA%(0)) = DU: GOTO 8040
8160 PRINT CHR$ (7);: GOTO 8040
8170 RETURN
8180 DU = PEEK (36):DD = PEEK (37): INVERSE : VTAB 1: HTAB 08: PRINT 51

3 — BU + NA%(0)” “;: HTAB 36: PRINT BU — 1 - NA%(0)" "
;:NORMAL : HTAB DU + 1: VTAB DD + 1: RETURN

13000 REM

* DISK LOAD ENTRY POINT *

13010 HOME : HTAB 14: INVERSE : PRINT “LOAD FROM DISK”: NORMAL : PRINT :
PRINT : POKE 34,3

13020 NA$ = “MACRO.”
13050 VTAB 5: PRINT “ENTER FILENAME: “;: GOSUB 18000: PRINT
13060 IF NOT LEN (NA$) OR NA$ = “MACRO.” THEN PRINT D$”CATALOG”, GOSUB

19100: HOME VTAB 4: GOTO 13050
13230 PRINT D$"BLOAD"NA$
13240 EN = PEEK (AD - 1) + PEEK (AD) * 256:BU = 1023 — EN
13250 ST = PEEK (AD— 2)
13999 GOTO 1000: REM * MAIN MENU *
14000 REM

* DISK SAVE ENTRY POINT *
14010 POKE 34,2: HOME HTAB 15: INVERSE PRINT “SAVE TO DISK”: NORMAL
 : PRINT : PRINT : POKE 34,3
14015 IF NOT LEN (NA$) THEN NA$ = “MACRO.”
14020 VTAB 5: PRINT “ENTER FILENAME: “;: GOSUE 18000: PRINT
14040 IF NOT LEN (NA$) OR NA$ = “MACRO.” THEN PRINT D$”CATALOG”: GOSUB
 1910q: HOME : VTAB 4: GOTO 14020

Page X—27

14050 POKE AD — 2,ST
14100 PRINT D$”BSAVE”NA$” ,A$8CA0 ,L$2F0”
14999 GOTO 1000: REM * MAIN MENU *
18000 REM

 *** Getput for strings ***

18020 DU$ = ““:DD$ — ““: PRINT MA$;
18030 CALL 769:DU$ = CHR$ (PEEK (768) — 128): IF ABC (DU$) = 13 THEN
 PRINT CHR$ (29);: CALL — 868: GOTO 18100
18040 IF DU$ = CHR$ (3) OR DU$ = CHR$ (27) THEN NA$ = ““: POP : GOTO 1
 000
18050 IF ABC (DU$) = 8 AND LEN (NA$) THEN DD$ = RIGHTS (NA$,1) + DD$:
 NA$ - MID$ (NA$,1, LEN (NA$) — 1): PRINT CHR$ (8)”” CHR$ (8);: GOTO
 18030
18060 IF ASC (DU$) = 21 AND LEN (DD$) THEN DU$ = LEFT$ (DD$,1)
18070 IF ASC (DU$) = 24 AND LEN (NA$) THEN FOR DU = 1 TO LEN (NA$): PRINT
 CHR$ (8)”” CHR$ (8);: NEXT :DD$ = ““: NA$ = ““: GOTO 18030
18080 IF ASC (DUS) < 32 GOTO 18030
18090 PRINT DU$;:NA$ = NAS + DU$:DD$ = MID$ (DD$,2, LEN (DD$) — (LEN (
 DD$) > 0)): GOTO 18030
18100 RETURN
19000 REM

 * MISC SUBROUTINES *

19100 VTAB 24: HTAB 10: PRINT “HIT ANY KEY TO CONTINUE”;: GOSUB 900: RETURN

19500 REM * ONEER ENTRY POINT *
19540 ER = PEEK (222)
19550 CALL 966: TEXT : HOME : VTAB 12
19600 ON ER GOTO 19700,19700,19700,19620,19700,19630,19700,19640,19650,1

9660,19670
19610 IF ER = 255 THEN TEXT : HOME VTAB 12: HTAB 9: PRINT “CONTROL—C
 INTERRUPT ERROR”: GOSUE 19100: GOTO 1000
19615 IF ER > = 12 THEN 19700
19620 HTAB 09:PRINT “WITH PROTECTED DISK ERROR”: GOSUB 19100: GOTO 100
 0
19630 HTAB 12: PRINT “FILE NOT POUND ERROR": GOSUB 19100:NA$ = “": GOTO
 1000
19640 HTAB 14: PRINT “DISK I/O ERROR”: GOSUB 19100: GOTO 1000
19650 HTAB 14: PRINT “DISK FULL ERROR”: GOSUB 19100: GOTO 1000
19660 HTAB 11: PRINT “DISK FILE LOCKED ERROR”: GOSUE 19100: GOTO 1000
19670 HTAB 13: PRINT “DOS SYNTAX ERROR”: GOSUB 19100: GOTO 1000
19700 HTAB 11, PRINT “ERROR PEEK(222)==>”;ER: GOSUB 19100
19750 GOTO 1000: REM * MAIN MENU *
25000 REM * INITIALIZE PROGRAM VARIABLES *
25010 PR# 0: IN# 0: POKE — 16296,0: CALL 1002: PRINT CHR$ (4)”NOMONIOC
 ":TEXT : HOME : VTAB 12: HTAB 16: FLASH : PRINT “WORKING”: NORMAL
25020 PRINT CHR$ (4)”BLOAD DOWNLOAD,A$8CA0”
25130 DIM LF(96): REM * LOOKUP TABLE FORWARD *
25140 DIM LB(50): REM * LOOKUP TABLE BACKWARD *
25150 DIM NA%(512): REM * EDIT ARRAY *
25180 DIM KA(15): REM * KEYPAD LOOKUP TABLE *
25300 FP = 1:AP = 1:CN = O:AL = 0:KP = 0:SH = 0:AD = 36098:ST = 0:BU = 51
 1

Page X—28

25310 QA$(1) = “C”:QA$(2) = “S”:QA$(3) = “L”:QA$(4) = “K”:D$ = CHR$ (4)
25320 ONERR GOTO 19500
25400 POKE 966,104: POKE 967,168: POKE 968,104: POKE 969,166: POKE 970,2
 23: POKE 971,154: POKE 972,72: POKE 973,152: POKE 974,72: POKE 975,9
 6
25410 POKE 769,32: POKE 770,12: POKE 771,253: POKE 772,141: POKE 773,0: POKE
 774,3: POKE 775,96
25500 DATA —1,—1,—1,—1,—1,—1,—1,—1,28,—1,—1,—1,1,49,—1,—1,—1,—1,—1,—1,—
25520 DATA 45,—1,—1,—1,—1,—1,—1 ,—1,—1,—1,—1,—1.37,9,38,39,7,42,41,0,1,2
 ,3,4,5,6,8,27,—1,—1,—1,-1
25540 DATA 48,44,34,32,20,12,21,22,23,17,24,25,26,36,35,18,19,1O,13,40,
 14,16,33,11,31,15,30,-1,-1,-1,-1
25550 DATA 51,52,53,54,55,56,57,48,58,45,81,87,69,82,84,89.85,73,79,80,6
 8,70,71,72,74,75,76,59,8,21,90,88,67,86.66,78,77,44,46,47,83,50,49,2
 7,65,32,0,0,0,13
25560 DATA 48,52,56,43,49,53,57,45,50,54,46,13,51,55,44,0
25600 REM * READ IN DATA STATEMENTS *
25610 FOR I = 0 TO 95: READ LF(I): NEXT
25620 FOR I — 0 TO 49: READ LB(I): NEXT
25630 FOR I — 0 TO 15: READ KA(I): NEXT
25999 GOTO 1000: REM * MAIN MENU *
30000 REM * CN - CONTROL KEY SELECT
30010 REM * AL - ALPHA LOCK SELECT
30020 REM * SE - SHIFT KEY SELECT
30030 REM * KP - KEYPAD SELECT
30040 REM * LF - LOOKUP TABLE FORWARD
30050 REM * LB - LOOKUP TABLE BACKWARD
30060 REM * KA - KEYPAD LOOKUP TABLE
30070 REM * EA - EDIT ARRAY
30080 REM * MX - MACRO KEY
30090 REM * AP - ARRAY POINTER
30110 REM * GC - GET CHARACTER
30120 REM * MO - MODE OF MACRO
30130 REM * BU - BUFFER SPACE AVAILABLE
30140 REM * NA - NAME OF DISK FILE
30150 REM * ER - ERROR NUMBER
30160 REM * FA - FAIL (SEARCH) FLAG
30170 REM * ST - STATUS OF DOWNLOAD OPTIONS
30180 REM * DU - DUMMY VARIABLE
30190 REM * DD - DOUBLE DUMMY VARIABLE
40000 REM ****************************
40010 REM * *
40020 RPM * ENHANCER][MACRO EDITOR *
40030 RPM * *
40040 RPM * NOVEMBER 4, 1981 *
40050 RPM * *
40070 RPM ****************************

Page X—29

Appendix X: Supporting Software

This page has been purposely left (almost) blank.

Page X—30

Appendix X: Supporting Software

Section X.e The Down Load Program

The Macro Editor [section: X.d] Creates BRUNable programs
which are down load programs. The Macro Editor loads in the
file named DOWNLOAD each time it runs. This file should NOT be
deleted from the disc. Any file output from the Macro Editor
may be put onto any disc and BRUN. Doing so will cause keyboard
macros to be downloaded from disc.

Page X—31

6 *****************************
7 * *
8 * ENHANCER][*
9 * *
10 * MACRO DOWNLOAD PROGRAM *
11 * *
12 * 11/8/1981 19:30 *
13 * *
14 * *
15 *****************************
16 MACTABLE EQU $8D00
17 KBD EQU $C000
18 KBDSTRB EQU $C010
19 WAIT EQU $FCA8
20 BASEL EQU $00
21 BASEH EQU $01
22 *
23 ORG $8CA0
24 OBJ $S8A0
25 *

8CA0: AD 5E C0 26 WRMACROS LDA $C05E ; SEND START DOWNLOAD SIGNAL
SCA3: A9 8D 27 LDA #>MACTABLE ; INITIALIZE POINTERS
8CA5: 85 01 28 STA BASEH
SCA7: AD 00 29 LDY #$00
8CA9: 84 00 30 STY BABEL
8CAB: B1 00 31 WMLOOP LDA (BASEL),Y ; GET BYTE FROM TABLE
8CAD: 8D F5 8C 32 STA BYTE ; SAVE IT FOR ROTATING
8C3C: 20 C3 8C 33 JSR WRBYTE ; OUTPUT BYTE TO ENHANCER
SCB3: C8 34 INY ; ADVANCE POINTER
8CB4: D0 02 35 BNE WMSKIP
8CB6: E6 01 36 INC BASEH
SCB8: C0 03 37 WMSKIP CPY #$03 ; CONTINUE UNTIL 515 BYTES ARE SENT
8CBA: D0 EF 38 BNE WMLOOP
8CEC: A5 01 39 LDA BASEH
8CRE: C9 8F 40 CMP #>MACTABLE+$200
8CC0: D0 E9 41 BNE WMLOOP
SCC2: 60 42 RTS

43 *
SCC3: SC P4 SC 44 WRBYTE STY YSAVE ; SAVE Y REGISTER
8CC6: A0 08 45 LDY #$08 ; LOOP 8 TOMES
SCC8: 0E F5 8C 46 BYTELOOP ASL BYTE ; SHIFT BIT INTO CARRY
8CCE: 20 D5 8C 47 JSR WRBIT ; OUTPUT BIT TO ENHANCER
SCCE: 88 48 DEY
SCCF: D0 F7 49 BNE BYTELOOP ; CONTINUE LOOP
8CD1: AC F4 8C 50 LDY YSAVE ; RECOVER Y REGISTER
8CD4: 60 51 RTS

52 *
8CD5: 08 53 WRBIT PHP ; SAVE CARRY
8GD6: AD 00 C0 54 WBLOOP LDA KBD ; WAIT FOR RUBOUT FROM ENHANCER
8eD9: l0 FB 55 BPL WBLOOP
8cDB: C9 FF 56 CMP #$FF
8CDD: D0 F7 57 BNE WBLOOP
8CDF: AD 5F C0 58 LDA $C05F ; TURN OFF THE START SIGNAL
SCE2: 28 59 PLP ; RECOVER CARRY
8CE3: 90 03 60 BCC ZEROBIT ; IF CLEAR DELAY ONCE
SCE5: 20 EF 8C 61 JSR DELAY ; DELAY TWICE
SCE8: 20 EF 8C 62 ZEROBIT JSR DELAY
SCEB: 2C 10 C0 63 BIT KBDSTRB ; CLEAR KEY STROBE (ACKNOWLEGE)

Page X—32

8CEE: 60 64 RTS
65 *

8CEF: A9 08 66 DELAY LDA #$08
8CF1: 4C A8 FC 67 JMP WAIT

68 *
8CF4: 00 69 YSAVE HEX 00
8CF5: 00 70 BYTE HEX 00

--END ASSEMBLY--

ERRORS: 0

86 BYTES

SYMBOL TABLE - ALPHABETICAL 0RDER:

BASER =$01 BASEL =$00 BYTE =$8CF5 BYTELOOP =$8CC8
DELAY =$8CEF KBD =$C000 KBDSTRB =$C010 MACTABLE =$SD00
WAIT =$FCA8 WBLOOP =$8CD6 WMLOOP =s$8CAB WMSKIP =$8CB8
WRBIT =$8CD5 WRBYTE =$8CC3 ? WRMACROS =$8CA0 YSAVE =$8CF4
ZEROBIT =$8CE8

SYMBOL TASTE - NUMERICAL ORDER:

BASEL =$00 BASER =$01 ? WRMACROS =$8CA0 WMLOOP =$8CAB
WMSKIP =$8CB8 WRBYTE =$8CC3 BYTELOOP =$8CC8 WRBIT =$8CD5
WMLOOP =$8CD6 ZEROBIT =$8CE8 DELAY =$8CEF YSAVE =$8CF4
BYTE =$SCF5 MACTABLE =$8D00 KBD =SC000 KBDSTRB =$C010
WAIT =$FCA8

Page X—33

Appendix X: Supporting Software

Section X.f The OUTPATCH (Pascal) Program

Notes: OUTPATCH was formerly called KEYPATCH.

OUTPATCH patches SYSTEM.APPLE of Pascal to allow the
display of lower case characters. Load a copy of SYSTEM.APPLE
onto your disc and Execute OUTPATCH. You may then use this
SYSTEM.APPLE file on your Pascal Discs. ALWAYS MAKE BACKUP
COPIES OF YOUR ORIGINAL FILES!!!

Note: Pascal is contained on the back side of the Enhancer
][Utilities Disc. This side is write protected. It is not
intended to be used more than a few times. Not all the tracks
have been initialized, therefore, some bad blocks are likely to
be found on this side of the disc.

Page X—34

Appendix: Supporting Software

Listing of:

PROGRAM OUTPATCH;

{ this program patches the SYSTEM.APPLE for disp1aying }
{ lower case with the REYBOARD & DISPLAY ENHANCER for }
{ Pascal 1.1. Darre11 Aldrich 1/81 }

VAR BUF:PACKED ARRAY [0..31,0..511] OF 0..255;
F:FILE;
I:INTEGER;
BEGIN
RESET(F,`#4:SYSTEM.APPLE’);
I:=BLOCKREAD (F,BUF,32);
CLOSE(F)
BUF[5,388]:=76; BUF[5,389]:=156; BUF[5,390]:=219;
BUF[5,391]:=277; BUF[5,392]:=240; BUF[5,393]:=76;
BUF[5,394]:=142; BUF[5,395]:=219; BUF[5,396]:=177;
BUF[5,397]:=242; BUF[5,398]:=72; BUF[5,399]:=41;
BUF[5,400]:=127; BUF[5,401]:=201; BUF[5,402]:=64;
BUFI5,403]:=104; BUF[5,404]:=144; BUF[5,405]:=3;
BUF[5,406]:=73; BUF[5,407]:=L60; BUF[5,408]:=96;
BUF[5,409]:=73; BUF[5,410]:=128; BUF[5,411]:=96;
BUF[5,428]:=32; BUF[5,429]:=135; BUF[5,430]:=219;
BUF[5,431]:=234; BUF[5,448]:=32; BUF[5,449]:=140;
BUF[5,450]:=219; BUF[5,451]:=234; BUF[5,169]:=176;
BUF[5,170]:=4; BUF[5,171]:=234; BUF[5,172]:=234;

RESET(F.’#4:SYSTEM.APPLE`);
I:=BLOCKWRITE(F,BUF,32);
CLOSE(F);

 END.

Page X—35

6 ***********************************
7 * *
8 * BASIC QUICK LOADER *
9 * *
10 * CONTRIBUTED BY RON ALDRICH *
11 * *
12 * 8/28/ 1981 *
13 * *
14 ***********************************
15 *
16 TEMP EQU $1E
17 IOB EQU $48
18 *
19 READ EQU $01
20 VOLUME EQU $03
21 TRACK EQU $04
22 SECTOR EQU $05
23 BUFFER EQU $08
24 COMMAND EQU $0C
25 *
26 RFTS EQU $03D9
27 GETFMP EQU $03DC
28 GETIOB EQU $03E3
29 *
30 DEST EQU $D000
31 *
32 ORG $0300
33 OBJ $D000
34 *
35 ***********************************
36 * *
37 * DISK SET UP *
38 * *
39 ***********************************
40 *

0300: 2C 83 C0 41 BIT $C083
0303: 2C 83 C0 42 BIT $C083
0306: 8A 43 TXA
0307: 48 44 PHA
0308: 20 DC 03 45 JSR GETFMP ; GET LAST USED FILE MGR PRAM LIST
030B: 84 lE 46 STY TEMP
030D: 85 1F 47 STA TEMP+$01
030F: A0 0E 48 LDY #$0E ;FIND TRACK SECTOR LIST OF FILE
0311: Bl 1E 49 LDA (TEMP),Y
0313: 48 50 PHA
0314: C8 51 INY
0315: Bl lE 52 LDA (TEMP),Y
0317: 85 1F 53 STA TEMF+$01
0319: 68 54 PLA
031A: 85 1E 55 STA TEMP
031C: 20 E3 03 56 JSR GETIOB ;GET DOS’S I/O BLOCK
031F: 84 48 57 STY IOB
0321: 85 49 58 STA IOB+$01
0323: A0 03 59 LDY #VOLUME ;VOLUME = 0
0325: A9 00 60 LDA #$00
0327: 91 48 61 STA (IOB),Y
0329: A0 0C 62 LDY #COMMAND ;COMMAND = READ
032B: A9 01 63 LDA #READ

Page X—36

0320: 91 48 64 STA (IOB),Y
032F: A0 08 65 LDY #BUFFER ; BUFFER = DESTINATION OF DATA
0331: A9 00 66 LDA #<DEST
0333: 91 48 67 STA (I0B) ,Y
0335: C8 68 INY
0336: A9 D0 69 LDA #>DEST
0338: 91 48 70 STA (IOB),Y
033A: A2 0E 71 LDX #$0E ; START READING 2ND T. S. L. PAIR

72 *
73 ***************************
74 * *
75 * READ FILE *
76 * *
77 ***************************
78 *

033C: 8A 79 LOOP TXA
033D: A8 80 TAY
033E: 31 IE 81 LDA (TEMP).Y ; GET TRACK
0340: F0 24 82 BEQ DONE ; DONE IF TRACK 0
0342: A0 04 83 LDY #TRACK
0344: 91 48 84 STA (IOB),Y
0346: 8A 85 TXA
0347: A 86 TAY
0348: C8 87 INY
0349: 31 IE 88 LDA (TEMP),y ; GET SECTOR
034B: A0 05 89 LDY #SECTOR
0340: 91 48 90 STA (IOB),Y
034F: 8A 91 TXA ;SAVE X
0350: 48 92 PHA
0351: 20 E3 03 93 JSR GETIOB ; GET DOS’S I/O BLOCK
0354: 20 09 03 94 JSR RWTS ; READ SECTOR
0357: 68 95 PLA ; RECOVER XX
0358: AA 96 TAX
0359: E8 97 INX ; ADD 2
035A: E8 98 INX
035B: A0 09 99 LDY #BUFFER+$01
0350: B1 48 100 LDA (IOB) ,Y ; INCREMENT HIGH BYTE
035F: 18 101 CLC ; OF BUFFER ADDRESS
0360: 69 01 102 ADC #$01
0362: 91 48 103 STA (IOB),Y
0364: D0 06 104 BNE LOOP ;OFTEN TAXEN

105 *
0366: 2C 81 CO 106 DONE BIT $C081
0369: 68 107 PLA
036A: AA 108 TAX
03&B: 60 109 RTS

——END ASSEMBLY——

ERRORS: 0

108 BYTES

SYMBOL TABLE — ALPHABETICAL ORDER:

BUFFER =$08 COMMAND =$OC DEST =$DOOO DONE =$0366

P Page X—37

GETFMP =$03DC GETIOB =$03K3 IOB =$48 LOOP =$033C
READ =$01 RWTS =$03D9 SECTOR =$05 TEMP =$1E
TRACK =$04 VOLUME =$03

SYMBOL TABLE — NUMERICAL ORDER

READ =$01 VOLUME =$03 TRACK =$04 SECTOR =$05
BUFFER =$08 COMMAND =$0C TEMP =$1E IOB =$48
LOOP =$033C DONE =$0366 RWTS =$03D9 GETFMP =$03DC
GETIOB =$O3E3 DEST =$D000

Page X—38

6 ************************************
7 * *
8 * ENHANCER] [OPERATING SYSTEM *
9 * *
10 * *
11 * 11 / 3 / 1981 11:00 *
12 * *
13 ************************************
14 *
15 *
16 * C9 C8 C7 C6 C5 C4 C3 C2 Cl C0
17 *
18 *1 3 4 5 6 7 8 9 0 : -
19 *
20 *2 Q W B R T Y U I O P
21 *
22 *3 D F G H J K L ; ˆH ˆU
23 *
24 *4 Z X C V B N M , . /
25 *
26 *5 S 2 1 ˆ] A SP ˆM
27 *
28 *
29 * 010 — CONTROL
30 * Cl1 — SHIFT
31 * C12 — REPEAT
32 * C13 — RESET
33 * C14 — ACKNOWLEGE
34 * C15 — OPTION
35 *
36 *
37 CONTROL EQU $04
38 SHIFT EQU $08
39 REPEAT EQU $10
40 RESET EQU $20
41 ACKNWLG EQU $40
42 OPTION EQU $80
43 *
44 DSHIFTLK EQU $01
45 OMODESEL EQU $02
46 MODESET EQU $04
47 DAUTORPT EQU $08
48 DBUFFER EQU $10
49 DMAGDEF EQU $20
50 DDNLOAD EQU $40
51 *
52 CKSUM EQU $00
53 BEGRPT EQU $40
54 STRPT EQU $F0
55 FAST EQU $FB
56 MCDLY EQU $08
57 DLY EQU $10
58 DBTIME EQU $04
59 LKTIME EQU $10
60 *
61 TESTL EQU $00
62 TESTH EQU $01
63 TEMP EQU $02

Page Y—1

64 *
65 BUFIN EQU $00
66 BUFOUT EQU $01
67 MAPL EQU $02
68 MAPH EQU $03
69 FLUSH EQU $04
70 LOCKFLG EQU $05
71 HALFLOCK EQU $06
72 MACFLG EQU $07
73 REPT EQU $08
74 MTXSAVE EQU $09
75 REPT1 EQU $0A
76 DBCNT EQU $0B
77 DBKEY EQU $0C
78 LOCKCNT EQU $0D
79 SPKEYS1 EQU $0E
80 MODEl EQU $0F
81 *
82 DEFLAGS EQU $10
83 MODE EQU $11
84 KEY EQU $12
85 BUFM0DE EQU $13
86 PWROFF EQU $14
87 SPEED EQU $15
88 CHAR EQU $16
89 SRCHL EQU $17
90 SRCHH EQU $18
91 MOVEL EQU $19
92 MOVEH EQU $lA
93 TENDL EQU $1B
94 TENDH EQU $1C
95 ANODE EQU $1D
96 DFMODE EQU $1E
97 DLFLAG EQU $1F
98 *
99 *
100 *
101 OLDKEY EQU $20
102 *
103 MTXTBL EQU $40
104 *
105 BUFFER EQU $80
106 *
107 MACTABLE EQU $0200
108 *
109 MTRIX1 EQU $0A00
110 MTRIX2 EQU $0C00
111 SPKEYS EQU $0C01
112 *
113 KEYOUT EQU $0E00
114 *
115 OBJECT EQU $8800
116 EPROM EQU $1800
117 RESVEC EQU EPROM+$07FC

Page Y—2

119 ***************************************
120 * *
121 * KEYBOARD MAPS *
122 * *
123 ***************************************
124 *
125 ORG EPROM
126 OBJ OBJECT

127 *
1800: B3 B4 B5
1803: B6 B7 B8
1806: B9 BO BA
1809: AD 128 NTBL ASC "34567890:—”
180A: Dl D7 C5
180D: D2 D4 D9
1810: D5 C9 CF
1813: D0 129 ASC “QWERTYUIOP”
1814: C4 C6 C7
1817: C8 CA CB
181A: CC BB 130 ASC “DFGHJKL;”
181C: 88 95 131 HEX 8895
18lE: DA D8 C3
1821: D6 C2 CE
1824: CD AC AE
1827: AF 132 ASC “ZXCVBNM,./”
1828: D3 B2 B1 133 ASC “S21”
182B: 9B 134 HEX 9B
1S2C: Cl A0 A0
182F: A0 A0 135 ASC “A
1831: 8D 136 HEX 8D

137 *
138 DS 14
139 *

1840: B3 B4 85
1843: B6 B7 B8
1846: E9 B0 BA
1849: AD 140 CTBL ASC “34567890,—”
184A: 91 97 85
184D: 92 94 99
1850: 95 89 8F
1853: 90 141 HEX 91978592949995898F90
1854: 84 86 87
1857: 88 8A 8B
185A: 8C BB 88
1850: 95 142 HEX 848687888A8B8CBB8895
185E: 9A 98 83
1861: 96 82 8E
1864: 8D 143 HEX 9A988396828E8D
1865: AC AE AF 144 ASC ",./"
1868: 93 145 HEX 93
1869: 82 El 146 ASC “21”
1868: 9B 147 HEX 9B
1860: 81 148 HEX 81
1860: A0 A0 A0
1870: A0 149 ASC " "
1871: 8D 150 HEX 8D

151 *
152 DS 14

Page Y—3

153 *
1880: A3 A4 AS
1883: A6 154 STBL ASC “#$%&“
1884: A7 155 HEX A7
1885: A8 A9 B0
1888: AA BD 156 ASC “()0*=”
188A: D1 D7 C5
188D: D2 D4 D9
1890: D5 C9 CF
1893: C0 157 ASC “QWERTYUIO@”
1894: C4 C6 C7
1897: C8 CA CB
189A: CC AB 158 ASC “DFGHJKL+"
189C: 88 95 159 HEX 8895
189E: DA D8 C3
18Al: D6 C2 DE
18A4, DD BC BE
18A7: BF 160 ASC "ZXCVBˆ]<>?“
18A8: D3 161 ASC “S”
18A9: A2 162 HEX A2
18AA: Al 163 ASC “!”
18AB: 9B 164 HEX 9B
18AC: Cl A0 A0
18AF: A0 A0 165 ASC "A"
1831: 8D 166 HEX 8D

167 *
168 DS 14
169 *

18C0: A3 A4 A5
18C3: A6 170 SCTBL ASC “#$%&“
18C4: A7 171 HEX A7
18C5: A8 A9 B0
18C8: AA BD 172 ASC “Q0*=”
18CA: 91 97 85
18CD: 92 94 99
18D0: 95 89 8F
18D3: 80 173 HEX 91978592949995898F80
18D4: 84 86 87
18D7: 88 8A 8B
18DA: 8C 174 HEX 848687888A838C
18DB: AB 175 ASC "+"
18DC: 88 95 176 HEX 8895
18DE: 9A 98 83
18El: 96 82 9E
18E4: 9D 177 HEX 9A988396829E9D
18E5: BC BE BF 178 ASC "<>?"
18E8: 93 A2 179 HEX 93A2
18EA: Al 180 ASC "!"
18EB: 9B 181 HEX 9B
i8EC: 81 182 HEX 81
18ED: A0 A0 A0
18F0: A0 183 ASC " "
18F1: 8D 184 HEX 8D

185 *
186 DS 14
187 *

1900: B3 B4 B5
1903: B6 B7 B8

Page Y—4

1906: B9 B0 BA 188 UNTBL ASC "34567890:=”
1909: AD
190A: F1 F7 E5
1900: F2 F4 F9
1910: F5 E9 EF
1913: F0 189 ASC “qwertyuiop"
1914: E4 E6 E7
1917: ES EA EB
191A: EC BB 190 ASC “dfghjkl;”
191C: 88 95 191 HEX 8895
191E: FA FS E3
1921: F6 E2 EE
1924: ED AC AE
1927: AF 192 ASC "zxcvbnm,./"
1928: F3 B2 B1 193 ASC “s21"
192B: 9B 194 HEX 9B
192C: El A0 A0
192F: A0 A0 195 ASC “a "
1931: 8D 196 HEX 8D

197 *
198 DS 14
199 *

1940: FF 200 UCTBL ASC ""
1941: 9C 9D 9E 201 HEX 9C9D9E
1944: E0 FB FD 202 ASC “‘{}“
1947: 80 9F 203 HEX 809F
1949: DF 204 ASC "_"
194A: 91 97 85
1940: 92 94 99
1950: 95 89 8F
1953: 90 205 HEX 91978592949995898F90
1954: 84 86 87
1957: 88 8A 8B
195A: 8C 206 HEX 848687888A838C
195B: DE 207 ASC "ˆ"
195C: 88 95 208 HEX 8895
195E: 9A 98 83
1961: 96 82 8E
1964: 8D 209 HEX 9A98839682838D
1965: D3 DD DC 210 ASC “[]\”
1968: 93 211 HEX 93
1969: FE FC 212 ASC "~|”
196B: 9B 213 HEX 9B
196C: 81 214 HEX 81
196D: A0 A0 A0
1970: A0 215 ASC " "
1971: 80 216 HEX 8D

217 *
218 DS 14
219 *

1980: A3 A4 A5
1983: A6 220 USTBL ASC “#S%&”
1984: A7 221 HEX A7
1985: A8 A9 C0
1988: AA ED 222 ASC “()@*="
198A: D1 D7 C5
198D: D2 D4 D9
1990: D5 C9 CF

Page Y—5

1993: D0 223 ASC “QWERTYUIOP"
1994: C4 C6 C7
1997: C8 CA C8
199A: CC AB 224 ASC "DFGHJKL+”
199C: 88 95 225 HEX 8895
199E: DA D8 C3
19A1: D6 C2 CE
19A4: CD BC BE
19A7: BF 226 ASC “ZXCVBNM<>?”
19A8: D3 227 ASC “S”
19A9: A2 228 HEX A2
19AA: Al 229 ASC “!”
19AB: 9B 230 HEX 9B
l9AC: Cl A0 A0
19AF: A0 A0 231 ASC “A "
19B1: 8D 232 HEX 8D

233 *
234 DS 14
235 *

19C0: FF 236 USCTBL ASC
19C1: 9C 9D 9E 237 HEX 9C9D9E
19C4: E0 FB FD 238 ASC “‘{}”
19C7: 80 9F 239 HEX 809F
19C9: DF 240 ASC "_"
19CA: 91 97 85
19CD: 92 94 99
19D0: 95 89 8F
19D3: 90 241 HEX 91978592949995898F90
19D4: 84 86 87
19D7: 88 8A 8B
19DA: 8C 242 HEX 848687888A8B8C
19DB: DE 243 ASC "ˆ"
19DC: 88 95 244 HEX 8895
19DE: 9A 98 83
19E1: 96 82 8E
19E4: 8D 245 HEX 9A988396825E5D
19E5: DB DD DC 246 ASC “[]\“
19E8: 93 247 HEX 93
19E9: FE FC 248 ASC "~|"
19EB: 9B 249 HEX 9B
I9EC: 81 250 HEX 81
I9ED: A0 A0 A0
I9FO: A0 251 ASC " "
19F1: 8D 252 HEX 8D

253 *
254 DS 14
255 *

1A00: B0 B4 B8
1A03: AB 256 PADTBL ASC “048+”
1A04: B1 B5 B9
1A07: AD 257 ASC “159—”
1A08: B2 B6 AE 258 ASC “26.”
1A0B: 8D 259 HEX 8D
1A0C: B3 B7 AC 260 ASC “37,”
1A0F: 80 261 HEX 80

Page Y—6

263 ***********************************
264 * *
265 * MAIN RESET ENTRY POINT *
266 * *
267 ***********************************
268 * CLD ;BEGIN GOLD START SEQUENCE

1A10: D8 269 RESET1 CLI
1A11: 58 270 LDA KEY ;CHECK FOR COLD START
1A12: A5 12 271 EOR #$A5
1A14: 49 A5 272 CMP PWROFF
1A16: C5 14 273 BNE STARTUP ;IF NO MATCH, DO COLD START
1A18: D0 03 274

275 *
1A1A: 4C 05 lB 276 JMP RESET3

277 *
278 ***********************************
279 * *
280 * ENHANCER RAM TEST *
281 * *
282 ***********************************
283 *

1A1D: A9 A5 284 STARTUP LDA #$A5 ;TEST STORAGE AREAS
1AlF: 85 00 285 STA TESTL
1A21: A9 5A 286 LDA #$5A
1A23: 85 01 287 STA TESTH
1A25: A9 66 288 LDA #$66
1A27: 85 02 289 STA TEMP
1A29: A5 00 290 LDA TESTL
1A2B: C9 A5 291 CMP #$A5
1A2D: DO 0C 292 BNE MTERROR
1A2F: A5 01 293 LDA TESTH
1A31: C9 5A 294 CMP #$5A
1A33: DO 06 295 BNE MTERROR
1A35: A5 02 296 LDA TEMP
1A37: C9 66 297 CMP #$66
1A39: F0 0D 298 BEQ MTSKIP

299 *
1A3B: A0 00 300 MTERROR LDY #$00
1A3D: A2 00 301 LDX #$00
1A3F: CA 302 MLOOP DEX
1A40: D0 FD 303 BNE MLOOP
1A42: 88 304 DE
1A43: D0 FA 305 BNE MLOOP
1A45: 4C A3 1A 306 JMP ERROR

307 *
1A48: A2 01 308 MTSKIP LDX #$01 ; 1=WRITE PASS 0=READ PASS
1A4A: A9 03 309 TSTLOOP LDA #$03 ; START AT LOCATION $0003
1A4C: 85 00 310 STA TESTL
1A4E: A9 00 311 LDA #$00
1A50: 85 01 312 STA TESTH
1A52: A8 313 TAY
1A53: A5 00 314 SETLOOP LDA TESTL ; CREATE A VALUE THAT TESTS
1A55: 4A 315 LSR ; DATA BIT ERRORS AND ADDRESS CONFLI
CTS
1A56: 4A 316 LSR
1A57: 4A 317 LSR
1A58: 4A 318 LSR
1A59: 45 00 319 EOR TESTL

Page Y—7

lASB: 45 01 320 EOR TESTH
1A5D: 29 0F 321 AND #$0F
1A5F: 85 02 322 STA TEMP
1A61: 0A 323 ASL
1A62: 0A 324 ASL
1A63: 0A 325 ASL
1A64: 0A 326 ASL
1A65: 05 02 327 ORA TEMP
1A67: E0 00 328 CPX #$00
1A69: D0 06 329 BNE WRITE ; READ OF WRITE DATA
1A6B: Dl 00 330 CMP (TESTL),y
1A6D: D0 CC 331 BNE MTERROR ; IF BAD, SEND ERROR MESSAGE
1A6F: F0 02 332 BEQ READ
1A71: 91 00 333 WRITE STA (TESTL),y
1A73: E6 00 334 READ INC TESTL ; ADVANCE TO NEXT LOCATION
1A75: D0 DC 335 BNE SETLOOP
1A77: E6 01 336 INC TESTH
1A79: A5 01 337 LDA TESTH
1A7B: C9 04 338 CMP #$04
1A7D: 90 D4 339 BLT SETLOOP
1A7F: CA 340 DEX
1A80: F0 C8 341 DEQ TSTLOOP

342 *
343 ********************************
344 * *
345 * ENHANCER ROM CHECKSUM TEST *
346 * *
347 ********************************
348 *

1A82: A9 18 349 CHECKSUM LDA #>EPROM ; START AT $1800
1A84: 85 01 350 STA TESTH
1A86: A9 00 351 LDA #$00
1A88: 85 00 352 STA TESTL
1A8A: A8 353 TAY
1A8B: 48 354 PHA
1A8C: 68 355 CSLOOP PLA ; RECOVERR SUM
1A8D: 18 356 CLC
1A8E: 71 00 357 ADC (TESTL),Y ; ADD TO COUNT
1A90: 48 358 PHA ; SAVE SUM
1A91: C8 359 INY
1A92: D0 F8 360 BNE CSLOOP ; ADVANCE & LOOP UNTIL $2000
1A94: E6 01 361 INC TESTH
1A96: A5 01 362 LDA TESTH
1A98: C9 20 363 CMP #$20
1A9A: D0 F0 364 BNE CSLOOP
1A9C: 68 365 PLA ; GET SUM
1A9D: C9 00 366 CMP #CKSUM ; IF NOT EQUAL TO CKSUM THEN ERROR
1A9F: F0 31 367 BEQ CLRTBLS
1AA1: A0 18 368 LDY #CSMSG-MTMSG ; TRANSMIT CHECKSUM ERROR

369 *
1AA3: B9 B9 IE 370 ERROR LDA MTMSG,Y
1AA6: F0 16 371 BEQ HALT
1AA8: 8D 00 0E 372 STA KEYOUT
1AAB: 09 80 373 ORA #$80
1AAD: 8D 00 0E 374 STA KEYOUT
1AB0: 29 7F 375 AND #$7F
1AB2: 8D 00 0E 376 STA KEYOUT
1AB5: A2 00
 00 377 LDX #$00

Page Y—8

1AB7: CA 378 ERRWAIT DEX
lAB8: D0 ED 379 BNE ERRWAIT
1ABA: C8 380 INY
1ABB: 4C A3 lA 381 JMP ERROR

382 *
1ABE: 58 383 HALT CLI
1ABF: 4C BE 1A 384 JMP HALT

385 *
1AC2: 68 386 IRQ PLA
1AC3: 48 387 PHA
1AC4: 29 10 388 AND #$10
1AC6: D0 05 389 BNE BREAK
1AC8: A0 32 390 LDY #IRQMSG—MTMSG
lACA: 4C A3 1A 391 JMP ERROR

392 *
1ACD: A0 3D 393 BREAK LDY #BRKMSG—MTMSG
1ACF: 4C A3 1A 394 JMP ERROR

395 *
1AD2: A2 lB 396 CLRTBLS LDX #ROWEND—ROW+1 ; CLEAR LOOK UP TABLES
1AD4: BD 03 1F 397 TBLOOP LDA MTXTBL1,X
lAD7: 95 40 398 STA MXTB1,X
1AD9: A9 00 399 LDA #$00
1ADB: 95 20 400 STA OLDKEY,X
lADD: CA 401 DEX
1ADE: 10 F4 402 BPL TBLOOP
1AE0: 85 10 403 STA DEFLAGS
1AE2: AD 01 0C 404 LDA SPKEYS
1AE5: 29 40 405 AND #ACKNWLG
1AE7: 85 13 406 STA BUFMODE
1AE9: A9 80 407 LDA #$80
1AEB: 85 1F 408 STA DLFLAG
1AED: A9 FB 409 LDA #FAST
1AEE: 85 15 410 STA SPEED

Page Y—9

412 **********************************
413 * *
414 * COLD RESTART *
415 * *
416 **********************************
417 *

1AF1: A9 00 418 RESET2 LDA #$00
1AF3: SD 00 02 419 STA MACTABLE
1AF6: 85 lE 420 STA DEMODE
1AF8: 85 lB 421 STA TENDL
1AFA: A9 02 422 LDA #$02
1AFC: 85 1C 423 STA TENDH
1A7E: AD 01 0C 424 RPWAIT LDA SPKEYS
1B01: 29 10 425 AND #REPEAT
1BO3: F0 F9 426 BEQ RPWAIT

427 *
428 **********************************
429 * *
430 * WARM RESTART *
431 * *
432 **********************************
433 *

1B05: A5 10 434 RESET3 LDA DEFLAGS
1B07: 29 02 435 AND #DMODESEL
1B09: D0 0A 436 BNE RESET4
1BOB: AD 01 OC 437 LDA SPKEYS
1B0E: 29 08 438 AND #SHIFT
1B10: 49 08 439 EOR #SHIFT
1B12: 4A 440 LSR
1B13: 85 1D 441 STA AMODE

442 *
443 **********************************
444 * *
445 * HOT RESTART *
446 * *
447 **********************************
448 *

1B15: A2 0F 449 RESET4 LDX #$0F ;HOT RESTART
LDX 1B17: A9 00 430 LDA #$00
1B19: 95 00 451 RSLOOP STA $00,X
1B1B: CA 452 DEX
1B1C: 10 FB 453 BPL RSLOOp
1B1E: 9A 454 TXS
1B1F: A9 40 455 LDA #BEGRPT
1B21: 85 08 456 STA REPT

Page Y-10

458 **********************************
459 * *
460 * SCAN FOR NEW KEY *
461 * *
462 **********************************
463 *

1B23: 20 IE 1C 464 SCAN JSR SPECIAL ; HANDLE SPECIAL KEYS
1B26: A2 00 465 LDX #$00
1B28: 86 09 466 STX MTXSAVE
1B2A: 20 59 lB 467 SCLOOP JSR RDKEY ; READ KEYBOARD
1B2D: 48 468 PHA ; SAVE MATRIX
1B2E: 15 20 469 ORA OLDKEY,X ; REMOVE OLD KEYS
1B30: 49 FF 470 EOR #$FF
1B32: D0 77 471 BNE DECODE ; IF NOT 0 THEN DECODE NEW KEY
1B34: 68 472 PLA ; RECOVER MATRIX
1B35: 49 FF 473 EOR #$FF
1B37: 95 20 474 STA OLDKEY,X ; ESTABLISH OLD KEYS
1B39: 05 09 475 ORA MTXSAVE ; ADD TO KEY DOWN CHECK
1B3B: 85 09 476 STA MTXSAVE
1B3D: E8 477 INX
1B3E: E8 478 INX
1B3F: E0 1C 479 CPX #$1C ; DONE WITH SCAN ?
1B41: 90 E7 480 BLT SCLOOP ; NO, CONTINUE
1B43: A5 09 481 LDA MTXSAVE ; IF OLD KEY DOWN THEN AUTO REPEAT
1B45: D0 21 482 BNE REPCHK
1B47: A5 10 483 LDA DEFLAGS ; CHECK FOR DEFINE MACROS
1B49: 29 20 484 AND #DMACDEF
1B4B: D0 D6 485 BNE SCAN
1B4D: AD 01 0C 486 LDA SPKEYS
1B50: 29 LC 487 AND #SHIFT.CONTROL.REPEAT
1B52: D0 CF 488 BNE SCAN
1B54: 38 489 SEC
1B55: 66 lE 490 ROR DFMODE
1B57: D0 CA 491 BNE SCAN

492 *
493 **********************************
494 * *
495 * READ KEYBOARD ROW *
496 * *
497 **********************************
498 *

1B59: Al 40 499 RDKEY LDA (MTXTBL,X) ; GET MATRIX
1E5B: E0 0A 500 CPX #$0A ; USE APPROPRIIATE MASK
1B5D: 90 08 501 BLT NOMASK
1B5F: E0 14 502 CPX #$14
1B61: B0 02 503 BGE MASK1
1B63: 09 FC 504 ORA #$FC
1B65: 09 F0 505 MASK1 ORA #$F0
1B67: 60 506 NOMASK RTS

Page Y—l1

508 ********************************
509 * *
510 * PERFORM REPEAT *
511 * & AUTO REPEAT *
512 * *
513 ********************************
514 *

1B68: AD 01 0C 515 RECHK LDA SPKEYS ; REPEAT KEY DOWN?
1B6B: 29 10 516 AND #REPEAT
1B6D: F0 09 517 BEQ KEYREPT ; YES, DO REPEAT
1B6F: A5 15 518 LDA SPEED
1B71: C9 F0 519 CMP #STRPT
1B73: D0 0D 520 BNE AUTORPT ; IF FAST THEN AUTO REPEAT
1B75: 4C 23 1B 521 JMP SCAN

522 *
1B78: A9 F0 523 KEYREPT LDA #STRPT
1B7A: C5 08 524 CMP REPT
1B7C: 90 04 525 BLT AUTORPT
1B7E: A5 15 526 LDA SPEED
1B80: 85 08 527 STA REPT ; RESTART COUNTER

528 *
1B82: E6 0A 529 AUTORPT INC REPT1 ; INCREMENT REPEAT COUNTER
1B84: A5 0A 530 LDA REPT1
1B86: 4A 531 LSR
1B87: 90 9A 532 BCC SCAN
1B89: E6 08 533 INC REFT
1B8B: D0 96 534 BNE SCAN ; IF 0 THEN REPEAT LAST KEY
1B8D: A9 F0 535 LDA #STRPT
1B8F: 85 08 536 STA REPT
1B91: A5 1E 537 LDA DFMODE ; HANDLE MACROS WIERD
1B93: D0 0A 538 BNE RDMACRO
1E95: 24 07 539 BIT MACFLG
1E97: 30 0C 540 BMI RPMACRO
1B99: 20 99 1D 541 JSR NOMAC1
1B9C: 4C 23 lB 542 JMP SCAN

543 *
1B9F: 20 ED 1C 544 RDMACRO JSR MCRECHK
1BA2: 4C 23 lB 545 SCAN

546 *
18A5: 20 5D 1D 547 RPMACRO JSR MACRO
1BA8: 4C 23 lB 548 JMP SCAN

Page Y—12

550 ******************************
551 * *
552 * DECODE NEW KEY *
553 * *
554 ******************************
555 *

1BAB: A0 01 556 DECODE LDY #$01 ; SHIFT BITS FROM MATRIX
1BAD: C8 557 DCLOOP INY
1BAE: 0A 558 ASL
lBAF: 90 FC 559 BCC DCLOOP

560 *
561 ******************************
562 * *
563 * DEBOUNCE KEY *
564 * *
565 ******************************
566 *

1BB1: 84 0C 567 STY DBKEY ; DEBOUNCE KEYBOARD
1BB3: A9 04 568 LDA #DBTIME ; DBTIME TIMES
1BB5: 85 0B 569 STA DBCNT
1BB7: 20 59 lB 570 DBLOOP JSR RDKEY
1BBA: 15 20 571 ORA OLDKEY,X
1BBC: A0 01 572 LDY #$01
1BBE: C8 573 DBLOOP1 INY
1BBF: C4 0C 574 CPY DBKEY
1BC1: F0 04 575 BEQ DBEXIT
1BC3: 0A 576 ASL
ASL 1BC4: 4C BE 1B 577 JMP DBLOOP1

578 *
1BC7: 0A 579 DBEXIT ASL
1BC8: 90 04 580 BCC GOODKEY ; GOOD IF KEY STILL DOWN
1BCA: 68 581 PLA
1BCE: 4C 23 1B 582 JMP SCAN ; GIVE UP

583 *
1BCE: C6 0B 584 GOODKEY DEC DBCNT
1BD0: D0 E5 585 BNE DBLOOP ; CONTINUE DEBOUNCING UNTIL DONE

586 *
1BD2: 68 587 NODB PLA ; RECOVER MATRIX
1BD3: 49 FF 588 EOR #$FF
1BD5: 95 20 589 STA OLDKEY,X ; ESTABLISH OLD KEY
1BD7: A9 80 590 LDA #$80 ; CLEAR HALFLOCK FLAG
1BD9: 85 06 591 STA HALFLOCK
lBDB: A9 40 592 LDA #BEGRPT ; RESET REPEAT COUNT
1BDD: 85 08 593 STA REPT
1BDF: 98 594 TYA ; COMPUTE KEY INDEX
1BE0: 18 595 CLC
1BE1: 7D 1F 1F 596 ADC ROW,X
1BE4: 85 16 597 STA CHAR ; SAVE IN CHAR

598 *
599 ******************************
600 * *
601 * COMPUTE MODE *
602 * *
603 ******************************
604 *

1BE6: A5 0E 605 LDA SPKEYS1 ; COMPUTE MODE
1BE8: 29 0C 606 AND #SHIFT.CONTROL
1BEA: 4A 607 LSR

Page Y—13

1BEB: 4A 608 LSR
1BEC: 05 1D 609 ORA ANODE
1BEE: 85 0F 610 STA MODE1

611 *
1BF0: A5 10 612 LDA DEFLAGS
1BF2: 29 01 613 AND #DSHIFTLK
1BF4: 85 02 614 STA TEMP
1BF6: A5 1D 615 LDA AMODE
1BF8: 49 04 616 EOR #$04
1BFA: 05 02 617 ORA TEMP
1BFC: 05 lE 618 ORA DFMODE
1BEE: F0 04 619 BEQ MDSET1
1C00: A9 00 620 LDA #$00
1C02: F0 06 621 BEQ ALOCK

622 *
1C04: A5 05 623 MDSET1 LDA LOCKFLG
1C06: 29 08 624 AND #SHIFT
1C08: 4A 625 LSR
1C09: 4A 626 LSR
1C0A: 05 0F 627 ALOCK ORA MODEl
1C0C: 85 11 628 STA MODE

629 *
1C0E: E0 14 630 CPX #$14 ; IF FROM KEYPAD CHANGE MODE
1C10: 90 06 631 BLT NTKYPAD
1C12: A9 08 632 LDA #$08
1C14: 85 11 633 STA MODE
1C16: 85 0F 634 STA MODEL
1C18: 20 CC 1C 635 NTKYPAO JSR GETKEY ; PUT KEY IN BUFFER
1C1B: 4C 23 1B 636 JMP SCAN ; RETURN TO SCAN

Page Y—14

638 ***********************************
639 * *
640 * HANDLE SPECIAL KEYS *
641 * SHIFT CTRL REPT RESET *
642 * *
643 * *
644 ***********************************
645 *

1ClE: AD 01 0C 646 SPECIAL LDA SPKEYS ; CREATE SPKYS1
1C21: 49 PP 647 EOR #$FF
1C23: 85 0E 648 STA SPKEYS1

649 *
650 ***********************************
651 * *
652 * CHECK FOR DOWN LOAD MACROS *
653 * *
654 ***********************************
655 *

1C25: A5 10 656 LDA DEFLAGS
1C27: 29 40 657 AND #DDNLOAD ; CHECK FOR DOWN LOAD DEFEAT
1C29: D0 10 658 BNE NTDNLD
1C2B: A5 OE 659 LDA SPKEYS1
1C2D: 29 80 660 AND #OPTION ; CHECK FOR AUTO DOWN LOAD
1C2F: F0 0A 661 BEQ NTDNLD
1C31: A5 1F 662 LDA DLFLAG
1C33: D0 0A 663 BNE NTDNLD1
1C35: 38 664 SEC
lC36: 66 1F 665 ROR DLFLAG
1C38: 4C 20 1E 666 JMP DOWNLOAD
1C3B: A9 00 667 NTDNLD LDA #$00
1C3D: 85 1F 668 STA DLFLAG
1C3F: A5 0E 669 NTDNLD1 LDA SPKEYS1
1C41: 29 20 670 AND #RESET ; CHECK FOR RESET PRESSED
1C43: F0 12 671 BEQ NTRESET
1C45: A5 10 672 LDA DEFLAGS
1C47: 29 20 673 AND #DMAGDEF ; CHECK FOR MACRO DEFINE DEFEAT
1C49: D0 09 674 BNE NTRPT
1C4B: A5 0E 675 LDA SPKEYS1
1C4D: 29 10 676 AND #REPEAT ; CHECK FOR REPEAT—RESET
1C4F: F0 03 677 BEQ NTRPT
1C51: 4C 20 1E 678 JMP DOWNLOAD ; IF SO, DOWN LOAD
1C54: 4C 05 1B 679 NTRPT JMP RESET3 ; JUST RESET, WARM START

660 *
681 ***********************************
682 * *
683 * CHECK FOR END MACRO DEFINE *
684 * ^
685 ***********************************
686 *

1C57: A5 0E 687 NTRESET LDA SPKEYS1
1C59: 29 10 688 AND #REPEAT ; CHECK FOR REPEAT TO
1C5B: P0 08 689 BEQ NTREPT ; TERMINATE MACRO DEFINITION
1C5D: A5 1E 690 LDA DFMODE
1C5F: 30 04 691 BMI NTREPT
1C61: A9 00 692 LDA #$00
1C63: 85 lE 693 STA DFMODE

Page Y—15

695 **********************************
696 ^ *
697 * FERFORM SHIFT LOCK FUNCTION *
698 * *
699 * *
700 **********************************

AD 01 OC 701 NTREPT LDA SFKEYS
29 08 702 AND #SHIFT
25 05 703 AND LOCKFLG
85 05 704 STA LOCKFLG

705 *
1C6E: A5 0E 706 LDA SFKEYS1
1C70: 29 04 707 AND #CONTROL
1C72: F0 16 708 BEQ LOCKSET
1C74: A5 0D 709 LDA LOCKCNT
1C76: F0 04 710 BEQ GOODLK
1C78: C6 0D 711 DEC LOCKCNT
1C7A: 00 lE 712 LDE OUTPUT
1C7C: A5 05 713 GOODLK LDA LOCKFLG
1C7E: D0 lA 714 BNE OUTPUT
1C80: 24 06 715 BIT HALFLOCK
1C82: 30 16 716 BMI OUTPUT
1C84: A9 08 717 LDA #SHIFT
1C86: 85 06 718 STA HALFLOCK
1C88: D0 10 719 BNE OUTPUT

720 *
1C8A: A5 05 721 LOCKSET LDA LOCKFLG
1C8C: 05 06 722 ORA HALFLOCK
1C8E: 29 08 723 AND #SHIFT
1C90: 85 05 724 STA LOCKFLG
1C92: A9 00 725 LDA #$00
1C94: 85 06 726 STA HALELOCK
1C96: A9 10 727 LDA #LKTIME
1C98: 85 0D 728 STA LOCKCNT

729 *
730 **********************************
731 * *
732 * OUTPUT KEY IF POSSIBLE *
733 * *
734 **********************************
735 *

1C9A: A5 10 736 OUTPUT LDA DEFLAGS
1C9C: 29 10 737 AND #DBUFFER ; CHECK FOR BUFFER DEFEAT
IC9E: 05 13 738 ORA BUFMODE
1CA0: D0 0R 739 BNE NOBUFF
1CA2: A5 04 740 LDA FLUSH ; NO BUFFER IF FLUSHED
1CA4: F0 07 741 BEQ NOBUFF
1CA6: AD 01 0C 742 LDA SPKEYS
1CA9: 29 40 743 AND #ACKNWLG ; WAIT FOR ACKNOWLEGE
1CAB: D0 lE 744 BNE SPEXIT
1CAD: A6 01 745 NOBUFF LDX BUFOUT
1CAF: E4 00 746 CPX BUFIN ; BUFFER EMPTY?
1CB1: F0 18 747 BEQ SPEXIT ; YES, EXIT
1CE3: E8 748 INX
1CB4: 8A 749 TXA
1CB5: 29 7F 750 AND #$7F
ICB7: 85 01 751 STA BUFOUT ; 128 CHAR BUFFER
1CE9: AA 752 TAX

Page Y—16

1CBA: B5 80 753 LDA BUFFER,X ; GET CHARACTER FROM BUFFER
1CBC: 8D 00 0E 754 STA KEY0UT ; OUTPUT CHARACTER
1CBF: 09 80 755 ORA #$80
ICCh: 85 04 756 STA FLUSH
1CC3: 8D 00 0E 757 STA KEYOUT
1CC6: 29 7F 758 AND #$7F
1CC8: 8D 00 0E 759 STA KEYOUT
ICCB: 60 760 SPEXIT RTS

Page Y—17

762 *******************************
763 * *
764 * PROCESS KEY *
765 * *
766 *******************************
767 *

1CCC: 46 07 768 GETKEY LSR MACFLG ; CLEAR MACRO FLAG
1CCE: A5 11 769 LDA MODE ; COMPUTE ASCII CHARACTER
1CD0: 4A 770 LSR
1CD1: 6A 771 ROR
1CD2: 48 772 PHA
1CD3: 6A 773 ROR
1CD4: 29 C0 774 AND #$C0
1CD6: 85 02 775 STA MAPL
ICD8: 68 776 PLA
1CD9: 29 03 777 AND #$03
1CDB: 09 18 778 ORA #>EFROM
1CDD: 85 03 779 STA MAPL
1CDF: A4 16 780 LDY CHAR
1CE1: B1 02 781 LDA (MAPL),Y
1CE3: 85 12 782 STA KEY
1CE5: 49 A5 783 EOR #$A5
1CE7: 85 14 784 STA PWROFF

785 *
1CE9: A5 lE 786 LDA DFMODE ; IS A MACRO BEING DEFINED?
1CEB: F0 70 787 BEQ MACRO ; NO, CHECK FOR MACRO KEY
1CED: 30 1A 788 MCRECHR BMI MACREATE ; IF NEC START DEFINITION

789 *
790 *******************************
791 * *
792 * DEFINE MACRO *
793 * *
794 *******************************
795 *

1CEF: A5 12 796 MGDFINE LDA KEY
1CF1: A0 00 797 LDY #$00
1CF3: 91 17 798 STA (SRCHL),Y ; SAVE KEY IN TABLE
1CF5: 20 E2 1D 799 JSR NXTBYTE ; ADVANCE
1CF8: P0 26 800 BEQ MCABORT ; TERMINATE DEFFINE IF FAIL
1CFA: A9 00 801 LDA #$00 ; SAVE END CHARACTER
1CFC: 91 17 802 STA (SRCHL),Y
1CFE: A5 17 803 LDA SRCHL ; SAVE NEW END POINTER
1D00: 85 lB 804 STA TENDL
1D02: A5 18 805 LDA SRCHH
1D04: 85 1C 806 STA TENDL
1D06: 4C 8B 1D 807 JMP NOMACRO ; CONTINUE

808 *
809 *******************************
810 * *
811 * START MACRO DEFINITION *
812 * *
813 *******************************
814 *

1D09: 46 lE 815 MACREATE LSR DFMODE ; MAKE DFMODE POSITIVE
1D0B: 20 50 1D 816 JSR SEARCH ; IS KEY A MACRO ALREADY?
1D0E: DO 16 817 BNE MACEMOVE ; YES, REMOVE IT
1D10: 20 E8 1D 818 JSR ENDCHK ; IS THERE ROOM?
1D13: F0 0B 819 BEQ MCABORT ; NO, ABORT

Page Y—18

1D15: AS 17 820 LDA SRCHL ; MOVE = SRCH
lD17: 85 19 821 STA MOVEL
1D19: A5 18 822 LDA SRCHB
lDlB: 85 IA 823 STA MOVEH
1D1D: 4C 48 1D 824 JMP NEWMACRO

825 *
1D20: A9 00 826 MCABORT LDA #$00 ; ABORT DEFINITION
1D22: 85 lE 827 STA DFMODE
1D24: 70 65 828 BEQ NOMACRO

829 *
lD26: 20 ED 1D 830 MACRMOVE JSR NXTCHAR ; FIND END OF MACRO
1D29: DO 06 831 BNE MOVE ; IF FOUND, MOVE THE REST DOWN
1D2B: 20 B0 1D 832 JSR SEARCH ; FIND MACRO AGAIN
1D2E: 4C 17 1E 833 JMP ENDSET ; ESTABLISH NEW END

834 *
1D31: Bl 17 835 MOVE LDA (SRCHL),Y ; MOVE REMAINING MACROS DOWN
1D33: 91 19 836 STA (MOVEL),Y
1D35: E6 19 837 INC MOVEL
1D37: D0 02 838 BNE MSKIP1
lD39: E6 IA 839 INC MOVEL
ID3B: 20 06 lE 840 MSKIP1 JSR NXTCHK
1D3E: D0 Fl 841 BNE MOVE
1D40: A5 19 842 LDA NOVEL
1D42: 85 17 843 STA SRCHL
1D44: A5 1A 844 LDA MOVEH
1D46: 85 18 845 STA SRCHH

846 *
1D48: A5 11 847 NEWMACRO LDA MODE ; SAVE MODE AND CHAR
1D4M: 91 17 848 STA (SRCIIL),Y ; IN TABLE
ID4C: 20 E2 1D 849 JSR NXTBYTE
1D4F: F0 CF 850 BEQ MCABORT
1D51: A5 16 851 LDA CHAR
1D53: 91 17 852 STA (SRCHL),Y
1D55: 20 E2 lD 853 JSR NXTBYTE
1D58: F0 C6 854 BEQ MCABORT
1D5A: 4C 17 lE 855 JMP ENDSET ; ESTABLISH NEW END POINTER

Page Y—19

857 ***
858 * *
859 * CHECK KEY FOR MACRO OUTPUT *
860 * *
861 ***
862 *

1D50: 20 B0 1D 863 MACRO JSR SEARCH ; IS KEY A MACRO?
1D60: P0 29 864 BEQ NOMACRO ; NO, OUTPUT NORMAL
1D62: 38 865 SEC
1D63: 66 07 866 ROR MACFLG ; SET MACRO FLAG
1D65: B1 17 867 MACLOOP LDA (SRCHL),Y ; STUFF MACRO INTO BUFFER
1D67: 10 46 868 BPL INDONE ; EXIT WHEN DONE
1D69: 85 12 869 STA KEY
1D6B: 49 A5 870 EOR #$A5
1D6D: 85 14 871 STA PWROFF
1D6P: 20 99 1D 872 JSR NOMAC1 ; STUFF CHARACTER
1D72: A5 10 873 LDA DEFLAGS ; IF NO BUFFER, USE DELAY
1D74: 29 10 874 AND #DBUFFER
1D76: 05 13 875 ORA BUFMODE
lD78: F0 0A 876 BEQ NODLY
1D7A: A0 08 877 LDY #MCDLY
1D7C: A2 00 878 MDLOOP LDX #$00
1D7E: 20 B0 lE 879 JSR DLYLOOP
1D81: 88 880 DEY
1D82: D0 F8 881 BNE MDLOOP
1D84: 20 E2 10 882 NODLY JSR NXTBYTE ; POINT TO NEXT BYTE
1D87: F0 26 883 BEQ INDONE ; IF FAIL THEN DONE
1D89: D0 DA 884 BNE MACLOOP

885 *
1D8B: A5 12 886 NOMACRO LDA KEY ; IF KEY IS CTRL C THEN
1D8D: C9 83 887 CMP #$83 ; FLUSH BUFFER
ID8F: D0 08 888 BNE NOMAC1
1D91: A9 00 889 LDA #$00
1D93: 85 00 890 STA BUFIN
1D95: 85 01 891 STA BUFOUT
1D97: 85 04 892 STA FLUSH
1D99: 20 9A 1C 893 NOMAC1 JSR OUTPUT ; TRY OUTPUT
1D9C: A6 00 894 LDX BUFIN
1D9E: E8 895 INX
1D9F: 8A 896 TXA
1DA0: 29 7F 897 AND #$7F
1DA2: C5 01 898 CMP BUFOUT ; IF BUFFER FULL
1DA4: F0 F3 899 BEQ NOMAC1 ; LOOP UNTIL AVAILABLE
1DA6: AA 900 TAX
1DA7: A5 12 901 LDA KEY
1DA9: 29 7F 902 AND #$7F
1DAB: 95 80 903 STA BUFFER,X ; STUFF KEY IN BUFFER
IDAD: 86 00 904 STX BUFIN
1DAF: 60 905 INDONE RTS

Page Y—20

907 *
908 *
909 * SEARCH FOR MACRO
910 *
911 *
912 *

1DB0: A9 00 913 SEARCH LDA #$00 ; INIT SEARCH VARIABLES
1DB2: 85 17 914 STA SRCHL
1DB4: A8 915 TAY
1DBS: A9 02 916 LDA #>MACTABLE
1DB7: 85 18 917 STA SRCHH
1DR9: 20 0C lE 918 JSR LASTCHK ; CHECK FOR NO MACROS
1DRC: F0 18 919 BEQ SHEXIT ; IF SO, EXIT
1DRE: A5 17 920 SHLOOP LDA SRCHL ; MOVE = SRCH
1DC0: 85 19 921 STA MOVEL
1DC2: A5 18 922 LDA SRCHH
1DC4: 85 lA 923 STA MOVEH
1DC6: B1 17 924 LDA (SRCHL),Y ; GET BYTE
1DCS: C5 0F 925 CMP MODE1 ; IS IT MODE?
1DCA: F0 0B 926 BEQ MODFND ; YES. CHECK CHAR
1DCC: 20 E2 1D 927 JSR NXTBYTE ; SKIP A BYTE
1DCF: F0 05 928 BEQ SHEXIT ; IF FAIL, EXIT
1DDH: 20 ED 1D 929 NTCHAR JSR NXTCHAR ; ADVANCE TO NEXT MACRO
1DD4: D0 E8 930 BNE SHLOOP ; LOOP UNLESS FAILURE
1DD6: 60 931 SHEXIT RTS

932 *
1DD7: 20 06 lE 933 MODFND JSR NXTCHK ; ADVANCE TO NEXT BYTE
1DDA: F0 FA 934 BEQ SHEXIT ; IF FAIL, EXIT
1DDC: B1 17 935 LDA (SRCHL),Y ; GET BYTE
1DDE: C5 16 936 CMP CHAR ; IS IT CHAR?
1DE0: D0 EF 937 BNE NTCHAR ; NO, TRY AGAIN

938 *
1DE2: E6 17 939 NXTBYTE INC SRCHL ; INCREMENT SEARCH COUNTER
1DE4: D0 02 940 BNE ENDCHK
1DE6: E6 18 941 INC SRCHH

942 *
1DE8: A5 18 943 ENDCHK LDA SRCRH ; CHECK FOR END OF MEMORY
1DEA: C9 04 944 CMP #$04
1DEC: 60 945 RTS

946 *
1DED: E6 17 947 NXTCHAR INC SRCHL ; INCREMENT SEARCH COUNTER
1DEF: D0 02 948 BNE NCSKIP
1DF1: E6 18 949 INC SRCHH
1DF3: A5 18 950 NCSKIP LDA SRCHH ; CHECK FOR END OF MACROS
1DF5: C5 1C 951 CMP TENDH
IDF7: DO 06 952 BNE NCSKIP1
1DF9: A5 17 953 LDA SRCHL
1DFB: C5 1B 954 CMP TENDL
LDFD: F0 06 955 BEQ RTS2
1DFF: Bl 17 956 NCSKIP1 LDA (SRCHL),Y ; GET BYTE
IE01: 30 EA 957 BMI NXTCHAR ; LOOP UNTIL HIGH BIT CLEAR
1E03: A9 80 958 LDA #$80 ; RETURN NO FAIL
lE05: 60 959 RTS2 RTS

960 *
1E06: E6 17 961 NXTCHK INC SRCHL ; INCREMENT SEARCH COUNTER
1E08: D0 02 962 BNE LASTCHK
lE0A: E6 18 963 INC SRCHH

964 *

Page Y—21

1E0C: A5 18 965 LASTCHK LDA SRCHH ;CHECK FOR END OF MACROS
1E0E: C5 1C 966 CMP TENDH
1E10: D0 04 967 BNE RTS1
1E12: A5 17 968 LDA SRCBL
1E14: C5 lB 969 CMP TENDL
1E16: 60 970 RTSI RTS

971 *
1E17: AS 19 972 ENDSET LDA MOVEL ; SET END POINTER TO MOVE
1E19: 85 1B 973 STA TENDL
1E1B: A5 lA 974 LDA MOVEH
lE1D: 85 1C 975 STA TENDH
1E1F: 60 976 RTS

Page Y-22

978 **********************************
979 * *
980 * DOWN LOAD MACROS FROM APPLE *
981 * *
982 **********************************
983 *

1E20: 20 75 lE 984 DOWNLOAD JSR RDBYTE ;READ FIRST BYTE
1E23: F0 34 985 BEQ DLERROR ; EXIT ON FAIL
1E25: A5 02 986 LDA TEMP
1E27: 85 0F 987 STA MODE1
1E29: 20 75 lE 988 JSR RDBYTE ;READ END POINTER
1E2C: F0 2E 989 BEQ DLERROR
lE2E: A5 02 990 LDA TEMP
1E30: 85 lB 991 STA TENDL
1E32: 20 75 lE 992 JSR RDBYTE
1E35: F0 22 993 BEQ DLERROR
1E37: A5 02 994 LDA TEMP
1E39: 85 1C 995 STA TENDH
1E3B: 20 5C lE 996 JSR RDMACROS ; READ MACROS
1E3E: F0 19 997 BEQ DLERROR ; EXIT ON FAIL
1E40: A5 0F 998 LDA MODE1
1E42: 85 10 999 STA DEFLAGS
1E44: 29 04 1000 AND #MODESET ; SET ALPHA MODE
lE46: 85 1D 1001 STA AMODE
1E48: A5 10 1002 LDA DEFLAGS ; SET DEFEAT FLAGS
1E4A: 29 08 1003 AND #DAUTORPT ; SET AUTO REPEAT SPEED
1E4C: F0 04 1004 BEQ NORMRPT
1E4E: A9 F0 1005 LDA #STRPT
1E50: 00 02 1006 ME SETSPEED
1E52: A9 FE 1007 NORMEPT LDA #FAST
1E54: 85 15 1008 SETSPEED STA SPEED
1E56: 4C 15 lE 1009 JMP RESET4 ; DO NOT RESTART

1010 *
1E59: 4C Fl 1A 1011 DLERROR JMP RESET2 ; DO COLD RESTART

1012 *
1E5C: A9 02 1013 RDMACROS LDA #MACTABLE ; INIT VARIABLES
1E5E: 85 18 1014 STA SRCHH
1E60: A9 00 1015 LDA #$00
1E62: 85 17 1016 STA SRCHL
1E64: 20 75 1E 1017 RMLOOP JSR RDBYTE ; READ BYTE
1E67: F0 0R 1018 BEQ RTS3 ; EXIT ON FAIL
1E69: A5 02 1019 LDA TEMP
1E6B: 91 17 1020 STA (SRCHL),Y ; SAVE BYTE IN MACRO TABLE
1E6D: 20 E2 1D 1021 JSR NXTBYTE ; ADVANCE TABLE POINTER
1E70: D0 F2 1022 BNE RDLOOP ; CONTINUE LOOP UNTIL FAIL
1E72: A9 FF 1023 LDA #$FF ; NO FAIL
1E74: 60 1024 RTS3 RTS

1025 *
1E75: A0 08 1026 RDBYTE LDY #$08 ; READ 8 BITS
1E77: 20 84 1027 BYTELOOP JSR RDBIT
1E7A: F0 07 lE 1028 BEQ RTS4 ; EXIT ON FAIL
1E7C: 26 02 1029 ROL TEMP ; ROTATE BIT IN
1E7E: 88 1030 DEY
1E7F: D0 F6 1031 BNE BYTELOOP
lE81: A9 FF 1032 LDA #$FF ; NO FAIL
1E83: 60 1033 RTS4 RTS

1034 *
1E84: A9 7F 1035 RDBIT LDA #$7F ; OUTPUT A RUBOUT

Page Y—23

1E86: 8D 00 0E 1036 STA KEYOUT
1E89: A9 FF 1037 LDA #$FF
1E8B: 8D 00 0E 1038 STA KEYOUT
1E8E: A9 7T 1039 LDA #$7F
1E90: 8D 00 0E 1040 STA KEYOUT
1E93: 20 AE lE 1041 JSR DELAY ; DELAY ONCE
1E96: F0 0F 1042 BEQ RTS5 ; EXIT ON BAD HANDSHAKE
1E98: 20 AE lB 1043 JSR DELAY ; DELAY ONCE
1E9B: F0 0B 1044 BEQ ZEROBIT ; CLEAR CARRY AND EXIT
1E9D: 20 AE 1E 1045 JSR DELAY ; DELAY TWICE
1EA0: 20 AE 1E 1046 JSR DELAY
1EA3: F0 05 1047 BEQ ONEBIT ; SET CARRY AND EXIT
lEA5: A9 00 1048 LDA #$00 ; FAIL
1EA7: 60 1049 RTS5 RTS
 1050 *
lEA8: 18 1051 ZEROBIT CLC
1EA9: B0 1052 HEX B0
1BAA: 38 1053 ONEBIT SEC
1EAB: A9 FF 1054 LDA #$FF ; NO FAIL
1EAD: 60 1055 RTS

1056 *
1EAE: A2 10 1057 DELAY LDX #DLY
1EB0: CA 1058 DLYLOOP DEX
1EB1: D0 FD 1059 BNE DLYLOOF
1EB3: AD 01 0C 1060 LDA SFKEYS
1EB6: 29 40 1061 AND #ACKNWLG
1EB8: 60 1062 RTS

Page Y-24

1064 ********************************
1065 * *
1066 * MESSAGES AND TABLES *
1067 * *
1068 ********************************
1069 *

1EB9: 45 4E 48
1EBC: 41 4E 43
1EBF: 45 52 20
1EC2: 4B 45 4D
1EC5: 4F 52 59
1EC8: 20 46 41
lECB: 49 4C 55
1ECE: 52 45 1070 MTMSG ASC ‘ENHANCER MEMORY FAILURE’
lED0: 00 1071 HEX 00
1ED1: 45 4E 48
1ED4: 41 4E 43
1ED7: 45 52 20
1EDA: 43 48 45
1EDB: 43 43 53
1EE0: 55 4B 20
1EE3: 46 41 49
1EE6: 4C 55 52
1EE9: 45 1072 CSMSG ASC ‘ENHANCER CHECKSUM FAILURE’
1EEA: 00 1073 HEX 00
1EEB: 49 4E 54
1EEE: 45 52 52
1EF1: 55 50 54
1EF4: 20 1074 IRQMSG ASC HEX ‘INTERRUPT’
1EF5: 00 1075 HEX 00
1EF6: 42 52 45
1EF9: 41 43 20
1EFC: 45 52 52
1EFF: 4F 52 20 1076 BRKMSG ASC ‘BREAK ERROR‘
1F02: 00 1077 HEX 00

1078 *
1F03: 10 0A 1079 MTXTBL1 DA MTRIXl+$10
1F05: 08 0A 1080 DA MTRIX1+$08
1F07: 04 0A 1081 DA MTRTX1+$04
1F09: 02 0A 1082 DA MTRIX1+$02
IF0B: 01 0A 1083 DA MTRIX1+$01
1F0D: 10 0C 1084 DA MTRIX2+S10
1F0F: 08 0C 1085 DA MTRIX2+$08
1F11: 04 0C 1086 DA MTRIX2+$04
1F13: 02 0C 1087 DA MTRIX2+$02
1F15: 01 0C 1088 DA MTRIX2+$01
1F17: 00 03 1089 DA MTRIXl+$0100
1F19: 80 0A 1090 DA MTRIX1+$80
1F1B: 40 0A 1091 DA MTRIX1+S40
1F1D: 20 0A 1092 DA MTRIX1+$20

1093 *
1FLF: 00 00 1094 ROW HEX 0000
1F21: 0A 00 1095 HEX 0A00
1723: 14 00 1096 HEX 1400
1725: lE 00 1097 HEX 1E00
1727: 28 00 1098 HEX 2800
1F29: F8 00 1099 HEX FB00
172B: 02 00 1100 HEX 0200

Page Y—25

1F2D: 0C 00 1101 HEX 0C00
1F2F: 16 00 1102 HEX 1600
1F31: 20 00 1103 HEX 2000
1F33: FA 00 1104 HEX FA00
1F35: FE 00 1105 HEX FE00
1F37: 02 00 1106 HEX 0200
1F39: 06 00 1107 ROWEND HEX 0600

1108 *
1F3B: C3 CF 00
IF3E: D9 02 C9
1F41: C7 C8 D4
1F44: A0 B1 39
1F47: B8 31 AC
1F4A: A0 D6 C9
1F4D: C4 C5 D8
1F50: AC A0 C9
1F53: CE C3 AE 1109 ASC “COPYRIGHT 1981, VIDEX, INC.”

1110 *
1F56: 00 1111 BYTE HEX 00

1112 *
1113 DS RESVEC_*

1FFC:10 lA 1114 DA RESET1
1FFE: C2 lA 1115 DA IRQ

Page Y—26

-—END ASSEMBLY--

ERRORS: 0

2086 BYTES

SYMBOL TABLE — ALPHABETICAL ORDER

ACKNWLG =$40 ALOCK =$1C0A AMODE =$10 AUTORPT =$1B82
BEGRPT =$40 BREAK =$1ACD BRKMSG =$1EF6 BUFFER =$80
BUFIN =$00 BUFMODE =$13 BUFOUT =$01 BYTE =$1F56
BYTELOOP =$1E77 CHAR =$16 ? CHECKSUM =$1A82 CKSUM =$00
CLOOP =$200A CLRTBLS =$1AD2 CONTROL =$04 CSLOOP =$1A8C
CSMSG =$1ED1 ? CTBL =$1840 DAUTORPT =$08 DBCNY =$0B
DBEXIT =$lBC7 DBKEY =$0C DBLOOP =$1BB7 DBLOOP1 =$1BBE
DBTIME =$04 DBUFFER =$10 DCLOOP =$1BAD DDNLOAD =$40
DECODE =$lBAB DEFLAGS =$10 DELAY =$1EAE DFMODE =$lE
OLERROR =$1E59 DLFLAG =$1F DLY =$10 DLYLOOP =$1EB0
DMACDEF =$20 DMODESEL =$02 DOWNLOAD =$1E20 DSHIFTLK =$01
ENDCHK =$1DE8 ENDSET =$1E17 EPROM =$1800 ERROR =$1AA3
ERRWAIT =$1AB7 FAST =$F3 FLUSH =$04 GETKEY =$1CCC
GOODKEY =$1BCE GOODLK =$1C7C HALFLOCK =$06 HALT =$lABE
INDONE =$1DAF IRQ =$1AC2 IRQMSG =$lEEB KEY =$12
KEYOIJT =$0E00 KEYREPT =$1B78 LASTCHK =$lE0C LKTIME =$10
LOCKCNT =$0D LOCKFLG =$05 LOCKSET =$1C8A MACFLG =$07
MACLOOP =$1D65 MACREATE =$1D09 MACRMOVE =$1D26 MACRO =$1D5D
MACTABLE =$0200 MAPH =$03 MAPL =$02 MASK1 =$1B65
MCABORT =$1D20 ? MCDFINE =$1CEF MCDLY =$08 MCRECHK =$1CED
MDLOOP =$1D7C MDSET1 =$1C04 MLOOP =$1A3F MODE =$11
MODEl =$0F MODESET =$04 MODFND =$1DD7 MOVE =$1D31
MOVER =$1A MOVEL =$19 MSKIP1 =$1D3E MTERR0R =$1A3B
MTMSG =$1EB9 MTRIX1 =$0A00 MTRIX2 =$0C00 MTSRIP =$1A48
MTXSAVE =$09 MTXTBL =$40 MTXTBL1 =$1F03 NCSKIP =$1DF3
NCSKIP1 =$1DFF NEWMACRO =$1D48 NOBUFF =$1CAD ? NODB =$1BD2
NODLY =$1D84 NOMAC1 =$1D99 NOMACRO =$1D8B NOMASK =$1B67
NORMRPT =$1E52 ? NTBL =$1800 NTCHAR =$1DD1 NTDNLD =$1C3B
NTDNLD1 =$1C3F NTKYPAD =$1C18 NTREPT =$1C65 NTRESET =$1C57
NTRPT =$1C54 NXTBYTE =$1DE2 NXTCHAR =$1DED NXTCHK =$1E06
OBJECT =$8800 OLDKEY =$20 ONEBIT =$1EAA OPTION =$80
OUTPUT =$1C9A ? PADTBL =$1A00 PWROFF =$14 RDBIT =$1E84
RDBYTE =$1E75 RDKEY =$1B59 RDMACRO =$1B9F RDMACROS =$1E5C
READ =$1A73 REPCHR =$1B68 REPEAT =$10 REPT =$08
REPT1 =$0A RESET =$20 RESET1 =$lA10 RESET2 =$lAF1
RESET3 =$1B05 RESET4 =$1B15 RESVEC =$1FFC RMLOOP =$1E64
ROW =$1F1F ROWEND =$1F39 RPMACRO =$1BA5 RPWAIT =$1AFE
RSLOOP =$1B19 RTS1 =$1E16 RTS2 =$1E05 RTS3 =$1E74
RTS4 =$1E83 RTS5 =$1EA7 SCAN =$1B23 SCLOOP =$1B2A

? SCTBL =$18C0 SEARCH =$DB0 SETL00P =$1A53 SETSPEED =$1E54
SHEXIT =$1DD6 SHIFT =$08 SHLOOP =$1DBE SPECIAL =$1ClE
SPEED =$15 SPEXIT =$1CCB SPKEYS =$0C01 SPREYS1 =$0E
SRCHH =$18 SRCHL =$17 STARTUP =$lA1D ? STBL =$1880
STRPT =$F0 TBLOOP =$1AD4 TEMP =$02 TENDH =$1C
TENDL =$13 ? UNTEL =$01 TESTL =$00 TSTLOOP =$1A4A

? UCTBL =$1940 TESTH =$1900 ? USCTBL =$19C0 USTBL =$1980
WRITE =$1A71 ZEROBIT =$lEA8

Page Y—27

SYMBOL TABLE — NUMERICAL ORDER:

CKSUM =$00 TESTL =$00 BUFIN =$00 DSHIFTLK =$01
TESTH =$01 BUFOUT =$01 DMODESEL =$02 TEMP =$02
MAPL =$02 MAPH =$03 CONTROL =$04 MODESET =$04
DBTIME =$04 FLUSH =$04 LOCKFLG =$05 HALFLOCK =$06
MACFLG =$07 SHIFT =$08 DAUTORPT =$08 MCDLY =$08
REPT =$08 MTXSAVE =$09 REPT1 =$0A DBCNT =$OB
DBKEY =$0C LOCKCNT =$00 SPKEYS1 =$0E MODEl =$0F
REPEAT =$10 DBUFFER =$10 DLY =$10 LKTTME =$10
DBFLAGS =$10 MODE =$11 KEY =$12 BUFMODE =$13
PWROFF =$14 SPEED =$15 CHAR =$16 SRCHL =$17
SRCHH =$18 MOVEL =$19 MOVER =$1A TENDL =$lB
TENDH =$1C AMODE =$1D DFMODE =$1E DLFLAG =$1F
RESET =$20 DMACDEF =$20 OLDKEY =$20 ACKNWLG =$40
DDNLOAD =$40 BEGRPT =$40 MTXTBL =$40 OPTION =$80
BUFFER =$80 STRPT =$F0 FAST =$FB MACTABLE =$0200
MTREX1 =$0A00 MTRIX2 =$0C00 SPKEYS =$0C01 KEYOUT =$0E00
EPROM =$1800 ? NTBL =$1800 ? CTBL =$1840 ? STBL =$1880

? SCTBI =$18C0 ? UNTBL =$1900 ? UCTBL =$1940 ? USTBL =$1980
? USCTBL =$19C0 ? PADTBL =$1A00 RESET1 =$1A10 STARTUP =$1Al0

MTERROR =$lA3B MLOOP =$1A3F MTSKIP =$1A48 TSTLOOP =$1A4A
SETLOOP =$1A53 WRITE =$1A71 READ =$1A73 ? CHECKSUM =$1A82
CSLOOP =$1A8C ERROR =$1AA3 ERRWAIT =$1AB7 HALT =$1ABE
IRQ =$1AC2 BREAK =$IACD CLRTBLS =$1AD2 TBLOOP =$1AD4
RESET2 =$1AF1 RPWAIT =$1AFE RESET3 =$1B05 RESET4 =$1B15
RSLOOP =$1319 SCAN =$1B23 SCLOOP =$1B2A RDKEY =$1B59
MASK1 =$1B65 NOMASK =$1B67 REPCHK =$1B68 KEYREPT =$1B78
AUTORPT =$1B82 RDMACRO =$1B9F RPMACRO =$1BA5 DECODE =$1BAB
DCLOOP =$1BAD DBLOOP =$IBB7 DBLOOP1 =$1BBE DBEXIT =$1BC7
GOODKEY =$1BCE ? NODB =$1BD2 NOSET1 =$1C04 ALOCK =$1C0A
NTKYPAD =$1CI8 SPECIAL =$1ClE NTDNLD =$1C3B NTDNLD1 =$1C3F
NTRPT =$1C54 NTRESET =$1C57 NTREPT =$1C65 GOODLK =$1C7C
LOCKSET =$1C8A OUTPUT =$1C9A NOBUFF =$1CAD SPEXIT =$1CCB
GETKEY =$1CCC MCRECHK =$1CED ? MCDFINE =$1CEF MACREATE =$1D09
MCABORT =$1D20 MACRMOVE =$1D26 MOVE =$1D31 MSKIP1 =$1D3B
NEWMACRO =$1D48 MACRO =$1D5D MACLOOP =$1D65 MDLOOP =$1D7C
NODLY =$1D84 NOMACRO =$1D8E NOMAC1 =$1D99 INDONE =$1DAF
SEARCH =$1DB0 SHLOOP =$1DBE NTCHAR =$1DD1 SHEXIT =$1DD6
MODFND =$1DD7 NXTBYTE =$1DE2 ENDCHK =$1DE8 NXTCHAR =$1DED
NCSKIP =$1DF3 NCSKIP1 =$1DFF RTS2 =$1E05 NXTCHK =$1E06
LASTCHK =$1E0C RTS1 =$1El6 ENDSET =$1E17 DOWNLOAD =$1E20
NORMRPT =$1E52 SETSPEED =$1E54 DLERROR =$1E59 RDMACROS =$1E5C
RMLOOP =$1E64 RTS3 =$1E74 RDBYTE =$1E75 BYTELOOP =$1E77
RTS4 =$1E83 RDBIT =$1E84 RTS5 =$1EA7 ZEROBIT =$1EA8
ONEBIT =S1EAA DELAY =$1EAE DLYLOOP =$1EB0 MTMSG =$1EB9
CSMSG =$IED1 IRQMSG =$1EEB BRKMSG =$1EF6 MTXTBL1 =$1F03
ROW =$1F1F ROWEND =$1F39 BYTE =$1F56 RESVEC =$lFFC
CLOOP =$200A OBJECT =$8800

Page Y—28

Glossary

ASCII — American Standard Code of Information Interchange. The
standard by which microcomputers (and most other
computers) encode alpha numeric data.

ASCII character — A character of the ASCII chart.

Auto Repeat — The automatic repeating of any key held down after
a brief pause.

BASIC — Beginner's All—purpose Symbolic Instruction Code. A
relatively simple programming language used extensively
on microcomputers. The Apple][has two versions of
this language: Integer BASIC and Applesoft, a floating
point BASIC.

Buffer —An area of memory for temporary storage of data. In
the Enhancer][. buffer means some portion of RAM
memory.

Circumflex — ASCII character $DE (222 decimal): ˆ.

EPROM — Erasable Programmable Read Only Memory. ROMs which may
be erased by ultra violet light and reprogrammed.

Fast Repeat — Usually the fastest of two repeat speeds.

Keyboard character — A sequence of keystrokes which produce an
ASCII character.

Macro — A single instruction which stands for a sequence of
instructions. In the Enhancer][, macro means the
definition of a keyboard character.

RAM — Random Access Memory. Memory which may be read from and
written to electronically.

RON — Read Only Memory. Memory which may be programmed only
once and may only be read from subsequently.

Ul — 2716 EFROM (Enhancer][Firmware)
U2 — 6504 Microprocessor (6502 instruction set)
U3 — 2114 1K x 4 RAM
U4 — 2114 1K x 4 RAM
U5 — 74LS05 Hex inverter, open collector
U6 — 74LS373Octal D latch
U7 — 74LS139Dual 2—4 line decoder
U8 — 74LS05 Hex inverter, open collector
U9 — 74LS373Octal D latch
U10 — 74LS374Octal D flip—flop
Ull — Keyboard output

2N3904 — Reset logic

